NVMe: Disk IO statistics
[linux-2.6-block.git] / drivers / block / nvme-core.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
3 * Copyright (c) 2011, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19#include <linux/nvme.h>
20#include <linux/bio.h>
8de05535 21#include <linux/bitops.h>
b60503ba 22#include <linux/blkdev.h>
fd63e9ce 23#include <linux/delay.h>
b60503ba
MW
24#include <linux/errno.h>
25#include <linux/fs.h>
26#include <linux/genhd.h>
5aff9382 27#include <linux/idr.h>
b60503ba
MW
28#include <linux/init.h>
29#include <linux/interrupt.h>
30#include <linux/io.h>
31#include <linux/kdev_t.h>
1fa6aead 32#include <linux/kthread.h>
b60503ba
MW
33#include <linux/kernel.h>
34#include <linux/mm.h>
35#include <linux/module.h>
36#include <linux/moduleparam.h>
37#include <linux/pci.h>
be7b6275 38#include <linux/poison.h>
b60503ba
MW
39#include <linux/sched.h>
40#include <linux/slab.h>
41#include <linux/types.h>
5d0f6131 42#include <scsi/sg.h>
797a796a
HM
43#include <asm-generic/io-64-nonatomic-lo-hi.h>
44
b60503ba
MW
45#define NVME_Q_DEPTH 1024
46#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
47#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
48#define NVME_MINORS 64
e85248e5 49#define ADMIN_TIMEOUT (60 * HZ)
b60503ba
MW
50
51static int nvme_major;
52module_param(nvme_major, int, 0);
53
58ffacb5
MW
54static int use_threaded_interrupts;
55module_param(use_threaded_interrupts, int, 0);
56
1fa6aead
MW
57static DEFINE_SPINLOCK(dev_list_lock);
58static LIST_HEAD(dev_list);
59static struct task_struct *nvme_thread;
60
b60503ba
MW
61/*
62 * An NVM Express queue. Each device has at least two (one for admin
63 * commands and one for I/O commands).
64 */
65struct nvme_queue {
66 struct device *q_dmadev;
091b6092 67 struct nvme_dev *dev;
b60503ba
MW
68 spinlock_t q_lock;
69 struct nvme_command *sq_cmds;
70 volatile struct nvme_completion *cqes;
71 dma_addr_t sq_dma_addr;
72 dma_addr_t cq_dma_addr;
73 wait_queue_head_t sq_full;
1fa6aead 74 wait_queue_t sq_cong_wait;
b60503ba
MW
75 struct bio_list sq_cong;
76 u32 __iomem *q_db;
77 u16 q_depth;
78 u16 cq_vector;
79 u16 sq_head;
80 u16 sq_tail;
81 u16 cq_head;
82123460 82 u16 cq_phase;
b60503ba
MW
83 unsigned long cmdid_data[];
84};
85
86/*
87 * Check we didin't inadvertently grow the command struct
88 */
89static inline void _nvme_check_size(void)
90{
91 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
92 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
93 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
94 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
95 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
f8ebf840 96 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
b60503ba
MW
97 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
98 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
99 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
100 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
6ecec745 101 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
b60503ba
MW
102}
103
5c1281a3 104typedef void (*nvme_completion_fn)(struct nvme_dev *, void *,
c2f5b650
MW
105 struct nvme_completion *);
106
e85248e5 107struct nvme_cmd_info {
c2f5b650
MW
108 nvme_completion_fn fn;
109 void *ctx;
e85248e5
MW
110 unsigned long timeout;
111};
112
113static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
114{
115 return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
116}
117
b60503ba 118/**
714a7a22
MW
119 * alloc_cmdid() - Allocate a Command ID
120 * @nvmeq: The queue that will be used for this command
121 * @ctx: A pointer that will be passed to the handler
c2f5b650 122 * @handler: The function to call on completion
b60503ba
MW
123 *
124 * Allocate a Command ID for a queue. The data passed in will
125 * be passed to the completion handler. This is implemented by using
126 * the bottom two bits of the ctx pointer to store the handler ID.
127 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
128 * We can change this if it becomes a problem.
184d2944
MW
129 *
130 * May be called with local interrupts disabled and the q_lock held,
131 * or with interrupts enabled and no locks held.
b60503ba 132 */
c2f5b650
MW
133static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx,
134 nvme_completion_fn handler, unsigned timeout)
b60503ba 135{
e6d15f79 136 int depth = nvmeq->q_depth - 1;
e85248e5 137 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
b60503ba
MW
138 int cmdid;
139
b60503ba
MW
140 do {
141 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
142 if (cmdid >= depth)
143 return -EBUSY;
144 } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
145
c2f5b650
MW
146 info[cmdid].fn = handler;
147 info[cmdid].ctx = ctx;
e85248e5 148 info[cmdid].timeout = jiffies + timeout;
b60503ba
MW
149 return cmdid;
150}
151
152static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
c2f5b650 153 nvme_completion_fn handler, unsigned timeout)
b60503ba
MW
154{
155 int cmdid;
156 wait_event_killable(nvmeq->sq_full,
e85248e5 157 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
b60503ba
MW
158 return (cmdid < 0) ? -EINTR : cmdid;
159}
160
c2f5b650
MW
161/* Special values must be less than 0x1000 */
162#define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
d2d87034
MW
163#define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
164#define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
165#define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
00df5cb4 166#define CMD_CTX_FLUSH (0x318 + CMD_CTX_BASE)
be7b6275 167
5c1281a3 168static void special_completion(struct nvme_dev *dev, void *ctx,
c2f5b650
MW
169 struct nvme_completion *cqe)
170{
171 if (ctx == CMD_CTX_CANCELLED)
172 return;
173 if (ctx == CMD_CTX_FLUSH)
174 return;
175 if (ctx == CMD_CTX_COMPLETED) {
5c1281a3 176 dev_warn(&dev->pci_dev->dev,
c2f5b650
MW
177 "completed id %d twice on queue %d\n",
178 cqe->command_id, le16_to_cpup(&cqe->sq_id));
179 return;
180 }
181 if (ctx == CMD_CTX_INVALID) {
5c1281a3 182 dev_warn(&dev->pci_dev->dev,
c2f5b650
MW
183 "invalid id %d completed on queue %d\n",
184 cqe->command_id, le16_to_cpup(&cqe->sq_id));
185 return;
186 }
187
5c1281a3 188 dev_warn(&dev->pci_dev->dev, "Unknown special completion %p\n", ctx);
c2f5b650
MW
189}
190
184d2944
MW
191/*
192 * Called with local interrupts disabled and the q_lock held. May not sleep.
193 */
c2f5b650
MW
194static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid,
195 nvme_completion_fn *fn)
b60503ba 196{
c2f5b650 197 void *ctx;
e85248e5 198 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
b60503ba 199
c2f5b650
MW
200 if (cmdid >= nvmeq->q_depth) {
201 *fn = special_completion;
48e3d398 202 return CMD_CTX_INVALID;
c2f5b650 203 }
859361a2
KB
204 if (fn)
205 *fn = info[cmdid].fn;
c2f5b650
MW
206 ctx = info[cmdid].ctx;
207 info[cmdid].fn = special_completion;
e85248e5 208 info[cmdid].ctx = CMD_CTX_COMPLETED;
b60503ba
MW
209 clear_bit(cmdid, nvmeq->cmdid_data);
210 wake_up(&nvmeq->sq_full);
c2f5b650 211 return ctx;
b60503ba
MW
212}
213
c2f5b650
MW
214static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
215 nvme_completion_fn *fn)
3c0cf138 216{
c2f5b650 217 void *ctx;
e85248e5 218 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
c2f5b650
MW
219 if (fn)
220 *fn = info[cmdid].fn;
221 ctx = info[cmdid].ctx;
222 info[cmdid].fn = special_completion;
e85248e5 223 info[cmdid].ctx = CMD_CTX_CANCELLED;
c2f5b650 224 return ctx;
3c0cf138
MW
225}
226
5d0f6131 227struct nvme_queue *get_nvmeq(struct nvme_dev *dev)
b60503ba 228{
040a93b5 229 return dev->queues[get_cpu() + 1];
b60503ba
MW
230}
231
5d0f6131 232void put_nvmeq(struct nvme_queue *nvmeq)
b60503ba 233{
1b23484b 234 put_cpu();
b60503ba
MW
235}
236
237/**
714a7a22 238 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
239 * @nvmeq: The queue to use
240 * @cmd: The command to send
241 *
242 * Safe to use from interrupt context
243 */
244static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
245{
246 unsigned long flags;
247 u16 tail;
b60503ba
MW
248 spin_lock_irqsave(&nvmeq->q_lock, flags);
249 tail = nvmeq->sq_tail;
250 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
b60503ba
MW
251 if (++tail == nvmeq->q_depth)
252 tail = 0;
7547881d 253 writel(tail, nvmeq->q_db);
b60503ba
MW
254 nvmeq->sq_tail = tail;
255 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
256
257 return 0;
258}
259
eca18b23 260static __le64 **iod_list(struct nvme_iod *iod)
e025344c 261{
eca18b23 262 return ((void *)iod) + iod->offset;
e025344c
SMM
263}
264
eca18b23
MW
265/*
266 * Will slightly overestimate the number of pages needed. This is OK
267 * as it only leads to a small amount of wasted memory for the lifetime of
268 * the I/O.
