NVMe: Make nvme_common_command more featureful
[linux-2.6-block.git] / drivers / block / nvme.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
3 * Copyright (c) 2011, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19#include <linux/nvme.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
22#include <linux/errno.h>
23#include <linux/fs.h>
24#include <linux/genhd.h>
25#include <linux/init.h>
26#include <linux/interrupt.h>
27#include <linux/io.h>
28#include <linux/kdev_t.h>
29#include <linux/kernel.h>
30#include <linux/mm.h>
31#include <linux/module.h>
32#include <linux/moduleparam.h>
33#include <linux/pci.h>
34#include <linux/sched.h>
35#include <linux/slab.h>
36#include <linux/types.h>
37#include <linux/version.h>
38
39#define NVME_Q_DEPTH 1024
40#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
41#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
42#define NVME_MINORS 64
43
44static int nvme_major;
45module_param(nvme_major, int, 0);
46
47/*
48 * Represents an NVM Express device. Each nvme_dev is a PCI function.
49 */
50struct nvme_dev {
51 struct list_head node;
52 struct nvme_queue **queues;
53 u32 __iomem *dbs;
54 struct pci_dev *pci_dev;
55 int instance;
56 int queue_count;
57 u32 ctrl_config;
58 struct msix_entry *entry;
59 struct nvme_bar __iomem *bar;
60 struct list_head namespaces;
61};
62
63/*
64 * An NVM Express namespace is equivalent to a SCSI LUN
65 */
66struct nvme_ns {
67 struct list_head list;
68
69 struct nvme_dev *dev;
70 struct request_queue *queue;
71 struct gendisk *disk;
72
73 int ns_id;
74 int lba_shift;
75};
76
77/*
78 * An NVM Express queue. Each device has at least two (one for admin
79 * commands and one for I/O commands).
80 */
81struct nvme_queue {
82 struct device *q_dmadev;
83 spinlock_t q_lock;
84 struct nvme_command *sq_cmds;
85 volatile struct nvme_completion *cqes;
86 dma_addr_t sq_dma_addr;
87 dma_addr_t cq_dma_addr;
88 wait_queue_head_t sq_full;
89 struct bio_list sq_cong;
90 u32 __iomem *q_db;
91 u16 q_depth;
92 u16 cq_vector;
93 u16 sq_head;
94 u16 sq_tail;
95 u16 cq_head;
82123460 96 u16 cq_phase;
b60503ba
MW
97 unsigned long cmdid_data[];
98};
99
100/*
101 * Check we didin't inadvertently grow the command struct
102 */
103static inline void _nvme_check_size(void)
104{
105 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
106 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
107 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
108 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
109 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
110 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
111 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
112 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
113 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
114}
115
116/**
117 * alloc_cmdid - Allocate a Command ID
118 * @param nvmeq The queue that will be used for this command
119 * @param ctx A pointer that will be passed to the handler
120 * @param handler The ID of the handler to call
121 *
122 * Allocate a Command ID for a queue. The data passed in will
123 * be passed to the completion handler. This is implemented by using
124 * the bottom two bits of the ctx pointer to store the handler ID.
125 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
126 * We can change this if it becomes a problem.
