NVMe: Record the timeout for each command
[linux-2.6-block.git] / drivers / block / nvme.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
3 * Copyright (c) 2011, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19#include <linux/nvme.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
22#include <linux/errno.h>
23#include <linux/fs.h>
24#include <linux/genhd.h>
25#include <linux/init.h>
26#include <linux/interrupt.h>
27#include <linux/io.h>
28#include <linux/kdev_t.h>
29#include <linux/kernel.h>
30#include <linux/mm.h>
31#include <linux/module.h>
32#include <linux/moduleparam.h>
33#include <linux/pci.h>
be7b6275 34#include <linux/poison.h>
b60503ba
MW
35#include <linux/sched.h>
36#include <linux/slab.h>
37#include <linux/types.h>
38#include <linux/version.h>
39
40#define NVME_Q_DEPTH 1024
41#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
42#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
43#define NVME_MINORS 64
e85248e5
MW
44#define IO_TIMEOUT (5 * HZ)
45#define ADMIN_TIMEOUT (60 * HZ)
b60503ba
MW
46
47static int nvme_major;
48module_param(nvme_major, int, 0);
49
58ffacb5
MW
50static int use_threaded_interrupts;
51module_param(use_threaded_interrupts, int, 0);
52
b60503ba
MW
53/*
54 * Represents an NVM Express device. Each nvme_dev is a PCI function.
55 */
56struct nvme_dev {
b60503ba
MW
57 struct nvme_queue **queues;
58 u32 __iomem *dbs;
59 struct pci_dev *pci_dev;
60 int instance;
61 int queue_count;
62 u32 ctrl_config;
63 struct msix_entry *entry;
64 struct nvme_bar __iomem *bar;
65 struct list_head namespaces;
51814232
MW
66 char serial[20];
67 char model[40];
68 char firmware_rev[8];
b60503ba
MW
69};
70
71/*
72 * An NVM Express namespace is equivalent to a SCSI LUN
73 */
74struct nvme_ns {
75 struct list_head list;
76
77 struct nvme_dev *dev;
78 struct request_queue *queue;
79 struct gendisk *disk;
80
81 int ns_id;
82 int lba_shift;
83};
84
85/*
86 * An NVM Express queue. Each device has at least two (one for admin
87 * commands and one for I/O commands).
88 */
89struct nvme_queue {
90 struct device *q_dmadev;
91 spinlock_t q_lock;
92 struct nvme_command *sq_cmds;
93 volatile struct nvme_completion *cqes;
94 dma_addr_t sq_dma_addr;
95 dma_addr_t cq_dma_addr;
96 wait_queue_head_t sq_full;
97 struct bio_list sq_cong;
98 u32 __iomem *q_db;
99 u16 q_depth;
100 u16 cq_vector;
101 u16 sq_head;
102 u16 sq_tail;
103 u16 cq_head;
82123460 104 u16 cq_phase;
b60503ba
MW
105 unsigned long cmdid_data[];
106};
107
108/*
109 * Check we didin't inadvertently grow the command struct
110 */
111static inline void _nvme_check_size(void)
112{
113 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
114 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
115 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
116 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
117 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
118 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
119 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
120 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
121 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
122}
123
e85248e5
MW
124struct nvme_cmd_info {
125 unsigned long ctx;
126 unsigned long timeout;
127};
128
129static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
130{
131 return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
132}
133
b60503ba
MW
134/**
135 * alloc_cmdid - Allocate a Command ID
136 * @param nvmeq The queue that will be used for this command
137 * @param ctx A pointer that will be passed to the handler
138 * @param handler The ID of the handler to call
139 *
140 * Allocate a Command ID for a queue. The data passed in will
141 * be passed to the completion handler. This is implemented by using
142 * the bottom two bits of the ctx pointer to store the handler ID.
143 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
144 * We can change this if it becomes a problem.
145 */
e85248e5
MW
146static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx, int handler,
147 unsigned timeout)
b60503ba
MW
148{
149 int depth = nvmeq->q_depth;
e85248e5 150 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
b60503ba
MW
151 int cmdid;
152
153 BUG_ON((unsigned long)ctx & 3);
154
155 do {
156 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
157 if (cmdid >= depth)
158 return -EBUSY;
159 } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
160
e85248e5
MW
161 info[cmdid].ctx = (unsigned long)ctx | handler;
162 info[cmdid].timeout = jiffies + timeout;
b60503ba
MW
163 return cmdid;
164}
165
166static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
e85248e5 167 int handler, unsigned timeout)
b60503ba
MW
168{
169 int cmdid;
170 wait_event_killable(nvmeq->sq_full,
e85248e5 171 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
b60503ba
MW
172 return (cmdid < 0) ? -EINTR : cmdid;
173}
174
175/* If you need more than four handlers, you'll need to change how
be7b6275
MW
176 * alloc_cmdid and nvme_process_cq work. Consider using a special
177 * CMD_CTX value instead, if that works for your situation.