269 */
270static int nvme_npages(unsigned size)
271{
272 unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE);
273 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
274}
b60503ba 275
eca18b23
MW
276static struct nvme_iod *
277nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp)
b60503ba 278{
eca18b23
MW
279 struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
280 sizeof(__le64 *) * nvme_npages(nbytes) +
281 sizeof(struct scatterlist) * nseg, gfp);
282
283 if (iod) {
284 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
285 iod->npages = -1;
286 iod->length = nbytes;
2b196034 287 iod->nents = 0;
6198221f 288 iod->start_time = jiffies;
eca18b23
MW
289 }
290
291 return iod;
b60503ba
MW
292}
293
5d0f6131 294void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
b60503ba 295{
eca18b23
MW
296 const int last_prp = PAGE_SIZE / 8 - 1;
297 int i;
298 __le64 **list = iod_list(iod);
299 dma_addr_t prp_dma = iod->first_dma;
300
301 if (iod->npages == 0)
302 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
303 for (i = 0; i < iod->npages; i++) {
304 __le64 *prp_list = list[i];
305 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
306 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
307 prp_dma = next_prp_dma;
308 }
309 kfree(iod);
b60503ba
MW
310}
311
6198221f
KB
312static void nvme_start_io_acct(struct bio *bio)
313{
314 struct gendisk *disk = bio->bi_bdev->bd_disk;
315 const int rw = bio_data_dir(bio);
316 int cpu = part_stat_lock();
317 part_round_stats(cpu, &disk->part0);
318 part_stat_inc(cpu, &disk->part0, ios[rw]);
319 part_stat_add(cpu, &disk->part0, sectors[rw], bio_sectors(bio));
320 part_inc_in_flight(&disk->part0, rw);
321 part_stat_unlock();
322}
323
324static void nvme_end_io_acct(struct bio *bio, unsigned long start_time)
325{
326 struct gendisk *disk = bio->bi_bdev->bd_disk;
327 const int rw = bio_data_dir(bio);
328 unsigned long duration = jiffies - start_time;
329 int cpu = part_stat_lock();
330 part_stat_add(cpu, &disk->part0, ticks[rw], duration);
331 part_round_stats(cpu, &disk->part0);
332 part_dec_in_flight(&disk->part0, rw);
333 part_stat_unlock();
334}
335
5c1281a3 336static void bio_completion(struct nvme_dev *dev, void *ctx,
b60503ba
MW
337 struct nvme_completion *cqe)
338{
eca18b23
MW
339 struct nvme_iod *iod = ctx;
340 struct bio *bio = iod->private;
b60503ba
MW
341 u16 status = le16_to_cpup(&cqe->status) >> 1;
342
2b196034
KB
343 if (iod->nents)
344 dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
b60503ba 345 bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
6198221f
KB
346
347 nvme_end_io_acct(bio, iod->start_time);
eca18b23 348 nvme_free_iod(dev, iod);
427e9708 349 if (status)
1ad2f893 350 bio_endio(bio, -EIO);
427e9708 351 else
1ad2f893 352 bio_endio(bio, 0);
b60503ba
MW
353}
354
184d2944 355/* length is in bytes. gfp flags indicates whether we may sleep. */
5d0f6131
VV
356int nvme_setup_prps(struct nvme_dev *dev, struct nvme_common_command *cmd,
357 struct nvme_iod *iod, int total_len, gfp_t gfp)
ff22b54f 358{
99802a7a 359 struct dma_pool *pool;
eca18b23
MW
360 int length = total_len;
361 struct scatterlist *sg = iod->sg;
ff22b54f
MW
362 int dma_len = sg_dma_len(sg);
363 u64 dma_addr = sg_dma_address(sg);
364 int offset = offset_in_page(dma_addr);
e025344c 365 __le64 *prp_list;
eca18b23 366 __le64 **list = iod_list(iod);
e025344c 367 dma_addr_t prp_dma;
eca18b23 368 int nprps, i;
ff22b54f
MW
369
370 cmd->prp1 = cpu_to_le64(dma_addr);
371 length -= (PAGE_SIZE - offset);
372 if (length <= 0)
eca18b23 373 return total_len;
ff22b54f
MW
374
375 dma_len -= (PAGE_SIZE - offset);
376 if (dma_len) {
377 dma_addr += (PAGE_SIZE - offset);
378 } else {
379 sg = sg_next(sg);
380 dma_addr = sg_dma_address(sg);
381 dma_len = sg_dma_len(sg);
382 }
383
384 if (length <= PAGE_SIZE) {
385 cmd->prp2 = cpu_to_le64(dma_addr);
eca18b23 386 return total_len;
e025344c
SMM
387 }
388
389 nprps = DIV_ROUND_UP(length, PAGE_SIZE);
99802a7a
MW
390 if (nprps <= (256 / 8)) {
391 pool = dev->prp_small_pool;
eca18b23 392 iod->npages = 0;
99802a7a
MW
393 } else {
394 pool = dev->prp_page_pool;
eca18b23 395 iod->npages = 1;
99802a7a
MW
396 }
397
b77954cb
MW
398 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
399 if (!prp_list) {
400 cmd->prp2 = cpu_to_le64(dma_addr);
eca18b23
MW
401 iod->npages = -1;
402 return (total_len - length) + PAGE_SIZE;
b77954cb 403 }
eca18b23
MW
404 list[0] = prp_list;
405 iod->first_dma = prp_dma;
e025344c
SMM
406 cmd->prp2 = cpu_to_le64(prp_dma);
407 i = 0;
408 for (;;) {
7523d834 409 if (i == PAGE_SIZE / 8) {
e025344c 410 __le64 *old_prp_list = prp_list;
b77954cb 411 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
eca18b23
MW
412 if (!prp_list)
413 return total_len - length;
414 list[iod->npages++] = prp_list;
7523d834
MW
415 prp_list[0] = old_prp_list[i - 1];
416 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
417 i = 1;
e025344c
SMM
418 }
419 prp_list[i++] = cpu_to_le64(dma_addr);
420 dma_len -= PAGE_SIZE;
421 dma_addr += PAGE_SIZE;
422 length -= PAGE_SIZE;
423 if (length <= 0)
424 break;
425 if (dma_len > 0)
426 continue;
427 BUG_ON(dma_len < 0);
428 sg = sg_next(sg);
429 dma_addr = sg_dma_address(sg);
430 dma_len = sg_dma_len(sg);
ff22b54f
MW
431 }
432
eca18b23 433 return total_len;
ff22b54f
MW
434}
435
427e9708
KB
436struct nvme_bio_pair {
437 struct bio b1, b2, *parent;
438 struct bio_vec *bv1, *bv2;
439 int err;
440 atomic_t cnt;
441};
442
443static void nvme_bio_pair_endio(struct bio *bio, int err)
444{
445 struct nvme_bio_pair *bp = bio->bi_private;
446
447 if (err)
448 bp->err = err;
449
450 if (atomic_dec_and_test(&bp->cnt)) {
451 bio_endio(bp->parent, bp->err);
452 if (bp->bv1)
453 kfree(bp->bv1);
454 if (bp->bv2)
455 kfree(bp->bv2);
456 kfree(bp);
457 }
458}
459
460static struct nvme_bio_pair *nvme_bio_split(struct bio *bio, int idx,
461 int len, int offset)
462{
463 struct nvme_bio_pair *bp;
464
465 BUG_ON(len > bio->bi_size);
466 BUG_ON(idx > bio->bi_vcnt);
467
468 bp = kmalloc(sizeof(*bp), GFP_ATOMIC);
469 if (!bp)
470 return NULL;
471 bp->err = 0;
472
473 bp->b1 = *bio;
474 bp->b2 = *bio;
475
476 bp->b1.bi_size = len;
477 bp->b2.bi_size -= len;
478 bp->b1.bi_vcnt = idx;
479 bp->b2.bi_idx = idx;
480 bp->b2.bi_sector += len >> 9;
481
482 if (offset) {
483 bp->bv1 = kmalloc(bio->bi_max_vecs * sizeof(struct bio_vec),
484 GFP_ATOMIC);
485 if (!bp->bv1)
486 goto split_fail_1;
487
488 bp->bv2 = kmalloc(bio->bi_max_vecs * sizeof(struct bio_vec),
489 GFP_ATOMIC);
490 if (!bp->bv2)
491 goto split_fail_2;
492
493 memcpy(bp->bv1, bio->bi_io_vec,
494 bio->bi_max_vecs * sizeof(struct bio_vec));
495 memcpy(bp->bv2, bio->bi_io_vec,
496 bio->bi_max_vecs * sizeof(struct bio_vec));
497
498 bp->b1.bi_io_vec = bp->bv1;
499 bp->b2.bi_io_vec = bp->bv2;
500 bp->b2.bi_io_vec[idx].bv_offset += offset;
501 bp->b2.bi_io_vec[idx].bv_len -= offset;
502 bp->b1.bi_io_vec[idx].bv_len = offset;
503 bp->b1.bi_vcnt++;
504 } else
505 bp->bv1 = bp->bv2 = NULL;
506
507 bp->b1.bi_private = bp;
508 bp->b2.bi_private = bp;
509
510 bp->b1.bi_end_io = nvme_bio_pair_endio;
511 bp->b2.bi_end_io = nvme_bio_pair_endio;
512
513 bp->parent = bio;
514 atomic_set(&bp->cnt, 2);
515
516 return bp;
517
518 split_fail_2:
519 kfree(bp->bv1);
520 split_fail_1:
521 kfree(bp);
522 return NULL;
523}
524
525static int nvme_split_and_submit(struct bio *bio, struct nvme_queue *nvmeq,
526 int idx, int len, int offset)
527{
528 struct nvme_bio_pair *bp = nvme_bio_split(bio, idx, len, offset);
529 if (!bp)
530 return -ENOMEM;
531
532 if (bio_list_empty(&nvmeq->sq_cong))
533 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
534 bio_list_add(&nvmeq->sq_cong, &bp->b1);
535 bio_list_add(&nvmeq->sq_cong, &bp->b2);
536
537 return 0;
538}
539
1ad2f893
MW
540/* NVMe scatterlists require no holes in the virtual address */
541#define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2) ((vec2)->bv_offset || \
542 (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
543
427e9708 544static int nvme_map_bio(struct nvme_queue *nvmeq, struct nvme_iod *iod,
b60503ba
MW
545 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
546{
76830840
MW
547 struct bio_vec *bvec, *bvprv = NULL;
548 struct scatterlist *sg = NULL;
159b67d7
KB
549 int i, length = 0, nsegs = 0, split_len = bio->bi_size;
550
551 if (nvmeq->dev->stripe_size)
552 split_len = nvmeq->dev->stripe_size -
553 ((bio->bi_sector << 9) & (nvmeq->dev->stripe_size - 1));
b60503ba 554
eca18b23 555 sg_init_table(iod->sg, psegs);
b60503ba 556 bio_for_each_segment(bvec, bio, i) {
76830840
MW
557 if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
558 sg->length += bvec->bv_len;
559 } else {
1ad2f893 560 if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
427e9708
KB
561 return nvme_split_and_submit(bio, nvmeq, i,
562 length, 0);
563
eca18b23 564 sg = sg ? sg + 1 : iod->sg;
76830840
MW
565 sg_set_page(sg, bvec->bv_page, bvec->bv_len,
566 bvec->bv_offset);
567 nsegs++;
568 }
159b67d7
KB
569
570 if (split_len - length < bvec->bv_len)
571 return nvme_split_and_submit(bio, nvmeq, i, split_len,
572 split_len - length);
1ad2f893 573 length += bvec->bv_len;
76830840 574 bvprv = bvec;
b60503ba 575 }
eca18b23 576 iod->nents = nsegs;
76830840 577 sg_mark_end(sg);
427e9708 578 if (dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir) == 0)
1ad2f893 579 return -ENOMEM;
427e9708 580
159b67d7 581 BUG_ON(length != bio->bi_size);
1ad2f893 582 return length;
b60503ba
MW
583}
584
0e5e4f0e
KB
585/*
586 * We reuse the small pool to allocate the 16-byte range here as it is not
587 * worth having a special pool for these or additional cases to handle freeing
588 * the iod.