127 */
128static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx, int handler)
129{
130 int depth = nvmeq->q_depth;
131 unsigned long data = (unsigned long)ctx | handler;
132 int cmdid;
133
134 BUG_ON((unsigned long)ctx & 3);
135
136 do {
137 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
138 if (cmdid >= depth)
139 return -EBUSY;
140 } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
141
142 nvmeq->cmdid_data[cmdid + BITS_TO_LONGS(depth)] = data;
143 return cmdid;
144}
145
146static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
147 int handler)
148{
149 int cmdid;
150 wait_event_killable(nvmeq->sq_full,
151 (cmdid = alloc_cmdid(nvmeq, ctx, handler)) >= 0);
152 return (cmdid < 0) ? -EINTR : cmdid;
153}
154
155/* If you need more than four handlers, you'll need to change how
156 * alloc_cmdid and nvme_process_cq work
157 */
158enum {
159 sync_completion_id = 0,
160 bio_completion_id,
161};
162
163static unsigned long free_cmdid(struct nvme_queue *nvmeq, int cmdid)
164{
165 unsigned long data;
166
167 data = nvmeq->cmdid_data[cmdid + BITS_TO_LONGS(nvmeq->q_depth)];
168 clear_bit(cmdid, nvmeq->cmdid_data);
169 wake_up(&nvmeq->sq_full);
170 return data;
171}
172
173static struct nvme_queue *get_nvmeq(struct nvme_ns *ns)
174{
1b23484b
MW
175 int qid, cpu = get_cpu();
176 if (cpu < ns->dev->queue_count)
177 qid = cpu + 1;
178 else
179 qid = (cpu % rounddown_pow_of_two(ns->dev->queue_count)) + 1;
180 return ns->dev->queues[qid];
b60503ba
MW
181}
182
183static void put_nvmeq(struct nvme_queue *nvmeq)
184{
1b23484b 185 put_cpu();
b60503ba
MW
186}
187
188/**
189 * nvme_submit_cmd: Copy a command into a queue and ring the doorbell
190 * @nvmeq: The queue to use
191 * @cmd: The command to send
192 *
193 * Safe to use from interrupt context
194 */
195static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
196{
197 unsigned long flags;
198 u16 tail;
199 /* XXX: Need to check tail isn't going to overrun head */
200 spin_lock_irqsave(&nvmeq->q_lock, flags);
201 tail = nvmeq->sq_tail;
202 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
203 writel(tail, nvmeq->q_db);
204 if (++tail == nvmeq->q_depth)
205 tail = 0;
206 nvmeq->sq_tail = tail;
207 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
208
209 return 0;
210}
211
212struct nvme_req_info {
213 struct bio *bio;
214 int nents;
215 struct scatterlist sg[0];
216};
217
218/* XXX: use a mempool */
219static struct nvme_req_info *alloc_info(unsigned nseg, gfp_t gfp)
220{
221 return kmalloc(sizeof(struct nvme_req_info) +
222 sizeof(struct scatterlist) * nseg, gfp);
223}
224
225static void free_info(struct nvme_req_info *info)
226{
227 kfree(info);
228}
229
230static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
231 struct nvme_completion *cqe)
232{
233 struct nvme_req_info *info = ctx;
234 struct bio *bio = info->bio;
235 u16 status = le16_to_cpup(&cqe->status) >> 1;
236
237 dma_unmap_sg(nvmeq->q_dmadev, info->sg, info->nents,
238 bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
239 free_info(info);
240 bio_endio(bio, status ? -EIO : 0);
241}
242
243static int nvme_map_bio(struct device *dev, struct nvme_req_info *info,
244 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
245{
246 struct bio_vec *bvec;
247 struct scatterlist *sg = info->sg;
248 int i, nsegs;
249
250 sg_init_table(sg, psegs);
251 bio_for_each_segment(bvec, bio, i) {
252 sg_set_page(sg, bvec->bv_page, bvec->bv_len, bvec->bv_offset);
253 /* XXX: handle non-mergable here */
254 nsegs++;
255 }
256 info->nents = nsegs;
257
258 return dma_map_sg(dev, info->sg, info->nents, dma_dir);
259}
260
261static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
262 struct bio *bio)
263{
264 struct nvme_rw_command *cmnd;
265 struct nvme_req_info *info;
266 enum dma_data_direction dma_dir;
267 int cmdid;
268 u16 control;
269 u32 dsmgmt;
270 unsigned long flags;
271 int psegs = bio_phys_segments(ns->queue, bio);
272
273 info = alloc_info(psegs, GFP_NOIO);
274 if (!info)
275 goto congestion;
276 info->bio = bio;
277
278 cmdid = alloc_cmdid(nvmeq, info, bio_completion_id);
279 if (unlikely(cmdid < 0))
280 goto free_info;
281
282 control = 0;
283 if (bio->bi_rw & REQ_FUA)
284 control |= NVME_RW_FUA;
285 if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
286 control |= NVME_RW_LR;
287
288 dsmgmt = 0;
289 if (bio->bi_rw & REQ_RAHEAD)
290 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
291
292 spin_lock_irqsave(&nvmeq->q_lock, flags);
293 cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail].rw;
294
295 if (bio_data_dir(bio)) {
296 cmnd->opcode = nvme_cmd_write;
297 dma_dir = DMA_TO_DEVICE;
298 } else {
299 cmnd->opcode = nvme_cmd_read;
300 dma_dir = DMA_FROM_DEVICE;
301 }
302
303 nvme_map_bio(nvmeq->q_dmadev, info, bio, dma_dir, psegs);
304
305 cmnd->flags = 1;
306 cmnd->command_id = cmdid;
307 cmnd->nsid = cpu_to_le32(ns->ns_id);
308 cmnd->prp1 = cpu_to_le64(sg_phys(info->sg));
309 /* XXX: Support more than one PRP */
310 cmnd->slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
311 cmnd->length = cpu_to_le16((bio->bi_size >> ns->lba_shift) - 1);
312 cmnd->control = cpu_to_le16(control);
313 cmnd->dsmgmt = cpu_to_le32(dsmgmt);
314
315 writel(nvmeq->sq_tail, nvmeq->q_db);
316 if (++nvmeq->sq_tail == nvmeq->q_depth)
317 nvmeq->sq_tail = 0;
318
319 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
320
321 return 0;
322
323 free_info:
324 free_info(info);
325 congestion:
326 return -EBUSY;
327}
328
329/*
330 * NB: return value of non-zero would mean that we were a stacking driver.
