NVMe: Rename 'cycle' to 'phase'
[linux-2.6-block.git] / drivers / block / nvme.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
3 * Copyright (c) 2011, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19#include <linux/nvme.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
22#include <linux/errno.h>
23#include <linux/fs.h>
24#include <linux/genhd.h>
25#include <linux/init.h>
26#include <linux/interrupt.h>
27#include <linux/io.h>
28#include <linux/kdev_t.h>
29#include <linux/kernel.h>
30#include <linux/mm.h>
31#include <linux/module.h>
32#include <linux/moduleparam.h>
33#include <linux/pci.h>
34#include <linux/sched.h>
35#include <linux/slab.h>
36#include <linux/types.h>
37#include <linux/version.h>
38
39#define NVME_Q_DEPTH 1024
40#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
41#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
42#define NVME_MINORS 64
43
44static int nvme_major;
45module_param(nvme_major, int, 0);
46
47/*
48 * Represents an NVM Express device. Each nvme_dev is a PCI function.
49 */
50struct nvme_dev {
51 struct list_head node;
52 struct nvme_queue **queues;
53 u32 __iomem *dbs;
54 struct pci_dev *pci_dev;
55 int instance;
56 int queue_count;
57 u32 ctrl_config;
58 struct msix_entry *entry;
59 struct nvme_bar __iomem *bar;
60 struct list_head namespaces;
61};
62
63/*
64 * An NVM Express namespace is equivalent to a SCSI LUN
65 */
66struct nvme_ns {
67 struct list_head list;
68
69 struct nvme_dev *dev;
70 struct request_queue *queue;
71 struct gendisk *disk;
72
73 int ns_id;
74 int lba_shift;
75};
76
77/*
78 * An NVM Express queue. Each device has at least two (one for admin
79 * commands and one for I/O commands).
80 */
81struct nvme_queue {
82 struct device *q_dmadev;
83 spinlock_t q_lock;
84 struct nvme_command *sq_cmds;
85 volatile struct nvme_completion *cqes;
86 dma_addr_t sq_dma_addr;
87 dma_addr_t cq_dma_addr;
88 wait_queue_head_t sq_full;
89 struct bio_list sq_cong;
90 u32 __iomem *q_db;
91 u16 q_depth;
92 u16 cq_vector;
93 u16 sq_head;
94 u16 sq_tail;
95 u16 cq_head;
82123460 96 u16 cq_phase;
b60503ba
MW
97 unsigned long cmdid_data[];
98};
99
100/*
101 * Check we didin't inadvertently grow the command struct
102 */
103static inline void _nvme_check_size(void)
104{
105 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
106 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
107 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
108 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
109 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
110 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
111 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
112 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
113 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
114}
115
116/**
117 * alloc_cmdid - Allocate a Command ID
118 * @param nvmeq The queue that will be used for this command
119 * @param ctx A pointer that will be passed to the handler
120 * @param handler The ID of the handler to call
121 *
122 * Allocate a Command ID for a queue. The data passed in will
123 * be passed to the completion handler. This is implemented by using
124 * the bottom two bits of the ctx pointer to store the handler ID.
125 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
126 * We can change this if it becomes a problem.