589 */
590static int nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
591 struct bio *bio, struct nvme_iod *iod, int cmdid)
592{
593 struct nvme_dsm_range *range;
594 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
595
596 range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
597 &iod->first_dma);
598 if (!range)
599 return -ENOMEM;
600
601 iod_list(iod)[0] = (__le64 *)range;
602 iod->npages = 0;
603
604 range->cattr = cpu_to_le32(0);
605 range->nlb = cpu_to_le32(bio->bi_size >> ns->lba_shift);
063cc6d5 606 range->slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_sector));
0e5e4f0e
KB
607
608 memset(cmnd, 0, sizeof(*cmnd));
609 cmnd->dsm.opcode = nvme_cmd_dsm;
610 cmnd->dsm.command_id = cmdid;
611 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
612 cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
613 cmnd->dsm.nr = 0;
614 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
615
616 if (++nvmeq->sq_tail == nvmeq->q_depth)
617 nvmeq->sq_tail = 0;
618 writel(nvmeq->sq_tail, nvmeq->q_db);
619
620 return 0;
621}
622
00df5cb4
MW
623static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
624 int cmdid)
625{
626 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
627
628 memset(cmnd, 0, sizeof(*cmnd));
629 cmnd->common.opcode = nvme_cmd_flush;
630 cmnd->common.command_id = cmdid;
631 cmnd->common.nsid = cpu_to_le32(ns->ns_id);
632
633 if (++nvmeq->sq_tail == nvmeq->q_depth)
634 nvmeq->sq_tail = 0;
635 writel(nvmeq->sq_tail, nvmeq->q_db);
636
637 return 0;
638}
639
5d0f6131 640int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
00df5cb4
MW
641{
642 int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
ff976d72 643 special_completion, NVME_IO_TIMEOUT);
00df5cb4
MW
644 if (unlikely(cmdid < 0))
645 return cmdid;
646
647 return nvme_submit_flush(nvmeq, ns, cmdid);
648}
649
184d2944
MW
650/*
651 * Called with local interrupts disabled and the q_lock held. May not sleep.
652 */
b60503ba
MW
653static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
654 struct bio *bio)
655{
ff22b54f 656 struct nvme_command *cmnd;
eca18b23 657 struct nvme_iod *iod;
b60503ba 658 enum dma_data_direction dma_dir;
1287dabd 659 int cmdid, length, result;
b60503ba
MW
660 u16 control;
661 u32 dsmgmt;
b60503ba
MW
662 int psegs = bio_phys_segments(ns->queue, bio);
663
00df5cb4
MW
664 if ((bio->bi_rw & REQ_FLUSH) && psegs) {
665 result = nvme_submit_flush_data(nvmeq, ns);
666 if (result)
667 return result;
668 }
669
1287dabd 670 result = -ENOMEM;
eca18b23
MW
671 iod = nvme_alloc_iod(psegs, bio->bi_size, GFP_ATOMIC);
672 if (!iod)
eeee3226 673 goto nomem;
eca18b23 674 iod->private = bio;
b60503ba 675
eeee3226 676 result = -EBUSY;
ff976d72 677 cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT);
b60503ba 678 if (unlikely(cmdid < 0))
eca18b23 679 goto free_iod;
b60503ba 680
0e5e4f0e
KB
681 if (bio->bi_rw & REQ_DISCARD) {
682 result = nvme_submit_discard(nvmeq, ns, bio, iod, cmdid);
683 if (result)
684 goto free_cmdid;
685 return result;
686 }
00df5cb4
MW
687 if ((bio->bi_rw & REQ_FLUSH) && !psegs)
688 return nvme_submit_flush(nvmeq, ns, cmdid);
689
b60503ba
MW
690 control = 0;
691 if (bio->bi_rw & REQ_FUA)
692 control |= NVME_RW_FUA;
693 if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
694 control |= NVME_RW_LR;
695
696 dsmgmt = 0;
697 if (bio->bi_rw & REQ_RAHEAD)
698 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
699
ff22b54f 700 cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
b60503ba 701
b8deb62c 702 memset(cmnd, 0, sizeof(*cmnd));
b60503ba 703 if (bio_data_dir(bio)) {
ff22b54f 704 cmnd->rw.opcode = nvme_cmd_write;
b60503ba
MW
705 dma_dir = DMA_TO_DEVICE;
706 } else {
ff22b54f 707 cmnd->rw.opcode = nvme_cmd_read;
b60503ba
MW
708 dma_dir = DMA_FROM_DEVICE;
709 }
710
427e9708
KB
711 result = nvme_map_bio(nvmeq, iod, bio, dma_dir, psegs);
712 if (result <= 0)
859361a2 713 goto free_cmdid;
1ad2f893 714 length = result;
b60503ba 715
ff22b54f
MW
716 cmnd->rw.command_id = cmdid;
717 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
eca18b23
MW
718 length = nvme_setup_prps(nvmeq->dev, &cmnd->common, iod, length,
719 GFP_ATOMIC);
063cc6d5 720 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_sector));
1ad2f893 721 cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
ff22b54f
MW
722 cmnd->rw.control = cpu_to_le16(control);
723 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
b60503ba 724
6198221f 725 nvme_start_io_acct(bio);
b60503ba
MW
726 if (++nvmeq->sq_tail == nvmeq->q_depth)
727 nvmeq->sq_tail = 0;
7547881d 728 writel(nvmeq->sq_tail, nvmeq->q_db);
b60503ba 729
1974b1ae
MW
730 return 0;
731
859361a2
KB
732 free_cmdid:
733 free_cmdid(nvmeq, cmdid, NULL);
eca18b23
MW
734 free_iod:
735 nvme_free_iod(nvmeq->dev, iod);
eeee3226
MW
736 nomem:
737 return result;
b60503ba
MW
738}
739
93c3d65b 740static void nvme_make_request(struct request_queue *q, struct bio *bio)
b60503ba
MW
741{
742 struct nvme_ns *ns = q->queuedata;
040a93b5 743 struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
eeee3226
MW
744 int result = -EBUSY;
745
746 spin_lock_irq(&nvmeq->q_lock);
747 if (bio_list_empty(&nvmeq->sq_cong))
748 result = nvme_submit_bio_queue(nvmeq, ns, bio);
749 if (unlikely(result)) {
750 if (bio_list_empty(&nvmeq->sq_cong))
751 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
b60503ba
MW
752 bio_list_add(&nvmeq->sq_cong, bio);
753 }
eeee3226
MW
754
755 spin_unlock_irq(&nvmeq->q_lock);
b60503ba 756 put_nvmeq(nvmeq);
b60503ba
MW
757}
758
b60503ba
MW
759static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
760{
82123460 761 u16 head, phase;
b60503ba 762
b60503ba 763 head = nvmeq->cq_head;
82123460 764 phase = nvmeq->cq_phase;
b60503ba
MW
765
766 for (;;) {
c2f5b650
MW
767 void *ctx;
768 nvme_completion_fn fn;
b60503ba 769 struct nvme_completion cqe = nvmeq->cqes[head];
82123460 770 if ((le16_to_cpu(cqe.status) & 1) != phase)
b60503ba
MW
771 break;
772 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
773 if (++head == nvmeq->q_depth) {
774 head = 0;
82123460 775 phase = !phase;
b60503ba
MW
776 }
777
c2f5b650 778 ctx = free_cmdid(nvmeq, cqe.command_id, &fn);
5c1281a3 779 fn(nvmeq->dev, ctx, &cqe);
b60503ba
MW
780 }
781
782 /* If the controller ignores the cq head doorbell and continuously
783 * writes to the queue, it is theoretically possible to wrap around
784 * the queue twice and mistakenly return IRQ_NONE. Linux only
785 * requires that 0.1% of your interrupts are handled, so this isn't
786 * a big problem.
