NVMe: Use a symbolic name to represent cancelled commands instead of 0
[linux-2.6-block.git] / drivers / block / nvme.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
3 * Copyright (c) 2011, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19#include <linux/nvme.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
22#include <linux/errno.h>
23#include <linux/fs.h>
24#include <linux/genhd.h>
25#include <linux/init.h>
26#include <linux/interrupt.h>
27#include <linux/io.h>
28#include <linux/kdev_t.h>
29#include <linux/kernel.h>
30#include <linux/mm.h>
31#include <linux/module.h>
32#include <linux/moduleparam.h>
33#include <linux/pci.h>
be7b6275 34#include <linux/poison.h>
b60503ba
MW
35#include <linux/sched.h>
36#include <linux/slab.h>
37#include <linux/types.h>
38#include <linux/version.h>
39
40#define NVME_Q_DEPTH 1024
41#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
42#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
43#define NVME_MINORS 64
44
45static int nvme_major;
46module_param(nvme_major, int, 0);
47
58ffacb5
MW
48static int use_threaded_interrupts;
49module_param(use_threaded_interrupts, int, 0);
50
b60503ba
MW
51/*
52 * Represents an NVM Express device. Each nvme_dev is a PCI function.
53 */
54struct nvme_dev {
b60503ba
MW
55 struct nvme_queue **queues;
56 u32 __iomem *dbs;
57 struct pci_dev *pci_dev;
58 int instance;
59 int queue_count;
60 u32 ctrl_config;
61 struct msix_entry *entry;
62 struct nvme_bar __iomem *bar;
63 struct list_head namespaces;
51814232
MW
64 char serial[20];
65 char model[40];
66 char firmware_rev[8];
b60503ba
MW
67};
68
69/*
70 * An NVM Express namespace is equivalent to a SCSI LUN
71 */
72struct nvme_ns {
73 struct list_head list;
74
75 struct nvme_dev *dev;
76 struct request_queue *queue;
77 struct gendisk *disk;
78
79 int ns_id;
80 int lba_shift;
81};
82
83/*
84 * An NVM Express queue. Each device has at least two (one for admin
85 * commands and one for I/O commands).
86 */
87struct nvme_queue {
88 struct device *q_dmadev;
89 spinlock_t q_lock;
90 struct nvme_command *sq_cmds;
91 volatile struct nvme_completion *cqes;
92 dma_addr_t sq_dma_addr;
93 dma_addr_t cq_dma_addr;
94 wait_queue_head_t sq_full;
95 struct bio_list sq_cong;
96 u32 __iomem *q_db;
97 u16 q_depth;
98 u16 cq_vector;
99 u16 sq_head;
100 u16 sq_tail;
101 u16 cq_head;
82123460 102 u16 cq_phase;
b60503ba
MW
103 unsigned long cmdid_data[];
104};
105
106/*
107 * Check we didin't inadvertently grow the command struct
108 */
109static inline void _nvme_check_size(void)
110{
111 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
112 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
113 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
114 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
115 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
116 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
117 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
118 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
119 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
120}
121
122/**
123 * alloc_cmdid - Allocate a Command ID
124 * @param nvmeq The queue that will be used for this command
125 * @param ctx A pointer that will be passed to the handler
126 * @param handler The ID of the handler to call
127 *
128 * Allocate a Command ID for a queue. The data passed in will
129 * be passed to the completion handler. This is implemented by using
130 * the bottom two bits of the ctx pointer to store the handler ID.
131 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
132 * We can change this if it becomes a problem.
133 */
134static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx, int handler)
135{
136 int depth = nvmeq->q_depth;
137 unsigned long data = (unsigned long)ctx | handler;
138 int cmdid;
139
140 BUG_ON((unsigned long)ctx & 3);
141
142 do {
143 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
144 if (cmdid >= depth)
145 return -EBUSY;
146 } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
147
148 nvmeq->cmdid_data[cmdid + BITS_TO_LONGS(depth)] = data;
149 return cmdid;
150}
151
152static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
153 int handler)
154{
155 int cmdid;
156 wait_event_killable(nvmeq->sq_full,
157 (cmdid = alloc_cmdid(nvmeq, ctx, handler)) >= 0);
158 return (cmdid < 0) ? -EINTR : cmdid;
159}
160
161/* If you need more than four handlers, you'll need to change how
be7b6275
MW
162 * alloc_cmdid and nvme_process_cq work. Consider using a special
163 * CMD_CTX value instead, if that works for your situation.
