NVMe: Pass the nvme_dev to nvme_free_prps and nvme_setup_prps
[linux-2.6-block.git] / drivers / block / nvme.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
3 * Copyright (c) 2011, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19#include <linux/nvme.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
22#include <linux/errno.h>
23#include <linux/fs.h>
24#include <linux/genhd.h>
25#include <linux/init.h>
26#include <linux/interrupt.h>
27#include <linux/io.h>
28#include <linux/kdev_t.h>
29#include <linux/kernel.h>
30#include <linux/mm.h>
31#include <linux/module.h>
32#include <linux/moduleparam.h>
33#include <linux/pci.h>
be7b6275 34#include <linux/poison.h>
b60503ba
MW
35#include <linux/sched.h>
36#include <linux/slab.h>
37#include <linux/types.h>
38#include <linux/version.h>
39
40#define NVME_Q_DEPTH 1024
41#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
42#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
43#define NVME_MINORS 64
e85248e5
MW
44#define IO_TIMEOUT (5 * HZ)
45#define ADMIN_TIMEOUT (60 * HZ)
b60503ba
MW
46
47static int nvme_major;
48module_param(nvme_major, int, 0);
49
58ffacb5
MW
50static int use_threaded_interrupts;
51module_param(use_threaded_interrupts, int, 0);
52
b60503ba
MW
53/*
54 * Represents an NVM Express device. Each nvme_dev is a PCI function.
55 */
56struct nvme_dev {
b60503ba
MW
57 struct nvme_queue **queues;
58 u32 __iomem *dbs;
59 struct pci_dev *pci_dev;
091b6092 60 struct dma_pool *prp_page_pool;
99802a7a 61 struct dma_pool *prp_small_pool;
b60503ba
MW
62 int instance;
63 int queue_count;
64 u32 ctrl_config;
65 struct msix_entry *entry;
66 struct nvme_bar __iomem *bar;
67 struct list_head namespaces;
51814232
MW
68 char serial[20];
69 char model[40];
70 char firmware_rev[8];
b60503ba
MW
71};
72
73/*
74 * An NVM Express namespace is equivalent to a SCSI LUN
75 */
76struct nvme_ns {
77 struct list_head list;
78
79 struct nvme_dev *dev;
80 struct request_queue *queue;
81 struct gendisk *disk;
82
83 int ns_id;
84 int lba_shift;
85};
86
87/*
88 * An NVM Express queue. Each device has at least two (one for admin
89 * commands and one for I/O commands).
90 */
91struct nvme_queue {
92 struct device *q_dmadev;
091b6092 93 struct nvme_dev *dev;
b60503ba
MW
94 spinlock_t q_lock;
95 struct nvme_command *sq_cmds;
96 volatile struct nvme_completion *cqes;
97 dma_addr_t sq_dma_addr;
98 dma_addr_t cq_dma_addr;
99 wait_queue_head_t sq_full;
100 struct bio_list sq_cong;
101 u32 __iomem *q_db;
102 u16 q_depth;
103 u16 cq_vector;
104 u16 sq_head;
105 u16 sq_tail;
106 u16 cq_head;
82123460 107 u16 cq_phase;
b60503ba
MW
108 unsigned long cmdid_data[];
109};
110
9294bbed
MW
111static void nvme_resubmit_bio(struct nvme_queue *nvmeq, struct bio *bio);
112
b60503ba
MW
113/*
114 * Check we didin't inadvertently grow the command struct
115 */
116static inline void _nvme_check_size(void)
117{
118 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
119 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
120 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
121 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
122 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
123 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
124 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
125 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
126 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
127}
128
e85248e5
MW
129struct nvme_cmd_info {
130 unsigned long ctx;
131 unsigned long timeout;
132};
133
134static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
135{
136 return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
137}
138
b60503ba
MW
139/**
140 * alloc_cmdid - Allocate a Command ID
141 * @param nvmeq The queue that will be used for this command
142 * @param ctx A pointer that will be passed to the handler
143 * @param handler The ID of the handler to call
144 *
145 * Allocate a Command ID for a queue. The data passed in will
146 * be passed to the completion handler. This is implemented by using
147 * the bottom two bits of the ctx pointer to store the handler ID.
148 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
149 * We can change this if it becomes a problem.
150 */
e85248e5
MW
151static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx, int handler,
152 unsigned timeout)
b60503ba
MW
153{
154 int depth = nvmeq->q_depth;
e85248e5 155 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
b60503ba
MW
156 int cmdid;
157
158 BUG_ON((unsigned long)ctx & 3);
159
160 do {
161 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
162 if (cmdid >= depth)
163 return -EBUSY;
164 } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
165
e85248e5
MW
166 info[cmdid].ctx = (unsigned long)ctx | handler;
167 info[cmdid].timeout = jiffies + timeout;
b60503ba
MW
168 return cmdid;
169}
170
171static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
e85248e5 172 int handler, unsigned timeout)
b60503ba
MW
173{
174 int cmdid;
175 wait_event_killable(nvmeq->sq_full,
e85248e5 176 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
b60503ba
MW
177 return (cmdid < 0) ? -EINTR : cmdid;
178}
179
180/* If you need more than four handlers, you'll need to change how
be7b6275
MW
181 * alloc_cmdid and nvme_process_cq work. Consider using a special
182 * CMD_CTX value instead, if that works for your situation.