b60503ba
MW
178 */
179enum {
180 sync_completion_id = 0,
181 bio_completion_id,
182};
183
be7b6275
MW
184#define CMD_CTX_BASE (POISON_POINTER_DELTA + sync_completion_id)
185#define CMD_CTX_CANCELLED (0x2008 + CMD_CTX_BASE)
b36235df 186#define CMD_CTX_COMPLETED (0x2010 + CMD_CTX_BASE)
48e3d398 187#define CMD_CTX_INVALID (0x2014 + CMD_CTX_BASE)
be7b6275 188
b60503ba
MW
189static unsigned long free_cmdid(struct nvme_queue *nvmeq, int cmdid)
190{
191 unsigned long data;
e85248e5 192 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
b60503ba 193
e85248e5 194 if (cmdid >= nvmeq->q_depth)
48e3d398 195 return CMD_CTX_INVALID;
e85248e5
MW
196 data = info[cmdid].ctx;
197 info[cmdid].ctx = CMD_CTX_COMPLETED;
b60503ba
MW
198 clear_bit(cmdid, nvmeq->cmdid_data);
199 wake_up(&nvmeq->sq_full);
200 return data;
201}
202
be7b6275 203static void cancel_cmdid_data(struct nvme_queue *nvmeq, int cmdid)
3c0cf138 204{
e85248e5
MW
205 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
206 info[cmdid].ctx = CMD_CTX_CANCELLED;
3c0cf138
MW
207}
208
b60503ba
MW
209static struct nvme_queue *get_nvmeq(struct nvme_ns *ns)
210{
1b23484b
MW
211 int qid, cpu = get_cpu();
212 if (cpu < ns->dev->queue_count)
213 qid = cpu + 1;
214 else
215 qid = (cpu % rounddown_pow_of_two(ns->dev->queue_count)) + 1;
216 return ns->dev->queues[qid];
b60503ba
MW
217}
218
219static void put_nvmeq(struct nvme_queue *nvmeq)
220{
1b23484b 221 put_cpu();
b60503ba
MW
222}
223
224/**
225 * nvme_submit_cmd: Copy a command into a queue and ring the doorbell
226 * @nvmeq: The queue to use
227 * @cmd: The command to send
228 *
229 * Safe to use from interrupt context
230 */
231static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
232{
233 unsigned long flags;
234 u16 tail;
235 /* XXX: Need to check tail isn't going to overrun head */
236 spin_lock_irqsave(&nvmeq->q_lock, flags);
237 tail = nvmeq->sq_tail;
238 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
239 writel(tail, nvmeq->q_db);
240 if (++tail == nvmeq->q_depth)
241 tail = 0;
242 nvmeq->sq_tail = tail;
243 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
244
245 return 0;
246}
247
248struct nvme_req_info {
249 struct bio *bio;
250 int nents;
251 struct scatterlist sg[0];
252};
253
254/* XXX: use a mempool */
255static struct nvme_req_info *alloc_info(unsigned nseg, gfp_t gfp)
256{
257 return kmalloc(sizeof(struct nvme_req_info) +
258 sizeof(struct scatterlist) * nseg, gfp);
259}
260
261static void free_info(struct nvme_req_info *info)
262{
263 kfree(info);
264}
265
266static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
267 struct nvme_completion *cqe)
268{
269 struct nvme_req_info *info = ctx;
270 struct bio *bio = info->bio;
271 u16 status = le16_to_cpup(&cqe->status) >> 1;
272
273 dma_unmap_sg(nvmeq->q_dmadev, info->sg, info->nents,
274 bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
275 free_info(info);
276 bio_endio(bio, status ? -EIO : 0);
277}
278
ff22b54f
MW
279/* length is in bytes */
280static void nvme_setup_prps(struct nvme_common_command *cmd,
281 struct scatterlist *sg, int length)
282{
283 int dma_len = sg_dma_len(sg);
284 u64 dma_addr = sg_dma_address(sg);
285 int offset = offset_in_page(dma_addr);
286
287 cmd->prp1 = cpu_to_le64(dma_addr);
288 length -= (PAGE_SIZE - offset);
289 if (length <= 0)
290 return;
291
292 dma_len -= (PAGE_SIZE - offset);
293 if (dma_len) {
294 dma_addr += (PAGE_SIZE - offset);
295 } else {
296 sg = sg_next(sg);
297 dma_addr = sg_dma_address(sg);
298 dma_len = sg_dma_len(sg);
299 }
300
301 if (length <= PAGE_SIZE) {
302 cmd->prp2 = cpu_to_le64(dma_addr);
303 return;
304 }
305
306 /* XXX: support PRP lists */
307}
308
b60503ba
MW
309static int nvme_map_bio(struct device *dev, struct nvme_req_info *info,
310 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
311{
312 struct bio_vec *bvec;
313 struct scatterlist *sg = info->sg;
314 int i, nsegs;
315
316 sg_init_table(sg, psegs);
317 bio_for_each_segment(bvec, bio, i) {
318 sg_set_page(sg, bvec->bv_page, bvec->bv_len, bvec->bv_offset);
319 /* XXX: handle non-mergable here */
320 nsegs++;
321 }
322 info->nents = nsegs;
323
324 return dma_map_sg(dev, info->sg, info->nents, dma_dir);
325}
326
327static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
328 struct bio *bio)
329{
ff22b54f 330 struct nvme_command *cmnd;
b60503ba
MW
331 struct nvme_req_info *info;
332 enum dma_data_direction dma_dir;
333 int cmdid;
334 u16 control;
335 u32 dsmgmt;
336 unsigned long flags;
337 int psegs = bio_phys_segments(ns->queue, bio);
338
339 info = alloc_info(psegs, GFP_NOIO);
340 if (!info)
341 goto congestion;
342 info->bio = bio;
343
e85248e5 344 cmdid = alloc_cmdid(nvmeq, info, bio_completion_id, IO_TIMEOUT);
b60503ba
MW
345 if (unlikely(cmdid < 0))
346 goto free_info;
347
348 control = 0;
349 if (bio->bi_rw & REQ_FUA)
350 control |= NVME_RW_FUA;
351 if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
352 control |= NVME_RW_LR;
353
354 dsmgmt = 0;
355 if (bio->bi_rw & REQ_RAHEAD)
356 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
357
358 spin_lock_irqsave(&nvmeq->q_lock, flags);
ff22b54f 359 cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
b60503ba 360
b8deb62c 361 memset(cmnd, 0, sizeof(*cmnd));
b60503ba 362 if (bio_data_dir(bio)) {
ff22b54f 363 cmnd->rw.opcode = nvme_cmd_write;
b60503ba
MW
364 dma_dir = DMA_TO_DEVICE;
365 } else {
ff22b54f 366 cmnd->rw.opcode = nvme_cmd_read;
b60503ba
MW
367 dma_dir = DMA_FROM_DEVICE;
368 }
369
370 nvme_map_bio(nvmeq->q_dmadev, info, bio, dma_dir, psegs);
371
ff22b54f
MW
372 cmnd->rw.flags = 1;
373 cmnd->rw.command_id = cmdid;
374 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
375 nvme_setup_prps(&cmnd->common, info->sg, bio->bi_size);
376 cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
377 cmnd->rw.length = cpu_to_le16((bio->bi_size >> ns->lba_shift) - 1);
378 cmnd->rw.control = cpu_to_le16(control);
379 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
b60503ba
MW
380
381 writel(nvmeq->sq_tail, nvmeq->q_db);
382 if (++nvmeq->sq_tail == nvmeq->q_depth)
383 nvmeq->sq_tail = 0;
384
385 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
386
387 return 0;
388
389 free_info:
390 free_info(info);
391 congestion:
392 return -EBUSY;
393}
394
395/*
396 * NB: return value of non-zero would mean that we were a stacking driver.