787 */
82123460 788 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
b60503ba
MW
789 return IRQ_NONE;
790
f1938f6e 791 writel(head, nvmeq->q_db + (1 << nvmeq->dev->db_stride));
b60503ba 792 nvmeq->cq_head = head;
82123460 793 nvmeq->cq_phase = phase;
b60503ba
MW
794
795 return IRQ_HANDLED;
796}
797
798static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
799{
800 irqreturn_t result;
801 struct nvme_queue *nvmeq = data;
802 spin_lock(&nvmeq->q_lock);
803 result = nvme_process_cq(nvmeq);
804 spin_unlock(&nvmeq->q_lock);
805 return result;
806}
807
808static irqreturn_t nvme_irq_check(int irq, void *data)
809{
810 struct nvme_queue *nvmeq = data;
811 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
812 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
813 return IRQ_NONE;
814 return IRQ_WAKE_THREAD;
815}
816
3c0cf138
MW
817static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
818{
819 spin_lock_irq(&nvmeq->q_lock);
c2f5b650 820 cancel_cmdid(nvmeq, cmdid, NULL);
3c0cf138
MW
821 spin_unlock_irq(&nvmeq->q_lock);
822}
823
c2f5b650
MW
824struct sync_cmd_info {
825 struct task_struct *task;
826 u32 result;
827 int status;
828};
829
5c1281a3 830static void sync_completion(struct nvme_dev *dev, void *ctx,
c2f5b650
MW
831 struct nvme_completion *cqe)
832{
833 struct sync_cmd_info *cmdinfo = ctx;
834 cmdinfo->result = le32_to_cpup(&cqe->result);
835 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
836 wake_up_process(cmdinfo->task);
837}
838
b60503ba
MW
839/*
840 * Returns 0 on success. If the result is negative, it's a Linux error code;
841 * if the result is positive, it's an NVM Express status code
842 */
5d0f6131
VV
843int nvme_submit_sync_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
844 u32 *result, unsigned timeout)
b60503ba
MW
845{
846 int cmdid;
847 struct sync_cmd_info cmdinfo;
848
849 cmdinfo.task = current;
850 cmdinfo.status = -EINTR;
851
c2f5b650 852 cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion,
e85248e5 853 timeout);
b60503ba
MW
854 if (cmdid < 0)
855 return cmdid;
856 cmd->common.command_id = cmdid;
857
3c0cf138
MW
858 set_current_state(TASK_KILLABLE);
859 nvme_submit_cmd(nvmeq, cmd);
78f8d257 860 schedule_timeout(timeout);
b60503ba 861
3c0cf138
MW
862 if (cmdinfo.status == -EINTR) {
863 nvme_abort_command(nvmeq, cmdid);
864 return -EINTR;
865 }
866
b60503ba
MW
867 if (result)
868 *result = cmdinfo.result;
869
870 return cmdinfo.status;
871}
872
5d0f6131 873int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
b60503ba
MW
874 u32 *result)
875{
e85248e5 876 return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
b60503ba
MW
877}
878
879static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
880{
881 int status;
882 struct nvme_command c;
883
884 memset(&c, 0, sizeof(c));
885 c.delete_queue.opcode = opcode;
886 c.delete_queue.qid = cpu_to_le16(id);
887
888 status = nvme_submit_admin_cmd(dev, &c, NULL);
889 if (status)
890 return -EIO;
891 return 0;
892}
893
894static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
895 struct nvme_queue *nvmeq)
896{
897 int status;
898 struct nvme_command c;
899 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
900
901 memset(&c, 0, sizeof(c));
902 c.create_cq.opcode = nvme_admin_create_cq;
903 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
904 c.create_cq.cqid = cpu_to_le16(qid);
905 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
906 c.create_cq.cq_flags = cpu_to_le16(flags);
907 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
908
909 status = nvme_submit_admin_cmd(dev, &c, NULL);
910 if (status)
911 return -EIO;
912 return 0;
913}
914
915static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
916 struct nvme_queue *nvmeq)
917{
918 int status;
919 struct nvme_command c;
920 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
921
922 memset(&c, 0, sizeof(c));
923 c.create_sq.opcode = nvme_admin_create_sq;
924 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
925 c.create_sq.sqid = cpu_to_le16(qid);
926 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
927 c.create_sq.sq_flags = cpu_to_le16(flags);
928 c.create_sq.cqid = cpu_to_le16(qid);
929
930 status = nvme_submit_admin_cmd(dev, &c, NULL);
931 if (status)
932 return -EIO;
933 return 0;
934}
935
936static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
937{
938 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
939}
940
941static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
942{
943 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
944}
945
5d0f6131 946int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
bc5fc7e4
MW
947 dma_addr_t dma_addr)
948{
949 struct nvme_command c;
950
951 memset(&c, 0, sizeof(c));
952 c.identify.opcode = nvme_admin_identify;
953 c.identify.nsid = cpu_to_le32(nsid);
954 c.identify.prp1 = cpu_to_le64(dma_addr);
955 c.identify.cns = cpu_to_le32(cns);
956
957 return nvme_submit_admin_cmd(dev, &c, NULL);
958}
959
5d0f6131 960int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
08df1e05 961 dma_addr_t dma_addr, u32 *result)
bc5fc7e4
MW
962{
963 struct nvme_command c;
964
965 memset(&c, 0, sizeof(c));
966 c.features.opcode = nvme_admin_get_features;
a42cecce 967 c.features.nsid = cpu_to_le32(nsid);
bc5fc7e4
MW
968 c.features.prp1 = cpu_to_le64(dma_addr);
969 c.features.fid = cpu_to_le32(fid);
bc5fc7e4 970
08df1e05 971 return nvme_submit_admin_cmd(dev, &c, result);
df348139
MW
972}
973
5d0f6131
VV
974int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
975 dma_addr_t dma_addr, u32 *result)
df348139
MW
976{
977 struct nvme_command c;
978
979 memset(&c, 0, sizeof(c));
980 c.features.opcode = nvme_admin_set_features;
981 c.features.prp1 = cpu_to_le64(dma_addr);
982 c.features.fid = cpu_to_le32(fid);
983 c.features.dword11 = cpu_to_le32(dword11);
984
bc5fc7e4
MW
985 return nvme_submit_admin_cmd(dev, &c, result);
986}
987
a09115b2
MW
988/**
989 * nvme_cancel_ios - Cancel outstanding I/Os
990 * @queue: The queue to cancel I/Os on
991 * @timeout: True to only cancel I/Os which have timed out
992 */
993static void nvme_cancel_ios(struct nvme_queue *nvmeq, bool timeout)
994{
995 int depth = nvmeq->q_depth - 1;
996 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
997 unsigned long now = jiffies;
998 int cmdid;
999
1000 for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
1001 void *ctx;
1002 nvme_completion_fn fn;
1003 static struct nvme_completion cqe = {
af2d9ca7 1004 .status = cpu_to_le16(NVME_SC_ABORT_REQ << 1),
a09115b2
MW
1005 };
1006
1007 if (timeout && !time_after(now, info[cmdid].timeout))
1008 continue;
053ab702
KB
1009 if (info[cmdid].ctx == CMD_CTX_CANCELLED)
1010 continue;
a09115b2
MW
1011 dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d\n", cmdid);
1012 ctx = cancel_cmdid(nvmeq, cmdid, &fn);
1013 fn(nvmeq->dev, ctx, &cqe);
1014 }
1015}
1016
9e866774
MW
1017static void nvme_free_queue_mem(struct nvme_queue *nvmeq)
1018{
1019 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1020 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1021 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1022 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1023 kfree(nvmeq);
1024}
1025
b60503ba
MW
1026static void nvme_free_queue(struct nvme_dev *dev, int qid)
1027{
1028 struct nvme_queue *nvmeq = dev->queues[qid];
aba2080f 1029 int vector = dev->entry[nvmeq->cq_vector].vector;
b60503ba 1030
a09115b2
MW
1031 spin_lock_irq(&nvmeq->q_lock);
1032 nvme_cancel_ios(nvmeq, false);
3295874b
KB
1033 while (bio_list_peek(&nvmeq->sq_cong)) {
1034 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1035 bio_endio(bio, -EIO);
1036 }
a09115b2
MW
1037 spin_unlock_irq(&nvmeq->q_lock);
1038
aba2080f
MW
1039 irq_set_affinity_hint(vector, NULL);
1040 free_irq(vector, nvmeq);
b60503ba
MW
1041
1042 /* Don't tell the adapter to delete the admin queue */
1043 if (qid) {
1044 adapter_delete_sq(dev, qid);
1045 adapter_delete_cq(dev, qid);
1046 }
1047
9e866774 1048 nvme_free_queue_mem(nvmeq);
b60503ba
MW
1049}
1050
1051static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1052 int depth, int vector)
1053{
1054 struct device *dmadev = &dev->pci_dev->dev;
a0cadb85
KB
1055 unsigned extra = DIV_ROUND_UP(depth, 8) + (depth *
1056 sizeof(struct nvme_cmd_info));
b60503ba
MW
1057 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
1058 if (!nvmeq)
1059 return NULL;
1060
1061 nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
1062 &nvmeq->cq_dma_addr, GFP_KERNEL);
1063 if (!nvmeq->cqes)
1064 goto free_nvmeq;
1065 memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
1066
1067 nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
1068 &nvmeq->sq_dma_addr, GFP_KERNEL);
1069 if (!nvmeq->sq_cmds)
1070 goto free_cqdma;
1071
1072 nvmeq->q_dmadev = dmadev;
091b6092 1073 nvmeq->dev = dev;
b60503ba
MW
1074 spin_lock_init(&nvmeq->q_lock);
1075 nvmeq->cq_head = 0;
82123460 1076 nvmeq->cq_phase = 1;
b60503ba 1077 init_waitqueue_head(&nvmeq->sq_full);
1fa6aead 1078 init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
b60503ba 1079 bio_list_init(&nvmeq->sq_cong);
f1938f6e 1080 nvmeq->q_db = &dev->dbs[qid << (dev->db_stride + 1)];
b60503ba
MW
1081 nvmeq->q_depth = depth;
1082 nvmeq->cq_vector = vector;
1083
1084 return nvmeq;
1085
1086 free_cqdma:
68b8eca5 1087 dma_free_coherent(dmadev, CQ_SIZE(depth), (void *)nvmeq->cqes,
b60503ba
MW
1088 nvmeq->cq_dma_addr);
1089 free_nvmeq:
1090 kfree(nvmeq);
