zram: cut trailing newline in algorithm name
[linux-2.6-block.git] / drivers / block / zram / zram_drv.c
CommitLineData
306b0c95 1/*
f1e3cfff 2 * Compressed RAM block device
306b0c95 3 *
1130ebba 4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta
7bfb3de8 5 * 2012, 2013 Minchan Kim
306b0c95
NG
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the licence that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 *
306b0c95
NG
13 */
14
f1e3cfff 15#define KMSG_COMPONENT "zram"
306b0c95
NG
16#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18#include <linux/module.h>
19#include <linux/kernel.h>
8946a086 20#include <linux/bio.h>
306b0c95
NG
21#include <linux/bitops.h>
22#include <linux/blkdev.h>
23#include <linux/buffer_head.h>
24#include <linux/device.h>
25#include <linux/genhd.h>
26#include <linux/highmem.h>
5a0e3ad6 27#include <linux/slab.h>
306b0c95 28#include <linux/string.h>
306b0c95 29#include <linux/vmalloc.h>
fcfa8d95 30#include <linux/err.h>
85508ec6 31#include <linux/idr.h>
6566d1a3 32#include <linux/sysfs.h>
306b0c95 33
16a4bfb9 34#include "zram_drv.h"
306b0c95 35
85508ec6 36static DEFINE_IDR(zram_index_idr);
6566d1a3
SS
37/* idr index must be protected */
38static DEFINE_MUTEX(zram_index_mutex);
39
f1e3cfff 40static int zram_major;
b7ca232e 41static const char *default_compressor = "lzo";
306b0c95 42
306b0c95 43/* Module params (documentation at end) */
ca3d70bd 44static unsigned int num_devices = 1;
33863c21 45
8f7d282c
SS
46static inline void deprecated_attr_warn(const char *name)
47{
48 pr_warn_once("%d (%s) Attribute %s (and others) will be removed. %s\n",
49 task_pid_nr(current),
50 current->comm,
51 name,
52 "See zram documentation.");
53}
54
a68eb3b6 55#define ZRAM_ATTR_RO(name) \
3bca3ef7 56static ssize_t name##_show(struct device *d, \
a68eb3b6
SS
57 struct device_attribute *attr, char *b) \
58{ \
59 struct zram *zram = dev_to_zram(d); \
8f7d282c
SS
60 \
61 deprecated_attr_warn(__stringify(name)); \
56b4e8cb 62 return scnprintf(b, PAGE_SIZE, "%llu\n", \
a68eb3b6
SS
63 (u64)atomic64_read(&zram->stats.name)); \
64} \
083914ea 65static DEVICE_ATTR_RO(name);
a68eb3b6 66
08eee69f 67static inline bool init_done(struct zram *zram)
be2d1d56 68{
08eee69f 69 return zram->disksize;
be2d1d56
SS
70}
71
9b3bb7ab
SS
72static inline struct zram *dev_to_zram(struct device *dev)
73{
74 return (struct zram *)dev_to_disk(dev)->private_data;
75}
76
b31177f2 77/* flag operations require table entry bit_spin_lock() being held */
522698d7
SS
78static int zram_test_flag(struct zram_meta *meta, u32 index,
79 enum zram_pageflags flag)
99ebbd30 80{
522698d7
SS
81 return meta->table[index].value & BIT(flag);
82}
99ebbd30 83
522698d7
SS
84static void zram_set_flag(struct zram_meta *meta, u32 index,
85 enum zram_pageflags flag)
86{
87 meta->table[index].value |= BIT(flag);
88}
99ebbd30 89
522698d7
SS
90static void zram_clear_flag(struct zram_meta *meta, u32 index,
91 enum zram_pageflags flag)
92{
93 meta->table[index].value &= ~BIT(flag);
94}
99ebbd30 95
522698d7
SS
96static size_t zram_get_obj_size(struct zram_meta *meta, u32 index)
97{
98 return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
99ebbd30
AM
99}
100
522698d7
SS
101static void zram_set_obj_size(struct zram_meta *meta,
102 u32 index, size_t size)
9b3bb7ab 103{
522698d7 104 unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT;
9b3bb7ab 105
522698d7
SS
106 meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
107}
108
109static inline int is_partial_io(struct bio_vec *bvec)
110{
111 return bvec->bv_len != PAGE_SIZE;
112}
113
114/*
115 * Check if request is within bounds and aligned on zram logical blocks.
116 */
117static inline int valid_io_request(struct zram *zram,
118 sector_t start, unsigned int size)
119{
120 u64 end, bound;
121
122 /* unaligned request */
123 if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
124 return 0;
125 if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
126 return 0;
127
128 end = start + (size >> SECTOR_SHIFT);
129 bound = zram->disksize >> SECTOR_SHIFT;
130 /* out of range range */
131 if (unlikely(start >= bound || end > bound || start > end))
132 return 0;
133
134 /* I/O request is valid */
135 return 1;
136}
137
138static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
139{
140 if (*offset + bvec->bv_len >= PAGE_SIZE)
141 (*index)++;
142 *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
143}
144
145static inline void update_used_max(struct zram *zram,
146 const unsigned long pages)
147{
148 unsigned long old_max, cur_max;
149
150 old_max = atomic_long_read(&zram->stats.max_used_pages);
151
152 do {
153 cur_max = old_max;
154 if (pages > cur_max)
155 old_max = atomic_long_cmpxchg(
156 &zram->stats.max_used_pages, cur_max, pages);
157 } while (old_max != cur_max);
158}
159
160static int page_zero_filled(void *ptr)
161{
162 unsigned int pos;
163 unsigned long *page;
164
165 page = (unsigned long *)ptr;
166
167 for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
168 if (page[pos])
169 return 0;
170 }
171
172 return 1;
173}
174
175static void handle_zero_page(struct bio_vec *bvec)
176{
177 struct page *page = bvec->bv_page;
178 void *user_mem;
179
180 user_mem = kmap_atomic(page);
181 if (is_partial_io(bvec))
182 memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
183 else