331 * make_request must always succeed.
332 */
333static int nvme_make_request(struct request_queue *q, struct bio *bio)
334{
335 struct nvme_ns *ns = q->queuedata;
336 struct nvme_queue *nvmeq = get_nvmeq(ns);
337
338 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
339 blk_set_queue_congested(q, rw_is_sync(bio->bi_rw));
340 bio_list_add(&nvmeq->sq_cong, bio);
341 }
342 put_nvmeq(nvmeq);
343
344 return 0;
345}
346
347struct sync_cmd_info {
348 struct task_struct *task;
349 u32 result;
350 int status;
351};
352
353static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
354 struct nvme_completion *cqe)
355{
356 struct sync_cmd_info *cmdinfo = ctx;
357 cmdinfo->result = le32_to_cpup(&cqe->result);
358 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
359 wake_up_process(cmdinfo->task);
360}
361
362typedef void (*completion_fn)(struct nvme_queue *, void *,
363 struct nvme_completion *);
364
365static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
366{
82123460 367 u16 head, phase;
b60503ba
MW
368
369 static const completion_fn completions[4] = {
370 [sync_completion_id] = sync_completion,
371 [bio_completion_id] = bio_completion,
372 };
373
374 head = nvmeq->cq_head;
82123460 375 phase = nvmeq->cq_phase;
b60503ba
MW
376
377 for (;;) {
378 unsigned long data;
379 void *ptr;
380 unsigned char handler;
381 struct nvme_completion cqe = nvmeq->cqes[head];
82123460 382 if ((le16_to_cpu(cqe.status) & 1) != phase)
b60503ba
MW
383 break;
384 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
385 if (++head == nvmeq->q_depth) {
386 head = 0;
82123460 387 phase = !phase;
b60503ba
MW
388 }
389
390 data = free_cmdid(nvmeq, cqe.command_id);
391 handler = data & 3;
392 ptr = (void *)(data & ~3UL);
393 completions[handler](nvmeq, ptr, &cqe);
394 }
395
396 /* If the controller ignores the cq head doorbell and continuously
397 * writes to the queue, it is theoretically possible to wrap around
398 * the queue twice and mistakenly return IRQ_NONE. Linux only
399 * requires that 0.1% of your interrupts are handled, so this isn't
400 * a big problem.