397 * make_request must always succeed.
398 */
399static int nvme_make_request(struct request_queue *q, struct bio *bio)
400{
401 struct nvme_ns *ns = q->queuedata;
402 struct nvme_queue *nvmeq = get_nvmeq(ns);
403
404 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
405 blk_set_queue_congested(q, rw_is_sync(bio->bi_rw));
406 bio_list_add(&nvmeq->sq_cong, bio);
407 }
408 put_nvmeq(nvmeq);
409
410 return 0;
411}
412
413struct sync_cmd_info {
414 struct task_struct *task;
415 u32 result;
416 int status;
417};
418
419static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
420 struct nvme_completion *cqe)
421{
422 struct sync_cmd_info *cmdinfo = ctx;
be7b6275
MW
423 if ((unsigned long)cmdinfo == CMD_CTX_CANCELLED)
424 return;
b36235df
MW
425 if (unlikely((unsigned long)cmdinfo == CMD_CTX_COMPLETED)) {
426 dev_warn(nvmeq->q_dmadev,
427 "completed id %d twice on queue %d\n",
428 cqe->command_id, le16_to_cpup(&cqe->sq_id));
429 return;
430 }
48e3d398
MW
431 if (unlikely((unsigned long)cmdinfo == CMD_CTX_INVALID)) {
432 dev_warn(nvmeq->q_dmadev,
433 "invalid id %d completed on queue %d\n",
434 cqe->command_id, le16_to_cpup(&cqe->sq_id));
435 return;
436 }
b60503ba
MW
437 cmdinfo->result = le32_to_cpup(&cqe->result);
438 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
439 wake_up_process(cmdinfo->task);
440}
441
442typedef void (*completion_fn)(struct nvme_queue *, void *,
443 struct nvme_completion *);
444
445static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
446{
82123460 447 u16 head, phase;
b60503ba
MW
448
449 static const completion_fn completions[4] = {
450 [sync_completion_id] = sync_completion,
451 [bio_completion_id] = bio_completion,
452 };
453
454 head = nvmeq->cq_head;
82123460 455 phase = nvmeq->cq_phase;
b60503ba
MW
456
457 for (;;) {
458 unsigned long data;
459 void *ptr;
460 unsigned char handler;
461 struct nvme_completion cqe = nvmeq->cqes[head];
82123460 462 if ((le16_to_cpu(cqe.status) & 1) != phase)
b60503ba
MW
463 break;
464 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
465 if (++head == nvmeq->q_depth) {
466 head = 0;
82123460 467 phase = !phase;
b60503ba
MW
468 }
469
470 data = free_cmdid(nvmeq, cqe.command_id);
471 handler = data & 3;
472 ptr = (void *)(data & ~3UL);
473 completions[handler](nvmeq, ptr, &cqe);
474 }
475
476 /* If the controller ignores the cq head doorbell and continuously
477 * writes to the queue, it is theoretically possible to wrap around
478 * the queue twice and mistakenly return IRQ_NONE. Linux only
479 * requires that 0.1% of your interrupts are handled, so this isn't
480 * a big problem.