184 clear_page(user_mem);
185 kunmap_atomic(user_mem);
186
187 flush_dcache_page(page);
9b3bb7ab
SS
188}
189
190static ssize_t initstate_show(struct device *dev,
191 struct device_attribute *attr, char *buf)
192{
a68eb3b6 193 u32 val;
9b3bb7ab
SS
194 struct zram *zram = dev_to_zram(dev);
195
a68eb3b6
SS
196 down_read(&zram->init_lock);
197 val = init_done(zram);
198 up_read(&zram->init_lock);
9b3bb7ab 199
56b4e8cb 200 return scnprintf(buf, PAGE_SIZE, "%u\n", val);
9b3bb7ab
SS
201}
202
522698d7
SS
203static ssize_t disksize_show(struct device *dev,
204 struct device_attribute *attr, char *buf)
205{
206 struct zram *zram = dev_to_zram(dev);
207
208 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
209}
210
9b3bb7ab
SS
211static ssize_t orig_data_size_show(struct device *dev,
212 struct device_attribute *attr, char *buf)
213{
214 struct zram *zram = dev_to_zram(dev);
215
8f7d282c 216 deprecated_attr_warn("orig_data_size");
56b4e8cb 217 return scnprintf(buf, PAGE_SIZE, "%llu\n",
90a7806e 218 (u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT);
9b3bb7ab
SS
219}
220
9b3bb7ab
SS
221static ssize_t mem_used_total_show(struct device *dev,
222 struct device_attribute *attr, char *buf)
223{
224 u64 val = 0;
225 struct zram *zram = dev_to_zram(dev);
9b3bb7ab 226
8f7d282c 227 deprecated_attr_warn("mem_used_total");
9b3bb7ab 228 down_read(&zram->init_lock);
5a99e95b
WY
229 if (init_done(zram)) {
230 struct zram_meta *meta = zram->meta;
722cdc17 231 val = zs_get_total_pages(meta->mem_pool);
5a99e95b 232 }
9b3bb7ab
SS
233 up_read(&zram->init_lock);
234
722cdc17 235 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
9b3bb7ab
SS
236}
237
9ada9da9
MK
238static ssize_t mem_limit_show(struct device *dev,
239 struct device_attribute *attr, char *buf)
240{
241 u64 val;
242 struct zram *zram = dev_to_zram(dev);
243
8f7d282c 244 deprecated_attr_warn("mem_limit");
9ada9da9
MK
245 down_read(&zram->init_lock);
246 val = zram->limit_pages;
247 up_read(&zram->init_lock);
248
249 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
250}
251
252static ssize_t mem_limit_store(struct device *dev,
253 struct device_attribute *attr, const char *buf, size_t len)
254{
255 u64 limit;
256 char *tmp;
257 struct zram *zram = dev_to_zram(dev);
258
259 limit = memparse(buf, &tmp);
260 if (buf == tmp) /* no chars parsed, invalid input */
261 return -EINVAL;
262
263 down_write(&zram->init_lock);
264 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
265 up_write(&zram->init_lock);
266
267 return len;
268}
269
461a8eee
MK
270static ssize_t mem_used_max_show(struct device *dev,
271 struct device_attribute *attr, char *buf)
272{
273 u64 val = 0;
274 struct zram *zram = dev_to_zram(dev);
275
8f7d282c 276 deprecated_attr_warn("mem_used_max");
461a8eee
MK
277 down_read(&zram->init_lock);
278 if (init_done(zram))
279 val = atomic_long_read(&zram->stats.max_used_pages);
280 up_read(&zram->init_lock);
281
282 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
283}
284
285static ssize_t mem_used_max_store(struct device *dev,
286 struct device_attribute *attr, const char *buf, size_t len)
287{
288 int err;
289 unsigned long val;
290 struct zram *zram = dev_to_zram(dev);
461a8eee
MK
291
292 err = kstrtoul(buf, 10, &val);
293 if (err || val != 0)
294 return -EINVAL;
295
296 down_read(&zram->init_lock);
5a99e95b
WY
297 if (init_done(zram)) {
298 struct zram_meta *meta = zram->meta;
461a8eee
MK
299 atomic_long_set(&zram->stats.max_used_pages,
300 zs_get_total_pages(meta->mem_pool));
5a99e95b 301 }
461a8eee
MK
302 up_read(&zram->init_lock);
303
304 return len;
305}
306
522698d7
SS
307static ssize_t max_comp_streams_show(struct device *dev,
308 struct device_attribute *attr, char *buf)
309{
310 int val;
311 struct zram *zram = dev_to_zram(dev);
312
313 down_read(&zram->init_lock);
314 val = zram->max_comp_streams;
315 up_read(&zram->init_lock);
316
317 return scnprintf(buf, PAGE_SIZE, "%d\n", val);
318}
319
beca3ec7
SS
320static ssize_t max_comp_streams_store(struct device *dev,
321 struct device_attribute *attr, const char *buf, size_t len)
322{
323 int num;
324 struct zram *zram = dev_to_zram(dev);
60a726e3 325 int ret;
beca3ec7 326
60a726e3
MK
327 ret = kstrtoint(buf, 0, &num);
328 if (ret < 0)
329 return ret;
beca3ec7
SS
330 if (num < 1)
331 return -EINVAL;
60a726e3 332
beca3ec7
SS
333 down_write(&zram->init_lock);
334 if (init_done(zram)) {
60a726e3 335 if (!zcomp_set_max_streams(zram->comp, num)) {
fe8eb122 336 pr_info("Cannot change max compression streams\n");
60a726e3
MK
337 ret = -EINVAL;
338 goto out;
339 }
beca3ec7 340 }
60a726e3 341
beca3ec7 342 zram->max_comp_streams = num;
60a726e3
MK
343 ret = len;
344out:
beca3ec7 345 up_write(&zram->init_lock);
60a726e3 346 return ret;
beca3ec7
SS
347}
348
e46b8a03
SS
349static ssize_t comp_algorithm_show(struct device *dev,
350 struct device_attribute *attr, char *buf)
351{
352 size_t sz;
353 struct zram *zram = dev_to_zram(dev);
354
355 down_read(&zram->init_lock);
356 sz = zcomp_available_show(zram->compressor, buf);
357 up_read(&zram->init_lock);
358
359 return sz;
360}
361
362static ssize_t comp_algorithm_store(struct device *dev,
363 struct device_attribute *attr, const char *buf, size_t len)
364{
365 struct zram *zram = dev_to_zram(dev);
4bbacd51
SS
366 size_t sz;
367
e46b8a03
SS
368 down_write(&zram->init_lock);