1091 return NULL;
1092}
1093
3001082c
MW
1094static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1095 const char *name)
1096{
58ffacb5
MW
1097 if (use_threaded_interrupts)
1098 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
ec6ce618 1099 nvme_irq_check, nvme_irq,
58ffacb5
MW
1100 IRQF_DISABLED | IRQF_SHARED,
1101 name, nvmeq);
3001082c
MW
1102 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1103 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
1104}
1105
8d85fce7
GKH
1106static struct nvme_queue *nvme_create_queue(struct nvme_dev *dev, int qid,
1107 int cq_size, int vector)
b60503ba
MW
1108{
1109 int result;
1110 struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
1111
3f85d50b 1112 if (!nvmeq)
6f0f5449 1113 return ERR_PTR(-ENOMEM);
3f85d50b 1114
b60503ba
MW
1115 result = adapter_alloc_cq(dev, qid, nvmeq);
1116 if (result < 0)
1117 goto free_nvmeq;
1118
1119 result = adapter_alloc_sq(dev, qid, nvmeq);
1120 if (result < 0)
1121 goto release_cq;
1122
3001082c 1123 result = queue_request_irq(dev, nvmeq, "nvme");
b60503ba
MW
1124 if (result < 0)
1125 goto release_sq;
1126
1127 return nvmeq;
1128
1129 release_sq:
1130 adapter_delete_sq(dev, qid);
1131 release_cq:
1132 adapter_delete_cq(dev, qid);
1133 free_nvmeq:
1134 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1135 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1136 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1137 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1138 kfree(nvmeq);
6f0f5449 1139 return ERR_PTR(result);
b60503ba
MW
1140}
1141
ba47e386
MW
1142static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1143{
1144 unsigned long timeout;
1145 u32 bit = enabled ? NVME_CSTS_RDY : 0;
1146
1147 timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1148
1149 while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1150 msleep(100);
1151 if (fatal_signal_pending(current))
1152 return -EINTR;
1153 if (time_after(jiffies, timeout)) {
1154 dev_err(&dev->pci_dev->dev,
1155 "Device not ready; aborting initialisation\n");
1156 return -ENODEV;
1157 }
1158 }
1159
1160 return 0;
1161}
1162
1163/*
1164 * If the device has been passed off to us in an enabled state, just clear
1165 * the enabled bit. The spec says we should set the 'shutdown notification
1166 * bits', but doing so may cause the device to complete commands to the
1167 * admin queue ... and we don't know what memory that might be pointing at!
1168 */
1169static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1170{
44af146a
MW
1171 u32 cc = readl(&dev->bar->cc);
1172
1173 if (cc & NVME_CC_ENABLE)
1174 writel(cc & ~NVME_CC_ENABLE, &dev->bar->cc);
ba47e386
MW
1175 return nvme_wait_ready(dev, cap, false);
1176}
1177
1178static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1179{
1180 return nvme_wait_ready(dev, cap, true);
1181}
1182
8d85fce7 1183static int nvme_configure_admin_queue(struct nvme_dev *dev)
b60503ba 1184{
ba47e386 1185 int result;
b60503ba 1186 u32 aqa;
ba47e386 1187 u64 cap = readq(&dev->bar->cap);
b60503ba
MW
1188 struct nvme_queue *nvmeq;
1189
1190 dev->dbs = ((void __iomem *)dev->bar) + 4096;
ba47e386
MW
1191 dev->db_stride = NVME_CAP_STRIDE(cap);
1192
1193 result = nvme_disable_ctrl(dev, cap);
1194 if (result < 0)
1195 return result;
b60503ba
MW
1196
1197 nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
3f85d50b
MW
1198 if (!nvmeq)
1199 return -ENOMEM;
b60503ba
MW
1200
1201 aqa = nvmeq->q_depth - 1;
1202 aqa |= aqa << 16;
1203
1204 dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
1205 dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
1206 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
7f53f9d2 1207 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
b60503ba
MW
1208
1209 writel(aqa, &dev->bar->aqa);
1210 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1211 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1212 writel(dev->ctrl_config, &dev->bar->cc);
1213
ba47e386 1214 result = nvme_enable_ctrl(dev, cap);
025c557a
KB
1215 if (result)
1216 goto free_q;
9e866774 1217
3001082c 1218 result = queue_request_irq(dev, nvmeq, "nvme admin");
025c557a
KB
1219 if (result)
1220 goto free_q;
1221
b60503ba
MW
1222 dev->queues[0] = nvmeq;
1223 return result;
025c557a
KB
1224
1225 free_q:
1226 nvme_free_queue_mem(nvmeq);
1227 return result;
b60503ba
MW
1228}
1229
5d0f6131 1230struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
eca18b23 1231 unsigned long addr, unsigned length)
b60503ba 1232{
36c14ed9 1233 int i, err, count, nents, offset;
7fc3cdab
MW
1234 struct scatterlist *sg;
1235 struct page **pages;
eca18b23 1236 struct nvme_iod *iod;
36c14ed9
MW
1237
1238 if (addr & 3)
eca18b23 1239 return ERR_PTR(-EINVAL);
5460fc03 1240 if (!length || length > INT_MAX - PAGE_SIZE)
eca18b23 1241 return ERR_PTR(-EINVAL);
7fc3cdab 1242
36c14ed9 1243 offset = offset_in_page(addr);
7fc3cdab
MW
1244 count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1245 pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
22fff826
DC
1246 if (!pages)
1247 return ERR_PTR(-ENOMEM);
36c14ed9
MW
1248
1249 err = get_user_pages_fast(addr, count, 1, pages);
1250 if (err < count) {
1251 count = err;
1252 err = -EFAULT;
1253 goto put_pages;
1254 }
7fc3cdab 1255
eca18b23
MW
1256 iod = nvme_alloc_iod(count, length, GFP_KERNEL);
1257 sg = iod->sg;
36c14ed9 1258 sg_init_table(sg, count);
d0ba1e49
MW
1259 for (i = 0; i < count; i++) {
1260 sg_set_page(&sg[i], pages[i],
5460fc03
DC
1261 min_t(unsigned, length, PAGE_SIZE - offset),
1262 offset);
d0ba1e49
MW
1263 length -= (PAGE_SIZE - offset);
1264 offset = 0;
7fc3cdab 1265 }
fe304c43 1266 sg_mark_end(&sg[i - 1]);
1c2ad9fa 1267 iod->nents = count;
7fc3cdab
MW
1268
1269 err = -ENOMEM;
1270 nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1271 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
36c14ed9 1272 if (!nents)
eca18b23 1273 goto free_iod;
b60503ba 1274
7fc3cdab 1275 kfree(pages);
eca18b23 1276 return iod;
b60503ba 1277
eca18b23
MW
1278 free_iod:
1279 kfree(iod);
7fc3cdab
MW
1280 put_pages:
1281 for (i = 0; i < count; i++)
1282 put_page(pages[i]);
1283 kfree(pages);
eca18b23 1284 return ERR_PTR(err);
7fc3cdab 1285}
b60503ba 1286
5d0f6131 1287void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1c2ad9fa 1288 struct nvme_iod *iod)
7fc3cdab 1289{
1c2ad9fa 1290 int i;
b60503ba 1291
1c2ad9fa
MW
1292 dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1293 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
7fc3cdab 1294
1c2ad9fa
MW
1295 for (i = 0; i < iod->nents; i++)
1296 put_page(sg_page(&iod->sg[i]));
7fc3cdab 1297}
b60503ba 1298
a53295b6
MW
1299static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1300{
1301 struct nvme_dev *dev = ns->dev;
1302 struct nvme_queue *nvmeq;
1303 struct nvme_user_io io;
1304 struct nvme_command c;
f410c680
KB
1305 unsigned length, meta_len;
1306 int status, i;
1307 struct nvme_iod *iod, *meta_iod = NULL;
1308 dma_addr_t meta_dma_addr;
1309 void *meta, *uninitialized_var(meta_mem);
a53295b6
MW
1310
1311 if (copy_from_user(&io, uio, sizeof(io)))
1312 return -EFAULT;
6c7d4945 1313 length = (io.nblocks + 1) << ns->lba_shift;
f410c680
KB
1314 meta_len = (io.nblocks + 1) * ns->ms;
1315
1316 if (meta_len && ((io.metadata & 3) || !io.metadata))
1317 return -EINVAL;
6c7d4945
MW
1318
1319 switch (io.opcode) {
1320 case nvme_cmd_write:
1321 case nvme_cmd_read:
6bbf1acd 1322 case nvme_cmd_compare:
eca18b23 1323 iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
6413214c 1324 break;
6c7d4945 1325 default:
6bbf1acd 1326 return -EINVAL;
6c7d4945
MW
1327 }
1328
eca18b23
MW
1329 if (IS_ERR(iod))
1330 return PTR_ERR(iod);
a53295b6
MW
1331
1332 memset(&c, 0, sizeof(c));
1333 c.rw.opcode = io.opcode;
1334 c.rw.flags = io.flags;
6c7d4945 1335 c.rw.nsid = cpu_to_le32(ns->ns_id);
a53295b6 1336 c.rw.slba = cpu_to_le64(io.slba);
6c7d4945 1337 c.rw.length = cpu_to_le16(io.nblocks);
a53295b6 1338 c.rw.control = cpu_to_le16(io.control);
1c9b5265
MW
1339 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1340 c.rw.reftag = cpu_to_le32(io.reftag);
1341 c.rw.apptag = cpu_to_le16(io.apptag);
1342 c.rw.appmask = cpu_to_le16(io.appmask);
f410c680
KB
1343
1344 if (meta_len) {
1345 meta_iod = nvme_map_user_pages(dev, io.opcode & 1, io.metadata, meta_len);
1346 if (IS_ERR(meta_iod)) {
1347 status = PTR_ERR(meta_iod);
1348 meta_iod = NULL;
1349 goto unmap;
1350 }
1351
1352 meta_mem = dma_alloc_coherent(&dev->pci_dev->dev, meta_len,
1353 &meta_dma_addr, GFP_KERNEL);
1354 if (!meta_mem) {
1355 status = -ENOMEM;
1356 goto unmap;
1357 }
1358
1359 if (io.opcode & 1) {
1360 int meta_offset = 0;
1361
1362 for (i = 0; i < meta_iod->nents; i++) {
1363 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1364 meta_iod->sg[i].offset;
1365 memcpy(meta_mem + meta_offset, meta,
1366 meta_iod->sg[i].length);
1367 kunmap_atomic(meta);
1368 meta_offset += meta_iod->sg[i].length;
1369 }
1370 }
1371
1372 c.rw.metadata = cpu_to_le64(meta_dma_addr);
1373 }
1374
eca18b23 1375 length = nvme_setup_prps(dev, &c.common, iod, length, GFP_KERNEL);
a53295b6 1376
040a93b5 1377 nvmeq = get_nvmeq(dev);
fa922821
MW
1378 /*
1379 * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
b1ad37ef
MW
1380 * disabled. We may be preempted at any point, and be rescheduled
1381 * to a different CPU. That will cause cacheline bouncing, but no
1382 * additional races since q_lock already protects against other CPUs.
