NVMe: Rename nvme_req_info to nvme_bio
[linux-2.6-block.git] / drivers / block / nvme.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
3 * Copyright (c) 2011, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19#include <linux/nvme.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
22#include <linux/errno.h>
23#include <linux/fs.h>
24#include <linux/genhd.h>
25#include <linux/init.h>
26#include <linux/interrupt.h>
27#include <linux/io.h>
28#include <linux/kdev_t.h>
29#include <linux/kernel.h>
30#include <linux/mm.h>
31#include <linux/module.h>
32#include <linux/moduleparam.h>
33#include <linux/pci.h>
be7b6275 34#include <linux/poison.h>
b60503ba
MW
35#include <linux/sched.h>
36#include <linux/slab.h>
37#include <linux/types.h>
38#include <linux/version.h>
39
40#define NVME_Q_DEPTH 1024
41#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
42#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
43#define NVME_MINORS 64
e85248e5
MW
44#define IO_TIMEOUT (5 * HZ)
45#define ADMIN_TIMEOUT (60 * HZ)
b60503ba
MW
46
47static int nvme_major;
48module_param(nvme_major, int, 0);
49
58ffacb5
MW
50static int use_threaded_interrupts;
51module_param(use_threaded_interrupts, int, 0);
52
b60503ba
MW
53/*
54 * Represents an NVM Express device. Each nvme_dev is a PCI function.
55 */
56struct nvme_dev {
b60503ba
MW
57 struct nvme_queue **queues;
58 u32 __iomem *dbs;
59 struct pci_dev *pci_dev;
60 int instance;
61 int queue_count;
62 u32 ctrl_config;
63 struct msix_entry *entry;
64 struct nvme_bar __iomem *bar;
65 struct list_head namespaces;
51814232
MW
66 char serial[20];
67 char model[40];
68 char firmware_rev[8];
b60503ba
MW
69};
70
71/*
72 * An NVM Express namespace is equivalent to a SCSI LUN
73 */
74struct nvme_ns {
75 struct list_head list;
76
77 struct nvme_dev *dev;
78 struct request_queue *queue;
79 struct gendisk *disk;
80
81 int ns_id;
82 int lba_shift;
83};
84
85/*
86 * An NVM Express queue. Each device has at least two (one for admin
87 * commands and one for I/O commands).
88 */
89struct nvme_queue {
90 struct device *q_dmadev;
91 spinlock_t q_lock;
92 struct nvme_command *sq_cmds;
93 volatile struct nvme_completion *cqes;
94 dma_addr_t sq_dma_addr;
95 dma_addr_t cq_dma_addr;
96 wait_queue_head_t sq_full;
97 struct bio_list sq_cong;
98 u32 __iomem *q_db;
99 u16 q_depth;
100 u16 cq_vector;
101 u16 sq_head;
102 u16 sq_tail;
103 u16 cq_head;
82123460 104 u16 cq_phase;
b60503ba
MW
105 unsigned long cmdid_data[];
106};
107
9294bbed
MW
108static void nvme_resubmit_bio(struct nvme_queue *nvmeq, struct bio *bio);
109
b60503ba
MW
110/*
111 * Check we didin't inadvertently grow the command struct
112 */
113static inline void _nvme_check_size(void)
114{
115 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
116 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
117 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
118 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
119 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
120 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
121 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
122 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
123 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
124}
125
e85248e5
MW
126struct nvme_cmd_info {
127 unsigned long ctx;
128 unsigned long timeout;
129};
130
131static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
132{
133 return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
134}
135
b60503ba
MW
136/**
137 * alloc_cmdid - Allocate a Command ID
138 * @param nvmeq The queue that will be used for this command
139 * @param ctx A pointer that will be passed to the handler
140 * @param handler The ID of the handler to call
141 *
142 * Allocate a Command ID for a queue. The data passed in will
143 * be passed to the completion handler. This is implemented by using
144 * the bottom two bits of the ctx pointer to store the handler ID.
145 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
146 * We can change this if it becomes a problem.
147 */
e85248e5
MW
148static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx, int handler,
149 unsigned timeout)
b60503ba
MW
150{
151 int depth = nvmeq->q_depth;
e85248e5 152 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
b60503ba
MW
153 int cmdid;
154
155 BUG_ON((unsigned long)ctx & 3);
156
157 do {
158 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
159 if (cmdid >= depth)
160 return -EBUSY;
161 } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
162
e85248e5
MW
163 info[cmdid].ctx = (unsigned long)ctx | handler;
164 info[cmdid].timeout = jiffies + timeout;
b60503ba
MW
165 return cmdid;
166}
167
168static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
e85248e5 169 int handler, unsigned timeout)
b60503ba
MW
170{
171 int cmdid;
172 wait_event_killable(nvmeq->sq_full,
e85248e5 173 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
b60503ba
MW
174 return (cmdid < 0) ? -EINTR : cmdid;
175}
176
177/* If you need more than four handlers, you'll need to change how
be7b6275
MW
178 * alloc_cmdid and nvme_process_cq work. Consider using a special
179 * CMD_CTX value instead, if that works for your situation.