369 if (init_done(zram)) {
370 up_write(&zram->init_lock);
371 pr_info("Can't change algorithm for initialized device\n");
372 return -EBUSY;
373 }
374 strlcpy(zram->compressor, buf, sizeof(zram->compressor));
4bbacd51
SS
375
376 /* ignore trailing newline */
377 sz = strlen(zram->compressor);
378 if (sz > 0 && zram->compressor[sz - 1] == '\n')
379 zram->compressor[sz - 1] = 0x00;
380
e46b8a03
SS
381 up_write(&zram->init_lock);
382 return len;
383}
384
522698d7
SS
385static ssize_t compact_store(struct device *dev,
386 struct device_attribute *attr, const char *buf, size_t len)
306b0c95 387{
522698d7
SS
388 unsigned long nr_migrated;
389 struct zram *zram = dev_to_zram(dev);
390 struct zram_meta *meta;
306b0c95 391
522698d7
SS
392 down_read(&zram->init_lock);
393 if (!init_done(zram)) {
394 up_read(&zram->init_lock);
395 return -EINVAL;
396 }
306b0c95 397
522698d7
SS
398 meta = zram->meta;
399 nr_migrated = zs_compact(meta->mem_pool);
400 atomic64_add(nr_migrated, &zram->stats.num_migrated);
401 up_read(&zram->init_lock);
d2d5e762 402
522698d7 403 return len;
d2d5e762
WY
404}
405
522698d7
SS
406static ssize_t io_stat_show(struct device *dev,
407 struct device_attribute *attr, char *buf)
d2d5e762 408{
522698d7
SS
409 struct zram *zram = dev_to_zram(dev);
410 ssize_t ret;
d2d5e762 411
522698d7
SS
412 down_read(&zram->init_lock);
413 ret = scnprintf(buf, PAGE_SIZE,
414 "%8llu %8llu %8llu %8llu\n",
415 (u64)atomic64_read(&zram->stats.failed_reads),
416 (u64)atomic64_read(&zram->stats.failed_writes),
417 (u64)atomic64_read(&zram->stats.invalid_io),
418 (u64)atomic64_read(&zram->stats.notify_free));
419 up_read(&zram->init_lock);
306b0c95 420
522698d7 421 return ret;
9b3bb7ab
SS
422}
423
522698d7
SS
424static ssize_t mm_stat_show(struct device *dev,
425 struct device_attribute *attr, char *buf)
9b3bb7ab 426{
522698d7
SS
427 struct zram *zram = dev_to_zram(dev);
428 u64 orig_size, mem_used = 0;
429 long max_used;
430 ssize_t ret;
a539c72a 431
522698d7
SS
432 down_read(&zram->init_lock);
433 if (init_done(zram))
434 mem_used = zs_get_total_pages(zram->meta->mem_pool);
9b3bb7ab 435
522698d7
SS
436 orig_size = atomic64_read(&zram->stats.pages_stored);
437 max_used = atomic_long_read(&zram->stats.max_used_pages);
9b3bb7ab 438
522698d7
SS
439 ret = scnprintf(buf, PAGE_SIZE,
440 "%8llu %8llu %8llu %8lu %8ld %8llu %8llu\n",
441 orig_size << PAGE_SHIFT,
442 (u64)atomic64_read(&zram->stats.compr_data_size),
443 mem_used << PAGE_SHIFT,
444 zram->limit_pages << PAGE_SHIFT,
445 max_used << PAGE_SHIFT,
446 (u64)atomic64_read(&zram->stats.zero_pages),
447 (u64)atomic64_read(&zram->stats.num_migrated));
448 up_read(&zram->init_lock);
9b3bb7ab 449
522698d7
SS
450 return ret;
451}
452
453static DEVICE_ATTR_RO(io_stat);
454static DEVICE_ATTR_RO(mm_stat);
455ZRAM_ATTR_RO(num_reads);
456ZRAM_ATTR_RO(num_writes);
457ZRAM_ATTR_RO(failed_reads);
458ZRAM_ATTR_RO(failed_writes);
459ZRAM_ATTR_RO(invalid_io);
460ZRAM_ATTR_RO(notify_free);
461ZRAM_ATTR_RO(zero_pages);
462ZRAM_ATTR_RO(compr_data_size);
463
464static inline bool zram_meta_get(struct zram *zram)
465{
466 if (atomic_inc_not_zero(&zram->refcount))
467 return true;
468 return false;
469}
470
471static inline void zram_meta_put(struct zram *zram)
472{
473 atomic_dec(&zram->refcount);
474}
475
476static void zram_meta_free(struct zram_meta *meta, u64 disksize)
477{
478 size_t num_pages = disksize >> PAGE_SHIFT;
479 size_t index;
1fec1172
GM
480
481 /* Free all pages that are still in this zram device */
482 for (index = 0; index < num_pages; index++) {
483 unsigned long handle = meta->table[index].handle;
484
485 if (!handle)
486 continue;
487
488 zs_free(meta->mem_pool, handle);
489 }
490
9b3bb7ab 491 zs_destroy_pool(meta->mem_pool);
9b3bb7ab
SS
492 vfree(meta->table);
493 kfree(meta);
494}
495
3eba0c6a 496static struct zram_meta *zram_meta_alloc(int device_id, u64 disksize)
9b3bb7ab
SS
497{
498 size_t num_pages;
3eba0c6a 499 char pool_name[8];
9b3bb7ab 500 struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
b8179958 501
9b3bb7ab 502 if (!meta)
b8179958 503 return NULL;
9b3bb7ab 504
9b3bb7ab
SS
505 num_pages = disksize >> PAGE_SHIFT;
506 meta->table = vzalloc(num_pages * sizeof(*meta->table));
507 if (!meta->table) {
508 pr_err("Error allocating zram address table\n");
b8179958 509 goto out_error;
9b3bb7ab
SS
510 }
511
3eba0c6a
GM
512 snprintf(pool_name, sizeof(pool_name), "zram%d", device_id);
513 meta->mem_pool = zs_create_pool(pool_name, GFP_NOIO | __GFP_HIGHMEM);
9b3bb7ab
SS
514 if (!meta->mem_pool) {
515 pr_err("Error creating memory pool\n");
b8179958 516 goto out_error;
9b3bb7ab
SS
517 }
518
519 return meta;
520
b8179958 521out_error:
9b3bb7ab 522 vfree(meta->table);
9b3bb7ab 523 kfree(meta);
b8179958 524 return NULL;
9b3bb7ab
SS
525}
526
d2d5e762
WY
527/*
528 * To protect concurrent access to the same index entry,
529 * caller should hold this table index entry's bit_spinlock to
530 * indicate this index entry is accessing.
531 */
f1e3cfff 532static void zram_free_page(struct zram *zram, size_t index)
306b0c95 533{
8b3cc3ed
MK
534 struct zram_meta *meta = zram->meta;
535 unsigned long handle = meta->table[index].handle;
306b0c95 536
fd1a30de 537 if (unlikely(!handle)) {
2e882281
NG
538 /*
539 * No memory is allocated for zero filled pages.
540 * Simply clear zero page flag.