1383 */
a53295b6 1384 put_nvmeq(nvmeq);
b77954cb
MW
1385 if (length != (io.nblocks + 1) << ns->lba_shift)
1386 status = -ENOMEM;
1387 else
ff976d72 1388 status = nvme_submit_sync_cmd(nvmeq, &c, NULL, NVME_IO_TIMEOUT);
a53295b6 1389
f410c680
KB
1390 if (meta_len) {
1391 if (status == NVME_SC_SUCCESS && !(io.opcode & 1)) {
1392 int meta_offset = 0;
1393
1394 for (i = 0; i < meta_iod->nents; i++) {
1395 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1396 meta_iod->sg[i].offset;
1397 memcpy(meta, meta_mem + meta_offset,
1398 meta_iod->sg[i].length);
1399 kunmap_atomic(meta);
1400 meta_offset += meta_iod->sg[i].length;
1401 }
1402 }
1403
1404 dma_free_coherent(&dev->pci_dev->dev, meta_len, meta_mem,
1405 meta_dma_addr);
1406 }
1407
1408 unmap:
1c2ad9fa 1409 nvme_unmap_user_pages(dev, io.opcode & 1, iod);
eca18b23 1410 nvme_free_iod(dev, iod);
f410c680
KB
1411
1412 if (meta_iod) {
1413 nvme_unmap_user_pages(dev, io.opcode & 1, meta_iod);
1414 nvme_free_iod(dev, meta_iod);
1415 }
1416
a53295b6
MW
1417 return status;
1418}
1419
50af8bae 1420static int nvme_user_admin_cmd(struct nvme_dev *dev,
6bbf1acd 1421 struct nvme_admin_cmd __user *ucmd)
6ee44cdc 1422{
6bbf1acd 1423 struct nvme_admin_cmd cmd;
6ee44cdc 1424 struct nvme_command c;
eca18b23 1425 int status, length;
c7d36ab8 1426 struct nvme_iod *uninitialized_var(iod);
94f370ca 1427 unsigned timeout;
6ee44cdc 1428
6bbf1acd
MW
1429 if (!capable(CAP_SYS_ADMIN))
1430 return -EACCES;
1431 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
6ee44cdc 1432 return -EFAULT;
6ee44cdc
MW
1433
1434 memset(&c, 0, sizeof(c));
6bbf1acd
MW
1435 c.common.opcode = cmd.opcode;
1436 c.common.flags = cmd.flags;
1437 c.common.nsid = cpu_to_le32(cmd.nsid);
1438 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1439 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1440 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1441 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1442 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1443 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1444 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1445 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1446
1447 length = cmd.data_len;
1448 if (cmd.data_len) {
49742188
MW
1449 iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1450 length);
eca18b23
MW
1451 if (IS_ERR(iod))
1452 return PTR_ERR(iod);
1453 length = nvme_setup_prps(dev, &c.common, iod, length,
1454 GFP_KERNEL);
6bbf1acd
MW
1455 }
1456
94f370ca
KB
1457 timeout = cmd.timeout_ms ? msecs_to_jiffies(cmd.timeout_ms) :
1458 ADMIN_TIMEOUT;
6bbf1acd 1459 if (length != cmd.data_len)
b77954cb
MW
1460 status = -ENOMEM;
1461 else
94f370ca
KB
1462 status = nvme_submit_sync_cmd(dev->queues[0], &c, &cmd.result,
1463 timeout);
eca18b23 1464
6bbf1acd 1465 if (cmd.data_len) {
1c2ad9fa 1466 nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
eca18b23 1467 nvme_free_iod(dev, iod);
6bbf1acd 1468 }
f4f117f6 1469
cf90bc48 1470 if ((status >= 0) && copy_to_user(&ucmd->result, &cmd.result,
f4f117f6
KB
1471 sizeof(cmd.result)))
1472 status = -EFAULT;
1473
6ee44cdc
MW
1474 return status;
1475}
1476
b60503ba
MW
1477static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1478 unsigned long arg)
1479{
1480 struct nvme_ns *ns = bdev->bd_disk->private_data;
1481
1482 switch (cmd) {
6bbf1acd
MW
1483 case NVME_IOCTL_ID:
1484 return ns->ns_id;
1485 case NVME_IOCTL_ADMIN_CMD:
50af8bae 1486 return nvme_user_admin_cmd(ns->dev, (void __user *)arg);
a53295b6
MW
1487 case NVME_IOCTL_SUBMIT_IO:
1488 return nvme_submit_io(ns, (void __user *)arg);
5d0f6131
VV
1489 case SG_GET_VERSION_NUM:
1490 return nvme_sg_get_version_num((void __user *)arg);
1491 case SG_IO:
1492 return nvme_sg_io(ns, (void __user *)arg);
b60503ba
MW
1493 default:
1494 return -ENOTTY;
1495 }
1496}
1497
1498static const struct block_device_operations nvme_fops = {
1499 .owner = THIS_MODULE,
1500 .ioctl = nvme_ioctl,
49481682 1501 .compat_ioctl = nvme_ioctl,
b60503ba
MW
1502};
1503
1fa6aead
MW
1504static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1505{
1506 while (bio_list_peek(&nvmeq->sq_cong)) {
1507 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1508 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
427e9708
KB
1509
1510 if (bio_list_empty(&nvmeq->sq_cong))
1511 remove_wait_queue(&nvmeq->sq_full,
1512 &nvmeq->sq_cong_wait);
1fa6aead 1513 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
427e9708
KB
1514 if (bio_list_empty(&nvmeq->sq_cong))
1515 add_wait_queue(&nvmeq->sq_full,
1516 &nvmeq->sq_cong_wait);
1fa6aead
MW
1517 bio_list_add_head(&nvmeq->sq_cong, bio);
1518 break;
1519 }
1520 }
1521}
1522
1523static int nvme_kthread(void *data)
1524{
1525 struct nvme_dev *dev;
1526
1527 while (!kthread_should_stop()) {
564a232c 1528 set_current_state(TASK_INTERRUPTIBLE);
1fa6aead
MW
1529 spin_lock(&dev_list_lock);
1530 list_for_each_entry(dev, &dev_list, node) {
1531 int i;
1532 for (i = 0; i < dev->queue_count; i++) {
1533 struct nvme_queue *nvmeq = dev->queues[i];
740216fc
MW
1534 if (!nvmeq)
1535 continue;
1fa6aead
MW
1536 spin_lock_irq(&nvmeq->q_lock);
1537 if (nvme_process_cq(nvmeq))
1538 printk("process_cq did something\n");
a09115b2 1539 nvme_cancel_ios(nvmeq, true);
1fa6aead
MW
1540 nvme_resubmit_bios(nvmeq);
1541 spin_unlock_irq(&nvmeq->q_lock);
1542 }
1543 }
1544 spin_unlock(&dev_list_lock);
acb7aa0d 1545 schedule_timeout(round_jiffies_relative(HZ));
1fa6aead
MW
1546 }
1547 return 0;
1548}
1549
5aff9382
MW
1550static DEFINE_IDA(nvme_index_ida);
1551
1552static int nvme_get_ns_idx(void)
1553{
1554 int index, error;
1555
1556 do {
1557 if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL))
1558 return -1;
1559
1560 spin_lock(&dev_list_lock);
1561 error = ida_get_new(&nvme_index_ida, &index);
1562 spin_unlock(&dev_list_lock);
1563 } while (error == -EAGAIN);
1564
1565 if (error)
1566 index = -1;
1567 return index;
1568}
1569
1570static void nvme_put_ns_idx(int index)
1571{
1572 spin_lock(&dev_list_lock);
1573 ida_remove(&nvme_index_ida, index);
1574 spin_unlock(&dev_list_lock);
1575}
1576
0e5e4f0e
KB
1577static void nvme_config_discard(struct nvme_ns *ns)
1578{
1579 u32 logical_block_size = queue_logical_block_size(ns->queue);
1580 ns->queue->limits.discard_zeroes_data = 0;