b60503ba
MW
183 */
184enum {
185 sync_completion_id = 0,
186 bio_completion_id,
187};
188
be7b6275 189#define CMD_CTX_BASE (POISON_POINTER_DELTA + sync_completion_id)
d2d87034
MW
190#define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
191#define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
192#define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
be7b6275 193
b60503ba
MW
194static unsigned long free_cmdid(struct nvme_queue *nvmeq, int cmdid)
195{
196 unsigned long data;
e85248e5 197 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
b60503ba 198
e85248e5 199 if (cmdid >= nvmeq->q_depth)
48e3d398 200 return CMD_CTX_INVALID;
e85248e5
MW
201 data = info[cmdid].ctx;
202 info[cmdid].ctx = CMD_CTX_COMPLETED;
b60503ba
MW
203 clear_bit(cmdid, nvmeq->cmdid_data);
204 wake_up(&nvmeq->sq_full);
205 return data;
206}
207
be7b6275 208static void cancel_cmdid_data(struct nvme_queue *nvmeq, int cmdid)
3c0cf138 209{
e85248e5
MW
210 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
211 info[cmdid].ctx = CMD_CTX_CANCELLED;
3c0cf138
MW
212}
213
b60503ba
MW
214static struct nvme_queue *get_nvmeq(struct nvme_ns *ns)
215{
1b23484b
MW
216 int qid, cpu = get_cpu();
217 if (cpu < ns->dev->queue_count)
218 qid = cpu + 1;
219 else
220 qid = (cpu % rounddown_pow_of_two(ns->dev->queue_count)) + 1;
221 return ns->dev->queues[qid];
b60503ba
MW
222}
223
224static void put_nvmeq(struct nvme_queue *nvmeq)
225{
1b23484b 226 put_cpu();
b60503ba
MW
227}
228
229/**
230 * nvme_submit_cmd: Copy a command into a queue and ring the doorbell
231 * @nvmeq: The queue to use
232 * @cmd: The command to send
233 *
234 * Safe to use from interrupt context
235 */
236static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
237{
238 unsigned long flags;
239 u16 tail;
240 /* XXX: Need to check tail isn't going to overrun head */
241 spin_lock_irqsave(&nvmeq->q_lock, flags);
242 tail = nvmeq->sq_tail;
243 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
244 writel(tail, nvmeq->q_db);
245 if (++tail == nvmeq->q_depth)
246 tail = 0;
247 nvmeq->sq_tail = tail;
248 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
249
250 return 0;
251}
252
e025344c
SMM
253struct nvme_prps {
254 int npages;
255 dma_addr_t first_dma;
256 __le64 *list[0];
257};
258
d567760c 259static void nvme_free_prps(struct nvme_dev *dev, struct nvme_prps *prps)
e025344c
SMM
260{
261 const int last_prp = PAGE_SIZE / 8 - 1;
262 int i;
263 dma_addr_t prp_dma;
264
265 if (!prps)
266 return;
267
268 prp_dma = prps->first_dma;
99802a7a
MW
269
270 if (prps->npages == 0)
271 dma_pool_free(dev->prp_small_pool, prps->list[0], prp_dma);
e025344c
SMM
272 for (i = 0; i < prps->npages; i++) {
273 __le64 *prp_list = prps->list[i];
274 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
091b6092 275 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
e025344c
SMM
276 prp_dma = next_prp_dma;
277 }
278 kfree(prps);
279}
280
d534df3c 281struct nvme_bio {
b60503ba
MW
282 struct bio *bio;
283 int nents;
e025344c 284 struct nvme_prps *prps;
b60503ba
MW
285 struct scatterlist sg[0];
286};
287
288/* XXX: use a mempool */
d534df3c 289static struct nvme_bio *alloc_nbio(unsigned nseg, gfp_t gfp)
b60503ba 290{
d534df3c 291 return kzalloc(sizeof(struct nvme_bio) +
b60503ba
MW
292 sizeof(struct scatterlist) * nseg, gfp);
293}
294
d534df3c 295static void free_nbio(struct nvme_queue *nvmeq, struct nvme_bio *nbio)
b60503ba 296{
d567760c 297 nvme_free_prps(nvmeq->dev, nbio->prps);
d534df3c 298 kfree(nbio);
b60503ba
MW
299}
300
301static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
302 struct nvme_completion *cqe)
303{
d534df3c
MW
304 struct nvme_bio *nbio = ctx;
305 struct bio *bio = nbio->bio;
b60503ba
MW
306 u16 status = le16_to_cpup(&cqe->status) >> 1;
307
d534df3c 308 dma_unmap_sg(nvmeq->q_dmadev, nbio->sg, nbio->nents,
b60503ba 309 bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
d534df3c 310 free_nbio(nvmeq, nbio);
b60503ba 311 bio_endio(bio, status ? -EIO : 0);
9294bbed
MW
312 bio = bio_list_pop(&nvmeq->sq_cong);
313 if (bio)
314 nvme_resubmit_bio(nvmeq, bio);
b60503ba
MW
315}
316
ff22b54f 317/* length is in bytes */
d567760c 318static struct nvme_prps *nvme_setup_prps(struct nvme_dev *dev,
e025344c 319 struct nvme_common_command *cmd,
ff22b54f
MW
320 struct scatterlist *sg, int length)
321{
99802a7a 322 struct dma_pool *pool;
ff22b54f
MW
323 int dma_len = sg_dma_len(sg);
324 u64 dma_addr = sg_dma_address(sg);
325 int offset = offset_in_page(dma_addr);
e025344c
SMM
326 __le64 *prp_list;
327 dma_addr_t prp_dma;
328 int nprps, npages, i, prp_page;
329 struct nvme_prps *prps = NULL;
ff22b54f
MW
330
331 cmd->prp1 = cpu_to_le64(dma_addr);
332 length -= (PAGE_SIZE - offset);
333 if (length <= 0)
e025344c 334 return prps;
ff22b54f
MW
335
336 dma_len -= (PAGE_SIZE - offset);
337 if (dma_len) {
338 dma_addr += (PAGE_SIZE - offset);
339 } else {
340 sg = sg_next(sg);
341 dma_addr = sg_dma_address(sg);
342 dma_len = sg_dma_len(sg);
343 }
344
345 if (length <= PAGE_SIZE) {
346 cmd->prp2 = cpu_to_le64(dma_addr);
e025344c
SMM
347 return prps;
348 }
349
350 nprps = DIV_ROUND_UP(length, PAGE_SIZE);
351 npages = DIV_ROUND_UP(8 * nprps, PAGE_SIZE);
352 prps = kmalloc(sizeof(*prps) + sizeof(__le64 *) * npages, GFP_ATOMIC);
e025344c 353 prp_page = 0;
99802a7a
MW
354 if (nprps <= (256 / 8)) {
355 pool = dev->prp_small_pool;
356 prps->npages = 0;
357 } else {
358 pool = dev->prp_page_pool;
359 prps->npages = npages;
360 }
361
362 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
e025344c
SMM
363 prps->list[prp_page++] = prp_list;
364 prps->first_dma = prp_dma;
365 cmd->prp2 = cpu_to_le64(prp_dma);
366 i = 0;
367 for (;;) {
368 if (i == PAGE_SIZE / 8 - 1) {
369 __le64 *old_prp_list = prp_list;
99802a7a 370 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
e025344c
SMM
371 prps->list[prp_page++] = prp_list;
372 old_prp_list[i] = cpu_to_le64(prp_dma);
373 i = 0;
374 }
375 prp_list[i++] = cpu_to_le64(dma_addr);
376 dma_len -= PAGE_SIZE;
377 dma_addr += PAGE_SIZE;
378 length -= PAGE_SIZE;
379 if (length <= 0)
380 break;
381 if (dma_len > 0)
382 continue;
383 BUG_ON(dma_len < 0);
384 sg = sg_next(sg);
385 dma_addr = sg_dma_address(sg);