b60503ba
MW
180 */
181enum {
182 sync_completion_id = 0,
183 bio_completion_id,
184};
185
be7b6275 186#define CMD_CTX_BASE (POISON_POINTER_DELTA + sync_completion_id)
d2d87034
MW
187#define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
188#define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
189#define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
be7b6275 190
b60503ba
MW
191static unsigned long free_cmdid(struct nvme_queue *nvmeq, int cmdid)
192{
193 unsigned long data;
e85248e5 194 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
b60503ba 195
e85248e5 196 if (cmdid >= nvmeq->q_depth)
48e3d398 197 return CMD_CTX_INVALID;
e85248e5
MW
198 data = info[cmdid].ctx;
199 info[cmdid].ctx = CMD_CTX_COMPLETED;
b60503ba
MW
200 clear_bit(cmdid, nvmeq->cmdid_data);
201 wake_up(&nvmeq->sq_full);
202 return data;
203}
204
be7b6275 205static void cancel_cmdid_data(struct nvme_queue *nvmeq, int cmdid)
3c0cf138 206{
e85248e5
MW
207 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
208 info[cmdid].ctx = CMD_CTX_CANCELLED;
3c0cf138
MW
209}
210
b60503ba
MW
211static struct nvme_queue *get_nvmeq(struct nvme_ns *ns)
212{
1b23484b
MW
213 int qid, cpu = get_cpu();
214 if (cpu < ns->dev->queue_count)
215 qid = cpu + 1;
216 else
217 qid = (cpu % rounddown_pow_of_two(ns->dev->queue_count)) + 1;
218 return ns->dev->queues[qid];
b60503ba
MW
219}
220
221static void put_nvmeq(struct nvme_queue *nvmeq)
222{
1b23484b 223 put_cpu();
b60503ba
MW
224}
225
226/**
227 * nvme_submit_cmd: Copy a command into a queue and ring the doorbell
228 * @nvmeq: The queue to use
229 * @cmd: The command to send
230 *
231 * Safe to use from interrupt context
232 */
233static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
234{
235 unsigned long flags;
236 u16 tail;
237 /* XXX: Need to check tail isn't going to overrun head */
238 spin_lock_irqsave(&nvmeq->q_lock, flags);
239 tail = nvmeq->sq_tail;
240 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
241 writel(tail, nvmeq->q_db);
242 if (++tail == nvmeq->q_depth)
243 tail = 0;
244 nvmeq->sq_tail = tail;
245 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
246
247 return 0;
248}
249
e025344c
SMM
250static __le64 *alloc_prp_list(struct nvme_queue *nvmeq, int length,
251 dma_addr_t *addr)
252{
253 return dma_alloc_coherent(nvmeq->q_dmadev, PAGE_SIZE, addr, GFP_ATOMIC);
254}
255
256struct nvme_prps {
257 int npages;
258 dma_addr_t first_dma;
259 __le64 *list[0];
260};
261
262static void nvme_free_prps(struct nvme_queue *nvmeq, struct nvme_prps *prps)
263{
264 const int last_prp = PAGE_SIZE / 8 - 1;
265 int i;
266 dma_addr_t prp_dma;
267
268 if (!prps)
269 return;
270
271 prp_dma = prps->first_dma;
272 for (i = 0; i < prps->npages; i++) {
273 __le64 *prp_list = prps->list[i];
274 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
275 dma_free_coherent(nvmeq->q_dmadev, PAGE_SIZE, prp_list,
276 prp_dma);
277 prp_dma = next_prp_dma;
278 }
279 kfree(prps);
280}
281
d534df3c 282struct nvme_bio {
b60503ba
MW
283 struct bio *bio;
284 int nents;
e025344c 285 struct nvme_prps *prps;
b60503ba
MW
286 struct scatterlist sg[0];
287};
288
289/* XXX: use a mempool */
d534df3c 290static struct nvme_bio *alloc_nbio(unsigned nseg, gfp_t gfp)
b60503ba 291{
d534df3c 292 return kzalloc(sizeof(struct nvme_bio) +
b60503ba
MW
293 sizeof(struct scatterlist) * nseg, gfp);
294}
295
d534df3c 296static void free_nbio(struct nvme_queue *nvmeq, struct nvme_bio *nbio)
b60503ba 297{
d534df3c
MW
298 nvme_free_prps(nvmeq, nbio->prps);
299 kfree(nbio);
b60503ba
MW
300}
301
302static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
303 struct nvme_completion *cqe)
304{
d534df3c
MW
305 struct nvme_bio *nbio = ctx;
306 struct bio *bio = nbio->bio;
b60503ba
MW
307 u16 status = le16_to_cpup(&cqe->status) >> 1;
308
d534df3c 309 dma_unmap_sg(nvmeq->q_dmadev, nbio->sg, nbio->nents,
b60503ba 310 bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
d534df3c 311 free_nbio(nvmeq, nbio);
b60503ba 312 bio_endio(bio, status ? -EIO : 0);
9294bbed
MW
313 bio = bio_list_pop(&nvmeq->sq_cong);
314 if (bio)
315 nvme_resubmit_bio(nvmeq, bio);
b60503ba
MW
316}
317
ff22b54f 318/* length is in bytes */
e025344c
SMM
319static struct nvme_prps *nvme_setup_prps(struct nvme_queue *nvmeq,
320 struct nvme_common_command *cmd,
ff22b54f
MW
321 struct scatterlist *sg, int length)
322{
323 int dma_len = sg_dma_len(sg);
324 u64 dma_addr = sg_dma_address(sg);
325 int offset = offset_in_page(dma_addr);
e025344c
SMM
326 __le64 *prp_list;
327 dma_addr_t prp_dma;
328 int nprps, npages, i, prp_page;
329 struct nvme_prps *prps = NULL;
ff22b54f
MW
330
331 cmd->prp1 = cpu_to_le64(dma_addr);
332 length -= (PAGE_SIZE - offset);
333 if (length <= 0)
e025344c 334 return prps;
ff22b54f
MW
335
336 dma_len -= (PAGE_SIZE - offset);
337 if (dma_len) {
338 dma_addr += (PAGE_SIZE - offset);
339 } else {
340 sg = sg_next(sg);
341 dma_addr = sg_dma_address(sg);
342 dma_len = sg_dma_len(sg);
343 }
344
345 if (length <= PAGE_SIZE) {
346 cmd->prp2 = cpu_to_le64(dma_addr);
e025344c
SMM
347 return prps;
348 }
349
350 nprps = DIV_ROUND_UP(length, PAGE_SIZE);
351 npages = DIV_ROUND_UP(8 * nprps, PAGE_SIZE);
352 prps = kmalloc(sizeof(*prps) + sizeof(__le64 *) * npages, GFP_ATOMIC);
353 prps->npages = npages;
354 prp_page = 0;
355 prp_list = alloc_prp_list(nvmeq, length, &prp_dma);
356 prps->list[prp_page++] = prp_list;
357 prps->first_dma = prp_dma;
358 cmd->prp2 = cpu_to_le64(prp_dma);
359 i = 0;
360 for (;;) {
361 if (i == PAGE_SIZE / 8 - 1) {
362 __le64 *old_prp_list = prp_list;
363 prp_list = alloc_prp_list(nvmeq, length, &prp_dma);
364 prps->list[prp_page++] = prp_list;
365 old_prp_list[i] = cpu_to_le64(prp_dma);
366 i = 0;
367 }
368 prp_list[i++] = cpu_to_le64(dma_addr);
369 dma_len -= PAGE_SIZE;
370 dma_addr += PAGE_SIZE;
371 length -= PAGE_SIZE;
372 if (length <= 0)
373 break;
374 if (dma_len > 0)
375 continue;
376 BUG_ON(dma_len < 0);
377 sg = sg_next(sg);
378 dma_addr = sg_dma_address(sg);
379 dma_len = sg_dma_len(sg);
ff22b54f
MW
380 }
381
e025344c 382 return prps;
ff22b54f
MW
383}
384
