ipmi: Rename ipmi_user_t to struct ipmi_user *
[linux-2.6-block.git] / drivers / char / ipmi / ipmi_si_intf.c
CommitLineData
243ac210 1// SPDX-License-Identifier: GPL-2.0+
1da177e4
LT
2/*
3 * ipmi_si.c
4 *
5 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
6 * BT).
7 *
8 * Author: MontaVista Software, Inc.
9 * Corey Minyard <minyard@mvista.com>
10 * source@mvista.com
11 *
12 * Copyright 2002 MontaVista Software Inc.
dba9b4f6 13 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
1da177e4
LT
14 */
15
16/*
17 * This file holds the "policy" for the interface to the SMI state
18 * machine. It does the configuration, handles timers and interrupts,
19 * and drives the real SMI state machine.
20 */
21
1da177e4
LT
22#include <linux/module.h>
23#include <linux/moduleparam.h>
1da177e4 24#include <linux/sched.h>
07412736 25#include <linux/seq_file.h>
1da177e4
LT
26#include <linux/timer.h>
27#include <linux/errno.h>
28#include <linux/spinlock.h>
29#include <linux/slab.h>
30#include <linux/delay.h>
31#include <linux/list.h>
ea94027b 32#include <linux/notifier.h>
b0defcdb 33#include <linux/mutex.h>
e9a705a0 34#include <linux/kthread.h>
1da177e4 35#include <asm/irq.h>
1da177e4
LT
36#include <linux/interrupt.h>
37#include <linux/rcupdate.h>
16f4232c 38#include <linux/ipmi.h>
1da177e4 39#include <linux/ipmi_smi.h>
1e89a499 40#include "ipmi_si.h"
b361e27b
CM
41#include <linux/string.h>
42#include <linux/ctype.h>
dba9b4f6 43
b361e27b 44#define PFX "ipmi_si: "
1da177e4
LT
45
46/* Measure times between events in the driver. */
47#undef DEBUG_TIMING
48
49/* Call every 10 ms. */
50#define SI_TIMEOUT_TIME_USEC 10000
51#define SI_USEC_PER_JIFFY (1000000/HZ)
52#define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
53#define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
c305e3d3 54 short timeout */
1da177e4
LT
55
56enum si_intf_state {
57 SI_NORMAL,
58 SI_GETTING_FLAGS,
59 SI_GETTING_EVENTS,
60 SI_CLEARING_FLAGS,
1da177e4 61 SI_GETTING_MESSAGES,
d9b7e4f7
CM
62 SI_CHECKING_ENABLES,
63 SI_SETTING_ENABLES
1da177e4
LT
64 /* FIXME - add watchdog stuff. */
65};
66
9dbf68f9
CM
67/* Some BT-specific defines we need here. */
68#define IPMI_BT_INTMASK_REG 2
69#define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
70#define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
71
95e300c0 72static const char * const si_to_str[] = { "invalid", "kcs", "smic", "bt" };
1da177e4 73
bb398a4c
CM
74static int initialized;
75
64959e2d
CM
76/*
77 * Indexes into stats[] in smi_info below.
78 */
ba8ff1c6
CM
79enum si_stat_indexes {
80 /*
81 * Number of times the driver requested a timer while an operation
82 * was in progress.
83 */
84 SI_STAT_short_timeouts = 0,
85
86 /*
87 * Number of times the driver requested a timer while nothing was in
88 * progress.
89 */
90 SI_STAT_long_timeouts,
91
92 /* Number of times the interface was idle while being polled. */
93 SI_STAT_idles,
94
95 /* Number of interrupts the driver handled. */
96 SI_STAT_interrupts,
97
98 /* Number of time the driver got an ATTN from the hardware. */
99 SI_STAT_attentions,
64959e2d 100
ba8ff1c6
CM
101 /* Number of times the driver requested flags from the hardware. */
102 SI_STAT_flag_fetches,
103
104 /* Number of times the hardware didn't follow the state machine. */
105 SI_STAT_hosed_count,
106
107 /* Number of completed messages. */
108 SI_STAT_complete_transactions,
109
110 /* Number of IPMI events received from the hardware. */
111 SI_STAT_events,
112
113 /* Number of watchdog pretimeouts. */
114 SI_STAT_watchdog_pretimeouts,
115
b3834be5 116 /* Number of asynchronous messages received. */
ba8ff1c6
CM
117 SI_STAT_incoming_messages,
118
119
120 /* This *must* remain last, add new values above this. */
121 SI_NUM_STATS
122};
64959e2d 123
c305e3d3 124struct smi_info {
a9a2c44f 125 int intf_num;
1da177e4
LT
126 ipmi_smi_t intf;
127 struct si_sm_data *si_sm;
81d02b7f 128 const struct si_sm_handlers *handlers;
1da177e4 129 spinlock_t si_lock;
b874b985 130 struct ipmi_smi_msg *waiting_msg;
1da177e4
LT
131 struct ipmi_smi_msg *curr_msg;
132 enum si_intf_state si_state;
133
c305e3d3
CM
134 /*
135 * Used to handle the various types of I/O that can occur with
136 * IPMI
137 */
1da177e4 138 struct si_sm_io io;
1da177e4 139
c305e3d3
CM
140 /*
141 * Per-OEM handler, called from handle_flags(). Returns 1
142 * when handle_flags() needs to be re-run or 0 indicating it
143 * set si_state itself.
144 */
3ae0e0f9
CM
145 int (*oem_data_avail_handler)(struct smi_info *smi_info);
146
c305e3d3
CM
147 /*
148 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
149 * is set to hold the flags until we are done handling everything
150 * from the flags.
151 */
1da177e4
LT
152#define RECEIVE_MSG_AVAIL 0x01
153#define EVENT_MSG_BUFFER_FULL 0x02
154#define WDT_PRE_TIMEOUT_INT 0x08
3ae0e0f9
CM
155#define OEM0_DATA_AVAIL 0x20
156#define OEM1_DATA_AVAIL 0x40
157#define OEM2_DATA_AVAIL 0x80
158#define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
c305e3d3
CM
159 OEM1_DATA_AVAIL | \
160 OEM2_DATA_AVAIL)
1da177e4
LT
161 unsigned char msg_flags;
162
40112ae7 163 /* Does the BMC have an event buffer? */
7aefac26 164 bool has_event_buffer;
40112ae7 165
c305e3d3
CM
166 /*
167 * If set to true, this will request events the next time the
168 * state machine is idle.
169 */
1da177e4
LT
170 atomic_t req_events;
171
c305e3d3
CM
172 /*
173 * If true, run the state machine to completion on every send
174 * call. Generally used after a panic to make sure stuff goes
175 * out.
176 */
7aefac26 177 bool run_to_completion;
1da177e4 178
1da177e4
LT
179 /* The timer for this si. */
180 struct timer_list si_timer;
181
4f7f5551
MY
182 /* This flag is set, if the timer can be set */
183 bool timer_can_start;
184
48e8ac29
BS
185 /* This flag is set, if the timer is running (timer_pending() isn't enough) */
186 bool timer_running;
187
1da177e4
LT
188 /* The time (in jiffies) the last timeout occurred at. */
189 unsigned long last_timeout_jiffies;
190
89986496
CM
191 /* Are we waiting for the events, pretimeouts, received msgs? */
192 atomic_t need_watch;
193
c305e3d3
CM
194 /*
195 * The driver will disable interrupts when it gets into a
196 * situation where it cannot handle messages due to lack of
197 * memory. Once that situation clears up, it will re-enable
198 * interrupts.
199 */
7aefac26 200 bool interrupt_disabled;
1da177e4 201
d9b7e4f7
CM
202 /*
203 * Does the BMC support events?
204 */
205 bool supports_event_msg_buff;
206
1e7d6a45 207 /*
d0882897
CM
208 * Can we disable interrupts the global enables receive irq
209 * bit? There are currently two forms of brokenness, some
210 * systems cannot disable the bit (which is technically within
211 * the spec but a bad idea) and some systems have the bit
212 * forced to zero even though interrupts work (which is
213 * clearly outside the spec). The next bool tells which form
214 * of brokenness is present.
1e7d6a45 215 */
d0882897
CM
216 bool cannot_disable_irq;
217
218 /*
219 * Some systems are broken and cannot set the irq enable
220 * bit, even if they support interrupts.
221 */
222 bool irq_enable_broken;
1e7d6a45 223
a8df150c
CM
224 /*
225 * Did we get an attention that we did not handle?
226 */
227 bool got_attn;
228
50c812b2 229 /* From the get device id response... */
3ae0e0f9 230 struct ipmi_device_id device_id;
1da177e4 231
910840f2 232 /* Default driver model device. */
50c812b2
CM
233 struct platform_device *pdev;
234
cc095f0a
CM
235 /* Have we added the device group to the device? */
236 bool dev_group_added;
237
71404a2f
CM
238 /* Have we added the platform device? */
239 bool pdev_registered;
240
1da177e4 241 /* Counters and things for the proc filesystem. */
64959e2d 242 atomic_t stats[SI_NUM_STATS];
a9a2c44f 243
c305e3d3 244 struct task_struct *thread;
b0defcdb
CM
245
246 struct list_head link;
1da177e4
LT
247};
248
64959e2d
CM
249#define smi_inc_stat(smi, stat) \
250 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
251#define smi_get_stat(smi, stat) \
252 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
253
7a453308
CM
254#define IPMI_MAX_INTFS 4
255static int force_kipmid[IPMI_MAX_INTFS];
a51f4a81
CM
256static int num_force_kipmid;
257
7a453308 258static unsigned int kipmid_max_busy_us[IPMI_MAX_INTFS];
ae74e823
MW
259static int num_max_busy_us;
260
7aefac26 261static bool unload_when_empty = true;
b361e27b 262
b0defcdb 263static int try_smi_init(struct smi_info *smi);
71404a2f
CM
264static void shutdown_one_si(struct smi_info *smi_info);
265static void cleanup_one_si(struct smi_info *smi_info);
d2478521 266static void cleanup_ipmi_si(void);
b0defcdb 267
f93aae9f
JS
268#ifdef DEBUG_TIMING
269void debug_timestamp(char *msg)
270{
48862ea2 271 struct timespec64 t;
f93aae9f 272
48862ea2
JS
273 getnstimeofday64(&t);
274 pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
f93aae9f
JS
275}
276#else
277#define debug_timestamp(x)
278#endif
279
e041c683 280static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
c305e3d3 281static int register_xaction_notifier(struct notifier_block *nb)
ea94027b 282{
e041c683 283 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
ea94027b
CM
284}
285
1da177e4
LT
286static void deliver_recv_msg(struct smi_info *smi_info,
287 struct ipmi_smi_msg *msg)
288{
7adf579c 289 /* Deliver the message to the upper layer. */
968bf7cc
CM
290 if (smi_info->intf)
291 ipmi_smi_msg_received(smi_info->intf, msg);
292 else
293 ipmi_free_smi_msg(msg);
1da177e4
LT
294}
295
4d7cbac7 296static void return_hosed_msg(struct smi_info *smi_info, int cCode)
1da177e4
LT
297{
298 struct ipmi_smi_msg *msg = smi_info->curr_msg;
299
4d7cbac7
CM
300 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
301 cCode = IPMI_ERR_UNSPECIFIED;
302 /* else use it as is */
303
25985edc 304 /* Make it a response */
1da177e4
LT
305 msg->rsp[0] = msg->data[0] | 4;
306 msg->rsp[1] = msg->data[1];
4d7cbac7 307 msg->rsp[2] = cCode;
1da177e4
LT
308 msg->rsp_size = 3;
309
310 smi_info->curr_msg = NULL;
311 deliver_recv_msg(smi_info, msg);
312}
313
314static enum si_sm_result start_next_msg(struct smi_info *smi_info)
315{
316 int rv;
1da177e4 317
b874b985 318 if (!smi_info->waiting_msg) {
1da177e4
LT
319 smi_info->curr_msg = NULL;
320 rv = SI_SM_IDLE;
321 } else {
322 int err;
323
b874b985
CM
324 smi_info->curr_msg = smi_info->waiting_msg;
325 smi_info->waiting_msg = NULL;
f93aae9f 326 debug_timestamp("Start2");
e041c683
AS
327 err = atomic_notifier_call_chain(&xaction_notifier_list,
328 0, smi_info);
ea94027b
CM
329 if (err & NOTIFY_STOP_MASK) {
330 rv = SI_SM_CALL_WITHOUT_DELAY;
331 goto out;
332 }
1da177e4
LT
333 err = smi_info->handlers->start_transaction(
334 smi_info->si_sm,
335 smi_info->curr_msg->data,
336 smi_info->curr_msg->data_size);
c305e3d3 337 if (err)
4d7cbac7 338 return_hosed_msg(smi_info, err);
1da177e4
LT
339
340 rv = SI_SM_CALL_WITHOUT_DELAY;
341 }
76824852 342out:
1da177e4
LT
343 return rv;
344}
345
0cfec916
CM
346static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
347{
4f7f5551
MY
348 if (!smi_info->timer_can_start)
349 return;
0cfec916
CM
350 smi_info->last_timeout_jiffies = jiffies;
351 mod_timer(&smi_info->si_timer, new_val);
352 smi_info->timer_running = true;
353}
354
355/*
356 * Start a new message and (re)start the timer and thread.