386 dma_len = sg_dma_len(sg);
ff22b54f
MW
387 }
388
e025344c 389 return prps;
ff22b54f
MW
390}
391
d534df3c 392static int nvme_map_bio(struct device *dev, struct nvme_bio *nbio,
b60503ba
MW
393 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
394{
395 struct bio_vec *bvec;
d534df3c 396 struct scatterlist *sg = nbio->sg;
b60503ba
MW
397 int i, nsegs;
398
399 sg_init_table(sg, psegs);
400 bio_for_each_segment(bvec, bio, i) {
401 sg_set_page(sg, bvec->bv_page, bvec->bv_len, bvec->bv_offset);
51882d00 402 sg++;
b60503ba
MW
403 /* XXX: handle non-mergable here */
404 nsegs++;
405 }
d534df3c 406 nbio->nents = nsegs;
b60503ba 407
d534df3c 408 return dma_map_sg(dev, nbio->sg, nbio->nents, dma_dir);
b60503ba
MW
409}
410
411static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
412 struct bio *bio)
413{
ff22b54f 414 struct nvme_command *cmnd;
d534df3c 415 struct nvme_bio *nbio;
b60503ba
MW
416 enum dma_data_direction dma_dir;
417 int cmdid;
418 u16 control;
419 u32 dsmgmt;
420 unsigned long flags;
421 int psegs = bio_phys_segments(ns->queue, bio);
422
d534df3c
MW
423 nbio = alloc_nbio(psegs, GFP_NOIO);
424 if (!nbio)
b60503ba 425 goto congestion;
d534df3c 426 nbio->bio = bio;
b60503ba 427
d534df3c 428 cmdid = alloc_cmdid(nvmeq, nbio, bio_completion_id, IO_TIMEOUT);
b60503ba 429 if (unlikely(cmdid < 0))
d534df3c 430 goto free_nbio;
b60503ba
MW
431
432 control = 0;
433 if (bio->bi_rw & REQ_FUA)
434 control |= NVME_RW_FUA;
435 if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
436 control |= NVME_RW_LR;
437
438 dsmgmt = 0;
439 if (bio->bi_rw & REQ_RAHEAD)
440 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
441
442 spin_lock_irqsave(&nvmeq->q_lock, flags);
ff22b54f 443 cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
b60503ba 444
b8deb62c 445 memset(cmnd, 0, sizeof(*cmnd));
b60503ba 446 if (bio_data_dir(bio)) {
ff22b54f 447 cmnd->rw.opcode = nvme_cmd_write;
b60503ba
MW
448 dma_dir = DMA_TO_DEVICE;
449 } else {
ff22b54f 450 cmnd->rw.opcode = nvme_cmd_read;
b60503ba
MW
451 dma_dir = DMA_FROM_DEVICE;
452 }
453
d534df3c 454 nvme_map_bio(nvmeq->q_dmadev, nbio, bio, dma_dir, psegs);
b60503ba 455
ff22b54f
MW
456 cmnd->rw.flags = 1;
457 cmnd->rw.command_id = cmdid;
458 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
d567760c 459 nbio->prps = nvme_setup_prps(nvmeq->dev, &cmnd->common, nbio->sg,
e025344c 460 bio->bi_size);
ff22b54f
MW
461 cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
462 cmnd->rw.length = cpu_to_le16((bio->bi_size >> ns->lba_shift) - 1);
463 cmnd->rw.control = cpu_to_le16(control);
464 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
b60503ba
MW
465
466 writel(nvmeq->sq_tail, nvmeq->q_db);
467 if (++nvmeq->sq_tail == nvmeq->q_depth)
468 nvmeq->sq_tail = 0;
469
470 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
471
472 return 0;
473
d534df3c
MW
474 free_nbio:
475 free_nbio(nvmeq, nbio);
b60503ba
MW
476 congestion:
477 return -EBUSY;
478}
479
9294bbed
MW
480static void nvme_resubmit_bio(struct nvme_queue *nvmeq, struct bio *bio)
481{
482 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
483 if (nvme_submit_bio_queue(nvmeq, ns, bio))
484 bio_list_add_head(&nvmeq->sq_cong, bio);
485 else if (bio_list_empty(&nvmeq->sq_cong))
486 blk_clear_queue_congested(ns->queue, rw_is_sync(bio->bi_rw));
487 /* XXX: Need to duplicate the logic from __freed_request here */
488}
489
b60503ba
MW
490/*
491 * NB: return value of non-zero would mean that we were a stacking driver.
492 * make_request must always succeed.
493 */
494static int nvme_make_request(struct request_queue *q, struct bio *bio)
495{
496 struct nvme_ns *ns = q->queuedata;
497 struct nvme_queue *nvmeq = get_nvmeq(ns);
498
499 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
500 blk_set_queue_congested(q, rw_is_sync(bio->bi_rw));
9294bbed 501 spin_lock_irq(&nvmeq->q_lock);
b60503ba 502 bio_list_add(&nvmeq->sq_cong, bio);
9294bbed 503 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
504 }
505 put_nvmeq(nvmeq);
506
507 return 0;
508}
509
510struct sync_cmd_info {
511 struct task_struct *task;
512 u32 result;
513 int status;
514};
515
516static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
517 struct nvme_completion *cqe)
518{
519 struct sync_cmd_info *cmdinfo = ctx;
be7b6275
MW
520 if ((unsigned long)cmdinfo == CMD_CTX_CANCELLED)
521 return;
b36235df
MW
522 if (unlikely((unsigned long)cmdinfo == CMD_CTX_COMPLETED)) {
523 dev_warn(nvmeq->q_dmadev,
524 "completed id %d twice on queue %d\n",
525 cqe->command_id, le16_to_cpup(&cqe->sq_id));
526 return;
527 }
48e3d398
MW
528 if (unlikely((unsigned long)cmdinfo == CMD_CTX_INVALID)) {
529 dev_warn(nvmeq->q_dmadev,
530 "invalid id %d completed on queue %d\n",
531 cqe->command_id, le16_to_cpup(&cqe->sq_id));
532 return;
533 }
b60503ba
MW
534 cmdinfo->result = le32_to_cpup(&cqe->result);
535 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
536 wake_up_process(cmdinfo->task);
537}
538
539typedef void (*completion_fn)(struct nvme_queue *, void *,
540 struct nvme_completion *);
541
542static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
543{
82123460 544 u16 head, phase;
b60503ba
MW
545
546 static const completion_fn completions[4] = {
547 [sync_completion_id] = sync_completion,
548 [bio_completion_id] = bio_completion,
549 };
550
551 head = nvmeq->cq_head;
82123460 552 phase = nvmeq->cq_phase;
b60503ba
MW
553
554 for (;;) {
555 unsigned long data;
556 void *ptr;
557 unsigned char handler;
558 struct nvme_completion cqe = nvmeq->cqes[head];
82123460 559 if ((le16_to_cpu(cqe.status) & 1) != phase)
b60503ba
MW
560 break;
561 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
562 if (++head == nvmeq->q_depth) {
563 head = 0;
82123460 564 phase = !phase;
b60503ba
MW
565 }
566
567 data = free_cmdid(nvmeq, cqe.command_id);
568 handler = data & 3;
569 ptr = (void *)(data & ~3UL);
570 completions[handler](nvmeq, ptr, &cqe);
571 }
572
573 /* If the controller ignores the cq head doorbell and continuously
574 * writes to the queue, it is theoretically possible to wrap around
575 * the queue twice and mistakenly return IRQ_NONE. Linux only
576 * requires that 0.1% of your interrupts are handled, so this isn't
577 * a big problem.