127 */
128static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx, int handler)
129{
130 int depth = nvmeq->q_depth;
131 unsigned long data = (unsigned long)ctx | handler;
132 int cmdid;
133
134 BUG_ON((unsigned long)ctx & 3);
135
136 do {
137 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
138 if (cmdid >= depth)
139 return -EBUSY;
140 } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
141
142 nvmeq->cmdid_data[cmdid + BITS_TO_LONGS(depth)] = data;
143 return cmdid;
144}
145
146static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
147 int handler)
148{
149 int cmdid;
150 wait_event_killable(nvmeq->sq_full,
151 (cmdid = alloc_cmdid(nvmeq, ctx, handler)) >= 0);
152 return (cmdid < 0) ? -EINTR : cmdid;
153}
154
155/* If you need more than four handlers, you'll need to change how
156 * alloc_cmdid and nvme_process_cq work
157 */
158enum {
159 sync_completion_id = 0,
160 bio_completion_id,
161};
162
163static unsigned long free_cmdid(struct nvme_queue *nvmeq, int cmdid)
164{
165 unsigned long data;
166
167 data = nvmeq->cmdid_data[cmdid + BITS_TO_LONGS(nvmeq->q_depth)];
168 clear_bit(cmdid, nvmeq->cmdid_data);
169 wake_up(&nvmeq->sq_full);
170 return data;
171}
172
173static struct nvme_queue *get_nvmeq(struct nvme_ns *ns)
174{
1b23484b
MW
175 int qid, cpu = get_cpu();
176 if (cpu < ns->dev->queue_count)
177 qid = cpu + 1;
178 else
179 qid = (cpu % rounddown_pow_of_two(ns->dev->queue_count)) + 1;
180 return ns->dev->queues[qid];
b60503ba
MW
181}
182
183static void put_nvmeq(struct nvme_queue *nvmeq)
184{
1b23484b 185 put_cpu();
b60503ba
MW
186}
187
188/**
189 * nvme_submit_cmd: Copy a command into a queue and ring the doorbell
190 * @nvmeq: The queue to use
191 * @cmd: The command to send
192 *
193 * Safe to use from interrupt context
194 */
195static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
196{
197 unsigned long flags;
198 u16 tail;
199 /* XXX: Need to check tail isn't going to overrun head */
200 spin_lock_irqsave(&nvmeq->q_lock, flags);
201 tail = nvmeq->sq_tail;
202 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
203 writel(tail, nvmeq->q_db);
204 if (++tail == nvmeq->q_depth)
205 tail = 0;
206 nvmeq->sq_tail = tail;
207 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
208
209 return 0;
210}
211
212struct nvme_req_info {
213 struct bio *bio;
214 int nents;
215 struct scatterlist sg[0];
216};
217
218/* XXX: use a mempool */
219static struct nvme_req_info *alloc_info(unsigned nseg, gfp_t gfp)
220{
221 return kmalloc(sizeof(struct nvme_req_info) +
222 sizeof(struct scatterlist) * nseg, gfp);
223}
224
225static void free_info(struct nvme_req_info *info)
226{
227 kfree(info);
228}
229
230static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
231 struct nvme_completion *cqe)
232{
233 struct nvme_req_info *info = ctx;
234 struct bio *bio = info->bio;
235 u16 status = le16_to_cpup(&cqe->status) >> 1;
236
237 dma_unmap_sg(nvmeq->q_dmadev, info->sg, info->nents,
238 bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
239 free_info(info);
240 bio_endio(bio, status ? -EIO : 0);
241}
242
243static int nvme_map_bio(struct device *dev, struct nvme_req_info *info,
244 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
245{
246 struct bio_vec *bvec;
247 struct scatterlist *sg = info->sg;
248 int i, nsegs;
249
250 sg_init_table(sg, psegs);
251 bio_for_each_segment(bvec, bio, i) {
252 sg_set_page(sg, bvec->bv_page, bvec->bv_len, bvec->bv_offset);
253 /* XXX: handle non-mergable here */
254 nsegs++;
255 }
256 info->nents = nsegs;
257
258 return dma_map_sg(dev, info->sg, info->nents, dma_dir);
259}
260
261static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
262 struct bio *bio)
263{
264 struct nvme_rw_command *cmnd;
265 struct nvme_req_info *info;
266 enum dma_data_direction dma_dir;
267 int cmdid;