357 */
358static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
359 unsigned int size)
360{
361 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
362
363 if (smi_info->thread)
364 wake_up_process(smi_info->thread);
365
366 smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
367}
368
4f7f5551 369static void start_check_enables(struct smi_info *smi_info)
ee6cd5f8
CM
370{
371 unsigned char msg[2];
372
373 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
374 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
375
4f7f5551 376 start_new_msg(smi_info, msg, 2);
d9b7e4f7 377 smi_info->si_state = SI_CHECKING_ENABLES;
ee6cd5f8
CM
378}
379
4f7f5551 380static void start_clear_flags(struct smi_info *smi_info)
1da177e4
LT
381{
382 unsigned char msg[3];
383
384 /* Make sure the watchdog pre-timeout flag is not set at startup. */
385 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
386 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
387 msg[2] = WDT_PRE_TIMEOUT_INT;
388
4f7f5551 389 start_new_msg(smi_info, msg, 3);
1da177e4
LT
390 smi_info->si_state = SI_CLEARING_FLAGS;
391}
392
968bf7cc
CM
393static void start_getting_msg_queue(struct smi_info *smi_info)
394{
395 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
396 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
397 smi_info->curr_msg->data_size = 2;
398
0cfec916
CM
399 start_new_msg(smi_info, smi_info->curr_msg->data,
400 smi_info->curr_msg->data_size);
968bf7cc
CM
401 smi_info->si_state = SI_GETTING_MESSAGES;
402}
403
404static void start_getting_events(struct smi_info *smi_info)
405{
406 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
407 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
408 smi_info->curr_msg->data_size = 2;
409
0cfec916
CM
410 start_new_msg(smi_info, smi_info->curr_msg->data,
411 smi_info->curr_msg->data_size);
968bf7cc
CM
412 smi_info->si_state = SI_GETTING_EVENTS;
413}
414
c305e3d3
CM
415/*
416 * When we have a situtaion where we run out of memory and cannot
417 * allocate messages, we just leave them in the BMC and run the system
418 * polled until we can allocate some memory. Once we have some
419 * memory, we will re-enable the interrupt.
1e7d6a45
CM
420 *
421 * Note that we cannot just use disable_irq(), since the interrupt may
422 * be shared.
c305e3d3 423 */
4f7f5551 424static inline bool disable_si_irq(struct smi_info *smi_info)
1da177e4 425{
910840f2 426 if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) {
7aefac26 427 smi_info->interrupt_disabled = true;
4f7f5551 428 start_check_enables(smi_info);
968bf7cc 429 return true;
1da177e4 430 }
968bf7cc 431 return false;
1da177e4
LT
432}
433
968bf7cc 434static inline bool enable_si_irq(struct smi_info *smi_info)
1da177e4 435{
910840f2 436 if ((smi_info->io.irq) && (smi_info->interrupt_disabled)) {
7aefac26 437 smi_info->interrupt_disabled = false;
4f7f5551 438 start_check_enables(smi_info);
968bf7cc
CM
439 return true;
440 }
441 return false;
442}
443
444/*
445 * Allocate a message. If unable to allocate, start the interrupt
446 * disable process and return NULL. If able to allocate but
447 * interrupts are disabled, free the message and return NULL after
448 * starting the interrupt enable process.
449 */
450static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
451{
452 struct ipmi_smi_msg *msg;
453
454 msg = ipmi_alloc_smi_msg();
455 if (!msg) {
4f7f5551 456 if (!disable_si_irq(smi_info))
968bf7cc
CM
457 smi_info->si_state = SI_NORMAL;
458 } else if (enable_si_irq(smi_info)) {
459 ipmi_free_smi_msg(msg);
460 msg = NULL;
1da177e4 461 }
968bf7cc 462 return msg;
1da177e4
LT
463}
464
465static void handle_flags(struct smi_info *smi_info)
466{
76824852 467retry:
1da177e4
LT
468 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
469 /* Watchdog pre-timeout */
64959e2d 470 smi_inc_stat(smi_info, watchdog_pretimeouts);
1da177e4 471
4f7f5551 472 start_clear_flags(smi_info);
1da177e4 473 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
968bf7cc
CM
474 if (smi_info->intf)
475 ipmi_smi_watchdog_pretimeout(smi_info->intf);
1da177e4
LT
476 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
477 /* Messages available. */
968bf7cc
CM
478 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
479 if (!smi_info->curr_msg)
1da177e4 480 return;
1da177e4 481
968bf7cc 482 start_getting_msg_queue(smi_info);
1da177e4
LT
483 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
484 /* Events available. */
968bf7cc
CM
485 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
486 if (!smi_info->curr_msg)
1da177e4 487 return;
1da177e4 488
968bf7cc 489 start_getting_events(smi_info);
4064d5ef 490 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
c305e3d3 491 smi_info->oem_data_avail_handler) {
4064d5ef
CM
492 if (smi_info->oem_data_avail_handler(smi_info))
493 goto retry;
c305e3d3 494 } else
1da177e4 495 smi_info->si_state = SI_NORMAL;
1da177e4
LT
496}
497
d9b7e4f7
CM
498/*
499 * Global enables we care about.
500 */
501#define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
502 IPMI_BMC_EVT_MSG_INTR)
503
95c97b59
CM
504static u8 current_global_enables(struct smi_info *smi_info, u8 base,
505 bool *irq_on)
d9b7e4f7
CM
506{
507 u8 enables = 0;
508
509 if (smi_info->supports_event_msg_buff)
510 enables |= IPMI_BMC_EVT_MSG_BUFF;
d9b7e4f7 511
910840f2 512 if (((smi_info->io.irq && !smi_info->interrupt_disabled) ||
d0882897
CM
513 smi_info->cannot_disable_irq) &&
514 !smi_info->irq_enable_broken)
d9b7e4f7 515 enables |= IPMI_BMC_RCV_MSG_INTR;
d9b7e4f7
CM
516
517 if (smi_info->supports_event_msg_buff &&
910840f2 518 smi_info->io.irq && !smi_info->interrupt_disabled &&
d0882897 519 !smi_info->irq_enable_broken)
d9b7e4f7 520 enables |= IPMI_BMC_EVT_MSG_INTR;
d9b7e4f7 521
95c97b59
CM
522 *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
523
d9b7e4f7
CM
524 return enables;
525}
526
95c97b59
CM
527static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
528{
529 u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
530
531 irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
532
533 if ((bool)irqstate == irq_on)
534 return;
535
536 if (irq_on)
537 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
538 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
539 else
540 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
541}
542
1da177e4
LT
543static void handle_transaction_done(struct smi_info *smi_info)
544{
545 struct ipmi_smi_msg *msg;
1da177e4 546
f93aae9f 547 debug_timestamp("Done");
1da177e4
LT
548 switch (smi_info->si_state) {
549 case SI_NORMAL:
b0defcdb 550 if (!smi_info->curr_msg)
1da177e4
LT
551 break;
552
553 smi_info->curr_msg->rsp_size
554 = smi_info->handlers->get_result(
555 smi_info->si_sm,
556 smi_info->curr_msg->rsp,
557 IPMI_MAX_MSG_LENGTH);
558
c305e3d3
CM
559 /*
560 * Do this here becase deliver_recv_msg() releases the
561 * lock, and a new message can be put in during the
562 * time the lock is released.
563 */
1da177e4
LT
564 msg = smi_info->curr_msg;
565 smi_info->curr_msg = NULL;
566 deliver_recv_msg(smi_info, msg);
567 break;
568
569 case SI_GETTING_FLAGS:
570 {
571 unsigned char msg[4];
572 unsigned int len;
573
574 /* We got the flags from the SMI, now handle them. */
575 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
576 if (msg[2] != 0) {
c305e3d3 577 /* Error fetching flags, just give up for now. */
1da177e4
LT
578 smi_info->si_state = SI_NORMAL;
579 } else if (len < 4) {
c305e3d3
CM
580 /*
581 * Hmm, no flags. That's technically illegal, but
582 * don't use uninitialized data.
583 */
1da177e4
LT
584 smi_info->si_state = SI_NORMAL;
585 } else {
586 smi_info->msg_flags = msg[3];
587 handle_flags(smi_info);
588 }
589 break;
590 }
591
592 case SI_CLEARING_FLAGS:
1da177e4
LT
593 {
594 unsigned char msg[3];
595
596 /* We cleared the flags. */
597 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
598 if (msg[2] != 0) {
599 /* Error clearing flags */
910840f2 600 dev_warn(smi_info->io.dev,
279fbd0c 601 "Error clearing flags: %2.2x\n", msg[2]);
1da177e4 602 }
d9b7e4f7 603 smi_info->si_state = SI_NORMAL;
1da177e4
LT
604 break;
605 }
606
607 case SI_GETTING_EVENTS:
608 {
609 smi_info->curr_msg->rsp_size
610 = smi_info->handlers->get_result(
611 smi_info->si_sm,
612 smi_info->curr_msg->rsp,
613 IPMI_MAX_MSG_LENGTH);
614
c305e3d3
CM
615 /*
616 * Do this here becase deliver_recv_msg() releases the
617 * lock, and a new message can be put in during the
618 * time the lock is released.
619 */
1da177e4
LT
620 msg = smi_info->curr_msg;
621 smi_info->curr_msg = NULL;
622 if (msg->rsp[2] != 0) {
623 /* Error getting event, probably done. */
624 msg->done(msg);
625
626 /* Take off the event flag. */
627 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
628 handle_flags(smi_info);
629 } else {
64959e2d 630 smi_inc_stat(smi_info, events);
1da177e4 631
c305e3d3
CM
632 /*
633 * Do this before we deliver the message
634 * because delivering the message releases the
635 * lock and something else can mess with the
636 * state.
637 */
1da177e4
LT
638 handle_flags(smi_info);
639
640 deliver_recv_msg(smi_info, msg);
641 }
642 break;
643 }
644
645 case SI_GETTING_MESSAGES:
646 {
647 smi_info->curr_msg->rsp_size
648 = smi_info->handlers->get_result(
649 smi_info->si_sm,
650 smi_info->curr_msg->rsp,
651 IPMI_MAX_MSG_LENGTH);
652
c305e3d3
CM
653 /*
654 * Do this here becase deliver_recv_msg() releases the
655 * lock, and a new message can be put in during the
656 * time the lock is released.