541 */
8b3cc3ed
MK
542 if (zram_test_flag(meta, index, ZRAM_ZERO)) {
543 zram_clear_flag(meta, index, ZRAM_ZERO);
90a7806e 544 atomic64_dec(&zram->stats.zero_pages);
306b0c95
NG
545 }
546 return;
547 }
548
8b3cc3ed 549 zs_free(meta->mem_pool, handle);
306b0c95 550
d2d5e762
WY
551 atomic64_sub(zram_get_obj_size(meta, index),
552 &zram->stats.compr_data_size);
90a7806e 553 atomic64_dec(&zram->stats.pages_stored);
306b0c95 554
8b3cc3ed 555 meta->table[index].handle = 0;
d2d5e762 556 zram_set_obj_size(meta, index, 0);
306b0c95
NG
557}
558
37b51fdd 559static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
306b0c95 560{
b7ca232e 561 int ret = 0;
37b51fdd 562 unsigned char *cmem;
8b3cc3ed 563 struct zram_meta *meta = zram->meta;
92967471 564 unsigned long handle;
023b409f 565 size_t size;
92967471 566
d2d5e762 567 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
92967471 568 handle = meta->table[index].handle;
d2d5e762 569 size = zram_get_obj_size(meta, index);
306b0c95 570
8b3cc3ed 571 if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
d2d5e762 572 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
42e99bd9 573 clear_page(mem);
8c921b2b
JM
574 return 0;
575 }
306b0c95 576
8b3cc3ed 577 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
92967471 578 if (size == PAGE_SIZE)
42e99bd9 579 copy_page(mem, cmem);
37b51fdd 580 else
b7ca232e 581 ret = zcomp_decompress(zram->comp, cmem, size, mem);
8b3cc3ed 582 zs_unmap_object(meta->mem_pool, handle);
d2d5e762 583 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
a1dd52af 584
8c921b2b 585 /* Should NEVER happen. Return bio error if it does. */
b7ca232e 586 if (unlikely(ret)) {
8c921b2b 587 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
8c921b2b 588 return ret;
a1dd52af 589 }
306b0c95 590
8c921b2b 591 return 0;
306b0c95
NG
592}
593
37b51fdd 594static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
b627cff3 595 u32 index, int offset)
924bd88d
JM
596{
597 int ret;
37b51fdd
SS
598 struct page *page;
599 unsigned char *user_mem, *uncmem = NULL;
8b3cc3ed 600 struct zram_meta *meta = zram->meta;
37b51fdd
SS
601 page = bvec->bv_page;
602
d2d5e762 603 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
8b3cc3ed
MK
604 if (unlikely(!meta->table[index].handle) ||
605 zram_test_flag(meta, index, ZRAM_ZERO)) {
d2d5e762 606 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
37b51fdd 607 handle_zero_page(bvec);
924bd88d
JM
608 return 0;
609 }
d2d5e762 610 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
924bd88d 611
37b51fdd
SS
612 if (is_partial_io(bvec))
613 /* Use a temporary buffer to decompress the page */
7e5a5104
MK
614 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
615
616 user_mem = kmap_atomic(page);
617 if (!is_partial_io(bvec))
37b51fdd
SS
618 uncmem = user_mem;
619
620 if (!uncmem) {
621 pr_info("Unable to allocate temp memory\n");
622 ret = -ENOMEM;
623 goto out_cleanup;
624 }
924bd88d 625
37b51fdd 626 ret = zram_decompress_page(zram, uncmem, index);
924bd88d 627 /* Should NEVER happen. Return bio error if it does. */
b7ca232e 628 if (unlikely(ret))
37b51fdd 629 goto out_cleanup;
924bd88d 630
37b51fdd
SS
631 if (is_partial_io(bvec))
632 memcpy(user_mem + bvec->bv_offset, uncmem + offset,
633 bvec->bv_len);
634
635 flush_dcache_page(page);
636 ret = 0;
637out_cleanup:
638 kunmap_atomic(user_mem);
639 if (is_partial_io(bvec))
640 kfree(uncmem);
641 return ret;
924bd88d
JM
642}
643
644static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
645 int offset)
306b0c95 646{
397c6066 647 int ret = 0;
8c921b2b 648 size_t clen;
c2344348 649 unsigned long handle;
130f315a 650 struct page *page;
924bd88d 651 unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
8b3cc3ed 652 struct zram_meta *meta = zram->meta;
17162f41 653 struct zcomp_strm *zstrm = NULL;
461a8eee 654 unsigned long alloced_pages;
306b0c95 655
8c921b2b 656 page = bvec->bv_page;
924bd88d
JM
657 if (is_partial_io(bvec)) {
658 /*
659 * This is a partial IO. We need to read the full page
660 * before to write the changes.
661 */
7e5a5104 662 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
924bd88d 663 if (!uncmem) {
924bd88d
JM
664 ret = -ENOMEM;
665 goto out;
666 }
37b51fdd 667 ret = zram_decompress_page(zram, uncmem, index);
397c6066 668 if (ret)
924bd88d 669 goto out;
924bd88d
JM
670 }
671
b7ca232e 672 zstrm = zcomp_strm_find(zram->comp);
ba82fe2e 673 user_mem = kmap_atomic(page);
924bd88d 674
397c6066 675 if (is_partial_io(bvec)) {
924bd88d
JM
676 memcpy(uncmem + offset, user_mem + bvec->bv_offset,
677 bvec->bv_len);
397c6066
NG
678 kunmap_atomic(user_mem);
679 user_mem = NULL;
680 } else {
924bd88d 681 uncmem = user_mem;
397c6066 682 }
924bd88d
JM
683
684 if (page_zero_filled(uncmem)) {
c4065152
WY
685 if (user_mem)
686 kunmap_atomic(user_mem);
f40ac2ae 687 /* Free memory associated with this sector now. */
d2d5e762 688 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
f40ac2ae 689 zram_free_page(zram, index);
92967471 690 zram_set_flag(meta, index, ZRAM_ZERO);
d2d5e762 691 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
f40ac2ae 692
90a7806e 693 atomic64_inc(&zram->stats.zero_pages);
924bd88d
JM
694 ret = 0;
695 goto out;
8c921b2b 696 }
306b0c95 697
b7ca232e 698 ret = zcomp_compress(zram->comp, zstrm, uncmem, &clen);
397c6066
NG
699 if (!is_partial_io(bvec)) {
700 kunmap_atomic(user_mem);
701 user_mem = NULL;
702 uncmem = NULL;
703 }
306b0c95 704
b7ca232e 705 if (unlikely(ret)) {
8c921b2b 706 pr_err("Compression failed! err=%d\n", ret);
924bd88d 707 goto out;
8c921b2b 708 }
b7ca232e 709 src = zstrm->buffer;
c8f2f0db 710 if (unlikely(clen > max_zpage_size)) {
c8f2f0db 711 clen = PAGE_SIZE;
397c6066
NG
712 if (is_partial_io(bvec))
713 src = uncmem;
c8f2f0db 714 }
a1dd52af 715
8b3cc3ed 716 handle = zs_malloc(meta->mem_pool, clen);
fd1a30de 717 if (!handle) {
596b3dd4
MR
718 pr_info("Error allocating memory for compressed page: %u, size=%zu\n",
719 index, clen);
924bd88d
JM
720 ret = -ENOMEM;
721 goto out;
8c921b2b 722 }
9ada9da9 723
461a8eee
MK
724 alloced_pages = zs_get_total_pages(meta->mem_pool);
725 if (zram->limit_pages && alloced_pages > zram->limit_pages) {
9ada9da9
MK
726 zs_free(meta->mem_pool, handle);
727 ret = -ENOMEM;
728 goto out;
729 }
730
461a8eee
MK
731 update_used_max(zram, alloced_pages);
732
8b3cc3ed 733 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
306b0c95 734
42e99bd9 735 if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
397c6066 736 src = kmap_atomic(page);
42e99bd9 737 copy_page(cmem, src);
397c6066 738 kunmap_atomic(src);
42e99bd9
JL
739 } else {
740 memcpy(cmem, src, clen);
741 }
306b0c95 742
b7ca232e 743 zcomp_strm_release(zram->comp, zstrm);
17162f41 744 zstrm = NULL;
8b3cc3ed 745 zs_unmap_object(meta->mem_pool, handle);
fd1a30de 746
f40ac2ae
SS
747 /*
748 * Free memory associated with this sector
749 * before overwriting unused sectors.
