zram: use size_t instead of u16
[linux-2.6-block.git] / drivers / block / zram / zram_drv.c
CommitLineData
306b0c95 1/*
f1e3cfff 2 * Compressed RAM block device
306b0c95 3 *
1130ebba 4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta
7bfb3de8 5 * 2012, 2013 Minchan Kim
306b0c95
NG
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the licence that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 *
306b0c95
NG
13 */
14
f1e3cfff 15#define KMSG_COMPONENT "zram"
306b0c95
NG
16#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
b1f5b81e
RJ
18#ifdef CONFIG_ZRAM_DEBUG
19#define DEBUG
20#endif
21
306b0c95
NG
22#include <linux/module.h>
23#include <linux/kernel.h>
8946a086 24#include <linux/bio.h>
306b0c95
NG
25#include <linux/bitops.h>
26#include <linux/blkdev.h>
27#include <linux/buffer_head.h>
28#include <linux/device.h>
29#include <linux/genhd.h>
30#include <linux/highmem.h>
5a0e3ad6 31#include <linux/slab.h>
306b0c95 32#include <linux/string.h>
306b0c95 33#include <linux/vmalloc.h>
fcfa8d95 34#include <linux/err.h>
306b0c95 35
16a4bfb9 36#include "zram_drv.h"
306b0c95
NG
37
38/* Globals */
f1e3cfff 39static int zram_major;
0f0e3ba3 40static struct zram *zram_devices;
b7ca232e 41static const char *default_compressor = "lzo";
306b0c95 42
306b0c95 43/* Module params (documentation at end) */
ca3d70bd 44static unsigned int num_devices = 1;
33863c21 45
a68eb3b6
SS
46#define ZRAM_ATTR_RO(name) \
47static ssize_t zram_attr_##name##_show(struct device *d, \
48 struct device_attribute *attr, char *b) \
49{ \
50 struct zram *zram = dev_to_zram(d); \
56b4e8cb 51 return scnprintf(b, PAGE_SIZE, "%llu\n", \
a68eb3b6
SS
52 (u64)atomic64_read(&zram->stats.name)); \
53} \
54static struct device_attribute dev_attr_##name = \
55 __ATTR(name, S_IRUGO, zram_attr_##name##_show, NULL);
56
be2d1d56
SS
57static inline int init_done(struct zram *zram)
58{
59 return zram->meta != NULL;
60}
61
9b3bb7ab
SS
62static inline struct zram *dev_to_zram(struct device *dev)
63{
64 return (struct zram *)dev_to_disk(dev)->private_data;
65}
66
67static ssize_t disksize_show(struct device *dev,
68 struct device_attribute *attr, char *buf)
69{
70 struct zram *zram = dev_to_zram(dev);
71
56b4e8cb 72 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
9b3bb7ab
SS
73}
74
75static ssize_t initstate_show(struct device *dev,
76 struct device_attribute *attr, char *buf)
77{
a68eb3b6 78 u32 val;
9b3bb7ab
SS
79 struct zram *zram = dev_to_zram(dev);
80
a68eb3b6
SS
81 down_read(&zram->init_lock);
82 val = init_done(zram);
83 up_read(&zram->init_lock);
9b3bb7ab 84
56b4e8cb 85 return scnprintf(buf, PAGE_SIZE, "%u\n", val);
9b3bb7ab
SS
86}
87
88static ssize_t orig_data_size_show(struct device *dev,
89 struct device_attribute *attr, char *buf)
90{
91 struct zram *zram = dev_to_zram(dev);
92
56b4e8cb 93 return scnprintf(buf, PAGE_SIZE, "%llu\n",
90a7806e 94 (u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT);
9b3bb7ab
SS
95}
96
9b3bb7ab
SS
97static ssize_t mem_used_total_show(struct device *dev,
98 struct device_attribute *attr, char *buf)
99{
100 u64 val = 0;
101 struct zram *zram = dev_to_zram(dev);
102 struct zram_meta *meta = zram->meta;
103
104 down_read(&zram->init_lock);
be2d1d56 105 if (init_done(zram))
9b3bb7ab
SS
106 val = zs_get_total_size_bytes(meta->mem_pool);
107 up_read(&zram->init_lock);
108
56b4e8cb 109 return scnprintf(buf, PAGE_SIZE, "%llu\n", val);
9b3bb7ab
SS
110}
111
beca3ec7
SS
112static ssize_t max_comp_streams_show(struct device *dev,
113 struct device_attribute *attr, char *buf)
114{
115 int val;
116 struct zram *zram = dev_to_zram(dev);
117
118 down_read(&zram->init_lock);
119 val = zram->max_comp_streams;
120 up_read(&zram->init_lock);
121
56b4e8cb 122 return scnprintf(buf, PAGE_SIZE, "%d\n", val);
beca3ec7
SS
123}
124
125static ssize_t max_comp_streams_store(struct device *dev,
126 struct device_attribute *attr, const char *buf, size_t len)
127{
128 int num;
129 struct zram *zram = dev_to_zram(dev);
60a726e3 130 int ret;
beca3ec7 131
60a726e3
MK
132 ret = kstrtoint(buf, 0, &num);
133 if (ret < 0)
134 return ret;
beca3ec7
SS
135 if (num < 1)
136 return -EINVAL;
60a726e3 137
beca3ec7
SS
138 down_write(&zram->init_lock);
139 if (init_done(zram)) {
60a726e3 140 if (!zcomp_set_max_streams(zram->comp, num)) {
fe8eb122 141 pr_info("Cannot change max compression streams\n");
60a726e3
MK
142 ret = -EINVAL;
143 goto out;
144 }
beca3ec7 145 }
60a726e3 146
beca3ec7 147 zram->max_comp_streams = num;
60a726e3
MK
148 ret = len;
149out:
beca3ec7 150 up_write(&zram->init_lock);
60a726e3 151 return ret;
beca3ec7
SS
152}
153
e46b8a03
SS