657 */
1da177e4
LT
658 msg = smi_info->curr_msg;
659 smi_info->curr_msg = NULL;
660 if (msg->rsp[2] != 0) {
661 /* Error getting event, probably done. */
662 msg->done(msg);
663
664 /* Take off the msg flag. */
665 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
666 handle_flags(smi_info);
667 } else {
64959e2d 668 smi_inc_stat(smi_info, incoming_messages);
1da177e4 669
c305e3d3
CM
670 /*
671 * Do this before we deliver the message
672 * because delivering the message releases the
673 * lock and something else can mess with the
674 * state.
675 */
1da177e4
LT
676 handle_flags(smi_info);
677
678 deliver_recv_msg(smi_info, msg);
679 }
680 break;
681 }
682
d9b7e4f7 683 case SI_CHECKING_ENABLES:
1da177e4
LT
684 {
685 unsigned char msg[4];
d9b7e4f7 686 u8 enables;
95c97b59 687 bool irq_on;
1da177e4
LT
688
689 /* We got the flags from the SMI, now handle them. */
690 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
691 if (msg[2] != 0) {
910840f2 692 dev_warn(smi_info->io.dev,
0849bfec 693 "Couldn't get irq info: %x.\n", msg[2]);
910840f2 694 dev_warn(smi_info->io.dev,
0849bfec 695 "Maybe ok, but ipmi might run very slowly.\n");
1da177e4 696 smi_info->si_state = SI_NORMAL;
d9b7e4f7
CM
697 break;
698 }
95c97b59 699 enables = current_global_enables(smi_info, 0, &irq_on);
910840f2 700 if (smi_info->io.si_type == SI_BT)
95c97b59
CM
701 /* BT has its own interrupt enable bit. */
702 check_bt_irq(smi_info, irq_on);
d9b7e4f7
CM
703 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
704 /* Enables are not correct, fix them. */
1da177e4
LT
705 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
706 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
d9b7e4f7 707 msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
1da177e4
LT
708 smi_info->handlers->start_transaction(
709 smi_info->si_sm, msg, 3);
d9b7e4f7
CM
710 smi_info->si_state = SI_SETTING_ENABLES;
711 } else if (smi_info->supports_event_msg_buff) {
712 smi_info->curr_msg = ipmi_alloc_smi_msg();
713 if (!smi_info->curr_msg) {
714 smi_info->si_state = SI_NORMAL;
715 break;
716 }
5ac7b2fc 717 start_getting_events(smi_info);
d9b7e4f7
CM
718 } else {
719 smi_info->si_state = SI_NORMAL;
1da177e4
LT
720 }
721 break;
722 }
723
d9b7e4f7 724 case SI_SETTING_ENABLES:
1da177e4
LT
725 {
726 unsigned char msg[4];
727
1da177e4 728 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
d9b7e4f7 729 if (msg[2] != 0)
910840f2 730 dev_warn(smi_info->io.dev,
d9b7e4f7
CM
731 "Could not set the global enables: 0x%x.\n",
732 msg[2]);
733
734 if (smi_info->supports_event_msg_buff) {
735 smi_info->curr_msg = ipmi_alloc_smi_msg();
736 if (!smi_info->curr_msg) {
737 smi_info->si_state = SI_NORMAL;
738 break;
739 }
5ac7b2fc 740 start_getting_events(smi_info);
ee6cd5f8 741 } else {
d9b7e4f7 742 smi_info->si_state = SI_NORMAL;
ee6cd5f8 743 }
ee6cd5f8
CM
744 break;
745 }
1da177e4
LT
746 }
747}
748
c305e3d3
CM
749/*
750 * Called on timeouts and events. Timeouts should pass the elapsed
751 * time, interrupts should pass in zero. Must be called with
752 * si_lock held and interrupts disabled.
753 */
1da177e4
LT
754static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
755 int time)
756{
757 enum si_sm_result si_sm_result;
758
76824852 759restart:
c305e3d3
CM
760 /*
761 * There used to be a loop here that waited a little while
762 * (around 25us) before giving up. That turned out to be
763 * pointless, the minimum delays I was seeing were in the 300us
764 * range, which is far too long to wait in an interrupt. So
765 * we just run until the state machine tells us something
766 * happened or it needs a delay.
767 */
1da177e4
LT
768 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
769 time = 0;
770 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
1da177e4 771 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
1da177e4 772
c305e3d3 773 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
64959e2d 774 smi_inc_stat(smi_info, complete_transactions);
1da177e4
LT
775
776 handle_transaction_done(smi_info);
d9dffd2a 777 goto restart;
c305e3d3 778 } else if (si_sm_result == SI_SM_HOSED) {
64959e2d 779 smi_inc_stat(smi_info, hosed_count);
1da177e4 780
c305e3d3
CM
781 /*
782 * Do the before return_hosed_msg, because that
783 * releases the lock.
784 */
1da177e4
LT
785 smi_info->si_state = SI_NORMAL;
786 if (smi_info->curr_msg != NULL) {
c305e3d3
CM
787 /*
788 * If we were handling a user message, format
789 * a response to send to the upper layer to
790 * tell it about the error.
791 */
4d7cbac7 792 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
1da177e4 793 }
d9dffd2a 794 goto restart;
1da177e4
LT
795 }
796
4ea18425
CM
797 /*
798 * We prefer handling attn over new messages. But don't do
799 * this if there is not yet an upper layer to handle anything.
800 */
a8df150c
CM
801 if (likely(smi_info->intf) &&
802 (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
1da177e4
LT
803 unsigned char msg[2];
804
a8df150c
CM
805 if (smi_info->si_state != SI_NORMAL) {
806 /*
807 * We got an ATTN, but we are doing something else.
808 * Handle the ATTN later.
809 */
810 smi_info->got_attn = true;
811 } else {
812 smi_info->got_attn = false;
813 smi_inc_stat(smi_info, attentions);
1da177e4 814
a8df150c
CM
815 /*
816 * Got a attn, send down a get message flags to see
817 * what's causing it. It would be better to handle
818 * this in the upper layer, but due to the way
819 * interrupts work with the SMI, that's not really
820 * possible.
821 */
822 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
823 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
1da177e4 824
0cfec916 825 start_new_msg(smi_info, msg, 2);
a8df150c
CM
826 smi_info->si_state = SI_GETTING_FLAGS;
827 goto restart;
828 }
1da177e4
LT
829 }
830
831 /* If we are currently idle, try to start the next message. */
832 if (si_sm_result == SI_SM_IDLE) {
64959e2d 833 smi_inc_stat(smi_info, idles);
1da177e4
LT
834
835 si_sm_result = start_next_msg(smi_info);
836 if (si_sm_result != SI_SM_IDLE)
837 goto restart;
c305e3d3 838 }
1da177e4
LT
839
840 if ((si_sm_result == SI_SM_IDLE)
c305e3d3
CM
841 && (atomic_read(&smi_info->req_events))) {
842 /*
843 * We are idle and the upper layer requested that I fetch
844 * events, so do so.
845 */
55162fb1 846 atomic_set(&smi_info->req_events, 0);
1da177e4 847
d9b7e4f7
CM
848 /*
849 * Take this opportunity to check the interrupt and
850 * message enable state for the BMC. The BMC can be
851 * asynchronously reset, and may thus get interrupts
852 * disable and messages disabled.
853 */
910840f2 854 if (smi_info->supports_event_msg_buff || smi_info->io.irq) {
4f7f5551 855 start_check_enables(smi_info);
d9b7e4f7
CM
856 } else {
857 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
858 if (!smi_info->curr_msg)
859 goto out;
1da177e4 860
d9b7e4f7
CM
861 start_getting_events(smi_info);
862 }
1da177e4
LT
863 goto restart;
864 }
314ef52f
CM
865
866 if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) {
867 /* Ok it if fails, the timer will just go off. */
868 if (del_timer(&smi_info->si_timer))
869 smi_info->timer_running = false;
870 }
871
76824852 872out:
1da177e4
LT
873 return si_sm_result;
874}
875
89986496
CM
876static void check_start_timer_thread(struct smi_info *smi_info)
877{
878 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
879 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
880
881 if (smi_info->thread)
882 wake_up_process(smi_info->thread);
883
884 start_next_msg(smi_info);
885 smi_event_handler(smi_info, 0);
886 }
887}
888
82802f96 889static void flush_messages(void *send_info)
e45361d7 890{
82802f96 891 struct smi_info *smi_info = send_info;
e45361d7
HK
892 enum si_sm_result result;
893
894 /*
895 * Currently, this function is called only in run-to-completion
896 * mode. This means we are single-threaded, no need for locks.
897 */
898 result = smi_event_handler(smi_info, 0);
899 while (result != SI_SM_IDLE) {
900 udelay(SI_SHORT_TIMEOUT_USEC);
901 result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
902 }
903}
904
1da177e4 905static void sender(void *send_info,
99ab32f3 906 struct ipmi_smi_msg *msg)
1da177e4
LT
907{
908 struct smi_info *smi_info = send_info;
1da177e4 909 unsigned long flags;
1da177e4 910
f93aae9f 911 debug_timestamp("Enqueue");
1da177e4
LT
912
913 if (smi_info->run_to_completion) {
bda4c30a 914 /*
82802f96
HK
915 * If we are running to completion, start it. Upper
916 * layer will call flush_messages to clear it out.
bda4c30a 917 */
9f812704 918 smi_info->waiting_msg = msg;
1da177e4 919 return;
1da177e4 920 }
1da177e4 921
f60adf42 922 spin_lock_irqsave(&smi_info->si_lock, flags);
1d86e29b
CM
923 /*
924 * The following two lines don't need to be under the lock for
925 * the lock's sake, but they do need SMP memory barriers to
926 * avoid getting things out of order. We are already claiming
927 * the lock, anyway, so just do it under the lock to avoid the
928 * ordering problem.
929 */
930 BUG_ON(smi_info->waiting_msg);
931 smi_info->waiting_msg = msg;
89986496 932 check_start_timer_thread(smi_info);
bda4c30a 933 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1da177e4
LT
934}
935
7aefac26 936static void set_run_to_completion(void *send_info, bool i_run_to_completion)
1da177e4
LT
937{
938 struct smi_info *smi_info = send_info;
1da177e4
LT
939
940 smi_info->run_to_completion = i_run_to_completion;
e45361d7
HK
941 if (i_run_to_completion)
942 flush_messages(smi_info);
1da177e4
LT
943}
944
ae74e823
MW
945/*
946 * Use -1 in the nsec value of the busy waiting timespec to tell that
947 * we are spinning in kipmid looking for something and not delaying
948 * between checks
949 */
48862ea2 950static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
ae74e823
MW
951{
952 ts->tv_nsec = -1;
953}
48862ea2 954static inline int ipmi_si_is_busy(struct timespec64 *ts)
ae74e823
MW
955{
956 return ts->tv_nsec != -1;
957}
958
cc4cbe90
AB
959static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
960 const struct smi_info *smi_info,
48862ea2 961 struct timespec64 *busy_until)
ae74e823
MW
962{
963 unsigned int max_busy_us = 0;
964
965 if (smi_info->intf_num < num_max_busy_us)
966 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
967 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
968 ipmi_si_set_not_busy(busy_until);
969 else if (!ipmi_si_is_busy(busy_until)) {
48862ea2
JS
970 getnstimeofday64(busy_until);
971 timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
ae74e823 972 } else {
48862ea2
JS
973 struct timespec64 now;
974
975 getnstimeofday64(&now);
976 if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
ae74e823
MW
977 ipmi_si_set_not_busy(busy_until);
978 return 0;
979 }
980 }
981 return 1;
982}
983
984
985/*
986 * A busy-waiting loop for speeding up IPMI operation.