401 */
82123460 402 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
b60503ba
MW
403 return IRQ_NONE;
404
405 writel(head, nvmeq->q_db + 1);
406 nvmeq->cq_head = head;
82123460 407 nvmeq->cq_phase = phase;
b60503ba
MW
408
409 return IRQ_HANDLED;
410}
411
412static irqreturn_t nvme_irq(int irq, void *data)
413{
414 return nvme_process_cq(data);
415}
416
417/*
418 * Returns 0 on success. If the result is negative, it's a Linux error code;
419 * if the result is positive, it's an NVM Express status code
420 */
421static int nvme_submit_sync_cmd(struct nvme_queue *q, struct nvme_command *cmd,
422 u32 *result)
423{
424 int cmdid;
425 struct sync_cmd_info cmdinfo;
426
427 cmdinfo.task = current;
428 cmdinfo.status = -EINTR;
429
430 cmdid = alloc_cmdid_killable(q, &cmdinfo, sync_completion_id);
431 if (cmdid < 0)
432 return cmdid;
433 cmd->common.command_id = cmdid;
434
435 set_current_state(TASK_UNINTERRUPTIBLE);
436 nvme_submit_cmd(q, cmd);
437 schedule();
438
439 if (result)
440 *result = cmdinfo.result;
441
442 return cmdinfo.status;
443}
444
445static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
446 u32 *result)
447{
448 return nvme_submit_sync_cmd(dev->queues[0], cmd, result);
449}
450
451static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
452{
453 int status;
454 struct nvme_command c;
455
456 memset(&c, 0, sizeof(c));
457 c.delete_queue.opcode = opcode;
458 c.delete_queue.qid = cpu_to_le16(id);
459
460 status = nvme_submit_admin_cmd(dev, &c, NULL);
461 if (status)
462 return -EIO;
463 return 0;
464}
465
466static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
467 struct nvme_queue *nvmeq)
468{
469 int status;
470 struct nvme_command c;
471 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
472
473 memset(&c, 0, sizeof(c));
474 c.create_cq.opcode = nvme_admin_create_cq;
475 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
476 c.create_cq.cqid = cpu_to_le16(qid);
477 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
478 c.create_cq.cq_flags = cpu_to_le16(flags);
479 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
480
481 status = nvme_submit_admin_cmd(dev, &c, NULL);
482 if (status)
483 return -EIO;
484 return 0;
485}
486
487static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
488 struct nvme_queue *nvmeq)
489{
490 int status;
491 struct nvme_command c;
492 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
493
494 memset(&c, 0, sizeof(c));
495 c.create_sq.opcode = nvme_admin_create_sq;
496 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
497 c.create_sq.sqid = cpu_to_le16(qid);
498 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
499 c.create_sq.sq_flags = cpu_to_le16(flags);
500 c.create_sq.cqid = cpu_to_le16(qid);
501
502 status = nvme_submit_admin_cmd(dev, &c, NULL);
503 if (status)
504 return -EIO;
505 return 0;
506}
507
508static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
509{
510 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
511}
512
513static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
514{
515 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
516}
517
518static void nvme_free_queue(struct nvme_dev *dev, int qid)
519{
520 struct nvme_queue *nvmeq = dev->queues[qid];
521
522 free_irq(dev->entry[nvmeq->cq_vector].vector, nvmeq);
523
524 /* Don't tell the adapter to delete the admin queue */
525 if (qid) {
526 adapter_delete_sq(dev, qid);
527 adapter_delete_cq(dev, qid);
528 }
529
530 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
531 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
532 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
533 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
534 kfree(nvmeq);
535}
536
537static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
538 int depth, int vector)
539{
540 struct device *dmadev = &dev->pci_dev->dev;