481 */
82123460 482 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
b60503ba
MW
483 return IRQ_NONE;
484
485 writel(head, nvmeq->q_db + 1);
486 nvmeq->cq_head = head;
82123460 487 nvmeq->cq_phase = phase;
b60503ba
MW
488
489 return IRQ_HANDLED;
490}
491
492static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
493{
494 irqreturn_t result;
495 struct nvme_queue *nvmeq = data;
496 spin_lock(&nvmeq->q_lock);
497 result = nvme_process_cq(nvmeq);
498 spin_unlock(&nvmeq->q_lock);
499 return result;
500}
501
502static irqreturn_t nvme_irq_check(int irq, void *data)
503{
504 struct nvme_queue *nvmeq = data;
505 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
506 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
507 return IRQ_NONE;
508 return IRQ_WAKE_THREAD;
509}
510
3c0cf138
MW
511static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
512{
513 spin_lock_irq(&nvmeq->q_lock);
be7b6275 514 cancel_cmdid_data(nvmeq, cmdid);
3c0cf138
MW
515 spin_unlock_irq(&nvmeq->q_lock);
516}
517
b60503ba
MW
518/*
519 * Returns 0 on success. If the result is negative, it's a Linux error code;
520 * if the result is positive, it's an NVM Express status code
521 */
3c0cf138 522static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
e85248e5 523 struct nvme_command *cmd, u32 *result, unsigned timeout)
b60503ba
MW
524{
525 int cmdid;
526 struct sync_cmd_info cmdinfo;
527
528 cmdinfo.task = current;
529 cmdinfo.status = -EINTR;
530
e85248e5
MW
531 cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion_id,
532 timeout);
b60503ba
MW
533 if (cmdid < 0)
534 return cmdid;
535 cmd->common.command_id = cmdid;
536
3c0cf138
MW
537 set_current_state(TASK_KILLABLE);
538 nvme_submit_cmd(nvmeq, cmd);
b60503ba
MW
539 schedule();
540
3c0cf138
MW
541 if (cmdinfo.status == -EINTR) {
542 nvme_abort_command(nvmeq, cmdid);
543 return -EINTR;
544 }
545
b60503ba
MW
546 if (result)
547 *result = cmdinfo.result;
548
549 return cmdinfo.status;
550}
551
552static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
553 u32 *result)
554{
e85248e5 555 return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
b60503ba
MW
556}
557
558static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
559{
560 int status;
561 struct nvme_command c;
562
563 memset(&c, 0, sizeof(c));
564 c.delete_queue.opcode = opcode;
565 c.delete_queue.qid = cpu_to_le16(id);
566
567 status = nvme_submit_admin_cmd(dev, &c, NULL);
568 if (status)
569 return -EIO;
570 return 0;
571}
572
573static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
574 struct nvme_queue *nvmeq)
575{
576 int status;
577 struct nvme_command c;
578 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
579
580 memset(&c, 0, sizeof(c));
581 c.create_cq.opcode = nvme_admin_create_cq;
582 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
583 c.create_cq.cqid = cpu_to_le16(qid);
584 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
585 c.create_cq.cq_flags = cpu_to_le16(flags);
586 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
587
588 status = nvme_submit_admin_cmd(dev, &c, NULL);
589 if (status)
590 return -EIO;
591 return 0;
592}
593
594static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
595 struct nvme_queue *nvmeq)
596{
597 int status;
598 struct nvme_command c;
599 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
600
601 memset(&c, 0, sizeof(c));
602 c.create_sq.opcode = nvme_admin_create_sq;
603 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
604 c.create_sq.sqid = cpu_to_le16(qid);
605 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
606 c.create_sq.sq_flags = cpu_to_le16(flags);
607 c.create_sq.cqid = cpu_to_le16(qid);
608
609 status = nvme_submit_admin_cmd(dev, &c, NULL);
610 if (status)
611 return -EIO;
612 return 0;
613}
614
615static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
616{
617 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
618}
619
620static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
621{
622 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
623}
624
625static void nvme_free_queue(struct nvme_dev *dev, int qid)
626{
627 struct nvme_queue *nvmeq = dev->queues[qid];
628
629 free_irq(dev->entry[nvmeq->cq_vector].vector, nvmeq);
630
631 /* Don't tell the adapter to delete the admin queue */
632 if (qid) {
633 adapter_delete_sq(dev, qid);
634 adapter_delete_cq(dev, qid);
635 }
636
637 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
638 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
639 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
640 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
641 kfree(nvmeq);
642}
643
644static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
645 int depth, int vector)
646{
647 struct device *dmadev = &dev->pci_dev->dev;
e85248e5 648 unsigned extra = (depth / 8) + (depth * sizeof(struct nvme_cmd_info));
b60503ba
MW
649 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
650 if (!nvmeq)
651 return NULL;
652
653 nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
654 &nvmeq->cq_dma_addr, GFP_KERNEL);
655 if (!nvmeq->cqes)
656 goto free_nvmeq;
657 memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
658
659 nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
660 &nvmeq->sq_dma_addr, GFP_KERNEL);
661 if (!nvmeq->sq_cmds)
662 goto free_cqdma;
663
664 nvmeq->q_dmadev = dmadev;
665 spin_lock_init(&nvmeq->q_lock);
666 nvmeq->cq_head = 0;
82123460 667 nvmeq->cq_phase = 1;
b60503ba
MW
668 init_waitqueue_head(&nvmeq->sq_full);
669 bio_list_init(&nvmeq->sq_cong);
670 nvmeq->q_db = &dev->dbs[qid * 2];
671 nvmeq->q_depth = depth;
672 nvmeq->cq_vector = vector;
673
674 return nvmeq;
675
676 free_cqdma:
677 dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
678 nvmeq->cq_dma_addr);
679 free_nvmeq:
680 kfree(nvmeq);
681 return NULL;
682}
683
3001082c
MW
684static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
685 const char *name)
686{
58ffacb5
MW
687 if (use_threaded_interrupts)
688 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
ec6ce618 689 nvme_irq_check, nvme_irq,
58ffacb5
MW
690 IRQF_DISABLED | IRQF_SHARED,
691 name, nvmeq);
3001082c
MW
692 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
693 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
694}
695
b60503ba
MW
696static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
697 int qid, int cq_size, int vector)
698{
699 int result;
700 struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
701
3f85d50b
MW
702 if (!nvmeq)