268 u16 control;
269 u32 dsmgmt;
270 unsigned long flags;
271 int psegs = bio_phys_segments(ns->queue, bio);
272
273 info = alloc_info(psegs, GFP_NOIO);
274 if (!info)
275 goto congestion;
276 info->bio = bio;
277
278 cmdid = alloc_cmdid(nvmeq, info, bio_completion_id);
279 if (unlikely(cmdid < 0))
280 goto free_info;
281
282 control = 0;
283 if (bio->bi_rw & REQ_FUA)
284 control |= NVME_RW_FUA;
285 if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
286 control |= NVME_RW_LR;
287
288 dsmgmt = 0;
289 if (bio->bi_rw & REQ_RAHEAD)
290 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
291
292 spin_lock_irqsave(&nvmeq->q_lock, flags);
293 cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail].rw;
294
295 if (bio_data_dir(bio)) {
296 cmnd->opcode = nvme_cmd_write;
297 dma_dir = DMA_TO_DEVICE;
298 } else {
299 cmnd->opcode = nvme_cmd_read;
300 dma_dir = DMA_FROM_DEVICE;
301 }
302
303 nvme_map_bio(nvmeq->q_dmadev, info, bio, dma_dir, psegs);
304
305 cmnd->flags = 1;
306 cmnd->command_id = cmdid;
307 cmnd->nsid = cpu_to_le32(ns->ns_id);
308 cmnd->prp1 = cpu_to_le64(sg_phys(info->sg));
309 /* XXX: Support more than one PRP */
310 cmnd->slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
311 cmnd->length = cpu_to_le16((bio->bi_size >> ns->lba_shift) - 1);
312 cmnd->control = cpu_to_le16(control);
313 cmnd->dsmgmt = cpu_to_le32(dsmgmt);
314
315 writel(nvmeq->sq_tail, nvmeq->q_db);
316 if (++nvmeq->sq_tail == nvmeq->q_depth)
317 nvmeq->sq_tail = 0;
318
319 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
320
321 return 0;
322
323 free_info:
324 free_info(info);
325 congestion:
326 return -EBUSY;
327}
328
329/*
330 * NB: return value of non-zero would mean that we were a stacking driver.
331 * make_request must always succeed.
332 */
333static int nvme_make_request(struct request_queue *q, struct bio *bio)
334{
335 struct nvme_ns *ns = q->queuedata;
336 struct nvme_queue *nvmeq = get_nvmeq(ns);
337
338 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
339 blk_set_queue_congested(q, rw_is_sync(bio->bi_rw));
340 bio_list_add(&nvmeq->sq_cong, bio);
341 }
342 put_nvmeq(nvmeq);
343
344 return 0;
345}
346
347struct sync_cmd_info {
348 struct task_struct *task;
349 u32 result;
350 int status;
351};
352
353static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
354 struct nvme_completion *cqe)
355{
356 struct sync_cmd_info *cmdinfo = ctx;
357 cmdinfo->result = le32_to_cpup(&cqe->result);
358 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
359 wake_up_process(cmdinfo->task);
360}
361
362typedef void (*completion_fn)(struct nvme_queue *, void *,
363 struct nvme_completion *);
364
365static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
366{
82123460 367 u16 head, phase;
b60503ba
MW
368
369 static const completion_fn completions[4] = {
370 [sync_completion_id] = sync_completion,
371 [bio_completion_id] = bio_completion,
372 };
373
374 head = nvmeq->cq_head;
82123460 375 phase = nvmeq->cq_phase;
b60503ba
MW
376
377 for (;;) {
378 unsigned long data;
379 void *ptr;
380 unsigned char handler;
381 struct nvme_completion cqe = nvmeq->cqes[head];
82123460 382 if ((le16_to_cpu(cqe.status) & 1) != phase)
b60503ba
MW
383 break;
384 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
385 if (++head == nvmeq->q_depth) {
386 head = 0;
82123460 387 phase = !phase;
b60503ba
MW
388 }
389
390 data = free_cmdid(nvmeq, cqe.command_id);
391 handler = data & 3;
392 ptr = (void *)(data & ~3UL);
393 completions[handler](nvmeq, ptr, &cqe);
394 }
395
396 /* If the controller ignores the cq head doorbell and continuously
397 * writes to the queue, it is theoretically possible to wrap around
398 * the queue twice and mistakenly return IRQ_NONE. Linux only
399 * requires that 0.1% of your interrupts are handled, so this isn't
400 * a big problem.