987 *
988 * Lousy hardware makes this hard. This is only enabled for systems
989 * that are not BT and do not have interrupts. It starts spinning
990 * when an operation is complete or until max_busy tells it to stop
991 * (if that is enabled). See the paragraph on kimid_max_busy_us in
992 * Documentation/IPMI.txt for details.
993 */
a9a2c44f
CM
994static int ipmi_thread(void *data)
995{
996 struct smi_info *smi_info = data;
e9a705a0 997 unsigned long flags;
a9a2c44f 998 enum si_sm_result smi_result;
48862ea2 999 struct timespec64 busy_until;
a9a2c44f 1000
ae74e823 1001 ipmi_si_set_not_busy(&busy_until);
8698a745 1002 set_user_nice(current, MAX_NICE);
e9a705a0 1003 while (!kthread_should_stop()) {
ae74e823
MW
1004 int busy_wait;
1005
a9a2c44f 1006 spin_lock_irqsave(&(smi_info->si_lock), flags);
8a3628d5 1007 smi_result = smi_event_handler(smi_info, 0);
48e8ac29
BS
1008
1009 /*
1010 * If the driver is doing something, there is a possible
1011 * race with the timer. If the timer handler see idle,
1012 * and the thread here sees something else, the timer
1013 * handler won't restart the timer even though it is
1014 * required. So start it here if necessary.
1015 */
1016 if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1017 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1018
a9a2c44f 1019 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
ae74e823
MW
1020 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1021 &busy_until);
c305e3d3
CM
1022 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1023 ; /* do nothing */
ae74e823 1024 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
33979734 1025 schedule();
89986496
CM
1026 else if (smi_result == SI_SM_IDLE) {
1027 if (atomic_read(&smi_info->need_watch)) {
1028 schedule_timeout_interruptible(100);
1029 } else {
1030 /* Wait to be woken up when we are needed. */
1031 __set_current_state(TASK_INTERRUPTIBLE);
1032 schedule();
1033 }
1034 } else
8d1f66dc 1035 schedule_timeout_interruptible(1);
a9a2c44f 1036 }
a9a2c44f
CM
1037 return 0;
1038}
1039
1040
1da177e4
LT
1041static void poll(void *send_info)
1042{
1043 struct smi_info *smi_info = send_info;
f60adf42 1044 unsigned long flags = 0;
7aefac26 1045 bool run_to_completion = smi_info->run_to_completion;
1da177e4 1046
15c62e10
CM
1047 /*
1048 * Make sure there is some delay in the poll loop so we can
1049 * drive time forward and timeout things.
1050 */
1051 udelay(10);
f60adf42
CM
1052 if (!run_to_completion)
1053 spin_lock_irqsave(&smi_info->si_lock, flags);
15c62e10 1054 smi_event_handler(smi_info, 10);
f60adf42
CM
1055 if (!run_to_completion)
1056 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1da177e4
LT
1057}
1058
1059static void request_events(void *send_info)
1060{
1061 struct smi_info *smi_info = send_info;
1062
b874b985 1063 if (!smi_info->has_event_buffer)
b361e27b
CM
1064 return;
1065
1da177e4
LT
1066 atomic_set(&smi_info->req_events, 1);
1067}
1068
7aefac26 1069static void set_need_watch(void *send_info, bool enable)
89986496
CM
1070{
1071 struct smi_info *smi_info = send_info;
1072 unsigned long flags;
1073
1074 atomic_set(&smi_info->need_watch, enable);
1075 spin_lock_irqsave(&smi_info->si_lock, flags);
1076 check_start_timer_thread(smi_info);
1077 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1078}
1079
e99e88a9 1080static void smi_timeout(struct timer_list *t)
1da177e4 1081{
e99e88a9 1082 struct smi_info *smi_info = from_timer(smi_info, t, si_timer);
1da177e4
LT
1083 enum si_sm_result smi_result;
1084 unsigned long flags;
1085 unsigned long jiffies_now;
c4edff1c 1086 long time_diff;
3326f4f2 1087 long timeout;
1da177e4 1088
1da177e4 1089 spin_lock_irqsave(&(smi_info->si_lock), flags);
f93aae9f
JS
1090 debug_timestamp("Timer");
1091
1da177e4 1092 jiffies_now = jiffies;
c4edff1c 1093 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1da177e4
LT
1094 * SI_USEC_PER_JIFFY);
1095 smi_result = smi_event_handler(smi_info, time_diff);
1096
910840f2 1097 if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) {
1da177e4 1098 /* Running with interrupts, only do long timeouts. */
3326f4f2 1099 timeout = jiffies + SI_TIMEOUT_JIFFIES;
64959e2d 1100 smi_inc_stat(smi_info, long_timeouts);
3326f4f2 1101 goto do_mod_timer;
1da177e4
LT
1102 }
1103
c305e3d3
CM
1104 /*
1105 * If the state machine asks for a short delay, then shorten
1106 * the timer timeout.
1107 */
1da177e4 1108 if (smi_result == SI_SM_CALL_WITH_DELAY) {
64959e2d 1109 smi_inc_stat(smi_info, short_timeouts);
3326f4f2 1110 timeout = jiffies + 1;
1da177e4 1111 } else {
64959e2d 1112 smi_inc_stat(smi_info, long_timeouts);
3326f4f2 1113 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1da177e4
LT
1114 }
1115
76824852 1116do_mod_timer:
3326f4f2 1117 if (smi_result != SI_SM_IDLE)
48e8ac29
BS
1118 smi_mod_timer(smi_info, timeout);
1119 else
1120 smi_info->timer_running = false;
1121 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1da177e4
LT
1122}
1123
4f3e8199 1124irqreturn_t ipmi_si_irq_handler(int irq, void *data)
1da177e4
LT
1125{
1126 struct smi_info *smi_info = data;
1127 unsigned long flags;
1da177e4 1128
4f3e8199
CM
1129 if (smi_info->io.si_type == SI_BT)
1130 /* We need to clear the IRQ flag for the BT interface. */
1131 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1132 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1133 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1134
1da177e4
LT
1135 spin_lock_irqsave(&(smi_info->si_lock), flags);
1136
64959e2d 1137 smi_inc_stat(smi_info, interrupts);
1da177e4 1138
f93aae9f
JS
1139 debug_timestamp("Interrupt");
1140
1da177e4 1141 smi_event_handler(smi_info, 0);
1da177e4
LT
1142 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1143 return IRQ_HANDLED;
1144}
1145
453823ba
CM
1146static int smi_start_processing(void *send_info,
1147 ipmi_smi_t intf)
1148{
1149 struct smi_info *new_smi = send_info;
a51f4a81 1150 int enable = 0;
453823ba
CM
1151
1152 new_smi->intf = intf;
1153
1154 /* Set up the timer that drives the interface. */
e99e88a9 1155 timer_setup(&new_smi->si_timer, smi_timeout, 0);
4f7f5551 1156 new_smi->timer_can_start = true;
48e8ac29 1157 smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
453823ba 1158
27f972d3 1159 /* Try to claim any interrupts. */
4f3e8199
CM
1160 if (new_smi->io.irq_setup) {
1161 new_smi->io.irq_handler_data = new_smi;
1162 new_smi->io.irq_setup(&new_smi->io);
1163 }
27f972d3 1164
a51f4a81
CM
1165 /*
1166 * Check if the user forcefully enabled the daemon.
1167 */
1168 if (new_smi->intf_num < num_force_kipmid)
1169 enable = force_kipmid[new_smi->intf_num];
df3fe8de
CM
1170 /*
1171 * The BT interface is efficient enough to not need a thread,
1172 * and there is no need for a thread if we have interrupts.
1173 */
910840f2 1174 else if ((new_smi->io.si_type != SI_BT) && (!new_smi->io.irq))
a51f4a81
CM
1175 enable = 1;
1176
1177 if (enable) {
453823ba
CM
1178 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1179 "kipmi%d", new_smi->intf_num);
1180 if (IS_ERR(new_smi->thread)) {
910840f2 1181 dev_notice(new_smi->io.dev, "Could not start"
279fbd0c
MS
1182 " kernel thread due to error %ld, only using"
1183 " timers to drive the interface\n",
1184 PTR_ERR(new_smi->thread));
453823ba
CM
1185 new_smi->thread = NULL;
1186 }
1187 }
1188
1189 return 0;
1190}
9dbf68f9 1191
16f4232c
ZY
1192static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1193{
1194 struct smi_info *smi = send_info;
1195
910840f2
CM
1196 data->addr_src = smi->io.addr_source;
1197 data->dev = smi->io.dev;
bb398a4c 1198 data->addr_info = smi->io.addr_info;
910840f2 1199 get_device(smi->io.dev);
16f4232c
ZY
1200
1201 return 0;
1202}
1203
7aefac26 1204static void set_maintenance_mode(void *send_info, bool enable)
b9675136
CM
1205{
1206 struct smi_info *smi_info = send_info;
1207
1208 if (!enable)
1209 atomic_set(&smi_info->req_events, 0);
1210}
1211
81d02b7f 1212static const struct ipmi_smi_handlers handlers = {
1da177e4 1213 .owner = THIS_MODULE,
453823ba 1214 .start_processing = smi_start_processing,
16f4232c 1215 .get_smi_info = get_smi_info,
1da177e4
LT
1216 .sender = sender,
1217 .request_events = request_events,
89986496 1218 .set_need_watch = set_need_watch,
b9675136 1219 .set_maintenance_mode = set_maintenance_mode,
1da177e4 1220 .set_run_to_completion = set_run_to_completion,
82802f96 1221 .flush_messages = flush_messages,
1da177e4
LT
1222 .poll = poll,
1223};
1224
b0defcdb 1225static LIST_HEAD(smi_infos);
d6dfd131 1226static DEFINE_MUTEX(smi_infos_lock);
b0defcdb 1227static int smi_num; /* Used to sequence the SMIs */
1da177e4 1228
99ee6735 1229static const char * const addr_space_to_str[] = { "i/o", "mem" };
b361e27b 1230
a51f4a81
CM
1231module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1232MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1233 " disabled(0). Normally the IPMI driver auto-detects"
1234 " this, but the value may be overridden by this parm.");
7aefac26 1235module_param(unload_when_empty, bool, 0);
b361e27b
CM
1236MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1237 " specified or found, default is 1. Setting to 0"
1238 " is useful for hot add of devices using hotmod.");
ae74e823
MW
1239module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1240MODULE_PARM_DESC(kipmid_max_busy_us,
1241 "Max time (in microseconds) to busy-wait for IPMI data before"
1242 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1243 " if kipmid is using up a lot of CPU time.");
1da177e4 1244
4f3e8199
CM
1245void ipmi_irq_finish_setup(struct si_sm_io *io)
1246{
1247 if (io->si_type == SI_BT)
1248 /* Enable the interrupt in the BT interface. */
1249 io->outputb(io, IPMI_BT_INTMASK_REG,
1250 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1251}
1da177e4 1252
4f3e8199 1253void ipmi_irq_start_cleanup(struct si_sm_io *io)
1da177e4 1254{
4f3e8199 1255 if (io->si_type == SI_BT)
b0defcdb 1256 /* Disable the interrupt in the BT interface. */
4f3e8199
CM
1257 io->outputb(io, IPMI_BT_INTMASK_REG, 0);
1258}
1259
1260static void std_irq_cleanup(struct si_sm_io *io)
1261{
1262 ipmi_irq_start_cleanup(io);
1263 free_irq(io->irq, io->irq_handler_data);
1da177e4 1264}
1da177e4 1265
4f3e8199 1266int ipmi_std_irq_setup(struct si_sm_io *io)
1da177e4
LT
1267{
1268 int rv;
1269
4f3e8199 1270 if (!io->irq)
1da177e4
LT
1271 return 0;
1272
4f3e8199
CM
1273 rv = request_irq(io->irq,
1274 ipmi_si_irq_handler,
1275 IRQF_SHARED,
1276 DEVICE_NAME,
1277 io->irq_handler_data);
1da177e4 1278 if (rv) {
4f3e8199 1279 dev_warn(io->dev, "%s unable to claim interrupt %d,"
279fbd0c 1280 " running polled\n",
4f3e8199
CM
1281 DEVICE_NAME, io->irq);
1282 io->irq = 0;
1da177e4 1283 } else {
4f3e8199
CM
1284 io->irq_cleanup = std_irq_cleanup;
1285 ipmi_irq_finish_setup(io);
1286 dev_info(io->dev, "Using irq %d\n", io->irq);
1da177e4
LT
1287 }
1288
1289 return rv;
1290}
1291
40112ae7 1292static int wait_for_msg_done(struct smi_info *smi_info)
1da177e4 1293{
50c812b2 1294 enum si_sm_result smi_result;
1da177e4
LT
1295
1296 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
c305e3d3 1297 for (;;) {
c3e7e791
CM
1298 if (smi_result == SI_SM_CALL_WITH_DELAY ||
1299 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
da4cd8df 1300 schedule_timeout_uninterruptible(1);
1da177e4 1301 smi_result = smi_info->handlers->event(
e21404dc 1302 smi_info->si_sm, jiffies_to_usecs(1));
c305e3d3 1303 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1da177e4
LT
1304 smi_result = smi_info->handlers->event(
1305 smi_info->si_sm, 0);
c305e3d3 1306 } else
1da177e4
LT
1307 break;
1308 }
40112ae7 1309 if (smi_result == SI_SM_HOSED)
c305e3d3
CM
1310 /*
1311 * We couldn't get the state machine to run, so whatever's at
1312 * the port is probably not an IPMI SMI interface.