703 return NULL;
704
b60503ba
MW
705 result = adapter_alloc_cq(dev, qid, nvmeq);
706 if (result < 0)
707 goto free_nvmeq;
708
709 result = adapter_alloc_sq(dev, qid, nvmeq);
710 if (result < 0)
711 goto release_cq;
712
3001082c 713 result = queue_request_irq(dev, nvmeq, "nvme");
b60503ba
MW
714 if (result < 0)
715 goto release_sq;
716
717 return nvmeq;
718
719 release_sq:
720 adapter_delete_sq(dev, qid);
721 release_cq:
722 adapter_delete_cq(dev, qid);
723 free_nvmeq:
724 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
725 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
726 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
727 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
728 kfree(nvmeq);
729 return NULL;
730}
731
732static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
733{
734 int result;
735 u32 aqa;
736 struct nvme_queue *nvmeq;
737
738 dev->dbs = ((void __iomem *)dev->bar) + 4096;
739
740 nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
3f85d50b
MW
741 if (!nvmeq)
742 return -ENOMEM;
b60503ba
MW
743
744 aqa = nvmeq->q_depth - 1;
745 aqa |= aqa << 16;
746
747 dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
748 dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
749 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
750
5911f200 751 writel(0, &dev->bar->cc);
b60503ba
MW
752 writel(aqa, &dev->bar->aqa);
753 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
754 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
755 writel(dev->ctrl_config, &dev->bar->cc);
756
757 while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
758 msleep(100);
759 if (fatal_signal_pending(current))
760 return -EINTR;
761 }
762
3001082c 763 result = queue_request_irq(dev, nvmeq, "nvme admin");
b60503ba
MW
764 dev->queues[0] = nvmeq;
765 return result;
766}
767
7fc3cdab
MW
768static int nvme_map_user_pages(struct nvme_dev *dev, int write,
769 unsigned long addr, unsigned length,
770 struct scatterlist **sgp)
b60503ba 771{
36c14ed9 772 int i, err, count, nents, offset;
7fc3cdab
MW
773 struct scatterlist *sg;
774 struct page **pages;
36c14ed9
MW
775
776 if (addr & 3)
777 return -EINVAL;
7fc3cdab
MW
778 if (!length)
779 return -EINVAL;
780
36c14ed9 781 offset = offset_in_page(addr);
7fc3cdab
MW
782 count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
783 pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
36c14ed9
MW
784
785 err = get_user_pages_fast(addr, count, 1, pages);
786 if (err < count) {
787 count = err;
788 err = -EFAULT;
789 goto put_pages;
790 }
7fc3cdab
MW
791
792 sg = kcalloc(count, sizeof(*sg), GFP_KERNEL);
36c14ed9 793 sg_init_table(sg, count);
ff22b54f 794 sg_set_page(&sg[0], pages[0], PAGE_SIZE - offset, offset);
7fc3cdab
MW
795 length -= (PAGE_SIZE - offset);
796 for (i = 1; i < count; i++) {
797 sg_set_page(&sg[i], pages[i], min_t(int, length, PAGE_SIZE), 0);
798 length -= PAGE_SIZE;
799 }
800
801 err = -ENOMEM;
802 nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
803 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
36c14ed9
MW
804 if (!nents)
805 goto put_pages;
b60503ba 806
7fc3cdab
MW
807 kfree(pages);
808 *sgp = sg;
809 return nents;
b60503ba 810
7fc3cdab
MW
811 put_pages:
812 for (i = 0; i < count; i++)
813 put_page(pages[i]);
814 kfree(pages);
815 return err;
816}
b60503ba 817
7fc3cdab
MW
818static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
819 unsigned long addr, int length,
820 struct scatterlist *sg, int nents)
821{
822 int i, count;
b60503ba 823
7fc3cdab 824 count = DIV_ROUND_UP(offset_in_page(addr) + length, PAGE_SIZE);
36c14ed9 825 dma_unmap_sg(&dev->pci_dev->dev, sg, nents, DMA_FROM_DEVICE);
7fc3cdab 826
36c14ed9 827 for (i = 0; i < count; i++)
7fc3cdab
MW
828 put_page(sg_page(&sg[i]));
829}
b60503ba 830
7fc3cdab
MW
831static int nvme_submit_user_admin_command(struct nvme_dev *dev,
832 unsigned long addr, unsigned length,
833 struct nvme_command *cmd)
834{
835 int err, nents;
836 struct scatterlist *sg;
837
838 nents = nvme_map_user_pages(dev, 0, addr, length, &sg);
839 if (nents < 0)
840 return nents;
841 nvme_setup_prps(&cmd->common, sg, length);
842 err = nvme_submit_admin_cmd(dev, cmd, NULL);
843 nvme_unmap_user_pages(dev, 0, addr, length, sg, nents);
844 return err ? -EIO : 0;
b60503ba
MW
845}
846
bd38c555 847static int nvme_identify(struct nvme_ns *ns, unsigned long addr, int cns)
b60503ba 848{
b60503ba 849 struct nvme_command c;
b60503ba 850
bd38c555
MW
851 memset(&c, 0, sizeof(c));
852 c.identify.opcode = nvme_admin_identify;
853 c.identify.nsid = cns ? 0 : cpu_to_le32(ns->ns_id);
854 c.identify.cns = cpu_to_le32(cns);
855
856 return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
857}
858
859static int nvme_get_range_type(struct nvme_ns *ns, unsigned long addr)
860{
861 struct nvme_command c;
b60503ba
MW
862
863 memset(&c, 0, sizeof(c));
864 c.features.opcode = nvme_admin_get_features;
865 c.features.nsid = cpu_to_le32(ns->ns_id);
b60503ba
MW
866 c.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
867
bd38c555 868 return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
b60503ba
MW
869}
870
a53295b6
MW
871static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
872{
873 struct nvme_dev *dev = ns->dev;
874 struct nvme_queue *nvmeq;
875 struct nvme_user_io io;
876 struct nvme_command c;
877 unsigned length;
878 u32 result;
879 int nents, status;
880 struct scatterlist *sg;
881
882 if (copy_from_user(&io, uio, sizeof(io)))
883 return -EFAULT;
884 length = io.nblocks << io.block_shift;
885 nents = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length, &sg);
886 if (nents < 0)
887 return nents;
888
889 memset(&c, 0, sizeof(c));
890 c.rw.opcode = io.opcode;
891 c.rw.flags = io.flags;
892 c.rw.nsid = cpu_to_le32(io.nsid);
893 c.rw.slba = cpu_to_le64(io.slba);
894 c.rw.length = cpu_to_le16(io.nblocks - 1);
895 c.rw.control = cpu_to_le16(io.control);
896 c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
897 c.rw.reftag = cpu_to_le32(io.reftag); /* XXX: endian? */
898 c.rw.apptag = cpu_to_le16(io.apptag);
899 c.rw.appmask = cpu_to_le16(io.appmask);
900 /* XXX: metadata */
901 nvme_setup_prps(&c.common, sg, length);
902
903 nvmeq = get_nvmeq(ns);
b1ad37ef
MW
904 /* Since nvme_submit_sync_cmd sleeps, we can't keep preemption
905 * disabled. We may be preempted at any point, and be rescheduled
906 * to a different CPU. That will cause cacheline bouncing, but no
907 * additional races since q_lock already protects against other CPUs.