b60503ba
MW
164 */
165enum {
166 sync_completion_id = 0,
167 bio_completion_id,
168};
169
be7b6275
MW
170#define CMD_CTX_BASE (POISON_POINTER_DELTA + sync_completion_id)
171#define CMD_CTX_CANCELLED (0x2008 + CMD_CTX_BASE)
172
b60503ba
MW
173static unsigned long free_cmdid(struct nvme_queue *nvmeq, int cmdid)
174{
175 unsigned long data;
176
177 data = nvmeq->cmdid_data[cmdid + BITS_TO_LONGS(nvmeq->q_depth)];
178 clear_bit(cmdid, nvmeq->cmdid_data);
179 wake_up(&nvmeq->sq_full);
180 return data;
181}
182
be7b6275 183static void cancel_cmdid_data(struct nvme_queue *nvmeq, int cmdid)
3c0cf138 184{
be7b6275
MW
185 nvmeq->cmdid_data[cmdid + BITS_TO_LONGS(nvmeq->q_depth)] =
186 CMD_CTX_CANCELLED;
3c0cf138
MW
187}
188
b60503ba
MW
189static struct nvme_queue *get_nvmeq(struct nvme_ns *ns)
190{
1b23484b
MW
191 int qid, cpu = get_cpu();
192 if (cpu < ns->dev->queue_count)
193 qid = cpu + 1;
194 else
195 qid = (cpu % rounddown_pow_of_two(ns->dev->queue_count)) + 1;
196 return ns->dev->queues[qid];
b60503ba
MW
197}
198
199static void put_nvmeq(struct nvme_queue *nvmeq)
200{
1b23484b 201 put_cpu();
b60503ba
MW
202}
203
204/**
205 * nvme_submit_cmd: Copy a command into a queue and ring the doorbell
206 * @nvmeq: The queue to use
207 * @cmd: The command to send
208 *
209 * Safe to use from interrupt context
210 */
211static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
212{
213 unsigned long flags;
214 u16 tail;
215 /* XXX: Need to check tail isn't going to overrun head */
216 spin_lock_irqsave(&nvmeq->q_lock, flags);
217 tail = nvmeq->sq_tail;
218 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
219 writel(tail, nvmeq->q_db);
220 if (++tail == nvmeq->q_depth)
221 tail = 0;
222 nvmeq->sq_tail = tail;
223 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
224
225 return 0;
226}
227
228struct nvme_req_info {
229 struct bio *bio;
230 int nents;
231 struct scatterlist sg[0];
232};
233
234/* XXX: use a mempool */
235static struct nvme_req_info *alloc_info(unsigned nseg, gfp_t gfp)
236{
237 return kmalloc(sizeof(struct nvme_req_info) +
238 sizeof(struct scatterlist) * nseg, gfp);
239}
240
241static void free_info(struct nvme_req_info *info)
242{
243 kfree(info);
244}
245
246static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
247 struct nvme_completion *cqe)
248{
249 struct nvme_req_info *info = ctx;
250 struct bio *bio = info->bio;
251 u16 status = le16_to_cpup(&cqe->status) >> 1;
252
253 dma_unmap_sg(nvmeq->q_dmadev, info->sg, info->nents,
254 bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
255 free_info(info);
256 bio_endio(bio, status ? -EIO : 0);
257}
258
ff22b54f
MW
259/* length is in bytes */
260static void nvme_setup_prps(struct nvme_common_command *cmd,
261 struct scatterlist *sg, int length)
262{
263 int dma_len = sg_dma_len(sg);
264 u64 dma_addr = sg_dma_address(sg);
265 int offset = offset_in_page(dma_addr);
266
267 cmd->prp1 = cpu_to_le64(dma_addr);
268 length -= (PAGE_SIZE - offset);
269 if (length <= 0)
270 return;
271
272 dma_len -= (PAGE_SIZE - offset);
273 if (dma_len) {
274 dma_addr += (PAGE_SIZE - offset);
275 } else {
276 sg = sg_next(sg);
277 dma_addr = sg_dma_address(sg);
278 dma_len = sg_dma_len(sg);
279 }
280
281 if (length <= PAGE_SIZE) {
282 cmd->prp2 = cpu_to_le64(dma_addr);
283 return;
284 }
285
286 /* XXX: support PRP lists */
287}
288
b60503ba
MW
289static int nvme_map_bio(struct device *dev, struct nvme_req_info *info,
290 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
291{
292 struct bio_vec *bvec;
293 struct scatterlist *sg = info->sg;
294 int i, nsegs;
295
296 sg_init_table(sg, psegs);
297 bio_for_each_segment(bvec, bio, i) {
298 sg_set_page(sg, bvec->bv_page, bvec->bv_len, bvec->bv_offset);
299 /* XXX: handle non-mergable here */
300 nsegs++;
301 }
302 info->nents = nsegs;
303
304 return dma_map_sg(dev, info->sg, info->nents, dma_dir);
305}
306
307static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
308 struct bio *bio)
309{
ff22b54f 310 struct nvme_command *cmnd;
b60503ba
MW
311 struct nvme_req_info *info;
312 enum dma_data_direction dma_dir;
313 int cmdid;
314 u16 control;
315 u32 dsmgmt;
316 unsigned long flags;
317 int psegs = bio_phys_segments(ns->queue, bio);
318
319 info = alloc_info(psegs, GFP_NOIO);
320 if (!info)
321 goto congestion;
322 info->bio = bio;
323
324 cmdid = alloc_cmdid(nvmeq, info, bio_completion_id);
325 if (unlikely(cmdid < 0))
326 goto free_info;
327
328 control = 0;
329 if (bio->bi_rw & REQ_FUA)
330 control |= NVME_RW_FUA;
331 if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
332 control |= NVME_RW_LR;
333
334 dsmgmt = 0;
335 if (bio->bi_rw & REQ_RAHEAD)
336 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
337
338 spin_lock_irqsave(&nvmeq->q_lock, flags);
ff22b54f 339 cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
b60503ba 340
b8deb62c 341 memset(cmnd, 0, sizeof(*cmnd));
b60503ba 342 if (bio_data_dir(bio)) {
ff22b54f 343 cmnd->rw.opcode = nvme_cmd_write;
b60503ba
MW
344 dma_dir = DMA_TO_DEVICE;
345 } else {
ff22b54f 346 cmnd->rw.opcode = nvme_cmd_read;
b60503ba
MW
347 dma_dir = DMA_FROM_DEVICE;
348 }
349
350 nvme_map_bio(nvmeq->q_dmadev, info, bio, dma_dir, psegs);
351
ff22b54f
MW
352 cmnd->rw.flags = 1;
353 cmnd->rw.command_id = cmdid;
354 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
355 nvme_setup_prps(&cmnd->common, info->sg, bio->bi_size);
356 cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
357 cmnd->rw.length = cpu_to_le16((bio->bi_size >> ns->lba_shift) - 1);
358 cmnd->rw.control = cpu_to_le16(control);
359 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
b60503ba
MW
360
361 writel(nvmeq->sq_tail, nvmeq->q_db);
362 if (++nvmeq->sq_tail == nvmeq->q_depth)
363 nvmeq->sq_tail = 0;
364
365 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
366
367 return 0;
368
369 free_info:
370 free_info(info);
371 congestion:
372 return -EBUSY;
373}
374
375/*
376 * NB: return value of non-zero would mean that we were a stacking driver.