578 */
82123460 579 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
b60503ba
MW
580 return IRQ_NONE;
581
582 writel(head, nvmeq->q_db + 1);
583 nvmeq->cq_head = head;
82123460 584 nvmeq->cq_phase = phase;
b60503ba
MW
585
586 return IRQ_HANDLED;
587}
588
589static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
590{
591 irqreturn_t result;
592 struct nvme_queue *nvmeq = data;
593 spin_lock(&nvmeq->q_lock);
594 result = nvme_process_cq(nvmeq);
595 spin_unlock(&nvmeq->q_lock);
596 return result;
597}
598
599static irqreturn_t nvme_irq_check(int irq, void *data)
600{
601 struct nvme_queue *nvmeq = data;
602 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
603 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
604 return IRQ_NONE;
605 return IRQ_WAKE_THREAD;
606}
607
3c0cf138
MW
608static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
609{
610 spin_lock_irq(&nvmeq->q_lock);
be7b6275 611 cancel_cmdid_data(nvmeq, cmdid);
3c0cf138
MW
612 spin_unlock_irq(&nvmeq->q_lock);
613}
614
b60503ba
MW
615/*
616 * Returns 0 on success. If the result is negative, it's a Linux error code;
617 * if the result is positive, it's an NVM Express status code
618 */
3c0cf138 619static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
e85248e5 620 struct nvme_command *cmd, u32 *result, unsigned timeout)
b60503ba
MW
621{
622 int cmdid;
623 struct sync_cmd_info cmdinfo;
624
625 cmdinfo.task = current;
626 cmdinfo.status = -EINTR;
627
e85248e5
MW
628 cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion_id,
629 timeout);
b60503ba
MW
630 if (cmdid < 0)
631 return cmdid;
632 cmd->common.command_id = cmdid;
633
3c0cf138
MW
634 set_current_state(TASK_KILLABLE);
635 nvme_submit_cmd(nvmeq, cmd);
b60503ba
MW
636 schedule();
637
3c0cf138
MW
638 if (cmdinfo.status == -EINTR) {
639 nvme_abort_command(nvmeq, cmdid);
640 return -EINTR;
641 }
642
b60503ba
MW
643 if (result)
644 *result = cmdinfo.result;
645
646 return cmdinfo.status;
647}
648
649static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
650 u32 *result)
651{
e85248e5 652 return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
b60503ba
MW
653}
654
655static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
656{
657 int status;
658 struct nvme_command c;
659
660 memset(&c, 0, sizeof(c));
661 c.delete_queue.opcode = opcode;
662 c.delete_queue.qid = cpu_to_le16(id);
663
664 status = nvme_submit_admin_cmd(dev, &c, NULL);
665 if (status)
666 return -EIO;
667 return 0;
668}
669
670static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
671 struct nvme_queue *nvmeq)
672{
673 int status;
674 struct nvme_command c;
675 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
676
677 memset(&c, 0, sizeof(c));
678 c.create_cq.opcode = nvme_admin_create_cq;
679 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
680 c.create_cq.cqid = cpu_to_le16(qid);
681 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
682 c.create_cq.cq_flags = cpu_to_le16(flags);
683 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
684
685 status = nvme_submit_admin_cmd(dev, &c, NULL);
686 if (status)
687 return -EIO;
688 return 0;
689}
690
691static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
692 struct nvme_queue *nvmeq)
693{
694 int status;
695 struct nvme_command c;
696 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
697
698 memset(&c, 0, sizeof(c));
699 c.create_sq.opcode = nvme_admin_create_sq;
700 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
701 c.create_sq.sqid = cpu_to_le16(qid);
702 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
703 c.create_sq.sq_flags = cpu_to_le16(flags);
704 c.create_sq.cqid = cpu_to_le16(qid);
705
706 status = nvme_submit_admin_cmd(dev, &c, NULL);
707 if (status)
708 return -EIO;
709 return 0;
710}
711
712static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
713{
714 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
715}
716
717static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
718{
719 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
720}
721
722static void nvme_free_queue(struct nvme_dev *dev, int qid)
723{
724 struct nvme_queue *nvmeq = dev->queues[qid];
725
726 free_irq(dev->entry[nvmeq->cq_vector].vector, nvmeq);
727
728 /* Don't tell the adapter to delete the admin queue */
729 if (qid) {
730 adapter_delete_sq(dev, qid);
731 adapter_delete_cq(dev, qid);
732 }
733
734 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
735 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
736 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
737 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
738 kfree(nvmeq);
739}
740
741static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
742 int depth, int vector)
743{
744 struct device *dmadev = &dev->pci_dev->dev;
e85248e5 745 unsigned extra = (depth / 8) + (depth * sizeof(struct nvme_cmd_info));
b60503ba
MW
746 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
747 if (!nvmeq)
748 return NULL;
749
750 nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
751 &nvmeq->cq_dma_addr, GFP_KERNEL);
752 if (!nvmeq->cqes)
753 goto free_nvmeq;
754 memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
755
756 nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
757 &nvmeq->sq_dma_addr, GFP_KERNEL);
758 if (!nvmeq->sq_cmds)
759 goto free_cqdma;
760
761 nvmeq->q_dmadev = dmadev;
091b6092 762 nvmeq->dev = dev;
b60503ba
MW
763 spin_lock_init(&nvmeq->q_lock);
764 nvmeq->cq_head = 0;
82123460 765 nvmeq->cq_phase = 1;