154static ssize_t comp_algorithm_show(struct device *dev,
155 struct device_attribute *attr, char *buf)
156{
157 size_t sz;
158 struct zram *zram = dev_to_zram(dev);
159
160 down_read(&zram->init_lock);
161 sz = zcomp_available_show(zram->compressor, buf);
162 up_read(&zram->init_lock);
163
164 return sz;
165}
166
167static ssize_t comp_algorithm_store(struct device *dev,
168 struct device_attribute *attr, const char *buf, size_t len)
169{
170 struct zram *zram = dev_to_zram(dev);
171 down_write(&zram->init_lock);
172 if (init_done(zram)) {
173 up_write(&zram->init_lock);
174 pr_info("Can't change algorithm for initialized device\n");
175 return -EBUSY;
176 }
177 strlcpy(zram->compressor, buf, sizeof(zram->compressor));
178 up_write(&zram->init_lock);
179 return len;
180}
181
92967471 182/* flag operations needs meta->tb_lock */
8b3cc3ed 183static int zram_test_flag(struct zram_meta *meta, u32 index,
f1e3cfff 184 enum zram_pageflags flag)
306b0c95 185{
8b3cc3ed 186 return meta->table[index].flags & BIT(flag);
306b0c95
NG
187}
188
8b3cc3ed 189static void zram_set_flag(struct zram_meta *meta, u32 index,
f1e3cfff 190 enum zram_pageflags flag)
306b0c95 191{
8b3cc3ed 192 meta->table[index].flags |= BIT(flag);
306b0c95
NG
193}
194
8b3cc3ed 195static void zram_clear_flag(struct zram_meta *meta, u32 index,
f1e3cfff 196 enum zram_pageflags flag)
306b0c95 197{
8b3cc3ed 198 meta->table[index].flags &= ~BIT(flag);
306b0c95
NG
199}
200
9b3bb7ab
SS
201static inline int is_partial_io(struct bio_vec *bvec)
202{
203 return bvec->bv_len != PAGE_SIZE;
204}
205
206/*
207 * Check if request is within bounds and aligned on zram logical blocks.
208 */
209static inline int valid_io_request(struct zram *zram, struct bio *bio)
210{
211 u64 start, end, bound;
a539c72a 212
9b3bb7ab 213 /* unaligned request */
4f024f37
KO
214 if (unlikely(bio->bi_iter.bi_sector &
215 (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
9b3bb7ab 216 return 0;
4f024f37 217 if (unlikely(bio->bi_iter.bi_size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
9b3bb7ab
SS
218 return 0;
219
4f024f37
KO
220 start = bio->bi_iter.bi_sector;
221 end = start + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
9b3bb7ab
SS
222 bound = zram->disksize >> SECTOR_SHIFT;
223 /* out of range range */
75c7caf5 224 if (unlikely(start >= bound || end > bound || start > end))
9b3bb7ab
SS
225 return 0;
226
227 /* I/O request is valid */
228 return 1;
229}
230
231static void zram_meta_free(struct zram_meta *meta)
232{
233 zs_destroy_pool(meta->mem_pool);
9b3bb7ab
SS
234 vfree(meta->table);
235 kfree(meta);
236}
237
238static struct zram_meta *zram_meta_alloc(u64 disksize)
239{
240 size_t num_pages;
241 struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
242 if (!meta)
243 goto out;
244
9b3bb7ab
SS
245 num_pages = disksize >> PAGE_SHIFT;
246 meta->table = vzalloc(num_pages * sizeof(*meta->table));
247 if (!meta->table) {
248 pr_err("Error allocating zram address table\n");
b7ca232e 249 goto free_meta;
9b3bb7ab
SS
250 }
251
252 meta->mem_pool = zs_create_pool(GFP_NOIO | __GFP_HIGHMEM);
253 if (!meta->mem_pool) {
254 pr_err("Error creating memory pool\n");
255 goto free_table;
256 }
257
92967471 258 rwlock_init(&meta->tb_lock);
9b3bb7ab
SS
259 return meta;
260
261free_table:
262 vfree(meta->table);
9b3bb7ab
SS
263free_meta:
264 kfree(meta);
265 meta = NULL;
266out:
267 return meta;
268}
269
270static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
271{
272 if (*offset + bvec->bv_len >= PAGE_SIZE)
273 (*index)++;
274 *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
275}
276
306b0c95
NG
277static int page_zero_filled(void *ptr)
278{
279 unsigned int pos;
280 unsigned long *page;
281
282 page = (unsigned long *)ptr;
283
284 for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
285 if (page[pos])
286 return 0;
287 }
288
289 return 1;
290}
291
9b3bb7ab
SS
292static void handle_zero_page(struct bio_vec *bvec)
293{
294 struct page *page = bvec->bv_page;
295 void *user_mem;
296
297 user_mem = kmap_atomic(page);
298 if (is_partial_io(bvec))
299 memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
300 else
301 clear_page(user_mem);
302 kunmap_atomic(user_mem);
303
304 flush_dcache_page(page);
305}
306
92967471 307/* NOTE: caller should hold meta->tb_lock with write-side */
f1e3cfff 308static void zram_free_page(struct zram *zram, size_t index)
306b0c95 309{
8b3cc3ed
MK
310 struct zram_meta *meta = zram->meta;
311 unsigned long handle = meta->table[index].handle;
306b0c95 312
fd1a30de 313 if (unlikely(!handle)) {
2e882281
NG
314 /*
315 * No memory is allocated for zero filled pages.