377 * make_request must always succeed.
378 */
379static int nvme_make_request(struct request_queue *q, struct bio *bio)
380{
381 struct nvme_ns *ns = q->queuedata;
382 struct nvme_queue *nvmeq = get_nvmeq(ns);
383
384 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
385 blk_set_queue_congested(q, rw_is_sync(bio->bi_rw));
386 bio_list_add(&nvmeq->sq_cong, bio);
387 }
388 put_nvmeq(nvmeq);
389
390 return 0;
391}
392
393struct sync_cmd_info {
394 struct task_struct *task;
395 u32 result;
396 int status;
397};
398
399static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
400 struct nvme_completion *cqe)
401{
402 struct sync_cmd_info *cmdinfo = ctx;
be7b6275
MW
403 if ((unsigned long)cmdinfo == CMD_CTX_CANCELLED)
404 return;
b60503ba
MW
405 cmdinfo->result = le32_to_cpup(&cqe->result);
406 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
407 wake_up_process(cmdinfo->task);
408}
409
410typedef void (*completion_fn)(struct nvme_queue *, void *,
411 struct nvme_completion *);
412
413static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
414{
82123460 415 u16 head, phase;
b60503ba
MW
416
417 static const completion_fn completions[4] = {
418 [sync_completion_id] = sync_completion,
419 [bio_completion_id] = bio_completion,
420 };
421
422 head = nvmeq->cq_head;
82123460 423 phase = nvmeq->cq_phase;
b60503ba
MW
424
425 for (;;) {
426 unsigned long data;
427 void *ptr;
428 unsigned char handler;
429 struct nvme_completion cqe = nvmeq->cqes[head];
82123460 430 if ((le16_to_cpu(cqe.status) & 1) != phase)
b60503ba
MW
431 break;
432 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
433 if (++head == nvmeq->q_depth) {
434 head = 0;
82123460 435 phase = !phase;
b60503ba
MW
436 }
437
438 data = free_cmdid(nvmeq, cqe.command_id);
439 handler = data & 3;
440 ptr = (void *)(data & ~3UL);
441 completions[handler](nvmeq, ptr, &cqe);
442 }
443
444 /* If the controller ignores the cq head doorbell and continuously
445 * writes to the queue, it is theoretically possible to wrap around
446 * the queue twice and mistakenly return IRQ_NONE. Linux only
447 * requires that 0.1% of your interrupts are handled, so this isn't
448 * a big problem.
449 */
82123460 450 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
b60503ba
MW
451 return IRQ_NONE;
452
453 writel(head, nvmeq->q_db + 1);
454 nvmeq->cq_head = head;
82123460 455 nvmeq->cq_phase = phase;
b60503ba
MW
456
457 return IRQ_HANDLED;
458}
459
460static irqreturn_t nvme_irq(int irq, void *data)
461{
462 return nvme_process_cq(data);
463}
464
58ffacb5
MW
465static irqreturn_t nvme_irq_thread(int irq, void *data)
466{
467 irqreturn_t result;
468 struct nvme_queue *nvmeq = data;
469 spin_lock(&nvmeq->q_lock);
470 result = nvme_process_cq(nvmeq);
471 spin_unlock(&nvmeq->q_lock);
472 return result;
473}
474
475static irqreturn_t nvme_irq_check(int irq, void *data)
476{
477 struct nvme_queue *nvmeq = data;
478 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
479 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
480 return IRQ_NONE;
481 return IRQ_WAKE_THREAD;
482}
483
3c0cf138
MW
484static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
485{
486 spin_lock_irq(&nvmeq->q_lock);
be7b6275 487 cancel_cmdid_data(nvmeq, cmdid);
3c0cf138
MW
488 spin_unlock_irq(&nvmeq->q_lock);
489}
490
b60503ba
MW
491/*
492 * Returns 0 on success. If the result is negative, it's a Linux error code;
493 * if the result is positive, it's an NVM Express status code
494 */
3c0cf138
MW
495static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
496 struct nvme_command *cmd, u32 *result)
b60503ba
MW
497{
498 int cmdid;
499 struct sync_cmd_info cmdinfo;
500
501 cmdinfo.task = current;
502 cmdinfo.status = -EINTR;
503
3c0cf138 504 cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion_id);
b60503ba
MW
505 if (cmdid < 0)
506 return cmdid;
507 cmd->common.command_id = cmdid;
508
3c0cf138
MW
509 set_current_state(TASK_KILLABLE);
510 nvme_submit_cmd(nvmeq, cmd);
b60503ba
MW
511 schedule();
512
3c0cf138
MW
513 if (cmdinfo.status == -EINTR) {
514 nvme_abort_command(nvmeq, cmdid);
515 return -EINTR;
516 }
517
b60503ba
MW
518 if (result)
519 *result = cmdinfo.result;
520
521 return cmdinfo.status;
522}
523
524static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
525 u32 *result)
526{
527 return nvme_submit_sync_cmd(dev->queues[0], cmd, result);
528}
529
530static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
531{
532 int status;
533 struct nvme_command c;
534
535 memset(&c, 0, sizeof(c));
536 c.delete_queue.opcode = opcode;
537 c.delete_queue.qid = cpu_to_le16(id);
538
539 status = nvme_submit_admin_cmd(dev, &c, NULL);
540 if (status)
541 return -EIO;
542 return 0;
543}
544
545static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
546 struct nvme_queue *nvmeq)
547{
548 int status;
549 struct nvme_command c;
550 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
551
552 memset(&c, 0, sizeof(c));
553 c.create_cq.opcode = nvme_admin_create_cq;
554 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