1313 */
40112ae7
CM
1314 return -ENODEV;
1315
1316 return 0;
1317}
1318
1319static int try_get_dev_id(struct smi_info *smi_info)
1320{
1321 unsigned char msg[2];
1322 unsigned char *resp;
1323 unsigned long resp_len;
1324 int rv = 0;
1325
1326 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1327 if (!resp)
1328 return -ENOMEM;
1329
1330 /*
1331 * Do a Get Device ID command, since it comes back with some
1332 * useful info.
1333 */
1334 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1335 msg[1] = IPMI_GET_DEVICE_ID_CMD;
1336 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1337
1338 rv = wait_for_msg_done(smi_info);
1339 if (rv)
1da177e4 1340 goto out;
1da177e4 1341
1da177e4
LT
1342 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1343 resp, IPMI_MAX_MSG_LENGTH);
1da177e4 1344
d8c98618 1345 /* Check and record info from the get device id, in case we need it. */
c468f911
JK
1346 rv = ipmi_demangle_device_id(resp[0] >> 2, resp[1],
1347 resp + 2, resp_len - 2, &smi_info->device_id);
1da177e4 1348
76824852 1349out:
1da177e4
LT
1350 kfree(resp);
1351 return rv;
1352}
1353
d0882897 1354static int get_global_enables(struct smi_info *smi_info, u8 *enables)
1e7d6a45
CM
1355{
1356 unsigned char msg[3];
1357 unsigned char *resp;
1358 unsigned long resp_len;
1359 int rv;
1360
1361 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
d0882897
CM
1362 if (!resp)
1363 return -ENOMEM;
1e7d6a45
CM
1364
1365 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1366 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
1367 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1368
1369 rv = wait_for_msg_done(smi_info);
1370 if (rv) {
910840f2 1371 dev_warn(smi_info->io.dev,
d0882897
CM
1372 "Error getting response from get global enables command: %d\n",
1373 rv);
1e7d6a45
CM
1374 goto out;
1375 }
1376
1377 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1378 resp, IPMI_MAX_MSG_LENGTH);
1379
1380 if (resp_len < 4 ||
1381 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1382 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
1383 resp[2] != 0) {
910840f2 1384 dev_warn(smi_info->io.dev,
d0882897
CM
1385 "Invalid return from get global enables command: %ld %x %x %x\n",
1386 resp_len, resp[0], resp[1], resp[2]);
1e7d6a45
CM
1387 rv = -EINVAL;
1388 goto out;
d0882897
CM
1389 } else {
1390 *enables = resp[3];
1e7d6a45
CM
1391 }
1392
d0882897
CM
1393out:
1394 kfree(resp);
1395 return rv;
1396}
1397
1398/*
1399 * Returns 1 if it gets an error from the command.
1400 */
1401static int set_global_enables(struct smi_info *smi_info, u8 enables)
1402{
1403 unsigned char msg[3];
1404 unsigned char *resp;
1405 unsigned long resp_len;
1406 int rv;
1407
1408 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1409 if (!resp)
1410 return -ENOMEM;
1e7d6a45
CM
1411
1412 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1413 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
d0882897 1414 msg[2] = enables;
1e7d6a45
CM
1415 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
1416
1417 rv = wait_for_msg_done(smi_info);
1418 if (rv) {
910840f2 1419 dev_warn(smi_info->io.dev,
d0882897
CM
1420 "Error getting response from set global enables command: %d\n",
1421 rv);
1e7d6a45
CM
1422 goto out;
1423 }
1424
1425 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1426 resp, IPMI_MAX_MSG_LENGTH);
1427
1428 if (resp_len < 3 ||
1429 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1430 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
910840f2 1431 dev_warn(smi_info->io.dev,
d0882897
CM
1432 "Invalid return from set global enables command: %ld %x %x\n",
1433 resp_len, resp[0], resp[1]);
1e7d6a45
CM
1434 rv = -EINVAL;
1435 goto out;
1436 }
1437
d0882897
CM
1438 if (resp[2] != 0)
1439 rv = 1;
1440
1441out:
1442 kfree(resp);
1443 return rv;
1444}
1445
1446/*
1447 * Some BMCs do not support clearing the receive irq bit in the global
1448 * enables (even if they don't support interrupts on the BMC). Check
1449 * for this and handle it properly.
1450 */
1451static void check_clr_rcv_irq(struct smi_info *smi_info)
1452{
1453 u8 enables = 0;
1454 int rv;
1455
1456 rv = get_global_enables(smi_info, &enables);
1457 if (!rv) {
1458 if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
1459 /* Already clear, should work ok. */
1460 return;
1461
1462 enables &= ~IPMI_BMC_RCV_MSG_INTR;
1463 rv = set_global_enables(smi_info, enables);
1464 }
1465
1466 if (rv < 0) {
910840f2 1467 dev_err(smi_info->io.dev,
d0882897
CM
1468 "Cannot check clearing the rcv irq: %d\n", rv);
1469 return;
1470 }
1471
1472 if (rv) {
1e7d6a45
CM
1473 /*
1474 * An error when setting the event buffer bit means
1475 * clearing the bit is not supported.
1476 */
910840f2 1477 dev_warn(smi_info->io.dev,
d0882897
CM
1478 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1479 smi_info->cannot_disable_irq = true;
1480 }
1481}
1482
1483/*
1484 * Some BMCs do not support setting the interrupt bits in the global
1485 * enables even if they support interrupts. Clearly bad, but we can
1486 * compensate.
1487 */
1488static void check_set_rcv_irq(struct smi_info *smi_info)
1489{
1490 u8 enables = 0;
1491 int rv;
1492
910840f2 1493 if (!smi_info->io.irq)
d0882897
CM
1494 return;
1495
1496 rv = get_global_enables(smi_info, &enables);
1497 if (!rv) {
1498 enables |= IPMI_BMC_RCV_MSG_INTR;
1499 rv = set_global_enables(smi_info, enables);
1500 }
1501
1502 if (rv < 0) {
910840f2 1503 dev_err(smi_info->io.dev,
d0882897
CM
1504 "Cannot check setting the rcv irq: %d\n", rv);
1505 return;
1506 }
1507
1508 if (rv) {
1509 /*
1510 * An error when setting the event buffer bit means
1511 * setting the bit is not supported.
1512 */
910840f2 1513 dev_warn(smi_info->io.dev,
d0882897
CM
1514 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1515 smi_info->cannot_disable_irq = true;
1516 smi_info->irq_enable_broken = true;
1e7d6a45 1517 }
1e7d6a45
CM
1518}
1519
40112ae7
CM
1520static int try_enable_event_buffer(struct smi_info *smi_info)
1521{
1522 unsigned char msg[3];
1523 unsigned char *resp;
1524 unsigned long resp_len;
1525 int rv = 0;
1526
1527 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1528 if (!resp)
1529 return -ENOMEM;
1530
1531 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1532 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
1533 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1534
1535 rv = wait_for_msg_done(smi_info);
1536 if (rv) {
bb2a08c0 1537 pr_warn(PFX "Error getting response from get global enables command, the event buffer is not enabled.\n");
40112ae7
CM
1538 goto out;
1539 }
1540
1541 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1542 resp, IPMI_MAX_MSG_LENGTH);
1543
1544 if (resp_len < 4 ||
1545 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1546 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
1547 resp[2] != 0) {
bb2a08c0 1548 pr_warn(PFX "Invalid return from get global enables command, cannot enable the event buffer.\n");
40112ae7
CM
1549 rv = -EINVAL;
1550 goto out;
1551 }
1552
d9b7e4f7 1553 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
40112ae7 1554 /* buffer is already enabled, nothing to do. */
d9b7e4f7 1555 smi_info->supports_event_msg_buff = true;
40112ae7 1556 goto out;
d9b7e4f7 1557 }
40112ae7
CM
1558
1559 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1560 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
1561 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
1562 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
1563
1564 rv = wait_for_msg_done(smi_info);
1565 if (rv) {
bb2a08c0 1566 pr_warn(PFX "Error getting response from set global, enables command, the event buffer is not enabled.\n");
40112ae7
CM
1567 goto out;
1568 }
1569
1570 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1571 resp, IPMI_MAX_MSG_LENGTH);
1572
1573 if (resp_len < 3 ||
1574 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1575 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
bb2a08c0 1576 pr_warn(PFX "Invalid return from get global, enables command, not enable the event buffer.\n");
40112ae7
CM
1577 rv = -EINVAL;
1578 goto out;
1579 }
1580
1581 if (resp[2] != 0)
1582 /*
1583 * An error when setting the event buffer bit means
1584 * that the event buffer is not supported.