541 unsigned extra = (depth + BITS_TO_LONGS(depth)) * sizeof(long);
542 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
543 if (!nvmeq)
544 return NULL;
545
546 nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
547 &nvmeq->cq_dma_addr, GFP_KERNEL);
548 if (!nvmeq->cqes)
549 goto free_nvmeq;
550 memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
551
552 nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
553 &nvmeq->sq_dma_addr, GFP_KERNEL);
554 if (!nvmeq->sq_cmds)
555 goto free_cqdma;
556
557 nvmeq->q_dmadev = dmadev;
558 spin_lock_init(&nvmeq->q_lock);
559 nvmeq->cq_head = 0;
82123460 560 nvmeq->cq_phase = 1;
b60503ba
MW
561 init_waitqueue_head(&nvmeq->sq_full);
562 bio_list_init(&nvmeq->sq_cong);
563 nvmeq->q_db = &dev->dbs[qid * 2];
564 nvmeq->q_depth = depth;
565 nvmeq->cq_vector = vector;
566
567 return nvmeq;
568
569 free_cqdma:
570 dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
571 nvmeq->cq_dma_addr);
572 free_nvmeq:
573 kfree(nvmeq);
574 return NULL;
575}
576
3001082c
MW
577static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
578 const char *name)
579{
580 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
581 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
582}
583
b60503ba
MW
584static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
585 int qid, int cq_size, int vector)
586{
587 int result;
588 struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
589
590 result = adapter_alloc_cq(dev, qid, nvmeq);
591 if (result < 0)
592 goto free_nvmeq;
593
594 result = adapter_alloc_sq(dev, qid, nvmeq);
595 if (result < 0)
596 goto release_cq;
597
3001082c 598 result = queue_request_irq(dev, nvmeq, "nvme");
b60503ba
MW
599 if (result < 0)
600 goto release_sq;
601
602 return nvmeq;
603
604 release_sq:
605 adapter_delete_sq(dev, qid);
606 release_cq:
607 adapter_delete_cq(dev, qid);
608 free_nvmeq:
609 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
610 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
611 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
612 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
613 kfree(nvmeq);
614 return NULL;
615}
616
617static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
618{
619 int result;
620 u32 aqa;
621 struct nvme_queue *nvmeq;
622
623 dev->dbs = ((void __iomem *)dev->bar) + 4096;
624
625 nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
626
627 aqa = nvmeq->q_depth - 1;
628 aqa |= aqa << 16;
629
630 dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
631 dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
632 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
633
634 writel(aqa, &dev->bar->aqa);
635 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
636 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
637 writel(dev->ctrl_config, &dev->bar->cc);
638
639 while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
640 msleep(100);
641 if (fatal_signal_pending(current))
642 return -EINTR;
643 }
644
3001082c 645 result = queue_request_irq(dev, nvmeq, "nvme admin");
b60503ba
MW
646 dev->queues[0] = nvmeq;
647 return result;
648}
649
36c14ed9 650static int nvme_identify(struct nvme_ns *ns, unsigned long addr, int cns)
b60503ba
MW
651{
652 struct nvme_dev *dev = ns->dev;
36c14ed9 653 int i, err, count, nents, offset;
b60503ba 654 struct nvme_command c;
36c14ed9
MW
655 struct scatterlist sg[2];
656 struct page *pages[2];
657
658 if (addr & 3)
659 return -EINVAL;
660 offset = offset_in_page(addr);
661 count = offset ? 2 : 1;
662
663 err = get_user_pages_fast(addr, count, 1, pages);
664 if (err < count) {
665 count = err;
666 err = -EFAULT;
667 goto put_pages;
668 }
669 sg_init_table(sg, count);
670 for (i = 0; i < count; i++)
671 sg_set_page(&sg[i], pages[i], PAGE_SIZE, 0);
672 nents = dma_map_sg(&dev->pci_dev->dev, sg, count, DMA_FROM_DEVICE);
673 if (!nents)
674 goto put_pages;