555 c.create_cq.cqid = cpu_to_le16(qid);
556 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
557 c.create_cq.cq_flags = cpu_to_le16(flags);
558 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
559
560 status = nvme_submit_admin_cmd(dev, &c, NULL);
561 if (status)
562 return -EIO;
563 return 0;
564}
565
566static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
567 struct nvme_queue *nvmeq)
568{
569 int status;
570 struct nvme_command c;
571 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
572
573 memset(&c, 0, sizeof(c));
574 c.create_sq.opcode = nvme_admin_create_sq;
575 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
576 c.create_sq.sqid = cpu_to_le16(qid);
577 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
578 c.create_sq.sq_flags = cpu_to_le16(flags);
579 c.create_sq.cqid = cpu_to_le16(qid);
580
581 status = nvme_submit_admin_cmd(dev, &c, NULL);
582 if (status)
583 return -EIO;
584 return 0;
585}
586
587static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
588{
589 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
590}
591
592static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
593{
594 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
595}
596
597static void nvme_free_queue(struct nvme_dev *dev, int qid)
598{
599 struct nvme_queue *nvmeq = dev->queues[qid];
600
601 free_irq(dev->entry[nvmeq->cq_vector].vector, nvmeq);
602
603 /* Don't tell the adapter to delete the admin queue */
604 if (qid) {
605 adapter_delete_sq(dev, qid);
606 adapter_delete_cq(dev, qid);
607 }
608
609 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
610 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
611 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
612 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
613 kfree(nvmeq);
614}
615
616static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
617 int depth, int vector)
618{
619 struct device *dmadev = &dev->pci_dev->dev;
620 unsigned extra = (depth + BITS_TO_LONGS(depth)) * sizeof(long);
621 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
622 if (!nvmeq)
623 return NULL;
624
625 nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
626 &nvmeq->cq_dma_addr, GFP_KERNEL);
627 if (!nvmeq->cqes)
628 goto free_nvmeq;
629 memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
630
631 nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
632 &nvmeq->sq_dma_addr, GFP_KERNEL);
633 if (!nvmeq->sq_cmds)
634 goto free_cqdma;
635
636 nvmeq->q_dmadev = dmadev;
637 spin_lock_init(&nvmeq->q_lock);
638 nvmeq->cq_head = 0;
82123460 639 nvmeq->cq_phase = 1;
b60503ba
MW
640 init_waitqueue_head(&nvmeq->sq_full);
641 bio_list_init(&nvmeq->sq_cong);
642 nvmeq->q_db = &dev->dbs[qid * 2];
643 nvmeq->q_depth = depth;
644 nvmeq->cq_vector = vector;
645
646 return nvmeq;
647
648 free_cqdma:
649 dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
650 nvmeq->cq_dma_addr);
651 free_nvmeq:
652 kfree(nvmeq);
653 return NULL;
654}
655
3001082c
MW
656static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
657 const char *name)
658{
58ffacb5
MW
659 if (use_threaded_interrupts)
660 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
661 nvme_irq_check, nvme_irq_thread,
662 IRQF_DISABLED | IRQF_SHARED,
663 name, nvmeq);
3001082c
MW
664 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
665 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
666}
667
b60503ba
MW
668static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
669 int qid, int cq_size, int vector)
670{
671 int result;
672 struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
673
3f85d50b
MW
674 if (!nvmeq)
675 return NULL;
676
b60503ba
MW
677 result = adapter_alloc_cq(dev, qid, nvmeq);
678 if (result < 0)
679 goto free_nvmeq;
680
681 result = adapter_alloc_sq(dev, qid, nvmeq);
682 if (result < 0)
683 goto release_cq;
684
3001082c 685 result = queue_request_irq(dev, nvmeq, "nvme");
b60503ba
MW
686 if (result < 0)
687 goto release_sq;
688
689 return nvmeq;
690
691 release_sq:
692 adapter_delete_sq(dev, qid);
693 release_cq:
694 adapter_delete_cq(dev, qid);
695 free_nvmeq:
696 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
697 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
698 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
699 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
700 kfree(nvmeq);
701 return NULL;
702}
703
704static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
705{
706 int result;
707 u32 aqa;
708 struct nvme_queue *nvmeq;
709
710 dev->dbs = ((void __iomem *)dev->bar) + 4096;
711
712 nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
3f85d50b
MW
713 if (!nvmeq)
714 return -ENOMEM;
b60503ba
MW
715
716 aqa = nvmeq->q_depth - 1;
717 aqa |= aqa << 16;
718
719 dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
720 dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
721 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
722
5911f200 723 writel(0, &dev->bar->cc);
b60503ba
MW
724 writel(aqa, &dev->bar->aqa);
725 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