1585 */
1586 rv = -ENOENT;
d9b7e4f7
CM
1587 else
1588 smi_info->supports_event_msg_buff = true;
1589
76824852 1590out:
40112ae7
CM
1591 kfree(resp);
1592 return rv;
1593}
1594
55f91cb6 1595#ifdef CONFIG_IPMI_PROC_INTERFACE
07412736 1596static int smi_type_proc_show(struct seq_file *m, void *v)
1da177e4 1597{
07412736 1598 struct smi_info *smi = m->private;
1da177e4 1599
910840f2 1600 seq_printf(m, "%s\n", si_to_str[smi->io.si_type]);
d6c5dc18 1601
5e33cd0c 1602 return 0;
1da177e4
LT
1603}
1604
07412736 1605static int smi_type_proc_open(struct inode *inode, struct file *file)
1da177e4 1606{
d9dda78b 1607 return single_open(file, smi_type_proc_show, PDE_DATA(inode));
07412736
AD
1608}
1609
1610static const struct file_operations smi_type_proc_ops = {
1611 .open = smi_type_proc_open,
1612 .read = seq_read,
1613 .llseek = seq_lseek,
1614 .release = single_release,
1615};
1616
1617static int smi_si_stats_proc_show(struct seq_file *m, void *v)
1618{
1619 struct smi_info *smi = m->private;
1da177e4 1620
07412736 1621 seq_printf(m, "interrupts_enabled: %d\n",
910840f2 1622 smi->io.irq && !smi->interrupt_disabled);
07412736 1623 seq_printf(m, "short_timeouts: %u\n",
64959e2d 1624 smi_get_stat(smi, short_timeouts));
07412736 1625 seq_printf(m, "long_timeouts: %u\n",
64959e2d 1626 smi_get_stat(smi, long_timeouts));
07412736 1627 seq_printf(m, "idles: %u\n",
64959e2d 1628 smi_get_stat(smi, idles));
07412736 1629 seq_printf(m, "interrupts: %u\n",
64959e2d 1630 smi_get_stat(smi, interrupts));
07412736 1631 seq_printf(m, "attentions: %u\n",
64959e2d 1632 smi_get_stat(smi, attentions));
07412736 1633 seq_printf(m, "flag_fetches: %u\n",
64959e2d 1634 smi_get_stat(smi, flag_fetches));
07412736 1635 seq_printf(m, "hosed_count: %u\n",
64959e2d 1636 smi_get_stat(smi, hosed_count));
07412736 1637 seq_printf(m, "complete_transactions: %u\n",
64959e2d 1638 smi_get_stat(smi, complete_transactions));
07412736 1639 seq_printf(m, "events: %u\n",
64959e2d 1640 smi_get_stat(smi, events));
07412736 1641 seq_printf(m, "watchdog_pretimeouts: %u\n",
64959e2d 1642 smi_get_stat(smi, watchdog_pretimeouts));
07412736 1643 seq_printf(m, "incoming_messages: %u\n",
64959e2d 1644 smi_get_stat(smi, incoming_messages));
07412736
AD
1645 return 0;
1646}
1da177e4 1647
07412736
AD
1648static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
1649{
d9dda78b 1650 return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
b361e27b
CM
1651}
1652
07412736
AD
1653static const struct file_operations smi_si_stats_proc_ops = {
1654 .open = smi_si_stats_proc_open,
1655 .read = seq_read,
1656 .llseek = seq_lseek,
1657 .release = single_release,
1658};
1659
1660static int smi_params_proc_show(struct seq_file *m, void *v)
b361e27b 1661{
07412736 1662 struct smi_info *smi = m->private;
b361e27b 1663
d6c5dc18
JP
1664 seq_printf(m,
1665 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
910840f2 1666 si_to_str[smi->io.si_type],
d6c5dc18
JP
1667 addr_space_to_str[smi->io.addr_type],
1668 smi->io.addr_data,
1669 smi->io.regspacing,
1670 smi->io.regsize,
1671 smi->io.regshift,
910840f2
CM
1672 smi->io.irq,
1673 smi->io.slave_addr);
d6c5dc18 1674
5e33cd0c 1675 return 0;
1da177e4
LT
1676}
1677
07412736
AD
1678static int smi_params_proc_open(struct inode *inode, struct file *file)
1679{
d9dda78b 1680 return single_open(file, smi_params_proc_show, PDE_DATA(inode));
07412736
AD
1681}
1682
1683static const struct file_operations smi_params_proc_ops = {
1684 .open = smi_params_proc_open,
1685 .read = seq_read,
1686 .llseek = seq_lseek,
1687 .release = single_release,
1688};
55f91cb6 1689#endif
07412736 1690
3dd377b5
CM
1691#define IPMI_SI_ATTR(name) \
1692static ssize_t ipmi_##name##_show(struct device *dev, \
1693 struct device_attribute *attr, \
1694 char *buf) \
1695{ \
1696 struct smi_info *smi_info = dev_get_drvdata(dev); \
1697 \
1698 return snprintf(buf, 10, "%u\n", smi_get_stat(smi_info, name)); \
1699} \
1700static DEVICE_ATTR(name, S_IRUGO, ipmi_##name##_show, NULL)
1701
1702static ssize_t ipmi_type_show(struct device *dev,
1703 struct device_attribute *attr,
1704 char *buf)
1705{
1706 struct smi_info *smi_info = dev_get_drvdata(dev);
1707
1708 return snprintf(buf, 10, "%s\n", si_to_str[smi_info->io.si_type]);
1709}
1710static DEVICE_ATTR(type, S_IRUGO, ipmi_type_show, NULL);
1711
1712static ssize_t ipmi_interrupts_enabled_show(struct device *dev,
1713 struct device_attribute *attr,
1714 char *buf)
1715{
1716 struct smi_info *smi_info = dev_get_drvdata(dev);
1717 int enabled = smi_info->io.irq && !smi_info->interrupt_disabled;
1718
1719 return snprintf(buf, 10, "%d\n", enabled);
1720}
1721static DEVICE_ATTR(interrupts_enabled, S_IRUGO,
1722 ipmi_interrupts_enabled_show, NULL);
1723
1724IPMI_SI_ATTR(short_timeouts);
1725IPMI_SI_ATTR(long_timeouts);
1726IPMI_SI_ATTR(idles);
1727IPMI_SI_ATTR(interrupts);
1728IPMI_SI_ATTR(attentions);
1729IPMI_SI_ATTR(flag_fetches);
1730IPMI_SI_ATTR(hosed_count);
1731IPMI_SI_ATTR(complete_transactions);
1732IPMI_SI_ATTR(events);
1733IPMI_SI_ATTR(watchdog_pretimeouts);
1734IPMI_SI_ATTR(incoming_messages);
1735
1736static ssize_t ipmi_params_show(struct device *dev,
1737 struct device_attribute *attr,
1738 char *buf)
1739{
1740 struct smi_info *smi_info = dev_get_drvdata(dev);
1741
1742 return snprintf(buf, 200,
1743 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
1744 si_to_str[smi_info->io.si_type],
1745 addr_space_to_str[smi_info->io.addr_type],
1746 smi_info->io.addr_data,
1747 smi_info->io.regspacing,
1748 smi_info->io.regsize,
1749 smi_info->io.regshift,
1750 smi_info->io.irq,
1751 smi_info->io.slave_addr);
1752}
1753static DEVICE_ATTR(params, S_IRUGO, ipmi_params_show, NULL);
1754
1755static struct attribute *ipmi_si_dev_attrs[] = {
1756 &dev_attr_type.attr,
1757 &dev_attr_interrupts_enabled.attr,
1758 &dev_attr_short_timeouts.attr,
1759 &dev_attr_long_timeouts.attr,
1760 &dev_attr_idles.attr,
1761 &dev_attr_interrupts.attr,
1762 &dev_attr_attentions.attr,
1763 &dev_attr_flag_fetches.attr,
1764 &dev_attr_hosed_count.attr,
1765 &dev_attr_complete_transactions.attr,
1766 &dev_attr_events.attr,
1767 &dev_attr_watchdog_pretimeouts.attr,
1768 &dev_attr_incoming_messages.attr,
1769 &dev_attr_params.attr,
1770 NULL
1771};
1772
1773static const struct attribute_group ipmi_si_dev_attr_group = {
1774 .attrs = ipmi_si_dev_attrs,
1775};
1776
3ae0e0f9
CM
1777/*
1778 * oem_data_avail_to_receive_msg_avail
1779 * @info - smi_info structure with msg_flags set
1780 *
1781 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
1782 * Returns 1 indicating need to re-run handle_flags().
1783 */
1784static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
1785{
e8b33617 1786 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
c305e3d3 1787 RECEIVE_MSG_AVAIL);
3ae0e0f9
CM
1788 return 1;
1789}
1790
1791/*
1792 * setup_dell_poweredge_oem_data_handler
1793 * @info - smi_info.device_id must be populated
1794 *
1795 * Systems that match, but have firmware version < 1.40 may assert
1796 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
1797 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
1798 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
1799 * as RECEIVE_MSG_AVAIL instead.
1800 *
1801 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
1802 * assert the OEM[012] bits, and if it did, the driver would have to
1803 * change to handle that properly, we don't actually check for the
1804 * firmware version.
1805 * Device ID = 0x20 BMC on PowerEdge 8G servers
1806 * Device Revision = 0x80
1807 * Firmware Revision1 = 0x01 BMC version 1.40
1808 * Firmware Revision2 = 0x40 BCD encoded
1809 * IPMI Version = 0x51 IPMI 1.5
1810 * Manufacturer ID = A2 02 00 Dell IANA
1811 *
d5a2b89a
CM
1812 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
1813 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
1814 *
3ae0e0f9
CM
1815 */
1816#define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
1817#define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
1818#define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
50c812b2 1819#define DELL_IANA_MFR_ID 0x0002a2
3ae0e0f9
CM
1820static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
1821{
1822 struct ipmi_device_id *id = &smi_info->device_id;
50c812b2 1823 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
d5a2b89a
CM
1824 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
1825 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
50c812b2 1826 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
d5a2b89a
CM
1827 smi_info->oem_data_avail_handler =
1828 oem_data_avail_to_receive_msg_avail;
c305e3d3
CM
1829 } else if (ipmi_version_major(id) < 1 ||
1830 (ipmi_version_major(id) == 1 &&
1831 ipmi_version_minor(id) < 5)) {
d5a2b89a
CM
1832 smi_info->oem_data_avail_handler =
1833 oem_data_avail_to_receive_msg_avail;
1834 }
3ae0e0f9
CM
1835 }
1836}
1837
ea94027b
CM
1838#define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
1839static void return_hosed_msg_badsize(struct smi_info *smi_info)
1840{
1841 struct ipmi_smi_msg *msg = smi_info->curr_msg;
1842
25985edc 1843 /* Make it a response */
ea94027b
CM
1844 msg->rsp[0] = msg->data[0] | 4;
1845 msg->rsp[1] = msg->data[1];
1846 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
1847 msg->rsp_size = 3;
1848 smi_info->curr_msg = NULL;
1849 deliver_recv_msg(smi_info, msg);
1850}
1851
1852/*
1853 * dell_poweredge_bt_xaction_handler
1854 * @info - smi_info.device_id must be populated
1855 *
1856 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
1857 * not respond to a Get SDR command if the length of the data
1858 * requested is exactly 0x3A, which leads to command timeouts and no
1859 * data returned. This intercepts such commands, and causes userspace
1860 * callers to try again with a different-sized buffer, which succeeds.
1861 */
1862
1863#define STORAGE_NETFN 0x0A
1864#define STORAGE_CMD_GET_SDR 0x23
1865static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
1866 unsigned long unused,
1867 void *in)
1868{
1869 struct smi_info *smi_info = in;
1870 unsigned char *data = smi_info->curr_msg->data;
1871 unsigned int size = smi_info->curr_msg->data_size;
1872 if (size >= 8 &&
1873 (data[0]>>2) == STORAGE_NETFN &&
1874 data[1] == STORAGE_CMD_GET_SDR &&
1875 data[7] == 0x3A) {
1876 return_hosed_msg_badsize(smi_info);
1877 return NOTIFY_STOP;
1878 }
1879 return NOTIFY_DONE;
1880}
1881
1882static struct notifier_block dell_poweredge_bt_xaction_notifier = {
1883 .notifier_call = dell_poweredge_bt_xaction_handler,
1884};
1885
1886/*
1887 * setup_dell_poweredge_bt_xaction_handler
1888 * @info - smi_info.device_id must be filled in already
1889 *
1890 * Fills in smi_info.device_id.start_transaction_pre_hook
1891 * when we know what function to use there.
1892 */
1893static void
1894setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
1895{
1896 struct ipmi_device_id *id = &smi_info->device_id;
50c812b2 1897 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
910840f2 1898 smi_info->io.si_type == SI_BT)
ea94027b
CM
1899 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
1900}
1901
3ae0e0f9
CM
1902/*
1903 * setup_oem_data_handler
1904 * @info - smi_info.device_id must be filled in already
1905 *
1906 * Fills in smi_info.device_id.oem_data_available_handler
1907 * when we know what function to use there.