316 * Simply clear zero page flag.
317 */
8b3cc3ed
MK
318 if (zram_test_flag(meta, index, ZRAM_ZERO)) {
319 zram_clear_flag(meta, index, ZRAM_ZERO);
90a7806e 320 atomic64_dec(&zram->stats.zero_pages);
306b0c95
NG
321 }
322 return;
323 }
324
8b3cc3ed 325 zs_free(meta->mem_pool, handle);
306b0c95 326
90a7806e
SS
327 atomic64_sub(meta->table[index].size, &zram->stats.compr_data_size);
328 atomic64_dec(&zram->stats.pages_stored);
306b0c95 329
8b3cc3ed
MK
330 meta->table[index].handle = 0;
331 meta->table[index].size = 0;
306b0c95
NG
332}
333
37b51fdd 334static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
306b0c95 335{
b7ca232e 336 int ret = 0;
37b51fdd 337 unsigned char *cmem;
8b3cc3ed 338 struct zram_meta *meta = zram->meta;
92967471 339 unsigned long handle;
023b409f 340 size_t size;
92967471
MK
341
342 read_lock(&meta->tb_lock);
343 handle = meta->table[index].handle;
344 size = meta->table[index].size;
306b0c95 345
8b3cc3ed 346 if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
92967471 347 read_unlock(&meta->tb_lock);
42e99bd9 348 clear_page(mem);
8c921b2b
JM
349 return 0;
350 }
306b0c95 351
8b3cc3ed 352 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
92967471 353 if (size == PAGE_SIZE)
42e99bd9 354 copy_page(mem, cmem);
37b51fdd 355 else
b7ca232e 356 ret = zcomp_decompress(zram->comp, cmem, size, mem);
8b3cc3ed 357 zs_unmap_object(meta->mem_pool, handle);
92967471 358 read_unlock(&meta->tb_lock);
a1dd52af 359
8c921b2b 360 /* Should NEVER happen. Return bio error if it does. */
b7ca232e 361 if (unlikely(ret)) {
8c921b2b 362 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
da5cc7d3 363 atomic64_inc(&zram->stats.failed_reads);
8c921b2b 364 return ret;
a1dd52af 365 }
306b0c95 366
8c921b2b 367 return 0;
306b0c95
NG
368}
369
37b51fdd
SS
370static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
371 u32 index, int offset, struct bio *bio)
924bd88d
JM
372{
373 int ret;
37b51fdd
SS
374 struct page *page;
375 unsigned char *user_mem, *uncmem = NULL;
8b3cc3ed 376 struct zram_meta *meta = zram->meta;
37b51fdd
SS
377 page = bvec->bv_page;
378
92967471 379 read_lock(&meta->tb_lock);
8b3cc3ed
MK
380 if (unlikely(!meta->table[index].handle) ||
381 zram_test_flag(meta, index, ZRAM_ZERO)) {
92967471 382 read_unlock(&meta->tb_lock);
37b51fdd 383 handle_zero_page(bvec);
924bd88d
JM
384 return 0;
385 }
92967471 386 read_unlock(&meta->tb_lock);
924bd88d 387
37b51fdd
SS
388 if (is_partial_io(bvec))
389 /* Use a temporary buffer to decompress the page */
7e5a5104
MK
390 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
391
392 user_mem = kmap_atomic(page);
393 if (!is_partial_io(bvec))
37b51fdd
SS
394 uncmem = user_mem;
395
396 if (!uncmem) {
397 pr_info("Unable to allocate temp memory\n");
398 ret = -ENOMEM;
399 goto out_cleanup;
400 }
924bd88d 401
37b51fdd 402 ret = zram_decompress_page(zram, uncmem, index);
924bd88d 403 /* Should NEVER happen. Return bio error if it does. */
b7ca232e 404 if (unlikely(ret))
37b51fdd 405 goto out_cleanup;
924bd88d 406
37b51fdd
SS
407 if (is_partial_io(bvec))
408 memcpy(user_mem + bvec->bv_offset, uncmem + offset,
409 bvec->bv_len);
410
411 flush_dcache_page(page);
412 ret = 0;
413out_cleanup:
414 kunmap_atomic(user_mem);
415 if (is_partial_io(bvec))
416 kfree(uncmem);
417 return ret;
924bd88d
JM
418}
419
420static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
421 int offset)
306b0c95 422{
397c6066 423 int ret = 0;
8c921b2b 424 size_t clen;
c2344348 425 unsigned long handle;
130f315a 426 struct page *page;
924bd88d 427 unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
8b3cc3ed 428 struct zram_meta *meta = zram->meta;
b7ca232e 429 struct zcomp_strm *zstrm;
e46e3315 430 bool locked = false;
306b0c95 431
8c921b2b 432 page = bvec->bv_page;
924bd88d
JM
433 if (is_partial_io(bvec)) {
434 /*
435 * This is a partial IO. We need to read the full page
436 * before to write the changes.