726 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
727 writel(dev->ctrl_config, &dev->bar->cc);
728
729 while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
730 msleep(100);
731 if (fatal_signal_pending(current))
732 return -EINTR;
733 }
734
3001082c 735 result = queue_request_irq(dev, nvmeq, "nvme admin");
b60503ba
MW
736 dev->queues[0] = nvmeq;
737 return result;
738}
739
7fc3cdab
MW
740static int nvme_map_user_pages(struct nvme_dev *dev, int write,
741 unsigned long addr, unsigned length,
742 struct scatterlist **sgp)
b60503ba 743{
36c14ed9 744 int i, err, count, nents, offset;
7fc3cdab
MW
745 struct scatterlist *sg;
746 struct page **pages;
36c14ed9
MW
747
748 if (addr & 3)
749 return -EINVAL;
7fc3cdab
MW
750 if (!length)
751 return -EINVAL;
752
36c14ed9 753 offset = offset_in_page(addr);
7fc3cdab
MW
754 count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
755 pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
36c14ed9
MW
756
757 err = get_user_pages_fast(addr, count, 1, pages);
758 if (err < count) {
759 count = err;
760 err = -EFAULT;
761 goto put_pages;
762 }
7fc3cdab
MW
763
764 sg = kcalloc(count, sizeof(*sg), GFP_KERNEL);
36c14ed9 765 sg_init_table(sg, count);
ff22b54f 766 sg_set_page(&sg[0], pages[0], PAGE_SIZE - offset, offset);
7fc3cdab
MW
767 length -= (PAGE_SIZE - offset);
768 for (i = 1; i < count; i++) {
769 sg_set_page(&sg[i], pages[i], min_t(int, length, PAGE_SIZE), 0);
770 length -= PAGE_SIZE;
771 }
772
773 err = -ENOMEM;
774 nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
775 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
36c14ed9
MW
776 if (!nents)
777 goto put_pages;
b60503ba 778
7fc3cdab
MW
779 kfree(pages);
780 *sgp = sg;
781 return nents;
b60503ba 782
7fc3cdab
MW
783 put_pages:
784 for (i = 0; i < count; i++)
785 put_page(pages[i]);
786 kfree(pages);
787 return err;
788}
b60503ba 789
7fc3cdab
MW
790static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
791 unsigned long addr, int length,
792 struct scatterlist *sg, int nents)
793{
794 int i, count;
b60503ba 795
7fc3cdab 796 count = DIV_ROUND_UP(offset_in_page(addr) + length, PAGE_SIZE);
36c14ed9 797 dma_unmap_sg(&dev->pci_dev->dev, sg, nents, DMA_FROM_DEVICE);
7fc3cdab 798
36c14ed9 799 for (i = 0; i < count; i++)
7fc3cdab
MW
800 put_page(sg_page(&sg[i]));
801}
b60503ba 802
7fc3cdab
MW
803static int nvme_submit_user_admin_command(struct nvme_dev *dev,
804 unsigned long addr, unsigned length,
805 struct nvme_command *cmd)
806{
807 int err, nents;
808 struct scatterlist *sg;
809
810 nents = nvme_map_user_pages(dev, 0, addr, length, &sg);
811 if (nents < 0)
812 return nents;
813 nvme_setup_prps(&cmd->common, sg, length);
814 err = nvme_submit_admin_cmd(dev, cmd, NULL);
815 nvme_unmap_user_pages(dev, 0, addr, length, sg, nents);
816 return err ? -EIO : 0;
b60503ba
MW
817}
818
bd38c555 819static int nvme_identify(struct nvme_ns *ns, unsigned long addr, int cns)
b60503ba 820{
b60503ba 821 struct nvme_command c;
b60503ba 822
bd38c555
MW
823 memset(&c, 0, sizeof(c));
824 c.identify.opcode = nvme_admin_identify;
825 c.identify.nsid = cns ? 0 : cpu_to_le32(ns->ns_id);
826 c.identify.cns = cpu_to_le32(cns);
827
828 return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
829}
830
831static int nvme_get_range_type(struct nvme_ns *ns, unsigned long addr)
832{
833 struct nvme_command c;
b60503ba
MW
834
835 memset(&c, 0, sizeof(c));
836 c.features.opcode = nvme_admin_get_features;
837 c.features.nsid = cpu_to_le32(ns->ns_id);
b60503ba
MW
838 c.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
839
bd38c555 840 return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
b60503ba
MW
841}
842
a53295b6
MW
843static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
844{
845 struct nvme_dev *dev = ns->dev;
846 struct nvme_queue *nvmeq;
847 struct nvme_user_io io;
848 struct nvme_command c;
849 unsigned length;
850 u32 result;
851 int nents, status;
852 struct scatterlist *sg;
853
854 if (copy_from_user(&io, uio, sizeof(io)))
855 return -EFAULT;
856 length = io.nblocks << io.block_shift;
857 nents = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length, &sg);
858 if (nents < 0)
859 return nents;
860
861 memset(&c, 0, sizeof(c));
862 c.rw.opcode = io.opcode;
863 c.rw.flags = io.flags;
864 c.rw.nsid = cpu_to_le32(io.nsid);
865 c.rw.slba = cpu_to_le64(io.slba);
866 c.rw.length = cpu_to_le16(io.nblocks - 1);
867 c.rw.control = cpu_to_le16(io.control);
868 c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
869 c.rw.reftag = cpu_to_le32(io.reftag); /* XXX: endian? */
870 c.rw.apptag = cpu_to_le16(io.apptag);
871 c.rw.appmask = cpu_to_le16(io.appmask);
872 /* XXX: metadata */
873 nvme_setup_prps(&c.common, sg, length);
874
875 nvmeq = get_nvmeq(ns);
b1ad37ef
MW
876 /* Since nvme_submit_sync_cmd sleeps, we can't keep preemption
877 * disabled. We may be preempted at any point, and be rescheduled
878 * to a different CPU. That will cause cacheline bouncing, but no
879 * additional races since q_lock already protects against other CPUs.