1581 ns->queue->limits.discard_alignment = logical_block_size;
1582 ns->queue->limits.discard_granularity = logical_block_size;
1583 ns->queue->limits.max_discard_sectors = 0xffffffff;
1584 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1585}
1586
5aff9382 1587static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int nsid,
b60503ba
MW
1588 struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1589{
1590 struct nvme_ns *ns;
1591 struct gendisk *disk;
1592 int lbaf;
1593
1594 if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1595 return NULL;
1596
1597 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1598 if (!ns)
1599 return NULL;
1600 ns->queue = blk_alloc_queue(GFP_KERNEL);
1601 if (!ns->queue)
1602 goto out_free_ns;
4eeb9215
MW
1603 ns->queue->queue_flags = QUEUE_FLAG_DEFAULT;
1604 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
1605 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
b60503ba
MW
1606 blk_queue_make_request(ns->queue, nvme_make_request);
1607 ns->dev = dev;
1608 ns->queue->queuedata = ns;
1609
1610 disk = alloc_disk(NVME_MINORS);
1611 if (!disk)
1612 goto out_free_queue;
5aff9382 1613 ns->ns_id = nsid;
b60503ba
MW
1614 ns->disk = disk;
1615 lbaf = id->flbas & 0xf;
1616 ns->lba_shift = id->lbaf[lbaf].ds;
f410c680 1617 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
e9ef4636 1618 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
8fc23e03
KB
1619 if (dev->max_hw_sectors)
1620 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
b60503ba
MW
1621
1622 disk->major = nvme_major;
1623 disk->minors = NVME_MINORS;
5aff9382 1624 disk->first_minor = NVME_MINORS * nvme_get_ns_idx();
b60503ba
MW
1625 disk->fops = &nvme_fops;
1626 disk->private_data = ns;
1627 disk->queue = ns->queue;
388f037f 1628 disk->driverfs_dev = &dev->pci_dev->dev;
5aff9382 1629 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
b60503ba
MW
1630 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1631
0e5e4f0e
KB
1632 if (dev->oncs & NVME_CTRL_ONCS_DSM)
1633 nvme_config_discard(ns);
1634
b60503ba
MW
1635 return ns;
1636
1637 out_free_queue:
1638 blk_cleanup_queue(ns->queue);
1639 out_free_ns:
1640 kfree(ns);
1641 return NULL;
1642}
1643
1644static void nvme_ns_free(struct nvme_ns *ns)
1645{
5aff9382 1646 int index = ns->disk->first_minor / NVME_MINORS;
b60503ba 1647 put_disk(ns->disk);
5aff9382 1648 nvme_put_ns_idx(index);
b60503ba
MW
1649 blk_cleanup_queue(ns->queue);
1650 kfree(ns);
1651}
1652
b3b06812 1653static int set_queue_count(struct nvme_dev *dev, int count)
b60503ba
MW
1654{
1655 int status;
1656 u32 result;
b3b06812 1657 u32 q_count = (count - 1) | ((count - 1) << 16);
b60503ba 1658
df348139 1659 status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
bc5fc7e4 1660 &result);
b60503ba
MW
1661 if (status)
1662 return -EIO;
1663 return min(result & 0xffff, result >> 16) + 1;
1664}
1665
8d85fce7 1666static int nvme_setup_io_queues(struct nvme_dev *dev)
b60503ba 1667{
fa08a396 1668 struct pci_dev *pdev = dev->pci_dev;
063a8096 1669 int result, cpu, i, vecs, nr_io_queues, db_bar_size, q_depth;
b60503ba 1670
b348b7d5
MW
1671 nr_io_queues = num_online_cpus();
1672 result = set_queue_count(dev, nr_io_queues);
1b23484b
MW
1673 if (result < 0)
1674 return result;
b348b7d5
MW
1675 if (result < nr_io_queues)
1676 nr_io_queues = result;
b60503ba 1677
1b23484b
MW
1678 /* Deregister the admin queue's interrupt */
1679 free_irq(dev->entry[0].vector, dev->queues[0]);
1680
f1938f6e
MW
1681 db_bar_size = 4096 + ((nr_io_queues + 1) << (dev->db_stride + 3));
1682 if (db_bar_size > 8192) {
1683 iounmap(dev->bar);
fa08a396 1684 dev->bar = ioremap(pci_resource_start(pdev, 0), db_bar_size);
f1938f6e
MW
1685 dev->dbs = ((void __iomem *)dev->bar) + 4096;
1686 dev->queues[0]->q_db = dev->dbs;
1687 }
1688
063a8096
MW
1689 vecs = nr_io_queues;
1690 for (i = 0; i < vecs; i++)
1b23484b
MW
1691 dev->entry[i].entry = i;
1692 for (;;) {
063a8096
MW
1693 result = pci_enable_msix(pdev, dev->entry, vecs);
1694 if (result <= 0)
1b23484b 1695 break;
063a8096 1696 vecs = result;
1b23484b
MW
1697 }
1698
063a8096
MW
1699 if (result < 0) {
1700 vecs = nr_io_queues;
1701 if (vecs > 32)
1702 vecs = 32;
fa08a396 1703 for (;;) {
063a8096 1704 result = pci_enable_msi_block(pdev, vecs);
fa08a396 1705 if (result == 0) {
063a8096 1706 for (i = 0; i < vecs; i++)
fa08a396
RRG
1707 dev->entry[i].vector = i + pdev->irq;
1708 break;
063a8096
MW
1709 } else if (result < 0) {
1710 vecs = 1;
fa08a396
RRG
1711 break;
1712 }
063a8096 1713 vecs = result;
fa08a396
RRG
1714 }
1715 }
1716
063a8096
MW
1717 /*
1718 * Should investigate if there's a performance win from allocating
1719 * more queues than interrupt vectors; it might allow the submission
1720 * path to scale better, even if the receive path is limited by the
1721 * number of interrupts.
1722 */
1723 nr_io_queues = vecs;
1724
1b23484b
MW
1725 result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1726 /* XXX: handle failure here */
1727
1728 cpu = cpumask_first(cpu_online_mask);
b348b7d5 1729 for (i = 0; i < nr_io_queues; i++) {
1b23484b
MW
1730 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1731 cpu = cpumask_next(cpu, cpu_online_mask);
1732 }
1733
a0cadb85
KB
1734 q_depth = min_t(int, NVME_CAP_MQES(readq(&dev->bar->cap)) + 1,
1735 NVME_Q_DEPTH);
b348b7d5 1736 for (i = 0; i < nr_io_queues; i++) {
a0cadb85 1737 dev->queues[i + 1] = nvme_create_queue(dev, i + 1, q_depth, i);
6f0f5449
MW
1738 if (IS_ERR(dev->queues[i + 1]))
1739 return PTR_ERR(dev->queues[i + 1]);
1b23484b
MW
1740 dev->queue_count++;
1741 }
b60503ba 1742
9ecdc946
MW
1743 for (; i < num_possible_cpus(); i++) {
1744 int target = i % rounddown_pow_of_two(dev->queue_count - 1);
1745 dev->queues[i + 1] = dev->queues[target + 1];
1746 }
1747
b60503ba
MW
1748 return 0;
1749}
1750
1751static void nvme_free_queues(struct nvme_dev *dev)
1752{
1753 int i;
1754
1755 for (i = dev->queue_count - 1; i >= 0; i--)
1756 nvme_free_queue(dev, i);
1757}
1758
422ef0c7
MW
1759/*
1760 * Return: error value if an error occurred setting up the queues or calling
1761 * Identify Device. 0 if these succeeded, even if adding some of the
1762 * namespaces failed. At the moment, these failures are silent. TBD which
1763 * failures should be reported.