750 */
d2d5e762 751 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
f40ac2ae
SS
752 zram_free_page(zram, index);
753
8b3cc3ed 754 meta->table[index].handle = handle;
d2d5e762
WY
755 zram_set_obj_size(meta, index, clen);
756 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
306b0c95 757
8c921b2b 758 /* Update stats */
90a7806e
SS
759 atomic64_add(clen, &zram->stats.compr_data_size);
760 atomic64_inc(&zram->stats.pages_stored);
924bd88d 761out:
17162f41 762 if (zstrm)
b7ca232e 763 zcomp_strm_release(zram->comp, zstrm);
397c6066
NG
764 if (is_partial_io(bvec))
765 kfree(uncmem);
924bd88d 766 return ret;
8c921b2b
JM
767}
768
f4659d8e
JK
769/*
770 * zram_bio_discard - handler on discard request
771 * @index: physical block index in PAGE_SIZE units
772 * @offset: byte offset within physical block
773 */
774static void zram_bio_discard(struct zram *zram, u32 index,
775 int offset, struct bio *bio)
776{
777 size_t n = bio->bi_iter.bi_size;
d2d5e762 778 struct zram_meta *meta = zram->meta;
f4659d8e
JK
779
780 /*
781 * zram manages data in physical block size units. Because logical block
782 * size isn't identical with physical block size on some arch, we
783 * could get a discard request pointing to a specific offset within a
784 * certain physical block. Although we can handle this request by
785 * reading that physiclal block and decompressing and partially zeroing
786 * and re-compressing and then re-storing it, this isn't reasonable
787 * because our intent with a discard request is to save memory. So
788 * skipping this logical block is appropriate here.
789 */
790 if (offset) {
38515c73 791 if (n <= (PAGE_SIZE - offset))
f4659d8e
JK
792 return;
793
38515c73 794 n -= (PAGE_SIZE - offset);
f4659d8e
JK
795 index++;
796 }
797
798 while (n >= PAGE_SIZE) {
d2d5e762 799 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
f4659d8e 800 zram_free_page(zram, index);
d2d5e762 801 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
015254da 802 atomic64_inc(&zram->stats.notify_free);
f4659d8e
JK
803 index++;
804 n -= PAGE_SIZE;
805 }
806}
807
522698d7
SS
808static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
809 int offset, int rw)
9b3bb7ab 810{
522698d7 811 unsigned long start_time = jiffies;
9b3bb7ab 812 int ret;
9b3bb7ab 813
522698d7
SS
814 generic_start_io_acct(rw, bvec->bv_len >> SECTOR_SHIFT,
815 &zram->disk->part0);
46a51c80 816
522698d7
SS
817 if (rw == READ) {
818 atomic64_inc(&zram->stats.num_reads);
819 ret = zram_bvec_read(zram, bvec, index, offset);
820 } else {
821 atomic64_inc(&zram->stats.num_writes);
822 ret = zram_bvec_write(zram, bvec, index, offset);
1b672224 823 }
9b3bb7ab 824
522698d7 825 generic_end_io_acct(rw, &zram->disk->part0, start_time);
9b3bb7ab 826
522698d7
SS
827 if (unlikely(ret)) {
828 if (rw == READ)
829 atomic64_inc(&zram->stats.failed_reads);
830 else
831 atomic64_inc(&zram->stats.failed_writes);
1b672224 832 }
9b3bb7ab 833
1b672224 834 return ret;
8c921b2b
JM
835}
836
be257c61 837static void __zram_make_request(struct zram *zram, struct bio *bio)
8c921b2b 838{
b627cff3 839 int offset, rw;
8c921b2b 840 u32 index;
7988613b
KO
841 struct bio_vec bvec;
842 struct bvec_iter iter;
8c921b2b 843
4f024f37
KO
844 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
845 offset = (bio->bi_iter.bi_sector &
846 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
8c921b2b 847
f4659d8e
JK
848 if (unlikely(bio->bi_rw & REQ_DISCARD)) {
849 zram_bio_discard(zram, index, offset, bio);
850 bio_endio(bio, 0);
851 return;
852 }
853
b627cff3 854 rw = bio_data_dir(bio);
7988613b 855 bio_for_each_segment(bvec, bio, iter) {
924bd88d
JM
856 int max_transfer_size = PAGE_SIZE - offset;
857
7988613b 858 if (bvec.bv_len > max_transfer_size) {
924bd88d
JM
859 /*
860 * zram_bvec_rw() can only make operation on a single
861 * zram page. Split the bio vector.
862 */
863 struct bio_vec bv;
864
7988613b 865 bv.bv_page = bvec.bv_page;
924bd88d 866 bv.bv_len = max_transfer_size;
7988613b 867 bv.bv_offset = bvec.bv_offset;
924bd88d 868
b627cff3 869 if (zram_bvec_rw(zram, &bv, index, offset, rw) < 0)
924bd88d
JM
870 goto out;
871
7988613b 872 bv.bv_len = bvec.bv_len - max_transfer_size;
924bd88d 873 bv.bv_offset += max_transfer_size;
b627cff3 874 if (zram_bvec_rw(zram, &bv, index + 1, 0, rw) < 0)
924bd88d
JM
875 goto out;
876 } else
b627cff3 877 if (zram_bvec_rw(zram, &bvec, index, offset, rw) < 0)
924bd88d
JM
878 goto out;
879
7988613b 880 update_position(&index, &offset, &bvec);
a1dd52af 881 }
306b0c95
NG
882
883 set_bit(BIO_UPTODATE, &bio->bi_flags);
884 bio_endio(bio, 0);
7d7854b4 885 return;
306b0c95
NG
886
887out:
306b0c95 888 bio_io_error(bio);
306b0c95
NG
889}
890
306b0c95 891/*
f1e3cfff 892 * Handler function for all zram I/O requests.