880 */
a53295b6 881 put_nvmeq(nvmeq);
b1ad37ef 882 status = nvme_submit_sync_cmd(nvmeq, &c, &result);
a53295b6
MW
883
884 nvme_unmap_user_pages(dev, io.opcode & 1, io.addr, length, sg, nents);
885 put_user(result, &uio->result);
886 return status;
887}
888
6ee44cdc
MW
889static int nvme_download_firmware(struct nvme_ns *ns,
890 struct nvme_dlfw __user *udlfw)
891{
892 struct nvme_dev *dev = ns->dev;
893 struct nvme_dlfw dlfw;
894 struct nvme_command c;
895 int nents, status;
896 struct scatterlist *sg;
897
898 if (copy_from_user(&dlfw, udlfw, sizeof(dlfw)))
899 return -EFAULT;
900 if (dlfw.length >= (1 << 30))
901 return -EINVAL;
902
903 nents = nvme_map_user_pages(dev, 1, dlfw.addr, dlfw.length * 4, &sg);
904 if (nents < 0)
905 return nents;
906
907 memset(&c, 0, sizeof(c));
908 c.dlfw.opcode = nvme_admin_download_fw;
909 c.dlfw.numd = cpu_to_le32(dlfw.length);
910 c.dlfw.offset = cpu_to_le32(dlfw.offset);
911 nvme_setup_prps(&c.common, sg, dlfw.length * 4);
912
913 status = nvme_submit_admin_cmd(dev, &c, NULL);
914 nvme_unmap_user_pages(dev, 0, dlfw.addr, dlfw.length * 4, sg, nents);
915 return status;
916}
917
918static int nvme_activate_firmware(struct nvme_ns *ns, unsigned long arg)
919{
920 struct nvme_dev *dev = ns->dev;
921 struct nvme_command c;
922
923 memset(&c, 0, sizeof(c));
924 c.common.opcode = nvme_admin_activate_fw;
925 c.common.rsvd10[0] = cpu_to_le32(arg);
926
927 return nvme_submit_admin_cmd(dev, &c, NULL);
928}
929
b60503ba
MW
930static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
931 unsigned long arg)
932{
933 struct nvme_ns *ns = bdev->bd_disk->private_data;
934
935 switch (cmd) {
936 case NVME_IOCTL_IDENTIFY_NS:
36c14ed9 937 return nvme_identify(ns, arg, 0);
b60503ba 938 case NVME_IOCTL_IDENTIFY_CTRL:
36c14ed9 939 return nvme_identify(ns, arg, 1);
b60503ba 940 case NVME_IOCTL_GET_RANGE_TYPE:
bd38c555 941 return nvme_get_range_type(ns, arg);
a53295b6
MW
942 case NVME_IOCTL_SUBMIT_IO:
943 return nvme_submit_io(ns, (void __user *)arg);
6ee44cdc
MW
944 case NVME_IOCTL_DOWNLOAD_FW:
945 return nvme_download_firmware(ns, (void __user *)arg);
946 case NVME_IOCTL_ACTIVATE_FW:
947 return nvme_activate_firmware(ns, arg);
b60503ba
MW
948 default:
949 return -ENOTTY;
950 }
951}
952
953static const struct block_device_operations nvme_fops = {
954 .owner = THIS_MODULE,
955 .ioctl = nvme_ioctl,
956};
957
958static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int index,
959 struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
960{
961 struct nvme_ns *ns;
962 struct gendisk *disk;
963 int lbaf;
964
965 if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
966 return NULL;
967
968 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
969 if (!ns)
970 return NULL;
971 ns->queue = blk_alloc_queue(GFP_KERNEL);
972 if (!ns->queue)
973 goto out_free_ns;
974 ns->queue->queue_flags = QUEUE_FLAG_DEFAULT | QUEUE_FLAG_NOMERGES |
975 QUEUE_FLAG_NONROT | QUEUE_FLAG_DISCARD;
976 blk_queue_make_request(ns->queue, nvme_make_request);
977 ns->dev = dev;
978 ns->queue->queuedata = ns;
979
980 disk = alloc_disk(NVME_MINORS);
981 if (!disk)
982 goto out_free_queue;
983 ns->ns_id = index;
984 ns->disk = disk;
985 lbaf = id->flbas & 0xf;
986 ns->lba_shift = id->lbaf[lbaf].ds;
987
988 disk->major = nvme_major;
989 disk->minors = NVME_MINORS;
990 disk->first_minor = NVME_MINORS * index;
991 disk->fops = &nvme_fops;
992 disk->private_data = ns;
993 disk->queue = ns->queue;
388f037f 994 disk->driverfs_dev = &dev->pci_dev->dev;
b60503ba
MW
995 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, index);
996 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
997
998 return ns;
999
1000 out_free_queue:
1001 blk_cleanup_queue(ns->queue);
1002 out_free_ns:
1003 kfree(ns);
1004 return NULL;
1005}
1006
1007static void nvme_ns_free(struct nvme_ns *ns)
1008{
1009 put_disk(ns->disk);
1010 blk_cleanup_queue(ns->queue);
1011 kfree(ns);
1012}
1013
b3b06812 1014static int set_queue_count(struct nvme_dev *dev, int count)
b60503ba
MW
1015{
1016 int status;
1017 u32 result;
1018 struct nvme_command c;
b3b06812 1019 u32 q_count = (count - 1) | ((count - 1) << 16);
b60503ba
MW
1020
1021 memset(&c, 0, sizeof(c));
1022 c.features.opcode = nvme_admin_get_features;
1023 c.features.fid = cpu_to_le32(NVME_FEAT_NUM_QUEUES);