b60503ba
MW
766 init_waitqueue_head(&nvmeq->sq_full);
767 bio_list_init(&nvmeq->sq_cong);
768 nvmeq->q_db = &dev->dbs[qid * 2];
769 nvmeq->q_depth = depth;
770 nvmeq->cq_vector = vector;
771
772 return nvmeq;
773
774 free_cqdma:
775 dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
776 nvmeq->cq_dma_addr);
777 free_nvmeq:
778 kfree(nvmeq);
779 return NULL;
780}
781
3001082c
MW
782static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
783 const char *name)
784{
58ffacb5
MW
785 if (use_threaded_interrupts)
786 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
ec6ce618 787 nvme_irq_check, nvme_irq,
58ffacb5
MW
788 IRQF_DISABLED | IRQF_SHARED,
789 name, nvmeq);
3001082c
MW
790 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
791 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
792}
793
b60503ba
MW
794static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
795 int qid, int cq_size, int vector)
796{
797 int result;
798 struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
799
3f85d50b
MW
800 if (!nvmeq)
801 return NULL;
802
b60503ba
MW
803 result = adapter_alloc_cq(dev, qid, nvmeq);
804 if (result < 0)
805 goto free_nvmeq;
806
807 result = adapter_alloc_sq(dev, qid, nvmeq);
808 if (result < 0)
809 goto release_cq;
810
3001082c 811 result = queue_request_irq(dev, nvmeq, "nvme");
b60503ba
MW
812 if (result < 0)
813 goto release_sq;
814
815 return nvmeq;
816
817 release_sq:
818 adapter_delete_sq(dev, qid);
819 release_cq:
820 adapter_delete_cq(dev, qid);
821 free_nvmeq:
822 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
823 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
824 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
825 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
826 kfree(nvmeq);
827 return NULL;
828}
829
830static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
831{
832 int result;
833 u32 aqa;
834 struct nvme_queue *nvmeq;
835
836 dev->dbs = ((void __iomem *)dev->bar) + 4096;
837
838 nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
3f85d50b
MW
839 if (!nvmeq)
840 return -ENOMEM;
b60503ba
MW
841
842 aqa = nvmeq->q_depth - 1;
843 aqa |= aqa << 16;
844
845 dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
846 dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
847 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
848
5911f200 849 writel(0, &dev->bar->cc);
b60503ba
MW
850 writel(aqa, &dev->bar->aqa);
851 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
852 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
853 writel(dev->ctrl_config, &dev->bar->cc);
854
855 while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
856 msleep(100);
857 if (fatal_signal_pending(current))
858 return -EINTR;
859 }
860
3001082c 861 result = queue_request_irq(dev, nvmeq, "nvme admin");
b60503ba
MW
862 dev->queues[0] = nvmeq;
863 return result;
864}
865
7fc3cdab
MW
866static int nvme_map_user_pages(struct nvme_dev *dev, int write,
867 unsigned long addr, unsigned length,
868 struct scatterlist **sgp)
b60503ba 869{
36c14ed9 870 int i, err, count, nents, offset;
7fc3cdab
MW
871 struct scatterlist *sg;
872 struct page **pages;
36c14ed9
MW
873
874 if (addr & 3)
875 return -EINVAL;
7fc3cdab
MW
876 if (!length)
877 return -EINVAL;
878
36c14ed9 879 offset = offset_in_page(addr);
7fc3cdab
MW
880 count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
881 pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
36c14ed9
MW
882
883 err = get_user_pages_fast(addr, count, 1, pages);
884 if (err < count) {
885 count = err;
886 err = -EFAULT;
887 goto put_pages;
888 }
7fc3cdab
MW
889
890 sg = kcalloc(count, sizeof(*sg), GFP_KERNEL);
36c14ed9 891 sg_init_table(sg, count);
ff22b54f 892 sg_set_page(&sg[0], pages[0], PAGE_SIZE - offset, offset);
7fc3cdab
MW
893 length -= (PAGE_SIZE - offset);
894 for (i = 1; i < count; i++) {
895 sg_set_page(&sg[i], pages[i], min_t(int, length, PAGE_SIZE), 0);
896 length -= PAGE_SIZE;
897 }
898
899 err = -ENOMEM;
900 nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
901 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
36c14ed9
MW
902 if (!nents)
903 goto put_pages;
b60503ba 904
7fc3cdab
MW
905 kfree(pages);
906 *sgp = sg;
907 return nents;
b60503ba 908
7fc3cdab
MW
909 put_pages:
910 for (i = 0; i < count; i++)
911 put_page(pages[i]);
912 kfree(pages);
913 return err;
914}
b60503ba 915
7fc3cdab
MW
916static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
917 unsigned long addr, int length,
918 struct scatterlist *sg, int nents)
919{
920 int i, count;
b60503ba 921
7fc3cdab 922 count = DIV_ROUND_UP(offset_in_page(addr) + length, PAGE_SIZE);
36c14ed9 923 dma_unmap_sg(&dev->pci_dev->dev, sg, nents, DMA_FROM_DEVICE);
7fc3cdab 924
36c14ed9 925 for (i = 0; i < count; i++)
7fc3cdab
MW
926 put_page(sg_page(&sg[i]));
927}
b60503ba 928
7fc3cdab
MW
929static int nvme_submit_user_admin_command(struct nvme_dev *dev,
930 unsigned long addr, unsigned length,
931 struct nvme_command *cmd)
932{
933 int err, nents;
934 struct scatterlist *sg;
e025344c 935 struct nvme_prps *prps;
7fc3cdab
MW
936
937 nents = nvme_map_user_pages(dev, 0, addr, length, &sg);
938 if (nents < 0)
939 return nents;
d567760c 940 prps = nvme_setup_prps(dev, &cmd->common, sg, length);
7fc3cdab
MW
941 err = nvme_submit_admin_cmd(dev, cmd, NULL);
942 nvme_unmap_user_pages(dev, 0, addr, length, sg, nents);
d567760c 943 nvme_free_prps(dev, prps);
7fc3cdab 944 return err ? -EIO : 0;
b60503ba
MW
945}
946