1908 */
1909
1910static void setup_oem_data_handler(struct smi_info *smi_info)
1911{
1912 setup_dell_poweredge_oem_data_handler(smi_info);
1913}
1914
ea94027b
CM
1915static void setup_xaction_handlers(struct smi_info *smi_info)
1916{
1917 setup_dell_poweredge_bt_xaction_handler(smi_info);
1918}
1919
d0882897
CM
1920static void check_for_broken_irqs(struct smi_info *smi_info)
1921{
1922 check_clr_rcv_irq(smi_info);
1923 check_set_rcv_irq(smi_info);
1924}
1925
4f7f5551 1926static inline void stop_timer_and_thread(struct smi_info *smi_info)
a9a2c44f 1927{
bd1c06a4 1928 if (smi_info->thread != NULL) {
b874b985 1929 kthread_stop(smi_info->thread);
bd1c06a4
MY
1930 smi_info->thread = NULL;
1931 }
4f7f5551
MY
1932
1933 smi_info->timer_can_start = false;
b874b985 1934 if (smi_info->timer_running)
453823ba 1935 del_timer_sync(&smi_info->si_timer);
a9a2c44f
CM
1936}
1937
7e030d6d 1938static struct smi_info *find_dup_si(struct smi_info *info)
1da177e4 1939{
b0defcdb 1940 struct smi_info *e;
1da177e4 1941
b0defcdb
CM
1942 list_for_each_entry(e, &smi_infos, link) {
1943 if (e->io.addr_type != info->io.addr_type)
1944 continue;
94671710
CM
1945 if (e->io.addr_data == info->io.addr_data) {
1946 /*
1947 * This is a cheap hack, ACPI doesn't have a defined
1948 * slave address but SMBIOS does. Pick it up from
1949 * any source that has it available.
1950 */
910840f2
CM
1951 if (info->io.slave_addr && !e->io.slave_addr)
1952 e->io.slave_addr = info->io.slave_addr;
7e030d6d 1953 return e;
94671710 1954 }
b0defcdb 1955 }
1da177e4 1956
7e030d6d 1957 return NULL;
b0defcdb 1958}
1da177e4 1959
bb398a4c 1960int ipmi_si_add_smi(struct si_sm_io *io)
b0defcdb 1961{
2407d77a 1962 int rv = 0;
bb398a4c 1963 struct smi_info *new_smi, *dup;
b0defcdb 1964
bb398a4c
CM
1965 if (!io->io_setup) {
1966 if (io->addr_type == IPMI_IO_ADDR_SPACE) {
58e27635 1967 io->io_setup = ipmi_si_port_setup;
bb398a4c 1968 } else if (io->addr_type == IPMI_MEM_ADDR_SPACE) {
58e27635 1969 io->io_setup = ipmi_si_mem_setup;
e1eeb7f8
CM
1970 } else {
1971 return -EINVAL;
1972 }
1973 }
1974
67f4fb02 1975 new_smi = kzalloc(sizeof(*new_smi), GFP_KERNEL);
bb398a4c
CM
1976 if (!new_smi)
1977 return -ENOMEM;
67f4fb02 1978 spin_lock_init(&new_smi->si_lock);
bb398a4c
CM
1979
1980 new_smi->io = *io;
1981
d6dfd131 1982 mutex_lock(&smi_infos_lock);
7e030d6d
CM
1983 dup = find_dup_si(new_smi);
1984 if (dup) {
910840f2
CM
1985 if (new_smi->io.addr_source == SI_ACPI &&
1986 dup->io.addr_source == SI_SMBIOS) {
7e030d6d 1987 /* We prefer ACPI over SMBIOS. */
910840f2 1988 dev_info(dup->io.dev,
7e030d6d 1989 "Removing SMBIOS-specified %s state machine in favor of ACPI\n",
910840f2 1990 si_to_str[new_smi->io.si_type]);
7e030d6d
CM
1991 cleanup_one_si(dup);
1992 } else {
910840f2 1993 dev_info(new_smi->io.dev,
7e030d6d 1994 "%s-specified %s state machine: duplicate\n",
910840f2
CM
1995 ipmi_addr_src_to_str(new_smi->io.addr_source),
1996 si_to_str[new_smi->io.si_type]);
7e030d6d 1997 rv = -EBUSY;
c0a32fe1 1998 kfree(new_smi);
7e030d6d
CM
1999 goto out_err;
2000 }
b0defcdb 2001 }
1da177e4 2002
bb2a08c0 2003 pr_info(PFX "Adding %s-specified %s state machine\n",
910840f2
CM
2004 ipmi_addr_src_to_str(new_smi->io.addr_source),
2005 si_to_str[new_smi->io.si_type]);
2407d77a 2006
2407d77a
MG
2007 list_add_tail(&new_smi->link, &smi_infos);
2008
bb398a4c
CM
2009 if (initialized) {
2010 rv = try_smi_init(new_smi);
2011 if (rv) {
bb398a4c 2012 cleanup_one_si(new_smi);
cc095f0a 2013 mutex_unlock(&smi_infos_lock);
bb398a4c
CM
2014 return rv;
2015 }
2016 }
2407d77a
MG
2017out_err:
2018 mutex_unlock(&smi_infos_lock);
2019 return rv;
2020}
2021
3f724c40
TC
2022/*
2023 * Try to start up an interface. Must be called with smi_infos_lock
2024 * held, primarily to keep smi_num consistent, we only one to do these
2025 * one at a time.
2026 */
2407d77a
MG
2027static int try_smi_init(struct smi_info *new_smi)
2028{
2029 int rv = 0;
2030 int i;
1abf71ee 2031 char *init_name = NULL;
2407d77a 2032
bb2a08c0 2033 pr_info(PFX "Trying %s-specified %s state machine at %s address 0x%lx, slave address 0x%x, irq %d\n",
910840f2
CM
2034 ipmi_addr_src_to_str(new_smi->io.addr_source),
2035 si_to_str[new_smi->io.si_type],
bb2a08c0
CM
2036 addr_space_to_str[new_smi->io.addr_type],
2037 new_smi->io.addr_data,
910840f2 2038 new_smi->io.slave_addr, new_smi->io.irq);
2407d77a 2039
910840f2 2040 switch (new_smi->io.si_type) {
b0defcdb 2041 case SI_KCS:
1da177e4 2042 new_smi->handlers = &kcs_smi_handlers;
b0defcdb
CM
2043 break;
2044
2045 case SI_SMIC:
1da177e4 2046 new_smi->handlers = &smic_smi_handlers;
b0defcdb
CM
2047 break;
2048
2049 case SI_BT:
1da177e4 2050 new_smi->handlers = &bt_smi_handlers;
b0defcdb
CM
2051 break;
2052
2053 default:
1da177e4
LT
2054 /* No support for anything else yet. */
2055 rv = -EIO;
2056 goto out_err;
2057 }
2058
3f724c40
TC
2059 new_smi->intf_num = smi_num;
2060
1abf71ee 2061 /* Do this early so it's available for logs. */
910840f2 2062 if (!new_smi->io.dev) {
3f724c40
TC
2063 init_name = kasprintf(GFP_KERNEL, "ipmi_si.%d",
2064 new_smi->intf_num);
1abf71ee
CM
2065
2066 /*
2067 * If we don't already have a device from something
2068 * else (like PCI), then register a new one.
2069 */
2070 new_smi->pdev = platform_device_alloc("ipmi_si",
2071 new_smi->intf_num);
2072 if (!new_smi->pdev) {
2073 pr_err(PFX "Unable to allocate platform device\n");
532ed926 2074 rv = -ENOMEM;
1abf71ee
CM
2075 goto out_err;
2076 }
910840f2 2077 new_smi->io.dev = &new_smi->pdev->dev;
9d70029e 2078 new_smi->io.dev->driver = &ipmi_platform_driver.driver;
1abf71ee 2079 /* Nulled by device_add() */
910840f2 2080 new_smi->io.dev->init_name = init_name;
1abf71ee
CM
2081 }
2082
1da177e4
LT
2083 /* Allocate the state machine's data and initialize it. */
2084 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
b0defcdb 2085 if (!new_smi->si_sm) {
1da177e4
LT
2086 rv = -ENOMEM;
2087 goto out_err;
2088 }
e1eeb7f8
CM
2089 new_smi->io.io_size = new_smi->handlers->init_data(new_smi->si_sm,
2090 &new_smi->io);
1da177e4
LT
2091
2092 /* Now that we know the I/O size, we can set up the I/O. */
e1eeb7f8 2093 rv = new_smi->io.io_setup(&new_smi->io);
1da177e4 2094 if (rv) {
910840f2 2095 dev_err(new_smi->io.dev, "Could not set up I/O space\n");
1da177e4
LT
2096 goto out_err;
2097 }
2098
1da177e4
LT
2099 /* Do low-level detection first. */
2100 if (new_smi->handlers->detect(new_smi->si_sm)) {
910840f2
CM
2101 if (new_smi->io.addr_source)
2102 dev_err(new_smi->io.dev,
2103 "Interface detection failed\n");
1da177e4
LT
2104 rv = -ENODEV;
2105 goto out_err;
2106 }
2107
c305e3d3
CM
2108 /*
2109 * Attempt a get device id command. If it fails, we probably
2110 * don't have a BMC here.
2111 */
1da177e4 2112 rv = try_get_dev_id(new_smi);
b0defcdb 2113 if (rv) {
910840f2
CM
2114 if (new_smi->io.addr_source)
2115 dev_err(new_smi->io.dev,
2116 "There appears to be no BMC at this location\n");
1da177e4 2117 goto out_err;
b0defcdb 2118 }
1da177e4 2119
3ae0e0f9 2120 setup_oem_data_handler(new_smi);
ea94027b 2121 setup_xaction_handlers(new_smi);
d0882897 2122 check_for_broken_irqs(new_smi);
3ae0e0f9 2123
b874b985 2124 new_smi->waiting_msg = NULL;
1da177e4
LT
2125 new_smi->curr_msg = NULL;
2126 atomic_set(&new_smi->req_events, 0);
7aefac26 2127 new_smi->run_to_completion = false;
64959e2d
CM
2128 for (i = 0; i < SI_NUM_STATS; i++)
2129 atomic_set(&new_smi->stats[i], 0);
1da177e4 2130
7aefac26 2131 new_smi->interrupt_disabled = true;
89986496 2132 atomic_set(&new_smi->need_watch, 0);
1da177e4 2133
40112ae7
CM
2134 rv = try_enable_event_buffer(new_smi);
2135 if (rv == 0)
7aefac26 2136 new_smi->has_event_buffer = true;
40112ae7 2137
c305e3d3
CM
2138 /*
2139 * Start clearing the flags before we enable interrupts or the
2140 * timer to avoid racing with the timer.
2141 */
4f7f5551 2142 start_clear_flags(new_smi);
d9b7e4f7
CM
2143
2144 /*
2145 * IRQ is defined to be set when non-zero. req_events will
2146 * cause a global flags check that will enable interrupts.