d534df3c 385static int nvme_map_bio(struct device *dev, struct nvme_bio *nbio,
b60503ba
MW
386 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
387{
388 struct bio_vec *bvec;
d534df3c 389 struct scatterlist *sg = nbio->sg;
b60503ba
MW
390 int i, nsegs;
391
392 sg_init_table(sg, psegs);
393 bio_for_each_segment(bvec, bio, i) {
394 sg_set_page(sg, bvec->bv_page, bvec->bv_len, bvec->bv_offset);
51882d00 395 sg++;
b60503ba
MW
396 /* XXX: handle non-mergable here */
397 nsegs++;
398 }
d534df3c 399 nbio->nents = nsegs;
b60503ba 400
d534df3c 401 return dma_map_sg(dev, nbio->sg, nbio->nents, dma_dir);
b60503ba
MW
402}
403
404static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
405 struct bio *bio)
406{
ff22b54f 407 struct nvme_command *cmnd;
d534df3c 408 struct nvme_bio *nbio;
b60503ba
MW
409 enum dma_data_direction dma_dir;
410 int cmdid;
411 u16 control;
412 u32 dsmgmt;
413 unsigned long flags;
414 int psegs = bio_phys_segments(ns->queue, bio);
415
d534df3c
MW
416 nbio = alloc_nbio(psegs, GFP_NOIO);
417 if (!nbio)
b60503ba 418 goto congestion;
d534df3c 419 nbio->bio = bio;
b60503ba 420
d534df3c 421 cmdid = alloc_cmdid(nvmeq, nbio, bio_completion_id, IO_TIMEOUT);
b60503ba 422 if (unlikely(cmdid < 0))
d534df3c 423 goto free_nbio;
b60503ba
MW
424
425 control = 0;
426 if (bio->bi_rw & REQ_FUA)
427 control |= NVME_RW_FUA;
428 if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
429 control |= NVME_RW_LR;
430
431 dsmgmt = 0;
432 if (bio->bi_rw & REQ_RAHEAD)
433 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
434
435 spin_lock_irqsave(&nvmeq->q_lock, flags);
ff22b54f 436 cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
b60503ba 437
b8deb62c 438 memset(cmnd, 0, sizeof(*cmnd));
b60503ba 439 if (bio_data_dir(bio)) {
ff22b54f 440 cmnd->rw.opcode = nvme_cmd_write;
b60503ba
MW
441 dma_dir = DMA_TO_DEVICE;
442 } else {
ff22b54f 443 cmnd->rw.opcode = nvme_cmd_read;
b60503ba
MW
444 dma_dir = DMA_FROM_DEVICE;
445 }
446
d534df3c 447 nvme_map_bio(nvmeq->q_dmadev, nbio, bio, dma_dir, psegs);
b60503ba 448
ff22b54f
MW
449 cmnd->rw.flags = 1;
450 cmnd->rw.command_id = cmdid;
451 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
d534df3c 452 nbio->prps = nvme_setup_prps(nvmeq, &cmnd->common, nbio->sg,
e025344c 453 bio->bi_size);
ff22b54f
MW
454 cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
455 cmnd->rw.length = cpu_to_le16((bio->bi_size >> ns->lba_shift) - 1);
456 cmnd->rw.control = cpu_to_le16(control);
457 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
b60503ba
MW
458
459 writel(nvmeq->sq_tail, nvmeq->q_db);
460 if (++nvmeq->sq_tail == nvmeq->q_depth)
461 nvmeq->sq_tail = 0;
462
463 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
464
465 return 0;
466
d534df3c
MW
467 free_nbio:
468 free_nbio(nvmeq, nbio);
b60503ba
MW
469 congestion:
470 return -EBUSY;
471}
472
9294bbed
MW
473static void nvme_resubmit_bio(struct nvme_queue *nvmeq, struct bio *bio)
474{
475 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
476 if (nvme_submit_bio_queue(nvmeq, ns, bio))
477 bio_list_add_head(&nvmeq->sq_cong, bio);
478 else if (bio_list_empty(&nvmeq->sq_cong))
479 blk_clear_queue_congested(ns->queue, rw_is_sync(bio->bi_rw));
480 /* XXX: Need to duplicate the logic from __freed_request here */
481}
482
b60503ba
MW
483/*
484 * NB: return value of non-zero would mean that we were a stacking driver.
485 * make_request must always succeed.
486 */
487static int nvme_make_request(struct request_queue *q, struct bio *bio)
488{
489 struct nvme_ns *ns = q->queuedata;
490 struct nvme_queue *nvmeq = get_nvmeq(ns);
491
492 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
493 blk_set_queue_congested(q, rw_is_sync(bio->bi_rw));
9294bbed 494 spin_lock_irq(&nvmeq->q_lock);
b60503ba 495 bio_list_add(&nvmeq->sq_cong, bio);
9294bbed 496 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
497 }
498 put_nvmeq(nvmeq);
499
500 return 0;
501}
502
503struct sync_cmd_info {
504 struct task_struct *task;
505 u32 result;
506 int status;
507};
508
509static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
510 struct nvme_completion *cqe)
511{
512 struct sync_cmd_info *cmdinfo = ctx;
be7b6275
MW
513 if ((unsigned long)cmdinfo == CMD_CTX_CANCELLED)
514 return;
b36235df
MW
515 if (unlikely((unsigned long)cmdinfo == CMD_CTX_COMPLETED)) {
516 dev_warn(nvmeq->q_dmadev,
517 "completed id %d twice on queue %d\n",
518 cqe->command_id, le16_to_cpup(&cqe->sq_id));
519 return;
520 }
48e3d398
MW
521 if (unlikely((unsigned long)cmdinfo == CMD_CTX_INVALID)) {
522 dev_warn(nvmeq->q_dmadev,
523 "invalid id %d completed on queue %d\n",
524 cqe->command_id, le16_to_cpup(&cqe->sq_id));
525 return;
526 }
b60503ba
MW
527 cmdinfo->result = le32_to_cpup(&cqe->result);
528 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
529 wake_up_process(cmdinfo->task);
530}
531
532typedef void (*completion_fn)(struct nvme_queue *, void *,
533 struct nvme_completion *);
534
535static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
536{
82123460 537 u16 head, phase;
b60503ba
MW
538
539 static const completion_fn completions[4] = {
540 [sync_completion_id] = sync_completion,
541 [bio_completion_id] = bio_completion,
542 };
543
544 head = nvmeq->cq_head;
82123460 545 phase = nvmeq->cq_phase;
b60503ba
MW
546
547 for (;;) {
548 unsigned long data;
549 void *ptr;
550 unsigned char handler;
551 struct nvme_completion cqe = nvmeq->cqes[head];
82123460 552 if ((le16_to_cpu(cqe.status) & 1) != phase)
b60503ba
MW
553 break;
554 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
555 if (++head == nvmeq->q_depth) {
556 head = 0;
82123460 557 phase = !phase;
b60503ba
MW
558 }
559
560 data = free_cmdid(nvmeq, cqe.command_id);
561 handler = data & 3;
562 ptr = (void *)(data & ~3UL);
563 completions[handler](nvmeq, ptr, &cqe);
564 }
565
566 /* If the controller ignores the cq head doorbell and continuously
567 * writes to the queue, it is theoretically possible to wrap around
568 * the queue twice and mistakenly return IRQ_NONE. Linux only
569 * requires that 0.1% of your interrupts are handled, so this isn't
570 * a big problem.