bd38c555 947static int nvme_identify(struct nvme_ns *ns, unsigned long addr, int cns)
b60503ba 948{
b60503ba 949 struct nvme_command c;
b60503ba 950
bd38c555
MW
951 memset(&c, 0, sizeof(c));
952 c.identify.opcode = nvme_admin_identify;
953 c.identify.nsid = cns ? 0 : cpu_to_le32(ns->ns_id);
954 c.identify.cns = cpu_to_le32(cns);
955
956 return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
957}
958
959static int nvme_get_range_type(struct nvme_ns *ns, unsigned long addr)
960{
961 struct nvme_command c;
b60503ba
MW
962
963 memset(&c, 0, sizeof(c));
964 c.features.opcode = nvme_admin_get_features;
965 c.features.nsid = cpu_to_le32(ns->ns_id);
b60503ba
MW
966 c.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
967
bd38c555 968 return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
b60503ba
MW
969}
970
a53295b6
MW
971static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
972{
973 struct nvme_dev *dev = ns->dev;
974 struct nvme_queue *nvmeq;
975 struct nvme_user_io io;
976 struct nvme_command c;
977 unsigned length;
978 u32 result;
979 int nents, status;
980 struct scatterlist *sg;
e025344c 981 struct nvme_prps *prps;
a53295b6
MW
982
983 if (copy_from_user(&io, uio, sizeof(io)))
984 return -EFAULT;
985 length = io.nblocks << io.block_shift;
986 nents = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length, &sg);
987 if (nents < 0)
988 return nents;
989
990 memset(&c, 0, sizeof(c));
991 c.rw.opcode = io.opcode;
992 c.rw.flags = io.flags;
993 c.rw.nsid = cpu_to_le32(io.nsid);
994 c.rw.slba = cpu_to_le64(io.slba);
995 c.rw.length = cpu_to_le16(io.nblocks - 1);
996 c.rw.control = cpu_to_le16(io.control);
997 c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
998 c.rw.reftag = cpu_to_le32(io.reftag); /* XXX: endian? */
999 c.rw.apptag = cpu_to_le16(io.apptag);
1000 c.rw.appmask = cpu_to_le16(io.appmask);
1001 /* XXX: metadata */
d567760c 1002 prps = nvme_setup_prps(dev, &c.common, sg, length);
a53295b6 1003
d567760c 1004 nvmeq = get_nvmeq(ns);
b1ad37ef
MW
1005 /* Since nvme_submit_sync_cmd sleeps, we can't keep preemption
1006 * disabled. We may be preempted at any point, and be rescheduled
1007 * to a different CPU. That will cause cacheline bouncing, but no
1008 * additional races since q_lock already protects against other CPUs.
1009 */
a53295b6 1010 put_nvmeq(nvmeq);
e85248e5 1011 status = nvme_submit_sync_cmd(nvmeq, &c, &result, IO_TIMEOUT);
a53295b6
MW
1012
1013 nvme_unmap_user_pages(dev, io.opcode & 1, io.addr, length, sg, nents);
d567760c 1014 nvme_free_prps(dev, prps);
a53295b6
MW
1015 put_user(result, &uio->result);
1016 return status;
1017}
1018
6ee44cdc
MW
1019static int nvme_download_firmware(struct nvme_ns *ns,
1020 struct nvme_dlfw __user *udlfw)
1021{
1022 struct nvme_dev *dev = ns->dev;
1023 struct nvme_dlfw dlfw;
1024 struct nvme_command c;
1025 int nents, status;
1026 struct scatterlist *sg;
e025344c 1027 struct nvme_prps *prps;
6ee44cdc
MW
1028
1029 if (copy_from_user(&dlfw, udlfw, sizeof(dlfw)))
1030 return -EFAULT;
1031 if (dlfw.length >= (1 << 30))
1032 return -EINVAL;
1033
1034 nents = nvme_map_user_pages(dev, 1, dlfw.addr, dlfw.length * 4, &sg);
1035 if (nents < 0)
1036 return nents;
1037
1038 memset(&c, 0, sizeof(c));
1039 c.dlfw.opcode = nvme_admin_download_fw;
1040 c.dlfw.numd = cpu_to_le32(dlfw.length);
1041 c.dlfw.offset = cpu_to_le32(dlfw.offset);
d567760c 1042 prps = nvme_setup_prps(dev, &c.common, sg, dlfw.length * 4);
6ee44cdc
MW
1043
1044 status = nvme_submit_admin_cmd(dev, &c, NULL);
1045 nvme_unmap_user_pages(dev, 0, dlfw.addr, dlfw.length * 4, sg, nents);
d567760c 1046 nvme_free_prps(dev, prps);
6ee44cdc
MW
1047 return status;
1048}
1049
1050static int nvme_activate_firmware(struct nvme_ns *ns, unsigned long arg)
1051{
1052 struct nvme_dev *dev = ns->dev;
1053 struct nvme_command c;
1054
1055 memset(&c, 0, sizeof(c));
1056 c.common.opcode = nvme_admin_activate_fw;
1057 c.common.rsvd10[0] = cpu_to_le32(arg);
1058
1059 return nvme_submit_admin_cmd(dev, &c, NULL);
1060}
1061
b60503ba
MW
1062static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1063 unsigned long arg)
1064{
1065 struct nvme_ns *ns = bdev->bd_disk->private_data;
1066
1067 switch (cmd) {
1068 case NVME_IOCTL_IDENTIFY_NS:
36c14ed9 1069 return nvme_identify(ns, arg, 0);
b60503ba 1070 case NVME_IOCTL_IDENTIFY_CTRL:
36c14ed9 1071 return nvme_identify(ns, arg, 1);
b60503ba 1072 case NVME_IOCTL_GET_RANGE_TYPE:
bd38c555 1073 return nvme_get_range_type(ns, arg);
a53295b6
MW
1074 case NVME_IOCTL_SUBMIT_IO:
1075 return nvme_submit_io(ns, (void __user *)arg);
6ee44cdc
MW
1076 case NVME_IOCTL_DOWNLOAD_FW:
1077 return nvme_download_firmware(ns, (void __user *)arg);
1078 case NVME_IOCTL_ACTIVATE_FW:
1079 return nvme_activate_firmware(ns, arg);
b60503ba
MW
1080 default:
1081 return -ENOTTY;
1082 }
1083}
1084
1085static const struct block_device_operations nvme_fops = {
1086 .owner = THIS_MODULE,
1087 .ioctl = nvme_ioctl,
1088};
1089
1090static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int index,
1091 struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1092{
1093 struct nvme_ns *ns;
1094 struct gendisk *disk;
1095 int lbaf;
1096
1097 if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1098 return NULL;
1099
1100 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1101 if (!ns)
1102 return NULL;
1103 ns->queue = blk_alloc_queue(GFP_KERNEL);
1104 if (!ns->queue)
1105 goto out_free_ns;
1106 ns->queue->queue_flags = QUEUE_FLAG_DEFAULT | QUEUE_FLAG_NOMERGES |