401 */
82123460 402 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
b60503ba
MW
403 return IRQ_NONE;
404
405 writel(head, nvmeq->q_db + 1);
406 nvmeq->cq_head = head;
82123460 407 nvmeq->cq_phase = phase;
b60503ba
MW
408
409 return IRQ_HANDLED;
410}
411
412static irqreturn_t nvme_irq(int irq, void *data)
413{
414 return nvme_process_cq(data);
415}
416
417/*
418 * Returns 0 on success. If the result is negative, it's a Linux error code;
419 * if the result is positive, it's an NVM Express status code
420 */
421static int nvme_submit_sync_cmd(struct nvme_queue *q, struct nvme_command *cmd,
422 u32 *result)
423{
424 int cmdid;
425 struct sync_cmd_info cmdinfo;
426
427 cmdinfo.task = current;
428 cmdinfo.status = -EINTR;
429
430 cmdid = alloc_cmdid_killable(q, &cmdinfo, sync_completion_id);
431 if (cmdid < 0)
432 return cmdid;
433 cmd->common.command_id = cmdid;
434
435 set_current_state(TASK_UNINTERRUPTIBLE);
436 nvme_submit_cmd(q, cmd);
437 schedule();
438
439 if (result)
440 *result = cmdinfo.result;
441
442 return cmdinfo.status;
443}
444
445static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
446 u32 *result)
447{
448 return nvme_submit_sync_cmd(dev->queues[0], cmd, result);
449}
450
451static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
452{
453 int status;
454 struct nvme_command c;
455
456 memset(&c, 0, sizeof(c));
457 c.delete_queue.opcode = opcode;
458 c.delete_queue.qid = cpu_to_le16(id);
459
460 status = nvme_submit_admin_cmd(dev, &c, NULL);
461 if (status)
462 return -EIO;
463 return 0;
464}
465
466static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
467 struct nvme_queue *nvmeq)
468{
469 int status;
470 struct nvme_command c;
471 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
472
473 memset(&c, 0, sizeof(c));
474 c.create_cq.opcode = nvme_admin_create_cq;
475 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
476 c.create_cq.cqid = cpu_to_le16(qid);
477 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
478 c.create_cq.cq_flags = cpu_to_le16(flags);
479 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
480
481 status = nvme_submit_admin_cmd(dev, &c, NULL);
482 if (status)
483 return -EIO;
484 return 0;
485}
486
487static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
488 struct nvme_queue *nvmeq)
489{
490 int status;
491 struct nvme_command c;
492 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
493
494 memset(&c, 0, sizeof(c));
495 c.create_sq.opcode = nvme_admin_create_sq;
496 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
497 c.create_sq.sqid = cpu_to_le16(qid);
498 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
499 c.create_sq.sq_flags = cpu_to_le16(flags);
500 c.create_sq.cqid = cpu_to_le16(qid);
501
502 status = nvme_submit_admin_cmd(dev, &c, NULL);
503 if (status)
504 return -EIO;
505 return 0;
506}
507
508static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
509{
510 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
511}
512
513static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
514{
515 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
516}
517
518static void nvme_free_queue(struct nvme_dev *dev, int qid)
519{
520 struct nvme_queue *nvmeq = dev->queues[qid];
521
522 free_irq(dev->entry[nvmeq->cq_vector].vector, nvmeq);
523
524 /* Don't tell the adapter to delete the admin queue */
525 if (qid) {
526 adapter_delete_sq(dev, qid);
527 adapter_delete_cq(dev, qid);
528 }
529
530 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
531 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
532 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
533 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