306b0c95 893 */
5a7bbad2 894static void zram_make_request(struct request_queue *queue, struct bio *bio)
306b0c95 895{
f1e3cfff 896 struct zram *zram = queue->queuedata;
306b0c95 897
08eee69f 898 if (unlikely(!zram_meta_get(zram)))
3de738cd 899 goto error;
0900beae 900
54850e73 901 if (!valid_io_request(zram, bio->bi_iter.bi_sector,
902 bio->bi_iter.bi_size)) {
da5cc7d3 903 atomic64_inc(&zram->stats.invalid_io);
08eee69f 904 goto put_zram;
6642a67c
JM
905 }
906
be257c61 907 __zram_make_request(zram, bio);
08eee69f 908 zram_meta_put(zram);
b4fdcb02 909 return;
08eee69f
MK
910put_zram:
911 zram_meta_put(zram);
0900beae
JM
912error:
913 bio_io_error(bio);
306b0c95
NG
914}
915
2ccbec05
NG
916static void zram_slot_free_notify(struct block_device *bdev,
917 unsigned long index)
107c161b 918{
f1e3cfff 919 struct zram *zram;
f614a9f4 920 struct zram_meta *meta;
107c161b 921
f1e3cfff 922 zram = bdev->bd_disk->private_data;
f614a9f4 923 meta = zram->meta;
a0c516cb 924
d2d5e762 925 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
f614a9f4 926 zram_free_page(zram, index);
d2d5e762 927 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
f614a9f4 928 atomic64_inc(&zram->stats.notify_free);
107c161b
NG
929}
930
8c7f0102 931static int zram_rw_page(struct block_device *bdev, sector_t sector,
932 struct page *page, int rw)
933{
08eee69f 934 int offset, err = -EIO;
8c7f0102 935 u32 index;
936 struct zram *zram;
937 struct bio_vec bv;
938
939 zram = bdev->bd_disk->private_data;
08eee69f
MK
940 if (unlikely(!zram_meta_get(zram)))
941 goto out;
942
8c7f0102 943 if (!valid_io_request(zram, sector, PAGE_SIZE)) {
944 atomic64_inc(&zram->stats.invalid_io);
08eee69f
MK
945 err = -EINVAL;
946 goto put_zram;
8c7f0102 947 }
948
949 index = sector >> SECTORS_PER_PAGE_SHIFT;
950 offset = sector & (SECTORS_PER_PAGE - 1) << SECTOR_SHIFT;
951
952 bv.bv_page = page;
953 bv.bv_len = PAGE_SIZE;
954 bv.bv_offset = 0;
955
956 err = zram_bvec_rw(zram, &bv, index, offset, rw);
08eee69f
MK
957put_zram:
958 zram_meta_put(zram);
959out:
8c7f0102 960 /*
961 * If I/O fails, just return error(ie, non-zero) without
962 * calling page_endio.
963 * It causes resubmit the I/O with bio request by upper functions
964 * of rw_page(e.g., swap_readpage, __swap_writepage) and
965 * bio->bi_end_io does things to handle the error
966 * (e.g., SetPageError, set_page_dirty and extra works).
967 */
968 if (err == 0)
969 page_endio(page, rw, 0);
970 return err;
971}
972
522698d7
SS
973static void zram_reset_device(struct zram *zram)
974{
975 struct zram_meta *meta;
976 struct zcomp *comp;
977 u64 disksize;
306b0c95 978
522698d7 979 down_write(&zram->init_lock);
9b3bb7ab 980
522698d7
SS
981 zram->limit_pages = 0;
982
983 if (!init_done(zram)) {
984 up_write(&zram->init_lock);
985 return;
986 }
987
988 meta = zram->meta;
989 comp = zram->comp;
990 disksize = zram->disksize;
991 /*
992 * Refcount will go down to 0 eventually and r/w handler
993 * cannot handle further I/O so it will bail out by
994 * check zram_meta_get.
995 */
996 zram_meta_put(zram);
997 /*
998 * We want to free zram_meta in process context to avoid
999 * deadlock between reclaim path and any other locks.
1000 */
1001 wait_event(zram->io_done, atomic_read(&zram->refcount) == 0);
1002
1003 /* Reset stats */
1004 memset(&zram->stats, 0, sizeof(zram->stats));
1005 zram->disksize = 0;
1006 zram->max_comp_streams = 1;
1007
1008 set_capacity(zram->disk, 0);
1009 part_stat_set_all(&zram->disk->part0, 0);
1010
1011 up_write(&zram->init_lock);
1012 /* I/O operation under all of CPU are done so let's free */
1013 zram_meta_free(meta, disksize);
1014 zcomp_destroy(comp);
1015}
1016
1017static ssize_t disksize_store(struct device *dev,
1018 struct device_attribute *attr, const char *buf, size_t len)
2f6a3bed 1019{
522698d7
SS
1020 u64 disksize;
1021 struct zcomp *comp;
1022 struct zram_meta *meta;
2f6a3bed 1023 struct zram *zram = dev_to_zram(dev);
522698d7 1024 int err;
2f6a3bed 1025
522698d7
SS
1026 disksize = memparse(buf, NULL);
1027 if (!disksize)
1028 return -EINVAL;
2f6a3bed 1029
522698d7
SS
1030 disksize = PAGE_ALIGN(disksize);
1031 meta = zram_meta_alloc(zram->disk->first_minor, disksize);
1032 if (!meta)
1033 return -ENOMEM;
1034
1035 comp = zcomp_create(zram->compressor, zram->max_comp_streams);
1036 if (IS_ERR(comp)) {
1037 pr_info("Cannot initialise %s compressing backend\n",
1038 zram->compressor);
1039 err = PTR_ERR(comp);
1040 goto out_free_meta;
1041 }
1042
1043 down_write(&zram->init_lock);
1044 if (init_done(zram)) {
1045 pr_info("Cannot change disksize for initialized device\n");
1046 err = -EBUSY;
1047 goto out_destroy_comp;
1048 }
1049
1050 init_waitqueue_head(&zram->io_done);
1051 atomic_set(&zram->refcount, 1);
1052 zram->meta = meta;
1053 zram->comp = comp;
1054 zram->disksize = disksize;
1055 set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
1056 up_write(&zram->init_lock);
1057
1058 /*
1059 * Revalidate disk out of the init_lock to avoid lockdep splat.
1060 * It's okay because disk's capacity is protected by init_lock
1061 * so that revalidate_disk always sees up-to-date capacity.