437 */
7e5a5104 438 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
924bd88d 439 if (!uncmem) {
924bd88d
JM
440 ret = -ENOMEM;
441 goto out;
442 }
37b51fdd 443 ret = zram_decompress_page(zram, uncmem, index);
397c6066 444 if (ret)
924bd88d 445 goto out;
924bd88d
JM
446 }
447
b7ca232e 448 zstrm = zcomp_strm_find(zram->comp);
e46e3315 449 locked = true;
ba82fe2e 450 user_mem = kmap_atomic(page);
924bd88d 451
397c6066 452 if (is_partial_io(bvec)) {
924bd88d
JM
453 memcpy(uncmem + offset, user_mem + bvec->bv_offset,
454 bvec->bv_len);
397c6066
NG
455 kunmap_atomic(user_mem);
456 user_mem = NULL;
457 } else {
924bd88d 458 uncmem = user_mem;
397c6066 459 }
924bd88d
JM
460
461 if (page_zero_filled(uncmem)) {
ba82fe2e 462 kunmap_atomic(user_mem);
f40ac2ae 463 /* Free memory associated with this sector now. */
92967471 464 write_lock(&zram->meta->tb_lock);
f40ac2ae 465 zram_free_page(zram, index);
92967471
MK
466 zram_set_flag(meta, index, ZRAM_ZERO);
467 write_unlock(&zram->meta->tb_lock);
f40ac2ae 468
90a7806e 469 atomic64_inc(&zram->stats.zero_pages);
924bd88d
JM
470 ret = 0;
471 goto out;
8c921b2b 472 }
306b0c95 473
b7ca232e 474 ret = zcomp_compress(zram->comp, zstrm, uncmem, &clen);
397c6066
NG
475 if (!is_partial_io(bvec)) {
476 kunmap_atomic(user_mem);
477 user_mem = NULL;
478 uncmem = NULL;
479 }
306b0c95 480
b7ca232e 481 if (unlikely(ret)) {
8c921b2b 482 pr_err("Compression failed! err=%d\n", ret);
924bd88d 483 goto out;
8c921b2b 484 }
b7ca232e 485 src = zstrm->buffer;
c8f2f0db 486 if (unlikely(clen > max_zpage_size)) {
c8f2f0db 487 clen = PAGE_SIZE;
397c6066
NG
488 if (is_partial_io(bvec))
489 src = uncmem;
c8f2f0db 490 }
a1dd52af 491
8b3cc3ed 492 handle = zs_malloc(meta->mem_pool, clen);
fd1a30de 493 if (!handle) {
596b3dd4
MR
494 pr_info("Error allocating memory for compressed page: %u, size=%zu\n",
495 index, clen);
924bd88d
JM
496 ret = -ENOMEM;
497 goto out;
8c921b2b 498 }
8b3cc3ed 499 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
306b0c95 500
42e99bd9 501 if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
397c6066 502 src = kmap_atomic(page);
42e99bd9 503 copy_page(cmem, src);
397c6066 504 kunmap_atomic(src);
42e99bd9
JL
505 } else {
506 memcpy(cmem, src, clen);
507 }
306b0c95 508
b7ca232e
SS
509 zcomp_strm_release(zram->comp, zstrm);
510 locked = false;
8b3cc3ed 511 zs_unmap_object(meta->mem_pool, handle);
fd1a30de 512
f40ac2ae
SS
513 /*
514 * Free memory associated with this sector
515 * before overwriting unused sectors.