534 kfree(nvmeq);
535}
536
537static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
538 int depth, int vector)
539{
540 struct device *dmadev = &dev->pci_dev->dev;
541 unsigned extra = (depth + BITS_TO_LONGS(depth)) * sizeof(long);
542 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
543 if (!nvmeq)
544 return NULL;
545
546 nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
547 &nvmeq->cq_dma_addr, GFP_KERNEL);
548 if (!nvmeq->cqes)
549 goto free_nvmeq;
550 memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
551
552 nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
553 &nvmeq->sq_dma_addr, GFP_KERNEL);
554 if (!nvmeq->sq_cmds)
555 goto free_cqdma;
556
557 nvmeq->q_dmadev = dmadev;
558 spin_lock_init(&nvmeq->q_lock);
559 nvmeq->cq_head = 0;
82123460 560 nvmeq->cq_phase = 1;
b60503ba
MW
561 init_waitqueue_head(&nvmeq->sq_full);
562 bio_list_init(&nvmeq->sq_cong);
563 nvmeq->q_db = &dev->dbs[qid * 2];
564 nvmeq->q_depth = depth;
565 nvmeq->cq_vector = vector;
566
567 return nvmeq;
568
569 free_cqdma:
570 dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
571 nvmeq->cq_dma_addr);
572 free_nvmeq:
573 kfree(nvmeq);
574 return NULL;
575}
576
3001082c
MW
577static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
578 const char *name)
579{
580 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
581 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
582}
583
b60503ba
MW
584static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
585 int qid, int cq_size, int vector)
586{
587 int result;
588 struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
589
590 result = adapter_alloc_cq(dev, qid, nvmeq);
591 if (result < 0)
592 goto free_nvmeq;
593
594 result = adapter_alloc_sq(dev, qid, nvmeq);
595 if (result < 0)
596 goto release_cq;
597
3001082c 598 result = queue_request_irq(dev, nvmeq, "nvme");
b60503ba
MW
599 if (result < 0)
600 goto release_sq;
601
602 return nvmeq;
603
604 release_sq:
605 adapter_delete_sq(dev, qid);
606 release_cq:
607 adapter_delete_cq(dev, qid);
608 free_nvmeq:
609 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
610 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
611 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
612 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
613 kfree(nvmeq);
614 return NULL;
615}
616
617static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
618{
619 int result;
620 u32 aqa;
621 struct nvme_queue *nvmeq;
622
623 dev->dbs = ((void __iomem *)dev->bar) + 4096;
624
625 nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
626
627 aqa = nvmeq->q_depth - 1;
628 aqa |= aqa << 16;
629
630 dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
631 dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
632 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
633
634 writel(aqa, &dev->bar->aqa);
635 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
636 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
637 writel(dev->ctrl_config, &dev->bar->cc);
638
639 while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
640 msleep(100);
641 if (fatal_signal_pending(current))
642 return -EINTR;
643 }
644
3001082c 645 result = queue_request_irq(dev, nvmeq, "nvme admin");
b60503ba
MW
646 dev->queues[0] = nvmeq;
647 return result;
648}
649
650static int nvme_identify(struct nvme_ns *ns, void __user *addr, int cns)
651{
652 struct nvme_dev *dev = ns->dev;
653 int status;
654 struct nvme_command c;
655 void *page;
656 dma_addr_t dma_addr;
657
658 page = dma_alloc_coherent(&dev->pci_dev->dev, 4096, &dma_addr,
659 GFP_KERNEL);
660
661 memset(&c, 0, sizeof(c));
662 c.identify.opcode = nvme_admin_identify;