908 */
a53295b6 909 put_nvmeq(nvmeq);
e85248e5 910 status = nvme_submit_sync_cmd(nvmeq, &c, &result, IO_TIMEOUT);
a53295b6
MW
911
912 nvme_unmap_user_pages(dev, io.opcode & 1, io.addr, length, sg, nents);
913 put_user(result, &uio->result);
914 return status;
915}
916
6ee44cdc
MW
917static int nvme_download_firmware(struct nvme_ns *ns,
918 struct nvme_dlfw __user *udlfw)
919{
920 struct nvme_dev *dev = ns->dev;
921 struct nvme_dlfw dlfw;
922 struct nvme_command c;
923 int nents, status;
924 struct scatterlist *sg;
925
926 if (copy_from_user(&dlfw, udlfw, sizeof(dlfw)))
927 return -EFAULT;
928 if (dlfw.length >= (1 << 30))
929 return -EINVAL;
930
931 nents = nvme_map_user_pages(dev, 1, dlfw.addr, dlfw.length * 4, &sg);
932 if (nents < 0)
933 return nents;
934
935 memset(&c, 0, sizeof(c));
936 c.dlfw.opcode = nvme_admin_download_fw;
937 c.dlfw.numd = cpu_to_le32(dlfw.length);
938 c.dlfw.offset = cpu_to_le32(dlfw.offset);
939 nvme_setup_prps(&c.common, sg, dlfw.length * 4);
940
941 status = nvme_submit_admin_cmd(dev, &c, NULL);
942 nvme_unmap_user_pages(dev, 0, dlfw.addr, dlfw.length * 4, sg, nents);
943 return status;
944}
945
946static int nvme_activate_firmware(struct nvme_ns *ns, unsigned long arg)
947{
948 struct nvme_dev *dev = ns->dev;
949 struct nvme_command c;
950
951 memset(&c, 0, sizeof(c));
952 c.common.opcode = nvme_admin_activate_fw;
953 c.common.rsvd10[0] = cpu_to_le32(arg);
954
955 return nvme_submit_admin_cmd(dev, &c, NULL);
956}
957
b60503ba
MW
958static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
959 unsigned long arg)
960{
961 struct nvme_ns *ns = bdev->bd_disk->private_data;
962
963 switch (cmd) {
964 case NVME_IOCTL_IDENTIFY_NS:
36c14ed9 965 return nvme_identify(ns, arg, 0);
b60503ba 966 case NVME_IOCTL_IDENTIFY_CTRL:
36c14ed9 967 return nvme_identify(ns, arg, 1);
b60503ba 968 case NVME_IOCTL_GET_RANGE_TYPE:
bd38c555 969 return nvme_get_range_type(ns, arg);
a53295b6
MW
970 case NVME_IOCTL_SUBMIT_IO:
971 return nvme_submit_io(ns, (void __user *)arg);
6ee44cdc
MW
972 case NVME_IOCTL_DOWNLOAD_FW:
973 return nvme_download_firmware(ns, (void __user *)arg);
974 case NVME_IOCTL_ACTIVATE_FW:
975 return nvme_activate_firmware(ns, arg);
b60503ba
MW
976 default:
977 return -ENOTTY;
978 }
979}
980
981static const struct block_device_operations nvme_fops = {
982 .owner = THIS_MODULE,
983 .ioctl = nvme_ioctl,
984};
985
986static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int index,
987 struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
988{
989 struct nvme_ns *ns;
990 struct gendisk *disk;
991 int lbaf;
992
993 if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
994 return NULL;
995
996 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
997 if (!ns)
998 return NULL;
999 ns->queue = blk_alloc_queue(GFP_KERNEL);
1000 if (!ns->queue)
1001 goto out_free_ns;
1002 ns->queue->queue_flags = QUEUE_FLAG_DEFAULT | QUEUE_FLAG_NOMERGES |
1003 QUEUE_FLAG_NONROT | QUEUE_FLAG_DISCARD;
1004 blk_queue_make_request(ns->queue, nvme_make_request);
1005 ns->dev = dev;
1006 ns->queue->queuedata = ns;
1007
1008 disk = alloc_disk(NVME_MINORS);
1009 if (!disk)
1010 goto out_free_queue;
1011 ns->ns_id = index;
1012 ns->disk = disk;
1013 lbaf = id->flbas & 0xf;
1014 ns->lba_shift = id->lbaf[lbaf].ds;
1015
1016 disk->major = nvme_major;
1017 disk->minors = NVME_MINORS;
1018 disk->first_minor = NVME_MINORS * index;
1019 disk->fops = &nvme_fops;
1020 disk->private_data = ns;
1021 disk->queue = ns->queue;
388f037f 1022 disk->driverfs_dev = &dev->pci_dev->dev;
b60503ba
MW
1023 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, index);
1024 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1025
1026 return ns;
1027
1028 out_free_queue:
1029 blk_cleanup_queue(ns->queue);
1030 out_free_ns:
1031 kfree(ns);
1032 return NULL;
1033}
1034
1035static void nvme_ns_free(struct nvme_ns *ns)
1036{
1037 put_disk(ns->disk);
1038 blk_cleanup_queue(ns->queue);
1039 kfree(ns);
1040}
1041
b3b06812 1042static int set_queue_count(struct nvme_dev *dev, int count)
b60503ba
MW
1043{
1044 int status;
1045 u32 result;
1046 struct nvme_command c;
b3b06812 1047 u32 q_count = (count - 1) | ((count - 1) << 16);
b60503ba
MW
1048
1049 memset(&c, 0, sizeof(c));
1050 c.features.opcode = nvme_admin_get_features;