516 */
92967471 517 write_lock(&zram->meta->tb_lock);
f40ac2ae
SS
518 zram_free_page(zram, index);
519
8b3cc3ed
MK
520 meta->table[index].handle = handle;
521 meta->table[index].size = clen;
92967471 522 write_unlock(&zram->meta->tb_lock);
306b0c95 523
8c921b2b 524 /* Update stats */
90a7806e
SS
525 atomic64_add(clen, &zram->stats.compr_data_size);
526 atomic64_inc(&zram->stats.pages_stored);
924bd88d 527out:
e46e3315 528 if (locked)
b7ca232e 529 zcomp_strm_release(zram->comp, zstrm);
397c6066
NG
530 if (is_partial_io(bvec))
531 kfree(uncmem);
924bd88d 532 if (ret)
da5cc7d3 533 atomic64_inc(&zram->stats.failed_writes);
924bd88d 534 return ret;
8c921b2b
JM
535}
536
537static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
be257c61 538 int offset, struct bio *bio)
8c921b2b 539{
c5bde238 540 int ret;
be257c61 541 int rw = bio_data_dir(bio);
8c921b2b 542
be257c61
SS
543 if (rw == READ) {
544 atomic64_inc(&zram->stats.num_reads);
c5bde238 545 ret = zram_bvec_read(zram, bvec, index, offset, bio);
be257c61
SS
546 } else {
547 atomic64_inc(&zram->stats.num_writes);
c5bde238 548 ret = zram_bvec_write(zram, bvec, index, offset);
be257c61 549 }
c5bde238
JM
550
551 return ret;
924bd88d
JM
552}
553
f4659d8e
JK
554/*
555 * zram_bio_discard - handler on discard request
556 * @index: physical block index in PAGE_SIZE units
557 * @offset: byte offset within physical block
558 */
559static void zram_bio_discard(struct zram *zram, u32 index,
560 int offset, struct bio *bio)
561{
562 size_t n = bio->bi_iter.bi_size;
563
564 /*
565 * zram manages data in physical block size units. Because logical block
566 * size isn't identical with physical block size on some arch, we
567 * could get a discard request pointing to a specific offset within a
568 * certain physical block. Although we can handle this request by
569 * reading that physiclal block and decompressing and partially zeroing
570 * and re-compressing and then re-storing it, this isn't reasonable
571 * because our intent with a discard request is to save memory. So
572 * skipping this logical block is appropriate here.
573 */
574 if (offset) {
38515c73 575 if (n <= (PAGE_SIZE - offset))
f4659d8e
JK
576 return;
577
38515c73 578 n -= (PAGE_SIZE - offset);
f4659d8e
JK
579 index++;
580 }
581
582 while (n >= PAGE_SIZE) {
583 /*
584 * Discard request can be large so the lock hold times could be
585 * lengthy. So take the lock once per page.
586 */
587 write_lock(&zram->meta->tb_lock);
588 zram_free_page(zram, index);
589 write_unlock(&zram->meta->tb_lock);
590 index++;
591 n -= PAGE_SIZE;
592 }
593}
594
2b86ab9c 595static void zram_reset_device(struct zram *zram, bool reset_capacity)
924bd88d 596{
9b3bb7ab
SS
597 size_t index;
598 struct zram_meta *meta;
599
644d4787 600 down_write(&zram->init_lock);
be2d1d56 601 if (!init_done(zram)) {
644d4787 602 up_write(&zram->init_lock);
9b3bb7ab 603 return;
644d4787 604 }
9b3bb7ab
SS
605
606 meta = zram->meta;
9b3bb7ab
SS
607 /* Free all pages that are still in this zram device */
608 for (index = 0; index < zram->disksize >> PAGE_SHIFT; index++) {
609 unsigned long handle = meta->table[index].handle;
610 if (!handle)
611 continue;
612
613 zs_free(meta->mem_pool, handle);
614 }
615
b7ca232e 616 zcomp_destroy(zram->comp);
beca3ec7
SS
617 zram->max_comp_streams = 1;
618
9b3bb7ab
SS
619 zram_meta_free(zram->meta);
620 zram->meta = NULL;
621 /* Reset stats */
622 memset(&zram->stats, 0, sizeof(zram->stats));
623
624 zram->disksize = 0;
b4c5c609 625 if (reset_capacity)
2b86ab9c 626 set_capacity(zram->disk, 0);
b4c5c609 627
644d4787 628 up_write(&zram->init_lock);
b4c5c609
MK
629
630 /*
631 * Revalidate disk out of the init_lock to avoid lockdep splat.
632 * It's okay because disk's capacity is protected by init_lock
633 * so that revalidate_disk always sees up-to-date capacity.
634 */
635 if (reset_capacity)
636 revalidate_disk(zram->disk);
9b3bb7ab
SS
637}
638
9b3bb7ab
SS
639static ssize_t disksize_store(struct device *dev,
640 struct device_attribute *attr, const char *buf, size_t len)
641{
642 u64 disksize;
d61f98c7 643 struct zcomp *comp;
9b3bb7ab
SS
644 struct zram_meta *meta;
645 struct zram *zram = dev_to_zram(dev);
fcfa8d95 646 int err;
9b3bb7ab
SS
647
648 disksize = memparse(buf, NULL);
649 if (!disksize)
650 return -EINVAL;
651
652 disksize = PAGE_ALIGN(disksize);
653 meta = zram_meta_alloc(disksize);
db5d711e
MK
654 if (!meta)
655 return -ENOMEM;
b67d1ec1 656
d61f98c7 657 comp = zcomp_create(zram->compressor, zram->max_comp_streams);
fcfa8d95 658 if (IS_ERR(comp)) {
d61f98c7
SS
659 pr_info("Cannot initialise %s compressing backend\n",
660 zram->compressor);
fcfa8d95
SS
661 err = PTR_ERR(comp);
662 goto out_free_meta;
d61f98c7
SS
663 }
664
9b3bb7ab 665 down_write(&zram->init_lock);
be2d1d56 666 if (init_done(zram)) {
9b3bb7ab 667 pr_info("Cannot change disksize for initialized device\n");
b7ca232e 668 err = -EBUSY;
fcfa8d95 669 goto out_destroy_comp;
9b3bb7ab
SS
670 }
671
b67d1ec1 672 zram->meta = meta;
d61f98c7 673 zram->comp = comp;
9b3bb7ab
SS
674 zram->disksize = disksize;
675 set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
9b3bb7ab 676 up_write(&zram->init_lock);
b4c5c609
MK
677
678 /*
679 * Revalidate disk out of the init_lock to avoid lockdep splat.