1024 c.features.dword11 = cpu_to_le32(q_count);
1025
1026 status = nvme_submit_admin_cmd(dev, &c, &result);
1027 if (status)
1028 return -EIO;
1029 return min(result & 0xffff, result >> 16) + 1;
1030}
1031
b60503ba
MW
1032static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
1033{
1b23484b 1034 int result, cpu, i, nr_queues;
b60503ba 1035
1b23484b
MW
1036 nr_queues = num_online_cpus();
1037 result = set_queue_count(dev, nr_queues);
1038 if (result < 0)
1039 return result;
1040 if (result < nr_queues)
1041 nr_queues = result;
b60503ba 1042
1b23484b
MW
1043 /* Deregister the admin queue's interrupt */
1044 free_irq(dev->entry[0].vector, dev->queues[0]);
1045
1046 for (i = 0; i < nr_queues; i++)
1047 dev->entry[i].entry = i;
1048 for (;;) {
1049 result = pci_enable_msix(dev->pci_dev, dev->entry, nr_queues);
1050 if (result == 0) {
1051 break;
1052 } else if (result > 0) {
1053 nr_queues = result;
1054 continue;
1055 } else {
1056 nr_queues = 1;
1057 break;
1058 }
1059 }
1060
1061 result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1062 /* XXX: handle failure here */
1063
1064 cpu = cpumask_first(cpu_online_mask);
1065 for (i = 0; i < nr_queues; i++) {
1066 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1067 cpu = cpumask_next(cpu, cpu_online_mask);
1068 }
1069
1070 for (i = 0; i < nr_queues; i++) {
1071 dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
1072 NVME_Q_DEPTH, i);
1073 if (!dev->queues[i + 1])
1074 return -ENOMEM;
1075 dev->queue_count++;
1076 }
b60503ba
MW
1077
1078 return 0;
1079}
1080
1081static void nvme_free_queues(struct nvme_dev *dev)
1082{
1083 int i;
1084
1085 for (i = dev->queue_count - 1; i >= 0; i--)
1086 nvme_free_queue(dev, i);
1087}
1088
1089static int __devinit nvme_dev_add(struct nvme_dev *dev)
1090{
1091 int res, nn, i;
1092 struct nvme_ns *ns, *next;
51814232 1093 struct nvme_id_ctrl *ctrl;
b60503ba
MW
1094 void *id;
1095 dma_addr_t dma_addr;
1096 struct nvme_command cid, crt;
1097
1098 res = nvme_setup_io_queues(dev);
1099 if (res)
1100 return res;
1101
1102 /* XXX: Switch to a SG list once prp2 works */
1103 id = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1104 GFP_KERNEL);
1105
1106 memset(&cid, 0, sizeof(cid));
1107 cid.identify.opcode = nvme_admin_identify;
1108 cid.identify.nsid = 0;
1109 cid.identify.prp1 = cpu_to_le64(dma_addr);
1110 cid.identify.cns = cpu_to_le32(1);
1111
1112 res = nvme_submit_admin_cmd(dev, &cid, NULL);
1113 if (res) {
1114 res = -EIO;
1115 goto out_free;
1116 }
1117
51814232
MW
1118 ctrl = id;
1119 nn = le32_to_cpup(&ctrl->nn);
1120 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1121 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1122 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
b60503ba
MW
1123
1124 cid.identify.cns = 0;
1125 memset(&crt, 0, sizeof(crt));
1126 crt.features.opcode = nvme_admin_get_features;
1127 crt.features.prp1 = cpu_to_le64(dma_addr + 4096);
1128 crt.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
1129
1130 for (i = 0; i < nn; i++) {
1131 cid.identify.nsid = cpu_to_le32(i);
1132 res = nvme_submit_admin_cmd(dev, &cid, NULL);
1133 if (res)
1134 continue;
1135
1136 if (((struct nvme_id_ns *)id)->ncap == 0)
1137 continue;
1138
1139 crt.features.nsid = cpu_to_le32(i);
1140 res = nvme_submit_admin_cmd(dev, &crt, NULL);
1141 if (res)
1142 continue;
1143
1144 ns = nvme_alloc_ns(dev, i, id, id + 4096);
1145 if (ns)
1146 list_add_tail(&ns->list, &dev->namespaces);
1147 }
1148 list_for_each_entry(ns, &dev->namespaces, list)
1149 add_disk(ns->disk);
1150
1151 dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1152 return 0;
1153
1154 out_free:
1155 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1156 list_del(&ns->list);
1157 nvme_ns_free(ns);
1158 }
1159
1160 dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1161 return res;
1162}
1163
1164static int nvme_dev_remove(struct nvme_dev *dev)
1165{
1166 struct nvme_ns *ns, *next;
1167
1168 /* TODO: wait all I/O finished or cancel them */
1169
1170 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1171 list_del(&ns->list);
1172 del_gendisk(ns->disk);
1173 nvme_ns_free(ns);
1174 }
1175
1176 nvme_free_queues(dev);
1177
1178 return 0;
1179}
1180
1181/* XXX: Use an ida or something to let remove / add work correctly */