1051 c.features.fid = cpu_to_le32(NVME_FEAT_NUM_QUEUES);
1052 c.features.dword11 = cpu_to_le32(q_count);
1053
1054 status = nvme_submit_admin_cmd(dev, &c, &result);
1055 if (status)
1056 return -EIO;
1057 return min(result & 0xffff, result >> 16) + 1;
1058}
1059
b60503ba
MW
1060static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
1061{
1b23484b 1062 int result, cpu, i, nr_queues;
b60503ba 1063
1b23484b
MW
1064 nr_queues = num_online_cpus();
1065 result = set_queue_count(dev, nr_queues);
1066 if (result < 0)
1067 return result;
1068 if (result < nr_queues)
1069 nr_queues = result;
b60503ba 1070
1b23484b
MW
1071 /* Deregister the admin queue's interrupt */
1072 free_irq(dev->entry[0].vector, dev->queues[0]);
1073
1074 for (i = 0; i < nr_queues; i++)
1075 dev->entry[i].entry = i;
1076 for (;;) {
1077 result = pci_enable_msix(dev->pci_dev, dev->entry, nr_queues);
1078 if (result == 0) {
1079 break;
1080 } else if (result > 0) {
1081 nr_queues = result;
1082 continue;
1083 } else {
1084 nr_queues = 1;
1085 break;
1086 }
1087 }
1088
1089 result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1090 /* XXX: handle failure here */
1091
1092 cpu = cpumask_first(cpu_online_mask);
1093 for (i = 0; i < nr_queues; i++) {
1094 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1095 cpu = cpumask_next(cpu, cpu_online_mask);
1096 }
1097
1098 for (i = 0; i < nr_queues; i++) {
1099 dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
1100 NVME_Q_DEPTH, i);
1101 if (!dev->queues[i + 1])
1102 return -ENOMEM;
1103 dev->queue_count++;
1104 }
b60503ba
MW
1105
1106 return 0;
1107}
1108
1109static void nvme_free_queues(struct nvme_dev *dev)
1110{
1111 int i;
1112
1113 for (i = dev->queue_count - 1; i >= 0; i--)
1114 nvme_free_queue(dev, i);
1115}
1116
1117static int __devinit nvme_dev_add(struct nvme_dev *dev)
1118{
1119 int res, nn, i;
1120 struct nvme_ns *ns, *next;
51814232 1121 struct nvme_id_ctrl *ctrl;
b60503ba
MW
1122 void *id;
1123 dma_addr_t dma_addr;
1124 struct nvme_command cid, crt;
1125
1126 res = nvme_setup_io_queues(dev);
1127 if (res)
1128 return res;
1129
1130 /* XXX: Switch to a SG list once prp2 works */
1131 id = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1132 GFP_KERNEL);
1133
1134 memset(&cid, 0, sizeof(cid));
1135 cid.identify.opcode = nvme_admin_identify;
1136 cid.identify.nsid = 0;
1137 cid.identify.prp1 = cpu_to_le64(dma_addr);
1138 cid.identify.cns = cpu_to_le32(1);
1139
1140 res = nvme_submit_admin_cmd(dev, &cid, NULL);
1141 if (res) {
1142 res = -EIO;
1143 goto out_free;
1144 }
1145
51814232
MW
1146 ctrl = id;
1147 nn = le32_to_cpup(&ctrl->nn);
1148 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1149 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1150 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
b60503ba
MW
1151
1152 cid.identify.cns = 0;
1153 memset(&crt, 0, sizeof(crt));
1154 crt.features.opcode = nvme_admin_get_features;
1155 crt.features.prp1 = cpu_to_le64(dma_addr + 4096);
1156 crt.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
1157
1158 for (i = 0; i < nn; i++) {
1159 cid.identify.nsid = cpu_to_le32(i);
1160 res = nvme_submit_admin_cmd(dev, &cid, NULL);
1161 if (res)
1162 continue;
1163
1164 if (((struct nvme_id_ns *)id)->ncap == 0)
1165 continue;
1166
1167 crt.features.nsid = cpu_to_le32(i);
1168 res = nvme_submit_admin_cmd(dev, &crt, NULL);
1169 if (res)
1170 continue;
1171
1172 ns = nvme_alloc_ns(dev, i, id, id + 4096);
1173 if (ns)
1174 list_add_tail(&ns->list, &dev->namespaces);
1175 }
1176 list_for_each_entry(ns, &dev->namespaces, list)
1177 add_disk(ns->disk);
1178
1179 dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1180 return 0;
1181
1182 out_free:
1183 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1184 list_del(&ns->list);
1185 nvme_ns_free(ns);
1186 }
1187
1188 dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1189 return res;
1190}
1191
1192static int nvme_dev_remove(struct nvme_dev *dev)
1193{
1194 struct nvme_ns *ns, *next;
1195
1196 /* TODO: wait all I/O finished or cancel them */
1197
1198 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1199 list_del(&ns->list);
1200 del_gendisk(ns->disk);
1201 nvme_ns_free(ns);
1202 }
1203
1204 nvme_free_queues(dev);
1205
1206 return 0;
1207}
1208
1209/* XXX: Use an ida or something to let remove / add work correctly */