680 * It's okay because disk's capacity is protected by init_lock
681 * so that revalidate_disk always sees up-to-date capacity.
682 */
683 revalidate_disk(zram->disk);
684
9b3bb7ab 685 return len;
b7ca232e 686
fcfa8d95
SS
687out_destroy_comp:
688 up_write(&zram->init_lock);
689 zcomp_destroy(comp);
690out_free_meta:
b7ca232e
SS
691 zram_meta_free(meta);
692 return err;
9b3bb7ab
SS
693}
694
695static ssize_t reset_store(struct device *dev,
696 struct device_attribute *attr, const char *buf, size_t len)
697{
698 int ret;
699 unsigned short do_reset;
700 struct zram *zram;
701 struct block_device *bdev;
702
703 zram = dev_to_zram(dev);
704 bdev = bdget_disk(zram->disk, 0);
705
46a51c80
RK
706 if (!bdev)
707 return -ENOMEM;
708
9b3bb7ab 709 /* Do not reset an active device! */
1b672224
RK
710 if (bdev->bd_holders) {
711 ret = -EBUSY;
712 goto out;
713 }
9b3bb7ab
SS
714
715 ret = kstrtou16(buf, 10, &do_reset);
716 if (ret)
1b672224 717 goto out;
9b3bb7ab 718
1b672224
RK
719 if (!do_reset) {
720 ret = -EINVAL;
721 goto out;
722 }
9b3bb7ab
SS
723
724 /* Make sure all pending I/O is finished */
46a51c80 725 fsync_bdev(bdev);
1b672224 726 bdput(bdev);
9b3bb7ab 727
2b86ab9c 728 zram_reset_device(zram, true);
9b3bb7ab 729 return len;
1b672224
RK
730
731out:
732 bdput(bdev);
733 return ret;
8c921b2b
JM
734}
735
be257c61 736static void __zram_make_request(struct zram *zram, struct bio *bio)
8c921b2b 737{
7988613b 738 int offset;
8c921b2b 739 u32 index;
7988613b
KO
740 struct bio_vec bvec;
741 struct bvec_iter iter;
8c921b2b 742
4f024f37
KO
743 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
744 offset = (bio->bi_iter.bi_sector &
745 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
8c921b2b 746
f4659d8e
JK
747 if (unlikely(bio->bi_rw & REQ_DISCARD)) {
748 zram_bio_discard(zram, index, offset, bio);
749 bio_endio(bio, 0);
750 return;
751 }
752
7988613b 753 bio_for_each_segment(bvec, bio, iter) {
924bd88d
JM
754 int max_transfer_size = PAGE_SIZE - offset;
755
7988613b 756 if (bvec.bv_len > max_transfer_size) {
924bd88d
JM
757 /*
758 * zram_bvec_rw() can only make operation on a single
759 * zram page. Split the bio vector.
760 */
761 struct bio_vec bv;
762
7988613b 763 bv.bv_page = bvec.bv_page;
924bd88d 764 bv.bv_len = max_transfer_size;
7988613b 765 bv.bv_offset = bvec.bv_offset;
924bd88d 766
be257c61 767 if (zram_bvec_rw(zram, &bv, index, offset, bio) < 0)
924bd88d
JM
768 goto out;
769
7988613b 770 bv.bv_len = bvec.bv_len - max_transfer_size;
924bd88d 771 bv.bv_offset += max_transfer_size;
be257c61 772 if (zram_bvec_rw(zram, &bv, index + 1, 0, bio) < 0)
924bd88d
JM
773 goto out;
774 } else
be257c61 775 if (zram_bvec_rw(zram, &bvec, index, offset, bio) < 0)
924bd88d
JM
776 goto out;
777
7988613b 778 update_position(&index, &offset, &bvec);
a1dd52af 779 }
306b0c95
NG
780
781 set_bit(BIO_UPTODATE, &bio->bi_flags);
782 bio_endio(bio, 0);
7d7854b4 783 return;
306b0c95
NG
784
785out:
306b0c95 786 bio_io_error(bio);
306b0c95
NG
787}
788
306b0c95 789/*
f1e3cfff 790 * Handler function for all zram I/O requests.