663 c.identify.nsid = cns ? 0 : cpu_to_le32(ns->ns_id);
664 c.identify.prp1 = cpu_to_le64(dma_addr);
665 c.identify.cns = cpu_to_le32(cns);
666
667 status = nvme_submit_admin_cmd(dev, &c, NULL);
668
669 if (status)
670 status = -EIO;
671 else if (copy_to_user(addr, page, 4096))
672 status = -EFAULT;
673
674 dma_free_coherent(&dev->pci_dev->dev, 4096, page, dma_addr);
675
676 return status;
677}
678
679static int nvme_get_range_type(struct nvme_ns *ns, void __user *addr)
680{
681 struct nvme_dev *dev = ns->dev;
682 int status;
683 struct nvme_command c;
684 void *page;
685 dma_addr_t dma_addr;
686
687 page = dma_alloc_coherent(&dev->pci_dev->dev, 4096, &dma_addr,
688 GFP_KERNEL);
689
690 memset(&c, 0, sizeof(c));
691 c.features.opcode = nvme_admin_get_features;
692 c.features.nsid = cpu_to_le32(ns->ns_id);
693 c.features.prp1 = cpu_to_le64(dma_addr);
694 c.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
695
696 status = nvme_submit_admin_cmd(dev, &c, NULL);
697
698 /* XXX: Assuming first range for now */
699 if (status)
700 status = -EIO;
701 else if (copy_to_user(addr, page, 64))
702 status = -EFAULT;
703
704 dma_free_coherent(&dev->pci_dev->dev, 4096, page, dma_addr);
705
706 return status;
707}
708
709static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
710 unsigned long arg)
711{
712 struct nvme_ns *ns = bdev->bd_disk->private_data;
713
714 switch (cmd) {
715 case NVME_IOCTL_IDENTIFY_NS:
716 return nvme_identify(ns, (void __user *)arg, 0);
717 case NVME_IOCTL_IDENTIFY_CTRL:
718 return nvme_identify(ns, (void __user *)arg, 1);
719 case NVME_IOCTL_GET_RANGE_TYPE:
720 return nvme_get_range_type(ns, (void __user *)arg);
721 default:
722 return -ENOTTY;
723 }
724}
725
726static const struct block_device_operations nvme_fops = {
727 .owner = THIS_MODULE,
728 .ioctl = nvme_ioctl,
729};
730
731static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int index,
732 struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
733{
734 struct nvme_ns *ns;
735 struct gendisk *disk;
736 int lbaf;
737
738 if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
739 return NULL;
740
741 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
742 if (!ns)
743 return NULL;
744 ns->queue = blk_alloc_queue(GFP_KERNEL);
745 if (!ns->queue)
746 goto out_free_ns;
747 ns->queue->queue_flags = QUEUE_FLAG_DEFAULT | QUEUE_FLAG_NOMERGES |
748 QUEUE_FLAG_NONROT | QUEUE_FLAG_DISCARD;
749 blk_queue_make_request(ns->queue, nvme_make_request);
750 ns->dev = dev;
751 ns->queue->queuedata = ns;
752
753 disk = alloc_disk(NVME_MINORS);
754 if (!disk)
755 goto out_free_queue;
756 ns->ns_id = index;
757 ns->disk = disk;
758 lbaf = id->flbas & 0xf;
759 ns->lba_shift = id->lbaf[lbaf].ds;
760
761 disk->major = nvme_major;
762 disk->minors = NVME_MINORS;
763 disk->first_minor = NVME_MINORS * index;
764 disk->fops = &nvme_fops;
765 disk->private_data = ns;
766 disk->queue = ns->queue;
767 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, index);
768 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
769
770 return ns;
771
772 out_free_queue:
773 blk_cleanup_queue(ns->queue);
774 out_free_ns:
775 kfree(ns);
776 return NULL;
777}
778
779static void nvme_ns_free(struct nvme_ns *ns)
780{
781 put_disk(ns->disk);
782 blk_cleanup_queue(ns->queue);
783 kfree(ns);
784}
785
b3b06812 786static int set_queue_count(struct nvme_dev *dev, int count)
b60503ba
MW
787{
788 int status;
789 u32 result;
790 struct nvme_command c;
b3b06812 791 u32 q_count = (count - 1) | ((count - 1) << 16);
b60503ba
MW
792
793 memset(&c, 0, sizeof(c));
794 c.features.opcode = nvme_admin_get_features;
795 c.features.fid = cpu_to_le32(NVME_FEAT_NUM_QUEUES);
796 c.features.dword11 = cpu_to_le32(q_count);