1062 */
1063 revalidate_disk(zram->disk);
1064
1065 return len;
1066
1067out_destroy_comp:
1068 up_write(&zram->init_lock);
1069 zcomp_destroy(comp);
1070out_free_meta:
1071 zram_meta_free(meta, disksize);
1072 return err;
2f6a3bed
SS
1073}
1074
522698d7
SS
1075static ssize_t reset_store(struct device *dev,
1076 struct device_attribute *attr, const char *buf, size_t len)
4f2109f6 1077{
522698d7
SS
1078 int ret;
1079 unsigned short do_reset;
1080 struct zram *zram;
1081 struct block_device *bdev;
4f2109f6 1082
f405c445
SS
1083 ret = kstrtou16(buf, 10, &do_reset);
1084 if (ret)
1085 return ret;
1086
1087 if (!do_reset)
1088 return -EINVAL;
1089
522698d7
SS
1090 zram = dev_to_zram(dev);
1091 bdev = bdget_disk(zram->disk, 0);
522698d7
SS
1092 if (!bdev)
1093 return -ENOMEM;
4f2109f6 1094
522698d7 1095 mutex_lock(&bdev->bd_mutex);
f405c445
SS
1096 /* Do not reset an active device or claimed device */
1097 if (bdev->bd_openers || zram->claim) {
1098 mutex_unlock(&bdev->bd_mutex);
1099 bdput(bdev);
1100 return -EBUSY;
522698d7
SS
1101 }
1102
f405c445
SS
1103 /* From now on, anyone can't open /dev/zram[0-9] */
1104 zram->claim = true;
1105 mutex_unlock(&bdev->bd_mutex);
522698d7 1106
f405c445 1107 /* Make sure all the pending I/O are finished */
522698d7
SS
1108 fsync_bdev(bdev);
1109 zram_reset_device(zram);
522698d7
SS
1110 revalidate_disk(zram->disk);
1111 bdput(bdev);
1112
f405c445
SS
1113 mutex_lock(&bdev->bd_mutex);
1114 zram->claim = false;
1115 mutex_unlock(&bdev->bd_mutex);
1116
522698d7 1117 return len;
f405c445
SS
1118}
1119
1120static int zram_open(struct block_device *bdev, fmode_t mode)
1121{
1122 int ret = 0;
1123 struct zram *zram;
1124
1125 WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
1126
1127 zram = bdev->bd_disk->private_data;
1128 /* zram was claimed to reset so open request fails */
1129 if (zram->claim)
1130 ret = -EBUSY;
4f2109f6
SS
1131
1132 return ret;
1133}
1134
522698d7 1135static const struct block_device_operations zram_devops = {
f405c445 1136 .open = zram_open,
522698d7
SS
1137 .swap_slot_free_notify = zram_slot_free_notify,
1138 .rw_page = zram_rw_page,
1139 .owner = THIS_MODULE
1140};
1141
1142static DEVICE_ATTR_WO(compact);
1143static DEVICE_ATTR_RW(disksize);
1144static DEVICE_ATTR_RO(initstate);
1145static DEVICE_ATTR_WO(reset);
1146static DEVICE_ATTR_RO(orig_data_size);
1147static DEVICE_ATTR_RO(mem_used_total);
1148static DEVICE_ATTR_RW(mem_limit);
1149static DEVICE_ATTR_RW(mem_used_max);
1150static DEVICE_ATTR_RW(max_comp_streams);
1151static DEVICE_ATTR_RW(comp_algorithm);
a68eb3b6 1152
9b3bb7ab
SS
1153static struct attribute *zram_disk_attrs[] = {
1154 &dev_attr_disksize.attr,
1155 &dev_attr_initstate.attr,
1156 &dev_attr_reset.attr,
1157 &dev_attr_num_reads.attr,
1158 &dev_attr_num_writes.attr,
64447249
SS
1159 &dev_attr_failed_reads.attr,
1160 &dev_attr_failed_writes.attr,
99ebbd30 1161 &dev_attr_compact.attr,
9b3bb7ab
SS
1162 &dev_attr_invalid_io.attr,
1163 &dev_attr_notify_free.attr,
1164 &dev_attr_zero_pages.attr,
1165 &dev_attr_orig_data_size.attr,
1166 &dev_attr_compr_data_size.attr,
1167 &dev_attr_mem_used_total.attr,
9ada9da9 1168 &dev_attr_mem_limit.attr,
461a8eee 1169 &dev_attr_mem_used_max.attr,
beca3ec7 1170 &dev_attr_max_comp_streams.attr,
e46b8a03 1171 &dev_attr_comp_algorithm.attr,
2f6a3bed 1172 &dev_attr_io_stat.attr,
4f2109f6 1173 &dev_attr_mm_stat.attr,
9b3bb7ab
SS
1174 NULL,
1175};
1176
1177static struct attribute_group zram_disk_attr_group = {
1178 .attrs = zram_disk_attrs,
1179};
1180
92ff1528
SS
1181/*
1182 * Allocate and initialize new zram device. the function returns
1183 * '>= 0' device_id upon success, and negative value otherwise.
1184 */
1185static int zram_add(void)
306b0c95 1186{
85508ec6 1187 struct zram *zram;
ee980160 1188 struct request_queue *queue;
92ff1528 1189 int ret, device_id;
85508ec6
SS
1190
1191 zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1192 if (!zram)
1193 return -ENOMEM;
1194
92ff1528 1195 ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
85508ec6
SS
1196 if (ret < 0)
1197 goto out_free_dev;
92ff1528 1198 device_id = ret;
de1a21a0 1199
0900beae 1200 init_rwsem(&zram->init_lock);
306b0c95 1201
ee980160
SS
1202 queue = blk_alloc_queue(GFP_KERNEL);
1203 if (!queue) {
306b0c95
NG
1204 pr_err("Error allocating disk queue for device %d\n",
1205 device_id);
85508ec6
SS
1206 ret = -ENOMEM;
1207 goto out_free_idr;
306b0c95
NG
1208 }
1209
ee980160 1210 blk_queue_make_request(queue, zram_make_request);
306b0c95 1211
85508ec6 1212 /* gendisk structure */
f1e3cfff
NG
1213 zram->disk = alloc_disk(1);
1214 if (!zram->disk) {
94b8435f 1215 pr_warn("Error allocating disk structure for device %d\n",
306b0c95 1216 device_id);
201c7b72 1217 ret = -ENOMEM;
39a9b8ac 1218 goto out_free_queue;
306b0c95
NG
1219 }
1220
f1e3cfff
NG
1221 zram->disk->major = zram_major;
1222 zram->disk->first_minor = device_id;
1223 zram->disk->fops = &zram_devops;
ee980160
SS
1224 zram->disk->queue = queue;
1225 zram->disk->queue->queuedata = zram;
f1e3cfff
NG
1226 zram->disk->private_data = zram;
1227 snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
306b0c95 1228
33863c21 1229 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
f1e3cfff 1230 set_capacity(zram->disk, 0);
b67d1ec1
SS
1231 /* zram devices sort of resembles non-rotational disks */
1232 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
b277da0a 1233 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
a1dd52af
NG
1234 /*
1235 * To ensure that we always get PAGE_SIZE aligned
1236 * and n*PAGE_SIZED sized I/O requests.
1237 */
f1e3cfff 1238 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
7b19b8d4
RJ
1239 blk_queue_logical_block_size(zram->disk->queue,
1240 ZRAM_LOGICAL_BLOCK_SIZE);
f1e3cfff
NG
1241 blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1242 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
f4659d8e
JK
1243 zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1244 zram->disk->queue->limits.max_discard_sectors = UINT_MAX;
1245 /*
1246 * zram_bio_discard() will clear all logical blocks if logical block
1247 * size is identical with physical block size(PAGE_SIZE). But if it is
1248 * different, we will skip discarding some parts of logical blocks in
1249 * the part of the request range which isn't aligned to physical block
1250 * size. So we can't ensure that all discarded logical blocks are
1251 * zeroed.