306b0c95 791 */
5a7bbad2 792static void zram_make_request(struct request_queue *queue, struct bio *bio)
306b0c95 793{
f1e3cfff 794 struct zram *zram = queue->queuedata;
306b0c95 795
0900beae 796 down_read(&zram->init_lock);
be2d1d56 797 if (unlikely(!init_done(zram)))
3de738cd 798 goto error;
0900beae 799
f1e3cfff 800 if (!valid_io_request(zram, bio)) {
da5cc7d3 801 atomic64_inc(&zram->stats.invalid_io);
3de738cd 802 goto error;
6642a67c
JM
803 }
804
be257c61 805 __zram_make_request(zram, bio);
0900beae 806 up_read(&zram->init_lock);
306b0c95 807
b4fdcb02 808 return;
0900beae 809
0900beae 810error:
3de738cd 811 up_read(&zram->init_lock);
0900beae 812 bio_io_error(bio);
306b0c95
NG
813}
814
2ccbec05
NG
815static void zram_slot_free_notify(struct block_device *bdev,
816 unsigned long index)
107c161b 817{
f1e3cfff 818 struct zram *zram;
f614a9f4 819 struct zram_meta *meta;
107c161b 820
f1e3cfff 821 zram = bdev->bd_disk->private_data;
f614a9f4 822 meta = zram->meta;
a0c516cb 823
f614a9f4
MK
824 write_lock(&meta->tb_lock);
825 zram_free_page(zram, index);
826 write_unlock(&meta->tb_lock);
827 atomic64_inc(&zram->stats.notify_free);
107c161b
NG
828}
829
f1e3cfff 830static const struct block_device_operations zram_devops = {
f1e3cfff 831 .swap_slot_free_notify = zram_slot_free_notify,
107c161b 832 .owner = THIS_MODULE
306b0c95
NG
833};
834
9b3bb7ab
SS
835static DEVICE_ATTR(disksize, S_IRUGO | S_IWUSR,
836 disksize_show, disksize_store);
837static DEVICE_ATTR(initstate, S_IRUGO, initstate_show, NULL);
838static DEVICE_ATTR(reset, S_IWUSR, NULL, reset_store);
9b3bb7ab 839static DEVICE_ATTR(orig_data_size, S_IRUGO, orig_data_size_show, NULL);
9b3bb7ab 840static DEVICE_ATTR(mem_used_total, S_IRUGO, mem_used_total_show, NULL);
beca3ec7
SS
841static DEVICE_ATTR(max_comp_streams, S_IRUGO | S_IWUSR,
842 max_comp_streams_show, max_comp_streams_store);
e46b8a03
SS
843static DEVICE_ATTR(comp_algorithm, S_IRUGO | S_IWUSR,
844 comp_algorithm_show, comp_algorithm_store);
9b3bb7ab 845
a68eb3b6
SS
846ZRAM_ATTR_RO(num_reads);
847ZRAM_ATTR_RO(num_writes);
64447249
SS
848ZRAM_ATTR_RO(failed_reads);
849ZRAM_ATTR_RO(failed_writes);
a68eb3b6
SS
850ZRAM_ATTR_RO(invalid_io);
851ZRAM_ATTR_RO(notify_free);
852ZRAM_ATTR_RO(zero_pages);
853ZRAM_ATTR_RO(compr_data_size);
854
9b3bb7ab
SS
855static struct attribute *zram_disk_attrs[] = {
856 &dev_attr_disksize.attr,
857 &dev_attr_initstate.attr,
858 &dev_attr_reset.attr,
859 &dev_attr_num_reads.attr,
860 &dev_attr_num_writes.attr,
64447249
SS
861 &dev_attr_failed_reads.attr,
862 &dev_attr_failed_writes.attr,
9b3bb7ab
SS
863 &dev_attr_invalid_io.attr,
864 &dev_attr_notify_free.attr,
865 &dev_attr_zero_pages.attr,
866 &dev_attr_orig_data_size.attr,
867 &dev_attr_compr_data_size.attr,
868 &dev_attr_mem_used_total.attr,
beca3ec7 869 &dev_attr_max_comp_streams.attr,
e46b8a03 870 &dev_attr_comp_algorithm.attr,
9b3bb7ab
SS
871 NULL,
872};
873
874static struct attribute_group zram_disk_attr_group = {
875 .attrs = zram_disk_attrs,
876};
877
f1e3cfff 878static int create_device(struct zram *zram, int device_id)
306b0c95 879{
39a9b8ac 880 int ret = -ENOMEM;
de1a21a0 881
0900beae 882 init_rwsem(&zram->init_lock);
306b0c95 883
f1e3cfff
NG
884 zram->queue = blk_alloc_queue(GFP_KERNEL);
885 if (!zram->queue) {
306b0c95
NG
886 pr_err("Error allocating disk queue for device %d\n",
887 device_id);
de1a21a0 888 goto out;
306b0c95
NG
889 }
890
f1e3cfff
NG
891 blk_queue_make_request(zram->queue, zram_make_request);
892 zram->queue->queuedata = zram;
306b0c95
NG
893
894 /* gendisk structure */
f1e3cfff
NG
895 zram->disk = alloc_disk(1);
896 if (!zram->disk) {
94b8435f 897 pr_warn("Error allocating disk structure for device %d\n",
306b0c95 898 device_id);
39a9b8ac 899 goto out_free_queue;
306b0c95
NG
900 }
901
f1e3cfff
NG
902 zram->disk->major = zram_major;
903 zram->disk->first_minor = device_id;
904 zram->disk->fops = &zram_devops;
905 zram->disk->queue = zram->queue;
906 zram->disk->private_data = zram;
907 snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
306b0c95 908
33863c21 909 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
f1e3cfff 910 set_capacity(zram->disk, 0);
b67d1ec1
SS
911 /* zram devices sort of resembles non-rotational disks */
912 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
a1dd52af
NG
913 /*
914 * To ensure that we always get PAGE_SIZE aligned
915 * and n*PAGE_SIZED sized I/O requests.