2147 */
910840f2 2148 if (new_smi->io.irq) {
d9b7e4f7
CM
2149 new_smi->interrupt_disabled = false;
2150 atomic_set(&new_smi->req_events, 1);
2151 }
1da177e4 2152
71404a2f 2153 if (new_smi->pdev && !new_smi->pdev_registered) {
b48f5457 2154 rv = platform_device_add(new_smi->pdev);
50c812b2 2155 if (rv) {
910840f2 2156 dev_err(new_smi->io.dev,
bb2a08c0
CM
2157 "Unable to register system interface device: %d\n",
2158 rv);
453823ba 2159 goto out_err;
50c812b2 2160 }
71404a2f 2161 new_smi->pdev_registered = true;
50c812b2
CM
2162 }
2163
3dd377b5
CM
2164 dev_set_drvdata(new_smi->io.dev, new_smi);
2165 rv = device_add_group(new_smi->io.dev, &ipmi_si_dev_attr_group);
2166 if (rv) {
2167 dev_err(new_smi->io.dev,
2168 "Unable to add device attributes: error %d\n",
2169 rv);
71404a2f 2170 goto out_err;
3dd377b5 2171 }
cc095f0a 2172 new_smi->dev_group_added = true;
3dd377b5 2173
1da177e4
LT
2174 rv = ipmi_register_smi(&handlers,
2175 new_smi,
910840f2
CM
2176 new_smi->io.dev,
2177 new_smi->io.slave_addr);
1da177e4 2178 if (rv) {
910840f2
CM
2179 dev_err(new_smi->io.dev,
2180 "Unable to register device: error %d\n",
279fbd0c 2181 rv);
71404a2f 2182 goto out_err;
1da177e4
LT
2183 }
2184
55f91cb6 2185#ifdef CONFIG_IPMI_PROC_INTERFACE
1da177e4 2186 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
07412736 2187 &smi_type_proc_ops,
99b76233 2188 new_smi);
1da177e4 2189 if (rv) {
910840f2
CM
2190 dev_err(new_smi->io.dev,
2191 "Unable to create proc entry: %d\n", rv);
71404a2f 2192 goto out_err;
1da177e4
LT
2193 }
2194
2195 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
07412736 2196 &smi_si_stats_proc_ops,
99b76233 2197 new_smi);
1da177e4 2198 if (rv) {
910840f2
CM
2199 dev_err(new_smi->io.dev,
2200 "Unable to create proc entry: %d\n", rv);
71404a2f 2201 goto out_err;
1da177e4
LT
2202 }
2203
b361e27b 2204 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
07412736 2205 &smi_params_proc_ops,
99b76233 2206 new_smi);
b361e27b 2207 if (rv) {
910840f2
CM
2208 dev_err(new_smi->io.dev,
2209 "Unable to create proc entry: %d\n", rv);
71404a2f 2210 goto out_err;
b361e27b 2211 }
55f91cb6 2212#endif
b361e27b 2213
3f724c40
TC
2214 /* Don't increment till we know we have succeeded. */
2215 smi_num++;
2216
910840f2
CM
2217 dev_info(new_smi->io.dev, "IPMI %s interface initialized\n",
2218 si_to_str[new_smi->io.si_type]);
1da177e4 2219
910840f2 2220 WARN_ON(new_smi->io.dev->init_name != NULL);
1abf71ee
CM
2221 kfree(init_name);
2222
1da177e4
LT
2223 return 0;
2224
76824852 2225out_err:
71404a2f 2226 shutdown_one_si(new_smi);
b0defcdb 2227
1abf71ee
CM
2228 kfree(init_name);
2229
1da177e4
LT
2230 return rv;
2231}
2232
2223cbec 2233static int init_ipmi_si(void)
1da177e4 2234{
2407d77a 2235 struct smi_info *e;
06ee4594 2236 enum ipmi_addr_src type = SI_INVALID;
1da177e4
LT
2237
2238 if (initialized)
2239 return 0;
1da177e4 2240
bb2a08c0 2241 pr_info("IPMI System Interface driver.\n");
1da177e4 2242
d8cc5267 2243 /* If the user gave us a device, they presumably want us to use it */
7a453308
CM
2244 if (!ipmi_si_hardcode_find_bmc())
2245 goto do_scan;
d8cc5267 2246
9d70029e
CM
2247 ipmi_si_platform_init();
2248
13d0b35c 2249 ipmi_si_pci_init();
b0defcdb 2250
c6f85a75 2251 ipmi_si_parisc_init();
fdbeb7de 2252
06ee4594
MG
2253 /* We prefer devices with interrupts, but in the case of a machine
2254 with multiple BMCs we assume that there will be several instances
2255 of a given type so if we succeed in registering a type then also
2256 try to register everything else of the same type */
7a453308 2257do_scan:
2407d77a
MG
2258 mutex_lock(&smi_infos_lock);
2259 list_for_each_entry(e, &smi_infos, link) {
06ee4594
MG
2260 /* Try to register a device if it has an IRQ and we either
2261 haven't successfully registered a device yet or this
2262 device has the same type as one we successfully registered */
910840f2 2263 if (e->io.irq && (!type || e->io.addr_source == type)) {
d8cc5267 2264 if (!try_smi_init(e)) {
910840f2 2265 type = e->io.addr_source;
d8cc5267
MG
2266 }
2267 }
2268 }
2269
06ee4594 2270 /* type will only have been set if we successfully registered an si */
bb398a4c
CM
2271 if (type)
2272 goto skip_fallback_noirq;
06ee4594 2273
d8cc5267
MG
2274 /* Fall back to the preferred device */
2275
2276 list_for_each_entry(e, &smi_infos, link) {
910840f2 2277 if (!e->io.irq && (!type || e->io.addr_source == type)) {
d8cc5267 2278 if (!try_smi_init(e)) {
910840f2 2279 type = e->io.addr_source;
d8cc5267
MG
2280 }
2281 }
2407d77a 2282 }
bb398a4c
CM
2283
2284skip_fallback_noirq:
2285 initialized = 1;
2407d77a
MG
2286 mutex_unlock(&smi_infos_lock);
2287
06ee4594
MG
2288 if (type)
2289 return 0;
2290
d6dfd131 2291 mutex_lock(&smi_infos_lock);
b361e27b 2292 if (unload_when_empty && list_empty(&smi_infos)) {
d6dfd131 2293 mutex_unlock(&smi_infos_lock);
d2478521 2294 cleanup_ipmi_si();
bb2a08c0 2295 pr_warn(PFX "Unable to find any System Interface(s)\n");
1da177e4 2296 return -ENODEV;
b0defcdb 2297 } else {
d6dfd131 2298 mutex_unlock(&smi_infos_lock);
b0defcdb 2299 return 0;
1da177e4 2300 }
1da177e4
LT
2301}
2302module_init(init_ipmi_si);
2303
71404a2f 2304static void shutdown_one_si(struct smi_info *smi_info)
1da177e4 2305{
2407d77a 2306 int rv = 0;
1da177e4 2307
71404a2f
CM
2308 if (smi_info->intf) {
2309 ipmi_smi_t intf = smi_info->intf;
b874b985 2310
71404a2f 2311 smi_info->intf = NULL;
b874b985
CM
2312 rv = ipmi_unregister_smi(intf);
2313 if (rv) {
2314 pr_err(PFX "Unable to unregister device: errno=%d\n",
2315 rv);
2316 }
2317 }
2318
71404a2f
CM
2319 if (smi_info->dev_group_added) {
2320 device_remove_group(smi_info->io.dev, &ipmi_si_dev_attr_group);
2321 smi_info->dev_group_added = false;
2322 }
2323 if (smi_info->io.dev)
2324 dev_set_drvdata(smi_info->io.dev, NULL);
b0defcdb 2325
c305e3d3 2326 /*
b874b985
CM
2327 * Make sure that interrupts, the timer and the thread are
2328 * stopped and will not run again.
c305e3d3 2329 */
71404a2f
CM
2330 smi_info->interrupt_disabled = true;
2331 if (smi_info->io.irq_cleanup) {
2332 smi_info->io.irq_cleanup(&smi_info->io);
2333 smi_info->io.irq_cleanup = NULL;
2334 }
2335 stop_timer_and_thread(smi_info);
2336
2337 /*
2338 * Wait until we know that we are out of any interrupt
2339 * handlers might have been running before we freed the
2340 * interrupt.
2341 */
2342 synchronize_sched();
1da177e4 2343
c305e3d3
CM
2344 /*
2345 * Timeouts are stopped, now make sure the interrupts are off
b874b985
CM
2346 * in the BMC. Note that timers and CPU interrupts are off,
2347 * so no need for locks.
c305e3d3 2348 */
71404a2f
CM
2349 while (smi_info->curr_msg || (smi_info->si_state != SI_NORMAL)) {
2350 poll(smi_info);
ee6cd5f8 2351 schedule_timeout_uninterruptible(1);
ee6cd5f8 2352 }
71404a2f
CM
2353 if (smi_info->handlers)
2354 disable_si_irq(smi_info);
2355 while (smi_info->curr_msg || (smi_info->si_state != SI_NORMAL)) {
2356 poll(smi_info);
da4cd8df 2357 schedule_timeout_uninterruptible(1);
1da177e4 2358 }
71404a2f
CM
2359 if (smi_info->handlers)
2360 smi_info->handlers->cleanup(smi_info->si_sm);
2361
2362 if (smi_info->io.addr_source_cleanup) {
2363 smi_info->io.addr_source_cleanup(&smi_info->io);
2364 smi_info->io.addr_source_cleanup = NULL;
2365 }
2366 if (smi_info->io.io_cleanup) {
2367 smi_info->io.io_cleanup(&smi_info->io);
2368 smi_info->io.io_cleanup = NULL;
2369 }
1da177e4 2370
71404a2f
CM
2371 kfree(smi_info->si_sm);
2372 smi_info->si_sm = NULL;
2373}
2374
2375static void cleanup_one_si(struct smi_info *smi_info)
2376{
2377 if (!smi_info)
2378 return;
1da177e4 2379
71404a2f 2380 list_del(&smi_info->link);
1da177e4 2381
71404a2f 2382 shutdown_one_si(smi_info);
50c812b2 2383
71404a2f
CM
2384 if (smi_info->pdev) {
2385 if (smi_info->pdev_registered)
2386 platform_device_unregister(smi_info->pdev);
2387 else
2388 platform_device_put(smi_info->pdev);
2389 }
50c812b2 2390
71404a2f 2391 kfree(smi_info);
1da177e4
LT
2392}
2393
bb398a4c
CM
2394int ipmi_si_remove_by_dev(struct device *dev)
2395{
2396 struct smi_info *e;
2397 int rv = -ENOENT;
2398
2399 mutex_lock(&smi_infos_lock);
2400 list_for_each_entry(e, &smi_infos, link) {
2401 if (e->io.dev == dev) {
2402 cleanup_one_si(e);
2403 rv = 0;
2404 break;
2405 }
2406 }
2407 mutex_unlock(&smi_infos_lock);
2408
2409 return rv;
2410}
2411
44814ec9
CM
2412void ipmi_si_remove_by_data(int addr_space, enum si_type si_type,
2413 unsigned long addr)
2414{
2415 /* remove */
2416 struct smi_info *e, *tmp_e;
2417
2418 mutex_lock(&smi_infos_lock);
2419 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
2420 if (e->io.addr_type != addr_space)
2421 continue;
2422 if (e->io.si_type != si_type)
2423 continue;
2424 if (e->io.addr_data == addr)
2425 cleanup_one_si(e);
2426 }
2427 mutex_unlock(&smi_infos_lock);
2428}
2429
0dcf334c 2430static void cleanup_ipmi_si(void)
1da177e4 2431{
b0defcdb 2432 struct smi_info *e, *tmp_e;
1da177e4 2433
b0defcdb 2434 if (!initialized)
1da177e4
LT
2435 return;
2436
13d0b35c 2437 ipmi_si_pci_shutdown();
c6f85a75
CM
2438
2439 ipmi_si_parisc_shutdown();
b0defcdb 2440
9d70029e 2441 ipmi_si_platform_shutdown();
dba9b4f6 2442
d6dfd131 2443 mutex_lock(&smi_infos_lock);
b0defcdb
CM
2444 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
2445 cleanup_one_si(e);
d6dfd131 2446 mutex_unlock(&smi_infos_lock);
1da177e4
LT
2447}
2448module_exit(cleanup_ipmi_si);
2449
0944d889 2450MODULE_ALIAS("platform:dmi-ipmi-si");
1da177e4 2451MODULE_LICENSE("GPL");
1fdd75bd 2452MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
c305e3d3
CM
2453MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
2454 " system interfaces.");