797
798 status = nvme_submit_admin_cmd(dev, &c, &result);
799 if (status)
800 return -EIO;
801 return min(result & 0xffff, result >> 16) + 1;
802}
803
b60503ba
MW
804static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
805{
1b23484b 806 int result, cpu, i, nr_queues;
b60503ba 807
1b23484b
MW
808 nr_queues = num_online_cpus();
809 result = set_queue_count(dev, nr_queues);
810 if (result < 0)
811 return result;
812 if (result < nr_queues)
813 nr_queues = result;
b60503ba 814
1b23484b
MW
815 /* Deregister the admin queue's interrupt */
816 free_irq(dev->entry[0].vector, dev->queues[0]);
817
818 for (i = 0; i < nr_queues; i++)
819 dev->entry[i].entry = i;
820 for (;;) {
821 result = pci_enable_msix(dev->pci_dev, dev->entry, nr_queues);
822 if (result == 0) {
823 break;
824 } else if (result > 0) {
825 nr_queues = result;
826 continue;
827 } else {
828 nr_queues = 1;
829 break;
830 }
831 }
832
833 result = queue_request_irq(dev, dev->queues[0], "nvme admin");
834 /* XXX: handle failure here */
835
836 cpu = cpumask_first(cpu_online_mask);
837 for (i = 0; i < nr_queues; i++) {
838 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
839 cpu = cpumask_next(cpu, cpu_online_mask);
840 }
841
842 for (i = 0; i < nr_queues; i++) {
843 dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
844 NVME_Q_DEPTH, i);
845 if (!dev->queues[i + 1])
846 return -ENOMEM;
847 dev->queue_count++;
848 }
b60503ba
MW
849
850 return 0;
851}
852
853static void nvme_free_queues(struct nvme_dev *dev)
854{
855 int i;
856
857 for (i = dev->queue_count - 1; i >= 0; i--)
858 nvme_free_queue(dev, i);
859}
860
861static int __devinit nvme_dev_add(struct nvme_dev *dev)
862{
863 int res, nn, i;
864 struct nvme_ns *ns, *next;
865 void *id;
866 dma_addr_t dma_addr;
867 struct nvme_command cid, crt;
868
869 res = nvme_setup_io_queues(dev);
870 if (res)
871 return res;
872
873 /* XXX: Switch to a SG list once prp2 works */
874 id = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
875 GFP_KERNEL);
876
877 memset(&cid, 0, sizeof(cid));
878 cid.identify.opcode = nvme_admin_identify;
879 cid.identify.nsid = 0;
880 cid.identify.prp1 = cpu_to_le64(dma_addr);
881 cid.identify.cns = cpu_to_le32(1);
882
883 res = nvme_submit_admin_cmd(dev, &cid, NULL);
884 if (res) {
885 res = -EIO;
886 goto out_free;
887 }
888
889 nn = le32_to_cpup(&((struct nvme_id_ctrl *)id)->nn);
890
891 cid.identify.cns = 0;
892 memset(&crt, 0, sizeof(crt));
893 crt.features.opcode = nvme_admin_get_features;
894 crt.features.prp1 = cpu_to_le64(dma_addr + 4096);
895 crt.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
896
897 for (i = 0; i < nn; i++) {
898 cid.identify.nsid = cpu_to_le32(i);
899 res = nvme_submit_admin_cmd(dev, &cid, NULL);
900 if (res)
901 continue;
902
903 if (((struct nvme_id_ns *)id)->ncap == 0)
904 continue;
905
906 crt.features.nsid = cpu_to_le32(i);
907 res = nvme_submit_admin_cmd(dev, &crt, NULL);
908 if (res)
909 continue;
910
911 ns = nvme_alloc_ns(dev, i, id, id + 4096);
912 if (ns)
913 list_add_tail(&ns->list, &dev->namespaces);
914 }
915 list_for_each_entry(ns, &dev->namespaces, list)
916 add_disk(ns->disk);
917
918 dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
919 return 0;
920
921 out_free:
922 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
923 list_del(&ns->list);
924 nvme_ns_free(ns);
925 }
926
927 dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
928 return res;
929}
930
931static int nvme_dev_remove(struct nvme_dev *dev)
932{
933 struct nvme_ns *ns, *next;
934
935 /* TODO: wait all I/O finished or cancel them */
936
937 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
938 list_del(&ns->list);
939 del_gendisk(ns->disk);