1210static void nvme_set_instance(struct nvme_dev *dev)
1211{
1212 static int instance;
1213 dev->instance = instance++;
1214}
1215
1216static void nvme_release_instance(struct nvme_dev *dev)
1217{
1218}
1219
1220static int __devinit nvme_probe(struct pci_dev *pdev,
1221 const struct pci_device_id *id)
1222{
574e8b95 1223 int bars, result = -ENOMEM;
b60503ba
MW
1224 struct nvme_dev *dev;
1225
1226 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1227 if (!dev)
1228 return -ENOMEM;
1229 dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1230 GFP_KERNEL);
1231 if (!dev->entry)
1232 goto free;
1b23484b
MW
1233 dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1234 GFP_KERNEL);
b60503ba
MW
1235 if (!dev->queues)
1236 goto free;
1237
0ee5a7d7
SMM
1238 if (pci_enable_device_mem(pdev))
1239 goto free;
f64d3365 1240 pci_set_master(pdev);
574e8b95
MW
1241 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1242 if (pci_request_selected_regions(pdev, bars, "nvme"))
1243 goto disable;
0ee5a7d7 1244
b60503ba
MW
1245 INIT_LIST_HEAD(&dev->namespaces);
1246 dev->pci_dev = pdev;
1247 pci_set_drvdata(pdev, dev);
2930353f
MW
1248 dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1249 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
b60503ba 1250 nvme_set_instance(dev);
53c9577e 1251 dev->entry[0].vector = pdev->irq;
b60503ba
MW
1252
1253 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1254 if (!dev->bar) {
1255 result = -ENOMEM;
574e8b95 1256 goto disable_msix;
b60503ba
MW
1257 }
1258
1259 result = nvme_configure_admin_queue(dev);
1260 if (result)
1261 goto unmap;
1262 dev->queue_count++;
1263
1264 result = nvme_dev_add(dev);
1265 if (result)
1266 goto delete;
1267 return 0;
1268
1269 delete:
1270 nvme_free_queues(dev);
1271 unmap:
1272 iounmap(dev->bar);
574e8b95 1273 disable_msix:
b60503ba
MW
1274 pci_disable_msix(pdev);
1275 nvme_release_instance(dev);
574e8b95 1276 disable:
0ee5a7d7 1277 pci_disable_device(pdev);
574e8b95 1278 pci_release_regions(pdev);
b60503ba
MW
1279 free:
1280 kfree(dev->queues);
1281 kfree(dev->entry);
1282 kfree(dev);
1283 return result;
1284}
1285
1286static void __devexit nvme_remove(struct pci_dev *pdev)
1287{
1288 struct nvme_dev *dev = pci_get_drvdata(pdev);
1289 nvme_dev_remove(dev);
1290 pci_disable_msix(pdev);
1291 iounmap(dev->bar);
1292 nvme_release_instance(dev);
0ee5a7d7 1293 pci_disable_device(pdev);
574e8b95 1294 pci_release_regions(pdev);
b60503ba
MW
1295 kfree(dev->queues);
1296 kfree(dev->entry);
1297 kfree(dev);
1298}
1299
1300/* These functions are yet to be implemented */
1301#define nvme_error_detected NULL
1302#define nvme_dump_registers NULL
1303#define nvme_link_reset NULL
1304#define nvme_slot_reset NULL
1305#define nvme_error_resume NULL
1306#define nvme_suspend NULL
1307#define nvme_resume NULL
1308
1309static struct pci_error_handlers nvme_err_handler = {
1310 .error_detected = nvme_error_detected,
1311 .mmio_enabled = nvme_dump_registers,
1312 .link_reset = nvme_link_reset,
1313 .slot_reset = nvme_slot_reset,
1314 .resume = nvme_error_resume,
1315};
1316
1317/* Move to pci_ids.h later */
1318#define PCI_CLASS_STORAGE_EXPRESS 0x010802
1319
1320static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1321 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1322 { 0, }
1323};
1324MODULE_DEVICE_TABLE(pci, nvme_id_table);
1325
1326static struct pci_driver nvme_driver = {
1327 .name = "nvme",
1328 .id_table = nvme_id_table,
1329 .probe = nvme_probe,
1330 .remove = __devexit_p(nvme_remove),
1331 .suspend = nvme_suspend,
1332 .resume = nvme_resume,
1333 .err_handler = &nvme_err_handler,
1334};
1335
1336static int __init nvme_init(void)
1337{
1338 int result;
1339
1340 nvme_major = register_blkdev(nvme_major, "nvme");
1341 if (nvme_major <= 0)
1342 return -EBUSY;
1343
1344 result = pci_register_driver(&nvme_driver);
1345 if (!result)
1346 return 0;
1347
1348 unregister_blkdev(nvme_major, "nvme");
1349 return result;
1350}
1351
1352static void __exit nvme_exit(void)
1353{
1354 pci_unregister_driver(&nvme_driver);
1355 unregister_blkdev(nvme_major, "nvme");
1356}
1357
1358MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1359MODULE_LICENSE("GPL");
db5d0c19 1360MODULE_VERSION("0.2");
b60503ba
MW
1361module_init(nvme_init);
1362module_exit(nvme_exit);