b60503ba
MW
675
676 memset(&c, 0, sizeof(c));
677 c.identify.opcode = nvme_admin_identify;
678 c.identify.nsid = cns ? 0 : cpu_to_le32(ns->ns_id);
36c14ed9
MW
679 c.identify.prp1 = cpu_to_le64(sg_dma_address(&sg[0]) + offset);
680 if (count > 1) {
681 u64 dma_addr;
682 if (nents > 1)
683 dma_addr = sg_dma_address(&sg[1]);
684 else
685 dma_addr = sg_dma_address(&sg[0]) + PAGE_SIZE;
686 c.identify.prp2 = cpu_to_le64(dma_addr);
687 }
b60503ba
MW
688 c.identify.cns = cpu_to_le32(cns);
689
36c14ed9 690 err = nvme_submit_admin_cmd(dev, &c, NULL);
b60503ba 691
36c14ed9
MW
692 if (err)
693 err = -EIO;
b60503ba 694
36c14ed9
MW
695 dma_unmap_sg(&dev->pci_dev->dev, sg, nents, DMA_FROM_DEVICE);
696 put_pages:
697 for (i = 0; i < count; i++)
698 put_page(pages[i]);
b60503ba 699
36c14ed9 700 return err;
b60503ba
MW
701}
702
703static int nvme_get_range_type(struct nvme_ns *ns, void __user *addr)
704{
705 struct nvme_dev *dev = ns->dev;
706 int status;
707 struct nvme_command c;
708 void *page;
709 dma_addr_t dma_addr;
710
711 page = dma_alloc_coherent(&dev->pci_dev->dev, 4096, &dma_addr,
712 GFP_KERNEL);
713
714 memset(&c, 0, sizeof(c));
715 c.features.opcode = nvme_admin_get_features;
716 c.features.nsid = cpu_to_le32(ns->ns_id);
717 c.features.prp1 = cpu_to_le64(dma_addr);
718 c.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
719
720 status = nvme_submit_admin_cmd(dev, &c, NULL);
721
722 /* XXX: Assuming first range for now */
723 if (status)
724 status = -EIO;
725 else if (copy_to_user(addr, page, 64))
726 status = -EFAULT;
727
728 dma_free_coherent(&dev->pci_dev->dev, 4096, page, dma_addr);
729
730 return status;
731}
732
733static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
734 unsigned long arg)
735{
736 struct nvme_ns *ns = bdev->bd_disk->private_data;
737
738 switch (cmd) {
739 case NVME_IOCTL_IDENTIFY_NS:
36c14ed9 740 return nvme_identify(ns, arg, 0);
b60503ba 741 case NVME_IOCTL_IDENTIFY_CTRL:
36c14ed9 742 return nvme_identify(ns, arg, 1);
b60503ba
MW
743 case NVME_IOCTL_GET_RANGE_TYPE:
744 return nvme_get_range_type(ns, (void __user *)arg);
745 default:
746 return -ENOTTY;
747 }
748}
749
750static const struct block_device_operations nvme_fops = {
751 .owner = THIS_MODULE,
752 .ioctl = nvme_ioctl,
753};
754
755static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int index,
756 struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
757{
758 struct nvme_ns *ns;
759 struct gendisk *disk;
760 int lbaf;
761
762 if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
763 return NULL;
764
765 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
766 if (!ns)
767 return NULL;
768 ns->queue = blk_alloc_queue(GFP_KERNEL);
769 if (!ns->queue)
770 goto out_free_ns;
771 ns->queue->queue_flags = QUEUE_FLAG_DEFAULT | QUEUE_FLAG_NOMERGES |
772 QUEUE_FLAG_NONROT | QUEUE_FLAG_DISCARD;
773 blk_queue_make_request(ns->queue, nvme_make_request);
774 ns->dev = dev;
775 ns->queue->queuedata = ns;
776
777 disk = alloc_disk(NVME_MINORS);
778 if (!disk)
779 goto out_free_queue;
780 ns->ns_id = index;
781 ns->disk = disk;
782 lbaf = id->flbas & 0xf;
783 ns->lba_shift = id->lbaf[lbaf].ds;
784
785 disk->major = nvme_major;
786 disk->minors = NVME_MINORS;
787 disk->first_minor = NVME_MINORS * index;
788 disk->fops = &nvme_fops;
789 disk->private_data = ns;
790 disk->queue = ns->queue;
791 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, index);
792 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
793
794 return ns;
795
796 out_free_queue:
797 blk_cleanup_queue(ns->queue);
798 out_free_ns:
799 kfree(ns);
800 return NULL;
801}
802
803static void nvme_ns_free(struct nvme_ns *ns)
804{
805 put_disk(ns->disk);
806 blk_cleanup_queue(ns->queue);
807 kfree(ns);
808}
809
b3b06812 810static int set_queue_count(struct nvme_dev *dev, int count)
b60503ba
MW
811{
812 int status;
813 u32 result;