940 nvme_ns_free(ns);
941 }
942
943 nvme_free_queues(dev);
944
945 return 0;
946}
947
948/* XXX: Use an ida or something to let remove / add work correctly */
949static void nvme_set_instance(struct nvme_dev *dev)
950{
951 static int instance;
952 dev->instance = instance++;
953}
954
955static void nvme_release_instance(struct nvme_dev *dev)
956{
957}
958
959static int __devinit nvme_probe(struct pci_dev *pdev,
960 const struct pci_device_id *id)
961{
962 int result = -ENOMEM;
963 struct nvme_dev *dev;
964
965 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
966 if (!dev)
967 return -ENOMEM;
968 dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
969 GFP_KERNEL);
970 if (!dev->entry)
971 goto free;
1b23484b
MW
972 dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
973 GFP_KERNEL);
b60503ba
MW
974 if (!dev->queues)
975 goto free;
976
977 INIT_LIST_HEAD(&dev->namespaces);
978 dev->pci_dev = pdev;
979 pci_set_drvdata(pdev, dev);
980 dma_set_mask(&dev->pci_dev->dev, DMA_BIT_MASK(64));
981 nvme_set_instance(dev);
982
983 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
984 if (!dev->bar) {
985 result = -ENOMEM;
986 goto disable;
987 }
988
989 result = nvme_configure_admin_queue(dev);
990 if (result)
991 goto unmap;
992 dev->queue_count++;
993
994 result = nvme_dev_add(dev);
995 if (result)
996 goto delete;
997 return 0;
998
999 delete:
1000 nvme_free_queues(dev);
1001 unmap:
1002 iounmap(dev->bar);
1003 disable:
1004 pci_disable_msix(pdev);
1005 nvme_release_instance(dev);
1006 free:
1007 kfree(dev->queues);
1008 kfree(dev->entry);
1009 kfree(dev);
1010 return result;
1011}
1012
1013static void __devexit nvme_remove(struct pci_dev *pdev)
1014{
1015 struct nvme_dev *dev = pci_get_drvdata(pdev);
1016 nvme_dev_remove(dev);
1017 pci_disable_msix(pdev);
1018 iounmap(dev->bar);
1019 nvme_release_instance(dev);
1020 kfree(dev->queues);
1021 kfree(dev->entry);
1022 kfree(dev);
1023}
1024
1025/* These functions are yet to be implemented */
1026#define nvme_error_detected NULL
1027#define nvme_dump_registers NULL
1028#define nvme_link_reset NULL
1029#define nvme_slot_reset NULL
1030#define nvme_error_resume NULL
1031#define nvme_suspend NULL
1032#define nvme_resume NULL
1033
1034static struct pci_error_handlers nvme_err_handler = {
1035 .error_detected = nvme_error_detected,
1036 .mmio_enabled = nvme_dump_registers,
1037 .link_reset = nvme_link_reset,
1038 .slot_reset = nvme_slot_reset,
1039 .resume = nvme_error_resume,
1040};
1041
1042/* Move to pci_ids.h later */
1043#define PCI_CLASS_STORAGE_EXPRESS 0x010802
1044
1045static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1046 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1047 { 0, }
1048};
1049MODULE_DEVICE_TABLE(pci, nvme_id_table);
1050
1051static struct pci_driver nvme_driver = {
1052 .name = "nvme",
1053 .id_table = nvme_id_table,
1054 .probe = nvme_probe,
1055 .remove = __devexit_p(nvme_remove),
1056 .suspend = nvme_suspend,
1057 .resume = nvme_resume,
1058 .err_handler = &nvme_err_handler,
1059};
1060
1061static int __init nvme_init(void)
1062{
1063 int result;
1064
1065 nvme_major = register_blkdev(nvme_major, "nvme");
1066 if (nvme_major <= 0)
1067 return -EBUSY;
1068
1069 result = pci_register_driver(&nvme_driver);
1070 if (!result)
1071 return 0;
1072
1073 unregister_blkdev(nvme_major, "nvme");
1074 return result;
1075}
1076
1077static void __exit nvme_exit(void)
1078{
1079 pci_unregister_driver(&nvme_driver);
1080 unregister_blkdev(nvme_major, "nvme");
1081}
1082
1083MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1084MODULE_LICENSE("GPL");
1085MODULE_VERSION("0.1");
1086module_init(nvme_init);
1087module_exit(nvme_exit);