916 */
f1e3cfff 917 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
7b19b8d4
RJ
918 blk_queue_logical_block_size(zram->disk->queue,
919 ZRAM_LOGICAL_BLOCK_SIZE);
f1e3cfff
NG
920 blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
921 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
f4659d8e
JK
922 zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
923 zram->disk->queue->limits.max_discard_sectors = UINT_MAX;
924 /*
925 * zram_bio_discard() will clear all logical blocks if logical block
926 * size is identical with physical block size(PAGE_SIZE). But if it is
927 * different, we will skip discarding some parts of logical blocks in
928 * the part of the request range which isn't aligned to physical block
929 * size. So we can't ensure that all discarded logical blocks are
930 * zeroed.
931 */
932 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
933 zram->disk->queue->limits.discard_zeroes_data = 1;
934 else
935 zram->disk->queue->limits.discard_zeroes_data = 0;
936 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
5d83d5a0 937
f1e3cfff 938 add_disk(zram->disk);
306b0c95 939
33863c21
NG
940 ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
941 &zram_disk_attr_group);
942 if (ret < 0) {
94b8435f 943 pr_warn("Error creating sysfs group");
39a9b8ac 944 goto out_free_disk;
33863c21 945 }
e46b8a03 946 strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
be2d1d56 947 zram->meta = NULL;
beca3ec7 948 zram->max_comp_streams = 1;
39a9b8ac 949 return 0;
de1a21a0 950
39a9b8ac
JL
951out_free_disk:
952 del_gendisk(zram->disk);
953 put_disk(zram->disk);
954out_free_queue:
955 blk_cleanup_queue(zram->queue);
de1a21a0
NG
956out:
957 return ret;
306b0c95
NG
958}
959
f1e3cfff 960static void destroy_device(struct zram *zram)
306b0c95 961{
33863c21
NG
962 sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
963 &zram_disk_attr_group);
33863c21 964
59d3fe54
RK
965 del_gendisk(zram->disk);
966 put_disk(zram->disk);
306b0c95 967
59d3fe54 968 blk_cleanup_queue(zram->queue);
306b0c95
NG
969}
970
f1e3cfff 971static int __init zram_init(void)
306b0c95 972{
de1a21a0 973 int ret, dev_id;
306b0c95 974
5fa5a901 975 if (num_devices > max_num_devices) {
94b8435f 976 pr_warn("Invalid value for num_devices: %u\n",
5fa5a901 977 num_devices);
de1a21a0
NG
978 ret = -EINVAL;
979 goto out;
306b0c95
NG
980 }
981
f1e3cfff
NG
982 zram_major = register_blkdev(0, "zram");
983 if (zram_major <= 0) {
94b8435f 984 pr_warn("Unable to get major number\n");
de1a21a0
NG
985 ret = -EBUSY;
986 goto out;
306b0c95
NG
987 }
988
306b0c95 989 /* Allocate the device array and initialize each one */
5fa5a901 990 zram_devices = kzalloc(num_devices * sizeof(struct zram), GFP_KERNEL);
43801f6e 991 if (!zram_devices) {
de1a21a0
NG
992 ret = -ENOMEM;
993 goto unregister;
994 }
306b0c95 995
5fa5a901 996 for (dev_id = 0; dev_id < num_devices; dev_id++) {
43801f6e 997 ret = create_device(&zram_devices[dev_id], dev_id);
de1a21a0 998 if (ret)
3bf040c7 999 goto free_devices;
de1a21a0
NG
1000 }
1001
ca3d70bd
DB
1002 pr_info("Created %u device(s) ...\n", num_devices);
1003
306b0c95 1004 return 0;
de1a21a0 1005
3bf040c7 1006free_devices:
de1a21a0 1007 while (dev_id)
43801f6e
NW
1008 destroy_device(&zram_devices[--dev_id]);
1009 kfree(zram_devices);
de1a21a0 1010unregister:
f1e3cfff 1011 unregister_blkdev(zram_major, "zram");
de1a21a0 1012out:
306b0c95
NG
1013 return ret;
1014}
1015
f1e3cfff 1016static void __exit zram_exit(void)
306b0c95
NG
1017{
1018 int i;
f1e3cfff 1019 struct zram *zram;
306b0c95 1020
5fa5a901 1021 for (i = 0; i < num_devices; i++) {
43801f6e 1022 zram = &zram_devices[i];
306b0c95 1023
f1e3cfff 1024 destroy_device(zram);
2b86ab9c
MK
1025 /*
1026 * Shouldn't access zram->disk after destroy_device
1027 * because destroy_device already released zram->disk.
1028 */
1029 zram_reset_device(zram, false);
306b0c95
NG
1030 }
1031
f1e3cfff 1032 unregister_blkdev(zram_major, "zram");
306b0c95 1033
43801f6e 1034 kfree(zram_devices);
306b0c95
NG
1035 pr_debug("Cleanup done!\n");
1036}
1037
f1e3cfff
NG
1038module_init(zram_init);
1039module_exit(zram_exit);
306b0c95 1040
9b3bb7ab
SS
1041module_param(num_devices, uint, 0);
1042MODULE_PARM_DESC(num_devices, "Number of zram devices");
1043
306b0c95
NG
1044MODULE_LICENSE("Dual BSD/GPL");
1045MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
f1e3cfff 1046MODULE_DESCRIPTION("Compressed RAM Block Device");