814 struct nvme_command c;
b3b06812 815 u32 q_count = (count - 1) | ((count - 1) << 16);
b60503ba
MW
816
817 memset(&c, 0, sizeof(c));
818 c.features.opcode = nvme_admin_get_features;
819 c.features.fid = cpu_to_le32(NVME_FEAT_NUM_QUEUES);
820 c.features.dword11 = cpu_to_le32(q_count);
821
822 status = nvme_submit_admin_cmd(dev, &c, &result);
823 if (status)
824 return -EIO;
825 return min(result & 0xffff, result >> 16) + 1;
826}
827
b60503ba
MW
828static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
829{
1b23484b 830 int result, cpu, i, nr_queues;
b60503ba 831
1b23484b
MW
832 nr_queues = num_online_cpus();
833 result = set_queue_count(dev, nr_queues);
834 if (result < 0)
835 return result;
836 if (result < nr_queues)
837 nr_queues = result;
b60503ba 838
1b23484b
MW
839 /* Deregister the admin queue's interrupt */
840 free_irq(dev->entry[0].vector, dev->queues[0]);
841
842 for (i = 0; i < nr_queues; i++)
843 dev->entry[i].entry = i;
844 for (;;) {
845 result = pci_enable_msix(dev->pci_dev, dev->entry, nr_queues);
846 if (result == 0) {
847 break;
848 } else if (result > 0) {
849 nr_queues = result;
850 continue;
851 } else {
852 nr_queues = 1;
853 break;
854 }
855 }
856
857 result = queue_request_irq(dev, dev->queues[0], "nvme admin");
858 /* XXX: handle failure here */
859
860 cpu = cpumask_first(cpu_online_mask);
861 for (i = 0; i < nr_queues; i++) {
862 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
863 cpu = cpumask_next(cpu, cpu_online_mask);
864 }
865
866 for (i = 0; i < nr_queues; i++) {
867 dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
868 NVME_Q_DEPTH, i);
869 if (!dev->queues[i + 1])
870 return -ENOMEM;
871 dev->queue_count++;
872 }
b60503ba
MW
873
874 return 0;
875}
876
877static void nvme_free_queues(struct nvme_dev *dev)
878{
879 int i;
880
881 for (i = dev->queue_count - 1; i >= 0; i--)
882 nvme_free_queue(dev, i);
883}
884
885static int __devinit nvme_dev_add(struct nvme_dev *dev)
886{
887 int res, nn, i;
888 struct nvme_ns *ns, *next;
889 void *id;
890 dma_addr_t dma_addr;
891 struct nvme_command cid, crt;
892
893 res = nvme_setup_io_queues(dev);
894 if (res)
895 return res;
896
897 /* XXX: Switch to a SG list once prp2 works */
898 id = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
899 GFP_KERNEL);
900
901 memset(&cid, 0, sizeof(cid));
902 cid.identify.opcode = nvme_admin_identify;
903 cid.identify.nsid = 0;
904 cid.identify.prp1 = cpu_to_le64(dma_addr);
905 cid.identify.cns = cpu_to_le32(1);
906
907 res = nvme_submit_admin_cmd(dev, &cid, NULL);
908 if (res) {
909 res = -EIO;
910 goto out_free;
911 }
912
913 nn = le32_to_cpup(&((struct nvme_id_ctrl *)id)->nn);
914
915 cid.identify.cns = 0;
916 memset(&crt, 0, sizeof(crt));
917 crt.features.opcode = nvme_admin_get_features;
918 crt.features.prp1 = cpu_to_le64(dma_addr + 4096);
919 crt.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
920
921 for (i = 0; i < nn; i++) {
922 cid.identify.nsid = cpu_to_le32(i);
923 res = nvme_submit_admin_cmd(dev, &cid, NULL);
924 if (res)
925 continue;
926
927 if (((struct nvme_id_ns *)id)->ncap == 0)
928 continue;
929
930 crt.features.nsid = cpu_to_le32(i);
931 res = nvme_submit_admin_cmd(dev, &crt, NULL);
932 if (res)
933 continue;
934
935 ns = nvme_alloc_ns(dev, i, id, id + 4096);
936 if (ns)
937 list_add_tail(&ns->list, &dev->namespaces);
938 }
939 list_for_each_entry(ns, &dev->namespaces, list)
940 add_disk(ns->disk);
941
942 dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
943 return 0;
944
945 out_free:
946 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
947 list_del(&ns->list);
948 nvme_ns_free(ns);
949 }
950
951 dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
952 return res;
953}
954
955static int nvme_dev_remove(struct nvme_dev *dev)
956{
957 struct nvme_ns *ns, *next;
958
959 /* TODO: wait all I/O finished or cancel them */
960