571 */
82123460 572 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
b60503ba
MW
573 return IRQ_NONE;
574
575 writel(head, nvmeq->q_db + 1);
576 nvmeq->cq_head = head;
82123460 577 nvmeq->cq_phase = phase;
b60503ba
MW
578
579 return IRQ_HANDLED;
580}
581
582static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
583{
584 irqreturn_t result;
585 struct nvme_queue *nvmeq = data;
586 spin_lock(&nvmeq->q_lock);
587 result = nvme_process_cq(nvmeq);
588 spin_unlock(&nvmeq->q_lock);
589 return result;
590}
591
592static irqreturn_t nvme_irq_check(int irq, void *data)
593{
594 struct nvme_queue *nvmeq = data;
595 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
596 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
597 return IRQ_NONE;
598 return IRQ_WAKE_THREAD;
599}
600
3c0cf138
MW
601static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
602{
603 spin_lock_irq(&nvmeq->q_lock);
be7b6275 604 cancel_cmdid_data(nvmeq, cmdid);
3c0cf138
MW
605 spin_unlock_irq(&nvmeq->q_lock);
606}
607
b60503ba
MW
608/*
609 * Returns 0 on success. If the result is negative, it's a Linux error code;
610 * if the result is positive, it's an NVM Express status code
611 */
3c0cf138 612static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
e85248e5 613 struct nvme_command *cmd, u32 *result, unsigned timeout)
b60503ba
MW
614{
615 int cmdid;
616 struct sync_cmd_info cmdinfo;
617
618 cmdinfo.task = current;
619 cmdinfo.status = -EINTR;
620
e85248e5
MW
621 cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion_id,
622 timeout);
b60503ba
MW
623 if (cmdid < 0)
624 return cmdid;
625 cmd->common.command_id = cmdid;
626
3c0cf138
MW
627 set_current_state(TASK_KILLABLE);
628 nvme_submit_cmd(nvmeq, cmd);
b60503ba
MW
629 schedule();
630
3c0cf138
MW
631 if (cmdinfo.status == -EINTR) {
632 nvme_abort_command(nvmeq, cmdid);
633 return -EINTR;
634 }
635
b60503ba
MW
636 if (result)
637 *result = cmdinfo.result;
638
639 return cmdinfo.status;
640}
641
642static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
643 u32 *result)
644{
e85248e5 645 return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
b60503ba
MW
646}
647
648static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
649{
650 int status;
651 struct nvme_command c;
652
653 memset(&c, 0, sizeof(c));
654 c.delete_queue.opcode = opcode;
655 c.delete_queue.qid = cpu_to_le16(id);
656
657 status = nvme_submit_admin_cmd(dev, &c, NULL);
658 if (status)
659 return -EIO;
660 return 0;
661}
662
663static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
664 struct nvme_queue *nvmeq)
665{
666 int status;
667 struct nvme_command c;
668 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
669
670 memset(&c, 0, sizeof(c));
671 c.create_cq.opcode = nvme_admin_create_cq;
672 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
673 c.create_cq.cqid = cpu_to_le16(qid);
674 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
675 c.create_cq.cq_flags = cpu_to_le16(flags);
676 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
677
678 status = nvme_submit_admin_cmd(dev, &c, NULL);
679 if (status)
680 return -EIO;
681 return 0;
682}
683
684static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
685 struct nvme_queue *nvmeq)
686{
687 int status;
688 struct nvme_command c;
689 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
690
691 memset(&c, 0, sizeof(c));
692 c.create_sq.opcode = nvme_admin_create_sq;
693 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
694 c.create_sq.sqid = cpu_to_le16(qid);
695 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
696 c.create_sq.sq_flags = cpu_to_le16(flags);
697 c.create_sq.cqid = cpu_to_le16(qid);
698
699 status = nvme_submit_admin_cmd(dev, &c, NULL);
700 if (status)
701 return -EIO;
702 return 0;
703}
704
705static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
706{
707 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
708}
709
710static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
711{
712 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
713}
714
715static void nvme_free_queue(struct nvme_dev *dev, int qid)
716{
717 struct nvme_queue *nvmeq = dev->queues[qid];
718
719 free_irq(dev->entry[nvmeq->cq_vector].vector, nvmeq);
720
721 /* Don't tell the adapter to delete the admin queue */
722 if (qid) {
723 adapter_delete_sq(dev, qid);
724 adapter_delete_cq(dev, qid);
725 }
726
727 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
728 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
729 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
730 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
731 kfree(nvmeq);
732}
733
734static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
735 int depth, int vector)
736{
737 struct device *dmadev = &dev->pci_dev->dev;
e85248e5 738 unsigned extra = (depth / 8) + (depth * sizeof(struct nvme_cmd_info));
b60503ba
MW
739 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
740 if (!nvmeq)
741 return NULL;
742
743 nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
744 &nvmeq->cq_dma_addr, GFP_KERNEL);
745 if (!nvmeq->cqes)
746 goto free_nvmeq;
747 memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
748
749 nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
750 &nvmeq->sq_dma_addr, GFP_KERNEL);
751 if (!nvmeq->sq_cmds)