1252 */
1253 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1254 zram->disk->queue->limits.discard_zeroes_data = 1;
1255 else
1256 zram->disk->queue->limits.discard_zeroes_data = 0;
1257 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
5d83d5a0 1258
f1e3cfff 1259 add_disk(zram->disk);
306b0c95 1260
33863c21
NG
1261 ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
1262 &zram_disk_attr_group);
1263 if (ret < 0) {
94b8435f 1264 pr_warn("Error creating sysfs group");
39a9b8ac 1265 goto out_free_disk;
33863c21 1266 }
e46b8a03 1267 strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
be2d1d56 1268 zram->meta = NULL;
beca3ec7 1269 zram->max_comp_streams = 1;
d12b63c9
SS
1270
1271 pr_info("Added device: %s\n", zram->disk->disk_name);
92ff1528 1272 return device_id;
de1a21a0 1273
39a9b8ac
JL
1274out_free_disk:
1275 del_gendisk(zram->disk);
1276 put_disk(zram->disk);
1277out_free_queue:
ee980160 1278 blk_cleanup_queue(queue);
85508ec6
SS
1279out_free_idr:
1280 idr_remove(&zram_index_idr, device_id);
1281out_free_dev:
1282 kfree(zram);
de1a21a0 1283 return ret;
306b0c95
NG
1284}
1285
6566d1a3 1286static int zram_remove(struct zram *zram)
306b0c95 1287{
6566d1a3
SS
1288 struct block_device *bdev;
1289
1290 bdev = bdget_disk(zram->disk, 0);
1291 if (!bdev)
1292 return -ENOMEM;
1293
1294 mutex_lock(&bdev->bd_mutex);
1295 if (bdev->bd_openers || zram->claim) {
1296 mutex_unlock(&bdev->bd_mutex);
1297 bdput(bdev);
1298 return -EBUSY;
1299 }
1300
1301 zram->claim = true;
1302 mutex_unlock(&bdev->bd_mutex);
1303
85508ec6
SS
1304 /*
1305 * Remove sysfs first, so no one will perform a disksize
6566d1a3
SS
1306 * store while we destroy the devices. This also helps during
1307 * hot_remove -- zram_reset_device() is the last holder of
1308 * ->init_lock, no later/concurrent disksize_store() or any
1309 * other sysfs handlers are possible.
85508ec6
SS
1310 */
1311 sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
1312 &zram_disk_attr_group);
306b0c95 1313
6566d1a3
SS
1314 /* Make sure all the pending I/O are finished */
1315 fsync_bdev(bdev);
85508ec6 1316 zram_reset_device(zram);
6566d1a3
SS
1317 bdput(bdev);
1318
1319 pr_info("Removed device: %s\n", zram->disk->disk_name);
1320
85508ec6
SS
1321 idr_remove(&zram_index_idr, zram->disk->first_minor);
1322 blk_cleanup_queue(zram->disk->queue);
1323 del_gendisk(zram->disk);
1324 put_disk(zram->disk);
1325 kfree(zram);
6566d1a3
SS
1326 return 0;
1327}
1328
1329/* zram-control sysfs attributes */
1330static ssize_t hot_add_show(struct class *class,
1331 struct class_attribute *attr,
1332 char *buf)
1333{
1334 int ret;
1335
1336 mutex_lock(&zram_index_mutex);
1337 ret = zram_add();
1338 mutex_unlock(&zram_index_mutex);
1339
1340 if (ret < 0)
1341 return ret;
1342 return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
1343}
1344
1345static ssize_t hot_remove_store(struct class *class,
1346 struct class_attribute *attr,
1347 const char *buf,
1348 size_t count)
1349{
1350 struct zram *zram;
1351 int ret, dev_id;
1352
1353 /* dev_id is gendisk->first_minor, which is `int' */
1354 ret = kstrtoint(buf, 10, &dev_id);
1355 if (ret)
1356 return ret;
1357 if (dev_id < 0)
1358 return -EINVAL;
1359
1360 mutex_lock(&zram_index_mutex);
1361
1362 zram = idr_find(&zram_index_idr, dev_id);
1363 if (zram)
1364 ret = zram_remove(zram);
1365 else
1366 ret = -ENODEV;
1367
1368 mutex_unlock(&zram_index_mutex);
1369 return ret ? ret : count;
85508ec6 1370}
a096cafc 1371
6566d1a3
SS
1372static struct class_attribute zram_control_class_attrs[] = {
1373 __ATTR_RO(hot_add),
1374 __ATTR_WO(hot_remove),
1375 __ATTR_NULL,
1376};
1377
1378static struct class zram_control_class = {
1379 .name = "zram-control",
1380 .owner = THIS_MODULE,
1381 .class_attrs = zram_control_class_attrs,
1382};
1383
85508ec6
SS
1384static int zram_remove_cb(int id, void *ptr, void *data)
1385{
1386 zram_remove(ptr);
1387 return 0;
1388}
a096cafc 1389
85508ec6
SS
1390static void destroy_devices(void)
1391{
6566d1a3 1392 class_unregister(&zram_control_class);
85508ec6
SS
1393 idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
1394 idr_destroy(&zram_index_idr);
a096cafc 1395 unregister_blkdev(zram_major, "zram");
306b0c95
NG
1396}
1397
f1e3cfff 1398static int __init zram_init(void)
306b0c95 1399{
92ff1528 1400 int ret;
306b0c95 1401
6566d1a3
SS
1402 ret = class_register(&zram_control_class);
1403 if (ret) {
1404 pr_warn("Unable to register zram-control class\n");
1405 return ret;
1406 }
1407
f1e3cfff
NG
1408 zram_major = register_blkdev(0, "zram");
1409 if (zram_major <= 0) {
94b8435f 1410 pr_warn("Unable to get major number\n");
6566d1a3 1411 class_unregister(&zram_control_class);
a096cafc 1412 return -EBUSY;
306b0c95
NG
1413 }
1414
92ff1528 1415 while (num_devices != 0) {
6566d1a3 1416 mutex_lock(&zram_index_mutex);
92ff1528 1417 ret = zram_add();
6566d1a3 1418 mutex_unlock(&zram_index_mutex);
92ff1528 1419 if (ret < 0)
a096cafc 1420 goto out_error;
92ff1528 1421 num_devices--;
de1a21a0
NG
1422 }
1423
306b0c95 1424 return 0;
de1a21a0 1425
a096cafc 1426out_error:
85508ec6 1427 destroy_devices();
306b0c95
NG
1428 return ret;
1429}
1430
f1e3cfff 1431static void __exit zram_exit(void)
306b0c95 1432{
85508ec6 1433 destroy_devices();
306b0c95
NG
1434}
1435
f1e3cfff
NG
1436module_init(zram_init);
1437module_exit(zram_exit);
306b0c95 1438
9b3bb7ab 1439module_param(num_devices, uint, 0);
c3cdb40e 1440MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
9b3bb7ab 1441
306b0c95
NG
1442MODULE_LICENSE("Dual BSD/GPL");
1443MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
f1e3cfff 1444MODULE_DESCRIPTION("Compressed RAM Block Device");