961 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
962 list_del(&ns->list);
963 del_gendisk(ns->disk);
964 nvme_ns_free(ns);
965 }
966
967 nvme_free_queues(dev);
968
969 return 0;
970}
971
972/* XXX: Use an ida or something to let remove / add work correctly */
973static void nvme_set_instance(struct nvme_dev *dev)
974{
975 static int instance;
976 dev->instance = instance++;
977}
978
979static void nvme_release_instance(struct nvme_dev *dev)
980{
981}
982
983static int __devinit nvme_probe(struct pci_dev *pdev,
984 const struct pci_device_id *id)
985{
986 int result = -ENOMEM;
987 struct nvme_dev *dev;
988
989 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
990 if (!dev)
991 return -ENOMEM;
992 dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
993 GFP_KERNEL);
994 if (!dev->entry)
995 goto free;
1b23484b
MW
996 dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
997 GFP_KERNEL);
b60503ba
MW
998 if (!dev->queues)
999 goto free;
1000
1001 INIT_LIST_HEAD(&dev->namespaces);
1002 dev->pci_dev = pdev;
1003 pci_set_drvdata(pdev, dev);
1004 dma_set_mask(&dev->pci_dev->dev, DMA_BIT_MASK(64));
1005 nvme_set_instance(dev);
53c9577e 1006 dev->entry[0].vector = pdev->irq;
b60503ba
MW
1007
1008 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1009 if (!dev->bar) {
1010 result = -ENOMEM;
1011 goto disable;
1012 }
1013
1014 result = nvme_configure_admin_queue(dev);
1015 if (result)
1016 goto unmap;
1017 dev->queue_count++;
1018
1019 result = nvme_dev_add(dev);
1020 if (result)
1021 goto delete;
1022 return 0;
1023
1024 delete:
1025 nvme_free_queues(dev);
1026 unmap:
1027 iounmap(dev->bar);
1028 disable:
1029 pci_disable_msix(pdev);
1030 nvme_release_instance(dev);
1031 free:
1032 kfree(dev->queues);
1033 kfree(dev->entry);
1034 kfree(dev);
1035 return result;
1036}
1037
1038static void __devexit nvme_remove(struct pci_dev *pdev)
1039{
1040 struct nvme_dev *dev = pci_get_drvdata(pdev);
1041 nvme_dev_remove(dev);
1042 pci_disable_msix(pdev);
1043 iounmap(dev->bar);
1044 nvme_release_instance(dev);
1045 kfree(dev->queues);
1046 kfree(dev->entry);
1047 kfree(dev);
1048}
1049
1050/* These functions are yet to be implemented */
1051#define nvme_error_detected NULL
1052#define nvme_dump_registers NULL
1053#define nvme_link_reset NULL
1054#define nvme_slot_reset NULL
1055#define nvme_error_resume NULL
1056#define nvme_suspend NULL
1057#define nvme_resume NULL
1058
1059static struct pci_error_handlers nvme_err_handler = {
1060 .error_detected = nvme_error_detected,
1061 .mmio_enabled = nvme_dump_registers,
1062 .link_reset = nvme_link_reset,
1063 .slot_reset = nvme_slot_reset,
1064 .resume = nvme_error_resume,
1065};
1066
1067/* Move to pci_ids.h later */
1068#define PCI_CLASS_STORAGE_EXPRESS 0x010802
1069
1070static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1071 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1072 { 0, }
1073};
1074MODULE_DEVICE_TABLE(pci, nvme_id_table);
1075
1076static struct pci_driver nvme_driver = {
1077 .name = "nvme",
1078 .id_table = nvme_id_table,
1079 .probe = nvme_probe,
1080 .remove = __devexit_p(nvme_remove),
1081 .suspend = nvme_suspend,
1082 .resume = nvme_resume,
1083 .err_handler = &nvme_err_handler,
1084};
1085
1086static int __init nvme_init(void)
1087{
1088 int result;
1089
1090 nvme_major = register_blkdev(nvme_major, "nvme");
1091 if (nvme_major <= 0)
1092 return -EBUSY;
1093
1094 result = pci_register_driver(&nvme_driver);
1095 if (!result)
1096 return 0;
1097
1098 unregister_blkdev(nvme_major, "nvme");
1099 return result;
1100}
1101
1102static void __exit nvme_exit(void)
1103{
1104 pci_unregister_driver(&nvme_driver);
1105 unregister_blkdev(nvme_major, "nvme");
1106}
1107
1108MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1109MODULE_LICENSE("GPL");
1110MODULE_VERSION("0.1");
1111module_init(nvme_init);
1112module_exit(nvme_exit);