752 goto free_cqdma;
753
754 nvmeq->q_dmadev = dmadev;
755 spin_lock_init(&nvmeq->q_lock);
756 nvmeq->cq_head = 0;
82123460 757 nvmeq->cq_phase = 1;
b60503ba
MW
758 init_waitqueue_head(&nvmeq->sq_full);
759 bio_list_init(&nvmeq->sq_cong);
760 nvmeq->q_db = &dev->dbs[qid * 2];
761 nvmeq->q_depth = depth;
762 nvmeq->cq_vector = vector;
763
764 return nvmeq;
765
766 free_cqdma:
767 dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
768 nvmeq->cq_dma_addr);
769 free_nvmeq:
770 kfree(nvmeq);
771 return NULL;
772}
773
3001082c
MW
774static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
775 const char *name)
776{
58ffacb5
MW
777 if (use_threaded_interrupts)
778 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
ec6ce618 779 nvme_irq_check, nvme_irq,
58ffacb5
MW
780 IRQF_DISABLED | IRQF_SHARED,
781 name, nvmeq);
3001082c
MW
782 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
783 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
784}
785
b60503ba
MW
786static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
787 int qid, int cq_size, int vector)
788{
789 int result;
790 struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
791
3f85d50b
MW
792 if (!nvmeq)
793 return NULL;
794
b60503ba
MW
795 result = adapter_alloc_cq(dev, qid, nvmeq);
796 if (result < 0)
797 goto free_nvmeq;
798
799 result = adapter_alloc_sq(dev, qid, nvmeq);
800 if (result < 0)
801 goto release_cq;
802
3001082c 803 result = queue_request_irq(dev, nvmeq, "nvme");
b60503ba
MW
804 if (result < 0)
805 goto release_sq;
806
807 return nvmeq;
808
809 release_sq:
810 adapter_delete_sq(dev, qid);
811 release_cq:
812 adapter_delete_cq(dev, qid);
813 free_nvmeq:
814 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
815 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
816 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
817 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
818 kfree(nvmeq);
819 return NULL;
820}
821
822static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
823{
824 int result;
825 u32 aqa;
826 struct nvme_queue *nvmeq;
827
828 dev->dbs = ((void __iomem *)dev->bar) + 4096;
829
830 nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
3f85d50b
MW
831 if (!nvmeq)
832 return -ENOMEM;
b60503ba
MW
833
834 aqa = nvmeq->q_depth - 1;
835 aqa |= aqa << 16;
836
837 dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
838 dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
839 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
840
5911f200 841 writel(0, &dev->bar->cc);
b60503ba
MW
842 writel(aqa, &dev->bar->aqa);
843 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
844 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
845 writel(dev->ctrl_config, &dev->bar->cc);
846
847 while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
848 msleep(100);
849 if (fatal_signal_pending(current))
850 return -EINTR;
851 }
852
3001082c 853 result = queue_request_irq(dev, nvmeq, "nvme admin");
b60503ba
MW
854 dev->queues[0] = nvmeq;
855 return result;
856}
857
7fc3cdab
MW
858static int nvme_map_user_pages(struct nvme_dev *dev, int write,
859 unsigned long addr, unsigned length,
860 struct scatterlist **sgp)
b60503ba 861{
36c14ed9 862 int i, err, count, nents, offset;
7fc3cdab
MW
863 struct scatterlist *sg;
864 struct page **pages;
36c14ed9
MW
865
866 if (addr & 3)
867 return -EINVAL;
7fc3cdab
MW
868 if (!length)
869 return -EINVAL;
870
36c14ed9 871 offset = offset_in_page(addr);
7fc3cdab
MW
872 count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
873 pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
36c14ed9
MW
874
875 err = get_user_pages_fast(addr, count, 1, pages);
876 if (err < count) {
877 count = err;
878 err = -EFAULT;
879 goto put_pages;
880 }
7fc3cdab
MW
881
882 sg = kcalloc(count, sizeof(*sg), GFP_KERNEL);
36c14ed9 883 sg_init_table(sg, count);
ff22b54f 884 sg_set_page(&sg[0], pages[0], PAGE_SIZE - offset, offset);
7fc3cdab
MW
885 length -= (PAGE_SIZE - offset);
886 for (i = 1; i < count; i++) {
887 sg_set_page(&sg[i], pages[i], min_t(int, length, PAGE_SIZE), 0);
888 length -= PAGE_SIZE;
889 }
890
891 err = -ENOMEM;
892 nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
893 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
36c14ed9
MW
894 if (!nents)
895 goto put_pages;
b60503ba 896
7fc3cdab
MW
897 kfree(pages);
898 *sgp = sg;
899 return nents;
b60503ba 900
7fc3cdab
MW
901 put_pages:
902 for (i = 0; i < count; i++)
903 put_page(pages[i]);
904 kfree(pages);
905 return err;
906}
b60503ba 907
7fc3cdab
MW
908static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
909 unsigned long addr, int length,
910 struct scatterlist *sg, int nents)
911{
912 int i, count;
b60503ba 913
7fc3cdab 914 count = DIV_ROUND_UP(offset_in_page(addr) + length, PAGE_SIZE);
36c14ed9 915 dma_unmap_sg(&dev->pci_dev->dev, sg, nents, DMA_FROM_DEVICE);
7fc3cdab 916
36c14ed9 917 for (i = 0; i < count; i++)
7fc3cdab
MW
918 put_page(sg_page(&sg[i]));
919}
b60503ba 920
7fc3cdab
MW
921static int nvme_submit_user_admin_command(struct nvme_dev *dev,
922 unsigned long addr, unsigned length,
923 struct nvme_command *cmd)
924{
925 int err, nents;
926 struct scatterlist *sg;
e025344c 927 struct nvme_prps *prps;
7fc3cdab
MW
928
929 nents = nvme_map_user_pages(dev, 0, addr, length, &sg);