1107 QUEUE_FLAG_NONROT | QUEUE_FLAG_DISCARD;
1108 blk_queue_make_request(ns->queue, nvme_make_request);
1109 ns->dev = dev;
1110 ns->queue->queuedata = ns;
1111
1112 disk = alloc_disk(NVME_MINORS);
1113 if (!disk)
1114 goto out_free_queue;
1115 ns->ns_id = index;
1116 ns->disk = disk;
1117 lbaf = id->flbas & 0xf;
1118 ns->lba_shift = id->lbaf[lbaf].ds;
1119
1120 disk->major = nvme_major;
1121 disk->minors = NVME_MINORS;
1122 disk->first_minor = NVME_MINORS * index;
1123 disk->fops = &nvme_fops;
1124 disk->private_data = ns;
1125 disk->queue = ns->queue;
388f037f 1126 disk->driverfs_dev = &dev->pci_dev->dev;
b60503ba
MW
1127 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, index);
1128 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1129
1130 return ns;
1131
1132 out_free_queue:
1133 blk_cleanup_queue(ns->queue);
1134 out_free_ns:
1135 kfree(ns);
1136 return NULL;
1137}
1138
1139static void nvme_ns_free(struct nvme_ns *ns)
1140{
1141 put_disk(ns->disk);
1142 blk_cleanup_queue(ns->queue);
1143 kfree(ns);
1144}
1145
b3b06812 1146static int set_queue_count(struct nvme_dev *dev, int count)
b60503ba
MW
1147{
1148 int status;
1149 u32 result;
1150 struct nvme_command c;
b3b06812 1151 u32 q_count = (count - 1) | ((count - 1) << 16);
b60503ba
MW
1152
1153 memset(&c, 0, sizeof(c));
1154 c.features.opcode = nvme_admin_get_features;
1155 c.features.fid = cpu_to_le32(NVME_FEAT_NUM_QUEUES);
1156 c.features.dword11 = cpu_to_le32(q_count);
1157
1158 status = nvme_submit_admin_cmd(dev, &c, &result);
1159 if (status)
1160 return -EIO;
1161 return min(result & 0xffff, result >> 16) + 1;
1162}
1163
b60503ba
MW
1164static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
1165{
1b23484b 1166 int result, cpu, i, nr_queues;
b60503ba 1167
1b23484b
MW
1168 nr_queues = num_online_cpus();
1169 result = set_queue_count(dev, nr_queues);
1170 if (result < 0)
1171 return result;
1172 if (result < nr_queues)
1173 nr_queues = result;
b60503ba 1174
1b23484b
MW
1175 /* Deregister the admin queue's interrupt */
1176 free_irq(dev->entry[0].vector, dev->queues[0]);
1177
1178 for (i = 0; i < nr_queues; i++)
1179 dev->entry[i].entry = i;
1180 for (;;) {
1181 result = pci_enable_msix(dev->pci_dev, dev->entry, nr_queues);
1182 if (result == 0) {
1183 break;
1184 } else if (result > 0) {
1185 nr_queues = result;
1186 continue;
1187 } else {
1188 nr_queues = 1;
1189 break;
1190 }
1191 }
1192
1193 result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1194 /* XXX: handle failure here */
1195
1196 cpu = cpumask_first(cpu_online_mask);
1197 for (i = 0; i < nr_queues; i++) {
1198 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1199 cpu = cpumask_next(cpu, cpu_online_mask);
1200 }
1201
1202 for (i = 0; i < nr_queues; i++) {
1203 dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
1204 NVME_Q_DEPTH, i);
1205 if (!dev->queues[i + 1])
1206 return -ENOMEM;
1207 dev->queue_count++;
1208 }
b60503ba
MW
1209
1210 return 0;
1211}
1212
1213static void nvme_free_queues(struct nvme_dev *dev)
1214{
1215 int i;
1216
1217 for (i = dev->queue_count - 1; i >= 0; i--)
1218 nvme_free_queue(dev, i);
1219}
1220
1221static int __devinit nvme_dev_add(struct nvme_dev *dev)
1222{
1223 int res, nn, i;
1224 struct nvme_ns *ns, *next;
51814232 1225 struct nvme_id_ctrl *ctrl;
b60503ba
MW
1226 void *id;
1227 dma_addr_t dma_addr;
1228 struct nvme_command cid, crt;
1229
1230 res = nvme_setup_io_queues(dev);
1231 if (res)
1232 return res;
1233
1234 /* XXX: Switch to a SG list once prp2 works */
1235 id = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1236 GFP_KERNEL);
1237
1238 memset(&cid, 0, sizeof(cid));
1239 cid.identify.opcode = nvme_admin_identify;
1240 cid.identify.nsid = 0;
1241 cid.identify.prp1 = cpu_to_le64(dma_addr);
1242 cid.identify.cns = cpu_to_le32(1);
1243
1244 res = nvme_submit_admin_cmd(dev, &cid, NULL);
1245 if (res) {
1246 res = -EIO;
1247 goto out_free;
1248 }
1249
51814232
MW
1250 ctrl = id;
1251 nn = le32_to_cpup(&ctrl->nn);
1252 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1253 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1254 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
b60503ba
MW
1255
1256 cid.identify.cns = 0;
1257 memset(&crt, 0, sizeof(crt));
1258 crt.features.opcode = nvme_admin_get_features;
1259 crt.features.prp1 = cpu_to_le64(dma_addr + 4096);
1260 crt.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
1261
1262 for (i = 0; i < nn; i++) {
1263 cid.identify.nsid = cpu_to_le32(i);
1264 res = nvme_submit_admin_cmd(dev, &cid, NULL);
1265 if (res)
1266 continue;
1267
1268 if (((struct nvme_id_ns *)id)->ncap == 0)
1269 continue;
1270
1271 crt.features.nsid = cpu_to_le32(i);
1272 res = nvme_submit_admin_cmd(dev, &crt, NULL);
1273 if (res)
1274 continue;
1275
1276 ns = nvme_alloc_ns(dev, i, id, id + 4096);
1277 if (ns)
1278 list_add_tail(&ns->list, &dev->namespaces);
1279 }
1280 list_for_each_entry(ns, &dev->namespaces, list)
1281 add_disk(ns->disk);
1282
1283 dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1284 return 0;
1285
1286 out_free:
1287 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1288 list_del(&ns->list);
1289 nvme_ns_free(ns);
1290 }
1291
1292 dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1293 return res;
1294}
1295
1296static int nvme_dev_remove(struct nvme_dev *dev)
1297{
1298 struct nvme_ns *ns, *next;
1299
1300 /* TODO: wait all I/O finished or cancel them */
1301
1302 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1303 list_del(&ns->list);