1182static void nvme_set_instance(struct nvme_dev *dev)
1183{
1184 static int instance;
1185 dev->instance = instance++;
1186}
1187
1188static void nvme_release_instance(struct nvme_dev *dev)
1189{
1190}
1191
1192static int __devinit nvme_probe(struct pci_dev *pdev,
1193 const struct pci_device_id *id)
1194{
574e8b95 1195 int bars, result = -ENOMEM;
b60503ba
MW
1196 struct nvme_dev *dev;
1197
1198 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1199 if (!dev)
1200 return -ENOMEM;
1201 dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1202 GFP_KERNEL);
1203 if (!dev->entry)
1204 goto free;
1b23484b
MW
1205 dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1206 GFP_KERNEL);
b60503ba
MW
1207 if (!dev->queues)
1208 goto free;
1209
0ee5a7d7
SMM
1210 if (pci_enable_device_mem(pdev))
1211 goto free;
f64d3365 1212 pci_set_master(pdev);
574e8b95
MW
1213 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1214 if (pci_request_selected_regions(pdev, bars, "nvme"))
1215 goto disable;
0ee5a7d7 1216
b60503ba
MW
1217 INIT_LIST_HEAD(&dev->namespaces);
1218 dev->pci_dev = pdev;
1219 pci_set_drvdata(pdev, dev);
2930353f
MW
1220 dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1221 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
b60503ba 1222 nvme_set_instance(dev);
53c9577e 1223 dev->entry[0].vector = pdev->irq;
b60503ba
MW
1224
1225 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1226 if (!dev->bar) {
1227 result = -ENOMEM;
574e8b95 1228 goto disable_msix;
b60503ba
MW
1229 }
1230
1231 result = nvme_configure_admin_queue(dev);
1232 if (result)
1233 goto unmap;
1234 dev->queue_count++;
1235
1236 result = nvme_dev_add(dev);
1237 if (result)
1238 goto delete;
1239 return 0;
1240
1241 delete:
1242 nvme_free_queues(dev);
1243 unmap:
1244 iounmap(dev->bar);
574e8b95 1245 disable_msix:
b60503ba
MW
1246 pci_disable_msix(pdev);
1247 nvme_release_instance(dev);
574e8b95 1248 disable:
0ee5a7d7 1249 pci_disable_device(pdev);
574e8b95 1250 pci_release_regions(pdev);
b60503ba
MW
1251 free:
1252 kfree(dev->queues);
1253 kfree(dev->entry);
1254 kfree(dev);
1255 return result;
1256}
1257
1258static void __devexit nvme_remove(struct pci_dev *pdev)
1259{
1260 struct nvme_dev *dev = pci_get_drvdata(pdev);
1261 nvme_dev_remove(dev);
1262 pci_disable_msix(pdev);
1263 iounmap(dev->bar);
1264 nvme_release_instance(dev);
0ee5a7d7 1265 pci_disable_device(pdev);
574e8b95 1266 pci_release_regions(pdev);
b60503ba
MW
1267 kfree(dev->queues);
1268 kfree(dev->entry);
1269 kfree(dev);
1270}
1271
1272/* These functions are yet to be implemented */
1273#define nvme_error_detected NULL
1274#define nvme_dump_registers NULL
1275#define nvme_link_reset NULL
1276#define nvme_slot_reset NULL
1277#define nvme_error_resume NULL
1278#define nvme_suspend NULL
1279#define nvme_resume NULL
1280
1281static struct pci_error_handlers nvme_err_handler = {
1282 .error_detected = nvme_error_detected,
1283 .mmio_enabled = nvme_dump_registers,
1284 .link_reset = nvme_link_reset,
1285 .slot_reset = nvme_slot_reset,
1286 .resume = nvme_error_resume,
1287};
1288
1289/* Move to pci_ids.h later */
1290#define PCI_CLASS_STORAGE_EXPRESS 0x010802
1291
1292static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1293 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1294 { 0, }
1295};
1296MODULE_DEVICE_TABLE(pci, nvme_id_table);
1297
1298static struct pci_driver nvme_driver = {
1299 .name = "nvme",
1300 .id_table = nvme_id_table,
1301 .probe = nvme_probe,
1302 .remove = __devexit_p(nvme_remove),
1303 .suspend = nvme_suspend,
1304 .resume = nvme_resume,
1305 .err_handler = &nvme_err_handler,
1306};
1307
1308static int __init nvme_init(void)
1309{
1310 int result;
1311
1312 nvme_major = register_blkdev(nvme_major, "nvme");
1313 if (nvme_major <= 0)
1314 return -EBUSY;
1315
1316 result = pci_register_driver(&nvme_driver);
1317 if (!result)
1318 return 0;
1319
1320 unregister_blkdev(nvme_major, "nvme");
1321 return result;
1322}
1323
1324static void __exit nvme_exit(void)
1325{
1326 pci_unregister_driver(&nvme_driver);
1327 unregister_blkdev(nvme_major, "nvme");
1328}
1329
1330MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1331MODULE_LICENSE("GPL");
db5d0c19 1332MODULE_VERSION("0.2");
b60503ba
MW
1333module_init(nvme_init);
1334module_exit(nvme_exit);