930 if (nents < 0)
931 return nents;
e025344c 932 prps = nvme_setup_prps(dev->queues[0], &cmd->common, sg, length);
7fc3cdab
MW
933 err = nvme_submit_admin_cmd(dev, cmd, NULL);
934 nvme_unmap_user_pages(dev, 0, addr, length, sg, nents);
e025344c 935 nvme_free_prps(dev->queues[0], prps);
7fc3cdab 936 return err ? -EIO : 0;
b60503ba
MW
937}
938
bd38c555 939static int nvme_identify(struct nvme_ns *ns, unsigned long addr, int cns)
b60503ba 940{
b60503ba 941 struct nvme_command c;
b60503ba 942
bd38c555
MW
943 memset(&c, 0, sizeof(c));
944 c.identify.opcode = nvme_admin_identify;
945 c.identify.nsid = cns ? 0 : cpu_to_le32(ns->ns_id);
946 c.identify.cns = cpu_to_le32(cns);
947
948 return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
949}
950
951static int nvme_get_range_type(struct nvme_ns *ns, unsigned long addr)
952{
953 struct nvme_command c;
b60503ba
MW
954
955 memset(&c, 0, sizeof(c));
956 c.features.opcode = nvme_admin_get_features;
957 c.features.nsid = cpu_to_le32(ns->ns_id);
b60503ba
MW
958 c.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
959
bd38c555 960 return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
b60503ba
MW
961}
962
a53295b6
MW
963static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
964{
965 struct nvme_dev *dev = ns->dev;
966 struct nvme_queue *nvmeq;
967 struct nvme_user_io io;
968 struct nvme_command c;
969 unsigned length;
970 u32 result;
971 int nents, status;
972 struct scatterlist *sg;
e025344c 973 struct nvme_prps *prps;
a53295b6
MW
974
975 if (copy_from_user(&io, uio, sizeof(io)))
976 return -EFAULT;
977 length = io.nblocks << io.block_shift;
978 nents = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length, &sg);
979 if (nents < 0)
980 return nents;
981
982 memset(&c, 0, sizeof(c));
983 c.rw.opcode = io.opcode;
984 c.rw.flags = io.flags;
985 c.rw.nsid = cpu_to_le32(io.nsid);
986 c.rw.slba = cpu_to_le64(io.slba);
987 c.rw.length = cpu_to_le16(io.nblocks - 1);
988 c.rw.control = cpu_to_le16(io.control);
989 c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
990 c.rw.reftag = cpu_to_le32(io.reftag); /* XXX: endian? */
991 c.rw.apptag = cpu_to_le16(io.apptag);
992 c.rw.appmask = cpu_to_le16(io.appmask);
e025344c 993 nvmeq = get_nvmeq(ns);
a53295b6 994 /* XXX: metadata */
e025344c 995 prps = nvme_setup_prps(nvmeq, &c.common, sg, length);
a53295b6 996
b1ad37ef
MW
997 /* Since nvme_submit_sync_cmd sleeps, we can't keep preemption
998 * disabled. We may be preempted at any point, and be rescheduled
999 * to a different CPU. That will cause cacheline bouncing, but no
1000 * additional races since q_lock already protects against other CPUs.
1001 */
a53295b6 1002 put_nvmeq(nvmeq);
e85248e5 1003 status = nvme_submit_sync_cmd(nvmeq, &c, &result, IO_TIMEOUT);
a53295b6
MW
1004
1005 nvme_unmap_user_pages(dev, io.opcode & 1, io.addr, length, sg, nents);
e025344c 1006 nvme_free_prps(nvmeq, prps);
a53295b6
MW
1007 put_user(result, &uio->result);
1008 return status;
1009}
1010
6ee44cdc
MW
1011static int nvme_download_firmware(struct nvme_ns *ns,
1012 struct nvme_dlfw __user *udlfw)
1013{
1014 struct nvme_dev *dev = ns->dev;
1015 struct nvme_dlfw dlfw;
1016 struct nvme_command c;
1017 int nents, status;
1018 struct scatterlist *sg;
e025344c 1019 struct nvme_prps *prps;
6ee44cdc
MW
1020
1021 if (copy_from_user(&dlfw, udlfw, sizeof(dlfw)))
1022 return -EFAULT;
1023 if (dlfw.length >= (1 << 30))
1024 return -EINVAL;
1025
1026 nents = nvme_map_user_pages(dev, 1, dlfw.addr, dlfw.length * 4, &sg);
1027 if (nents < 0)
1028 return nents;
1029
1030 memset(&c, 0, sizeof(c));
1031 c.dlfw.opcode = nvme_admin_download_fw;
1032 c.dlfw.numd = cpu_to_le32(dlfw.length);
1033 c.dlfw.offset = cpu_to_le32(dlfw.offset);
e025344c 1034 prps = nvme_setup_prps(dev->queues[0], &c.common, sg, dlfw.length * 4);
6ee44cdc
MW
1035
1036 status = nvme_submit_admin_cmd(dev, &c, NULL);
1037 nvme_unmap_user_pages(dev, 0, dlfw.addr, dlfw.length * 4, sg, nents);
e025344c 1038 nvme_free_prps(dev->queues[0], prps);
6ee44cdc
MW
1039 return status;
1040}
1041
1042static int nvme_activate_firmware(struct nvme_ns *ns, unsigned long arg)
1043{
1044 struct nvme_dev *dev = ns->dev;
1045 struct nvme_command c;
1046
1047 memset(&c, 0, sizeof(c));
1048 c.common.opcode = nvme_admin_activate_fw;
1049 c.common.rsvd10[0] = cpu_to_le32(arg);
1050
1051 return nvme_submit_admin_cmd(dev, &c, NULL);
1052}
1053
b60503ba
MW
1054static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1055 unsigned long arg)
1056{
1057 struct nvme_ns *ns = bdev->bd_disk->private_data;
1058
1059 switch (cmd) {
1060 case NVME_IOCTL_IDENTIFY_NS:
36c14ed9 1061 return nvme_identify(ns, arg, 0);
b60503ba 1062 case NVME_IOCTL_IDENTIFY_CTRL:
36c14ed9 1063 return nvme_identify(ns, arg, 1);
b60503ba 1064 case NVME_IOCTL_GET_RANGE_TYPE:
bd38c555 1065 return nvme_get_range_type(ns, arg);
a53295b6
MW
1066 case NVME_IOCTL_SUBMIT_IO:
1067 return nvme_submit_io(ns, (void __user *)arg);
6ee44cdc
MW
1068 case NVME_IOCTL_DOWNLOAD_FW:
1069 return nvme_download_firmware(ns, (void __user *)arg);
1070 case NVME_IOCTL_ACTIVATE_FW:
1071 return nvme_activate_firmware(ns, arg);
b60503ba
MW
1072 default:
1073 return -ENOTTY;
1074 }
1075}
1076
1077static const struct block_device_operations nvme_fops = {
1078 .owner = THIS_MODULE,