1304 del_gendisk(ns->disk);
1305 nvme_ns_free(ns);
1306 }
1307
1308 nvme_free_queues(dev);
1309
1310 return 0;
1311}
1312
091b6092
MW
1313static int nvme_setup_prp_pools(struct nvme_dev *dev)
1314{
1315 struct device *dmadev = &dev->pci_dev->dev;
1316 dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1317 PAGE_SIZE, PAGE_SIZE, 0);
1318 if (!dev->prp_page_pool)
1319 return -ENOMEM;
1320
99802a7a
MW
1321 /* Optimisation for I/Os between 4k and 128k */
1322 dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1323 256, 256, 0);
1324 if (!dev->prp_small_pool) {
1325 dma_pool_destroy(dev->prp_page_pool);
1326 return -ENOMEM;
1327 }
091b6092
MW
1328 return 0;
1329}
1330
1331static void nvme_release_prp_pools(struct nvme_dev *dev)
1332{
1333 dma_pool_destroy(dev->prp_page_pool);
99802a7a 1334 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
1335}
1336
b60503ba
MW
1337/* XXX: Use an ida or something to let remove / add work correctly */
1338static void nvme_set_instance(struct nvme_dev *dev)
1339{
1340 static int instance;
1341 dev->instance = instance++;
1342}
1343
1344static void nvme_release_instance(struct nvme_dev *dev)
1345{
1346}
1347
1348static int __devinit nvme_probe(struct pci_dev *pdev,
1349 const struct pci_device_id *id)
1350{
574e8b95 1351 int bars, result = -ENOMEM;
b60503ba
MW
1352 struct nvme_dev *dev;
1353
1354 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1355 if (!dev)
1356 return -ENOMEM;
1357 dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1358 GFP_KERNEL);
1359 if (!dev->entry)
1360 goto free;
1b23484b
MW
1361 dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1362 GFP_KERNEL);
b60503ba
MW
1363 if (!dev->queues)
1364 goto free;
1365
0ee5a7d7
SMM
1366 if (pci_enable_device_mem(pdev))
1367 goto free;
f64d3365 1368 pci_set_master(pdev);
574e8b95
MW
1369 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1370 if (pci_request_selected_regions(pdev, bars, "nvme"))
1371 goto disable;
0ee5a7d7 1372
b60503ba
MW
1373 INIT_LIST_HEAD(&dev->namespaces);
1374 dev->pci_dev = pdev;
1375 pci_set_drvdata(pdev, dev);
2930353f
MW
1376 dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1377 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
b60503ba 1378 nvme_set_instance(dev);
53c9577e 1379 dev->entry[0].vector = pdev->irq;
b60503ba 1380
091b6092
MW
1381 result = nvme_setup_prp_pools(dev);
1382 if (result)
1383 goto disable_msix;
1384
b60503ba
MW
1385 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1386 if (!dev->bar) {
1387 result = -ENOMEM;
574e8b95 1388 goto disable_msix;
b60503ba
MW
1389 }
1390
1391 result = nvme_configure_admin_queue(dev);
1392 if (result)
1393 goto unmap;
1394 dev->queue_count++;
1395
1396 result = nvme_dev_add(dev);
1397 if (result)
1398 goto delete;
1399 return 0;
1400
1401 delete:
1402 nvme_free_queues(dev);
1403 unmap:
1404 iounmap(dev->bar);
574e8b95 1405 disable_msix:
b60503ba
MW
1406 pci_disable_msix(pdev);
1407 nvme_release_instance(dev);
091b6092 1408 nvme_release_prp_pools(dev);
574e8b95 1409 disable:
0ee5a7d7 1410 pci_disable_device(pdev);
574e8b95 1411 pci_release_regions(pdev);
b60503ba
MW
1412 free:
1413 kfree(dev->queues);
1414 kfree(dev->entry);
1415 kfree(dev);
1416 return result;
1417}
1418
1419static void __devexit nvme_remove(struct pci_dev *pdev)
1420{
1421 struct nvme_dev *dev = pci_get_drvdata(pdev);
1422 nvme_dev_remove(dev);
1423 pci_disable_msix(pdev);
1424 iounmap(dev->bar);
1425 nvme_release_instance(dev);
091b6092 1426 nvme_release_prp_pools(dev);
0ee5a7d7 1427 pci_disable_device(pdev);
574e8b95 1428 pci_release_regions(pdev);
b60503ba
MW
1429 kfree(dev->queues);
1430 kfree(dev->entry);
1431 kfree(dev);
1432}
1433
1434/* These functions are yet to be implemented */
1435#define nvme_error_detected NULL
1436#define nvme_dump_registers NULL
1437#define nvme_link_reset NULL
1438#define nvme_slot_reset NULL
1439#define nvme_error_resume NULL
1440#define nvme_suspend NULL
1441#define nvme_resume NULL
1442
1443static struct pci_error_handlers nvme_err_handler = {
1444 .error_detected = nvme_error_detected,
1445 .mmio_enabled = nvme_dump_registers,
1446 .link_reset = nvme_link_reset,
1447 .slot_reset = nvme_slot_reset,
1448 .resume = nvme_error_resume,
1449};
1450
1451/* Move to pci_ids.h later */
1452#define PCI_CLASS_STORAGE_EXPRESS 0x010802
1453
1454static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1455 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1456 { 0, }
1457};
1458MODULE_DEVICE_TABLE(pci, nvme_id_table);
1459
1460static struct pci_driver nvme_driver = {
1461 .name = "nvme",
1462 .id_table = nvme_id_table,
1463 .probe = nvme_probe,
1464 .remove = __devexit_p(nvme_remove),
1465 .suspend = nvme_suspend,
1466 .resume = nvme_resume,
1467 .err_handler = &nvme_err_handler,
1468};
1469
1470static int __init nvme_init(void)
1471{
1472 int result;
1473
1474 nvme_major = register_blkdev(nvme_major, "nvme");
1475 if (nvme_major <= 0)
1476 return -EBUSY;
1477
1478 result = pci_register_driver(&nvme_driver);
1479 if (!result)
1480 return 0;
1481
1482 unregister_blkdev(nvme_major, "nvme");
1483 return result;
1484}
1485
1486static void __exit nvme_exit(void)
1487{
1488 pci_unregister_driver(&nvme_driver);
1489 unregister_blkdev(nvme_major, "nvme");
1490}
1491
1492MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1493MODULE_LICENSE("GPL");
db5d0c19 1494MODULE_VERSION("0.2");
b60503ba
MW
1495module_init(nvme_init);
1496module_exit(nvme_exit);