1079 .ioctl = nvme_ioctl,
1080};
1081
1082static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int index,
1083 struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1084{
1085 struct nvme_ns *ns;
1086 struct gendisk *disk;
1087 int lbaf;
1088
1089 if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1090 return NULL;
1091
1092 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1093 if (!ns)
1094 return NULL;
1095 ns->queue = blk_alloc_queue(GFP_KERNEL);
1096 if (!ns->queue)
1097 goto out_free_ns;
1098 ns->queue->queue_flags = QUEUE_FLAG_DEFAULT | QUEUE_FLAG_NOMERGES |
1099 QUEUE_FLAG_NONROT | QUEUE_FLAG_DISCARD;
1100 blk_queue_make_request(ns->queue, nvme_make_request);
1101 ns->dev = dev;
1102 ns->queue->queuedata = ns;
1103
1104 disk = alloc_disk(NVME_MINORS);
1105 if (!disk)
1106 goto out_free_queue;
1107 ns->ns_id = index;
1108 ns->disk = disk;
1109 lbaf = id->flbas & 0xf;
1110 ns->lba_shift = id->lbaf[lbaf].ds;
1111
1112 disk->major = nvme_major;
1113 disk->minors = NVME_MINORS;
1114 disk->first_minor = NVME_MINORS * index;
1115 disk->fops = &nvme_fops;
1116 disk->private_data = ns;
1117 disk->queue = ns->queue;
388f037f 1118 disk->driverfs_dev = &dev->pci_dev->dev;
b60503ba
MW
1119 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, index);
1120 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1121
1122 return ns;
1123
1124 out_free_queue:
1125 blk_cleanup_queue(ns->queue);
1126 out_free_ns:
1127 kfree(ns);
1128 return NULL;
1129}
1130
1131static void nvme_ns_free(struct nvme_ns *ns)
1132{
1133 put_disk(ns->disk);
1134 blk_cleanup_queue(ns->queue);
1135 kfree(ns);
1136}
1137
b3b06812 1138static int set_queue_count(struct nvme_dev *dev, int count)
b60503ba
MW
1139{
1140 int status;
1141 u32 result;
1142 struct nvme_command c;
b3b06812 1143 u32 q_count = (count - 1) | ((count - 1) << 16);
b60503ba
MW
1144
1145 memset(&c, 0, sizeof(c));
1146 c.features.opcode = nvme_admin_get_features;
1147 c.features.fid = cpu_to_le32(NVME_FEAT_NUM_QUEUES);
1148 c.features.dword11 = cpu_to_le32(q_count);
1149
1150 status = nvme_submit_admin_cmd(dev, &c, &result);
1151 if (status)
1152 return -EIO;
1153 return min(result & 0xffff, result >> 16) + 1;
1154}
1155
b60503ba
MW
1156static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
1157{
1b23484b 1158 int result, cpu, i, nr_queues;
b60503ba 1159
1b23484b
MW
1160 nr_queues = num_online_cpus();
1161 result = set_queue_count(dev, nr_queues);
1162 if (result < 0)
1163 return result;
1164 if (result < nr_queues)
1165 nr_queues = result;
b60503ba 1166
1b23484b
MW
1167 /* Deregister the admin queue's interrupt */
1168 free_irq(dev->entry[0].vector, dev->queues[0]);
1169
1170 for (i = 0; i < nr_queues; i++)
1171 dev->entry[i].entry = i;
1172 for (;;) {
1173 result = pci_enable_msix(dev->pci_dev, dev->entry, nr_queues);
1174 if (result == 0) {
1175 break;
1176 } else if (result > 0) {
1177 nr_queues = result;
1178 continue;
1179 } else {
1180 nr_queues = 1;
1181 break;
1182 }
1183 }
1184
1185 result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1186 /* XXX: handle failure here */
1187
1188 cpu = cpumask_first(cpu_online_mask);
1189 for (i = 0; i < nr_queues; i++) {
1190 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1191 cpu = cpumask_next(cpu, cpu_online_mask);
1192 }
1193
1194 for (i = 0; i < nr_queues; i++) {
1195 dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
1196 NVME_Q_DEPTH, i);
1197 if (!dev->queues[i + 1])
1198 return -ENOMEM;
1199 dev->queue_count++;
1200 }
b60503ba
MW
1201
1202 return 0;
1203}
1204
1205static void nvme_free_queues(struct nvme_dev *dev)
1206{
1207 int i;
1208
1209 for (i = dev->queue_count - 1; i >= 0; i--)
1210 nvme_free_queue(dev, i);
1211}
1212
1213static int __devinit nvme_dev_add(struct nvme_dev *dev)
1214{
1215 int res, nn, i;
1216 struct nvme_ns *ns, *next;
51814232 1217 struct nvme_id_ctrl *ctrl;
b60503ba
MW
1218 void *id;
1219 dma_addr_t dma_addr;
1220 struct nvme_command cid, crt;
1221
1222 res = nvme_setup_io_queues(dev);
1223 if (res)
1224 return res;
1225
1226 /* XXX: Switch to a SG list once prp2 works */
1227 id = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1228 GFP_KERNEL);
1229
1230 memset(&cid, 0, sizeof(cid));
1231 cid.identify.opcode = nvme_admin_identify;
1232 cid.identify.nsid = 0;
1233 cid.identify.prp1 = cpu_to_le64(dma_addr);
1234 cid.identify.cns = cpu_to_le32(1);
1235
1236 res = nvme_submit_admin_cmd(dev, &cid, NULL);
1237 if (res) {
1238 res = -EIO;
1239 goto out_free;
1240 }
1241
51814232
MW
1242 ctrl = id;
1243 nn = le32_to_cpup(&ctrl->nn);
1244 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1245 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1246 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
b60503ba
MW
1247
1248 cid.identify.cns = 0;
1249 memset(&crt, 0, sizeof(crt));
1250 crt.features.opcode = nvme_admin_get_features;
1251 crt.features.prp1 = cpu_to_le64(dma_addr + 4096);
1252 crt.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
1253
1254 for (i = 0; i < nn; i++) {
1255 cid.identify.nsid = cpu_to_le32(i);
1256 res = nvme_submit_admin_cmd(dev, &cid, NULL);
1257 if (res)
1258 continue;
1259
1260 if (((struct nvme_id_ns *)id)->ncap == 0)
1261 continue;
1262
1263 crt.features.nsid = cpu_to_le32(i);
1264 res = nvme_submit_admin_cmd(dev, &crt, NULL);
1265 if (res)
1266 continue;
1267
1268 ns = nvme_alloc_ns(dev, i, id, id + 4096);
1269 if (ns)
1270 list_add_tail(&ns->list, &dev->namespaces);
1271 }
1272 list_for_each_entry(ns, &dev->namespaces, list)
1273 add_disk(ns->disk);
1274
1275 dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1276 return 0;
1277
1278 out_free:
1279 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1280 list_del(&ns->list);
1281 nvme_ns_free(ns);
1282 }
1283
1284 dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1285 return res;
1286}
1287
1288static int nvme_dev_remove(struct nvme_dev *dev)
1289{
1290 struct nvme_ns *ns, *next;
1291
1292 /* TODO: wait all I/O finished or cancel them */
1293
1294 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1295 list_del(&ns->list);
1296 del_gendisk(ns->disk);
1297 nvme_ns_free(ns);
1298 }
1299
1300 nvme_free_queues(dev);
1301
1302 return 0;
1303}
1304
1305/* XXX: Use an ida or something to let remove / add work correctly */
1306static void nvme_set_instance(struct nvme_dev *dev)
1307{
1308 static int instance;
1309 dev->instance = instance++;
1310}
1311
1312static void nvme_release_instance(struct nvme_dev *dev)
1313{
1314}
1315
1316static int __devinit nvme_probe(struct pci_dev *pdev,
1317 const struct pci_device_id *id)
1318{
574e8b95 1319 int bars, result = -ENOMEM;
b60503ba
MW
1320 struct nvme_dev *dev;
1321
1322 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1323 if (!dev)
1324 return -ENOMEM;
1325 dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1326 GFP_KERNEL);
1327 if (!dev->entry)
1328 goto free;
1b23484b
MW
1329 dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1330 GFP_KERNEL);
b60503ba
MW
1331 if (!dev->queues)
1332 goto free;
1333
0ee5a7d7
SMM
1334 if (pci_enable_device_mem(pdev))
1335 goto free;
f64d3365 1336 pci_set_master(pdev);
574e8b95
MW
1337 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1338 if (pci_request_selected_regions(pdev, bars, "nvme"))
1339 goto disable;
0ee5a7d7 1340
b60503ba
MW
1341 INIT_LIST_HEAD(&dev->namespaces);
1342 dev->pci_dev = pdev;
1343 pci_set_drvdata(pdev, dev);
2930353f
MW
1344 dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1345 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
b60503ba 1346 nvme_set_instance(dev);
53c9577e 1347 dev->entry[0].vector = pdev->irq;
b60503ba
MW
1348
1349 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1350 if (!dev->bar) {
1351 result = -ENOMEM;
574e8b95 1352 goto disable_msix;
b60503ba
MW
1353 }
1354
1355 result = nvme_configure_admin_queue(dev);
1356 if (result)
1357 goto unmap;
1358 dev->queue_count++;
1359
1360 result = nvme_dev_add(dev);
1361 if (result)
1362 goto delete;
1363 return 0;
1364
1365 delete:
1366 nvme_free_queues(dev);
1367 unmap:
1368 iounmap(dev->bar);
574e8b95 1369 disable_msix:
b60503ba
MW
1370 pci_disable_msix(pdev);
1371 nvme_release_instance(dev);
574e8b95 1372 disable:
0ee5a7d7 1373 pci_disable_device(pdev);
574e8b95 1374 pci_release_regions(pdev);
b60503ba
MW
1375 free:
1376 kfree(dev->queues);
1377 kfree(dev->entry);
1378 kfree(dev);
1379 return result;
1380}
1381
1382static void __devexit nvme_remove(struct pci_dev *pdev)
1383{
1384 struct nvme_dev *dev = pci_get_drvdata(pdev);
1385 nvme_dev_remove(dev);
1386 pci_disable_msix(pdev);
1387 iounmap(dev->bar);
1388 nvme_release_instance(dev);
0ee5a7d7 1389 pci_disable_device(pdev);
574e8b95 1390 pci_release_regions(pdev);
b60503ba
MW
1391 kfree(dev->queues);
1392 kfree(dev->entry);
1393 kfree(dev);
1394}
1395
1396/* These functions are yet to be implemented */
1397#define nvme_error_detected NULL
1398#define nvme_dump_registers NULL
1399#define nvme_link_reset NULL
1400#define nvme_slot_reset NULL
1401#define nvme_error_resume NULL
1402#define nvme_suspend NULL
1403#define nvme_resume NULL
1404
1405static struct pci_error_handlers nvme_err_handler = {
1406 .error_detected = nvme_error_detected,
1407 .mmio_enabled = nvme_dump_registers,
1408 .link_reset = nvme_link_reset,
1409 .slot_reset = nvme_slot_reset,
1410 .resume = nvme_error_resume,
1411};
1412
1413/* Move to pci_ids.h later */
1414#define PCI_CLASS_STORAGE_EXPRESS 0x010802
1415
1416static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1417 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1418 { 0, }
1419};
1420MODULE_DEVICE_TABLE(pci, nvme_id_table);
1421
1422static struct pci_driver nvme_driver = {
1423 .name = "nvme",
1424 .id_table = nvme_id_table,
1425 .probe = nvme_probe,
1426 .remove = __devexit_p(nvme_remove),
1427 .suspend = nvme_suspend,
1428 .resume = nvme_resume,
1429 .err_handler = &nvme_err_handler,
1430};
1431
1432static int __init nvme_init(void)
1433{
1434 int result;
1435
1436 nvme_major = register_blkdev(nvme_major, "nvme");
1437 if (nvme_major <= 0)
1438 return -EBUSY;
1439
1440 result = pci_register_driver(&nvme_driver);
1441 if (!result)
1442 return 0;
1443
1444 unregister_blkdev(nvme_major, "nvme");
1445 return result;
1446}
1447
1448static void __exit nvme_exit(void)
1449{
1450 pci_unregister_driver(&nvme_driver);
1451 unregister_blkdev(nvme_major, "nvme");
1452}
1453
1454MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1455MODULE_LICENSE("GPL");
db5d0c19 1456MODULE_VERSION("0.2");
b60503ba
MW
1457module_init(nvme_init);
1458module_exit(nvme_exit);