1764 */
8d85fce7 1765static int nvme_dev_add(struct nvme_dev *dev)
b60503ba
MW
1766{
1767 int res, nn, i;
cbb6218f 1768 struct nvme_ns *ns;
51814232 1769 struct nvme_id_ctrl *ctrl;
bc5fc7e4
MW
1770 struct nvme_id_ns *id_ns;
1771 void *mem;
b60503ba 1772 dma_addr_t dma_addr;
159b67d7 1773 int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
b60503ba
MW
1774
1775 res = nvme_setup_io_queues(dev);
1776 if (res)
1777 return res;
1778
bc5fc7e4 1779 mem = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
b60503ba 1780 GFP_KERNEL);
a9ef4343
KB
1781 if (!mem)
1782 return -ENOMEM;
b60503ba 1783
bc5fc7e4 1784 res = nvme_identify(dev, 0, 1, dma_addr);
b60503ba
MW
1785 if (res) {
1786 res = -EIO;
cbb6218f 1787 goto out;
b60503ba
MW
1788 }
1789
bc5fc7e4 1790 ctrl = mem;
51814232 1791 nn = le32_to_cpup(&ctrl->nn);
0e5e4f0e 1792 dev->oncs = le16_to_cpup(&ctrl->oncs);
51814232
MW
1793 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1794 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1795 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
159b67d7 1796 if (ctrl->mdts)
8fc23e03 1797 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
159b67d7
KB
1798 if ((dev->pci_dev->vendor == PCI_VENDOR_ID_INTEL) &&
1799 (dev->pci_dev->device == 0x0953) && ctrl->vs[3])
1800 dev->stripe_size = 1 << (ctrl->vs[3] + shift);
b60503ba 1801
bc5fc7e4 1802 id_ns = mem;
2b2c1896 1803 for (i = 1; i <= nn; i++) {
bc5fc7e4 1804 res = nvme_identify(dev, i, 0, dma_addr);
b60503ba
MW
1805 if (res)
1806 continue;
1807
bc5fc7e4 1808 if (id_ns->ncap == 0)
b60503ba
MW
1809 continue;
1810
bc5fc7e4 1811 res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
08df1e05 1812 dma_addr + 4096, NULL);
b60503ba 1813 if (res)
12209036 1814 memset(mem + 4096, 0, 4096);
b60503ba 1815
bc5fc7e4 1816 ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
b60503ba
MW
1817 if (ns)
1818 list_add_tail(&ns->list, &dev->namespaces);
1819 }
1820 list_for_each_entry(ns, &dev->namespaces, list)
1821 add_disk(ns->disk);
422ef0c7 1822 res = 0;
b60503ba 1823
bc5fc7e4 1824 out:
684f5c20 1825 dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
b60503ba
MW
1826 return res;
1827}
1828
1829static int nvme_dev_remove(struct nvme_dev *dev)
1830{
1831 struct nvme_ns *ns, *next;
1832
1fa6aead
MW
1833 spin_lock(&dev_list_lock);
1834 list_del(&dev->node);
1835 spin_unlock(&dev_list_lock);
1836
b60503ba
MW
1837 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1838 list_del(&ns->list);
1839 del_gendisk(ns->disk);
1840 nvme_ns_free(ns);
1841 }
1842
1843 nvme_free_queues(dev);
1844
1845 return 0;
1846}
1847
091b6092
MW
1848static int nvme_setup_prp_pools(struct nvme_dev *dev)
1849{
1850 struct device *dmadev = &dev->pci_dev->dev;
1851 dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1852 PAGE_SIZE, PAGE_SIZE, 0);
1853 if (!dev->prp_page_pool)
1854 return -ENOMEM;
1855
99802a7a
MW
1856 /* Optimisation for I/Os between 4k and 128k */
1857 dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1858 256, 256, 0);
1859 if (!dev->prp_small_pool) {
1860 dma_pool_destroy(dev->prp_page_pool);
1861 return -ENOMEM;
1862 }
091b6092
MW
1863 return 0;
1864}
1865
1866static void nvme_release_prp_pools(struct nvme_dev *dev)
1867{
1868 dma_pool_destroy(dev->prp_page_pool);
99802a7a 1869 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
1870}
1871
cd58ad7d
QSA
1872static DEFINE_IDA(nvme_instance_ida);
1873
1874static int nvme_set_instance(struct nvme_dev *dev)
b60503ba 1875{
cd58ad7d
QSA
1876 int instance, error;
1877
1878 do {
1879 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
1880 return -ENODEV;
1881
1882 spin_lock(&dev_list_lock);
1883 error = ida_get_new(&nvme_instance_ida, &instance);
1884 spin_unlock(&dev_list_lock);
1885 } while (error == -EAGAIN);
1886
1887 if (error)
1888 return -ENODEV;
1889
1890 dev->instance = instance;
1891 return 0;
b60503ba
MW
1892}
1893
1894static void nvme_release_instance(struct nvme_dev *dev)
1895{
cd58ad7d
QSA
1896 spin_lock(&dev_list_lock);
1897 ida_remove(&nvme_instance_ida, dev->instance);
1898 spin_unlock(&dev_list_lock);
b60503ba
MW
1899}
1900
5e82e952
KB
1901static void nvme_free_dev(struct kref *kref)
1902{
1903 struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
1904 nvme_dev_remove(dev);
fa08a396
RRG
1905 if (dev->pci_dev->msi_enabled)
1906 pci_disable_msi(dev->pci_dev);
1907 else if (dev->pci_dev->msix_enabled)
1908 pci_disable_msix(dev->pci_dev);
5e82e952
KB
1909 iounmap(dev->bar);
1910 nvme_release_instance(dev);
1911 nvme_release_prp_pools(dev);
1912 pci_disable_device(dev->pci_dev);
1913 pci_release_regions(dev->pci_dev);
1914 kfree(dev->queues);
1915 kfree(dev->entry);
1916 kfree(dev);
1917}
1918
1919static int nvme_dev_open(struct inode *inode, struct file *f)
1920{
1921 struct nvme_dev *dev = container_of(f->private_data, struct nvme_dev,
1922 miscdev);
1923 kref_get(&dev->kref);
1924 f->private_data = dev;
1925 return 0;
1926}
1927
1928static int nvme_dev_release(struct inode *inode, struct file *f)
1929{
1930 struct nvme_dev *dev = f->private_data;
1931 kref_put(&dev->kref, nvme_free_dev);
1932 return 0;
1933}
1934
1935static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1936{
1937 struct nvme_dev *dev = f->private_data;
1938 switch (cmd) {
1939 case NVME_IOCTL_ADMIN_CMD:
1940 return nvme_user_admin_cmd(dev, (void __user *)arg);
1941 default:
1942 return -ENOTTY;
1943 }
1944}
1945
1946static const struct file_operations nvme_dev_fops = {
1947 .owner = THIS_MODULE,
1948 .open = nvme_dev_open,
1949 .release = nvme_dev_release,
1950 .unlocked_ioctl = nvme_dev_ioctl,
1951 .compat_ioctl = nvme_dev_ioctl,
1952};
1953
8d85fce7 1954static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
b60503ba 1955{
574e8b95 1956 int bars, result = -ENOMEM;
b60503ba
MW
1957 struct nvme_dev *dev;
1958
1959 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1960 if (!dev)
1961 return -ENOMEM;
1962 dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1963 GFP_KERNEL);
1964 if (!dev->entry)
1965 goto free;
1b23484b
MW
1966 dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1967 GFP_KERNEL);
b60503ba
MW
1968 if (!dev->queues)
1969 goto free;
1970
0ee5a7d7
SMM
1971 if (pci_enable_device_mem(pdev))
1972 goto free;
f64d3365 1973 pci_set_master(pdev);
574e8b95
MW
1974 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1975 if (pci_request_selected_regions(pdev, bars, "nvme"))
1976 goto disable;
0ee5a7d7 1977
b60503ba
MW
1978 INIT_LIST_HEAD(&dev->namespaces);
1979 dev->pci_dev = pdev;
1980 pci_set_drvdata(pdev, dev);
cf9f123b
MW
1981
1982 if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)))
1983 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1984 else if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)))
1985 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1986 else
1987 goto disable;
1988
cd58ad7d
QSA
1989 result = nvme_set_instance(dev);
1990 if (result)
1991 goto disable;
1992
53c9577e 1993 dev->entry[0].vector = pdev->irq;
b60503ba 1994
091b6092
MW
1995 result = nvme_setup_prp_pools(dev);
1996 if (result)
1997 goto disable_msix;
1998
b60503ba
MW
1999 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2000 if (!dev->bar) {
2001 result = -ENOMEM;
574e8b95 2002 goto disable_msix;
b60503ba
MW
2003 }
2004
2005 result = nvme_configure_admin_queue(dev);
2006 if (result)
2007 goto unmap;
2008 dev->queue_count++;
2009
1fa6aead
MW
2010 spin_lock(&dev_list_lock);
2011 list_add(&dev->node, &dev_list);
2012 spin_unlock(&dev_list_lock);
2013
740216fc
MW
2014 result = nvme_dev_add(dev);
2015 if (result)
2016 goto delete;
2017
5e82e952
KB
2018 scnprintf(dev->name, sizeof(dev->name), "nvme%d", dev->instance);
2019 dev->miscdev.minor = MISC_DYNAMIC_MINOR;
2020 dev->miscdev.parent = &pdev->dev;
2021 dev->miscdev.name = dev->name;
2022 dev->miscdev.fops = &nvme_dev_fops;
2023 result = misc_register(&dev->miscdev);
2024 if (result)
2025 goto remove;
2026
2027 kref_init(&dev->kref);
b60503ba
MW
2028 return 0;
2029
5e82e952
KB
2030 remove:
2031 nvme_dev_remove(dev);
b60503ba 2032 delete:
740216fc
MW
2033 spin_lock(&dev_list_lock);
2034 list_del(&dev->node);
2035 spin_unlock(&dev_list_lock);
2036
b60503ba
MW
2037 nvme_free_queues(dev);
2038 unmap:
2039 iounmap(dev->bar);
574e8b95 2040 disable_msix:
fa08a396
RRG
2041 if (dev->pci_dev->msi_enabled)
2042 pci_disable_msi(dev->pci_dev);
2043 else if (dev->pci_dev->msix_enabled)
2044 pci_disable_msix(dev->pci_dev);
b60503ba 2045 nvme_release_instance(dev);
091b6092 2046 nvme_release_prp_pools(dev);
574e8b95 2047 disable:
0ee5a7d7 2048 pci_disable_device(pdev);
574e8b95 2049 pci_release_regions(pdev);
b60503ba
MW
2050 free:
2051 kfree(dev->queues);
2052 kfree(dev->entry);
2053 kfree(dev);
2054 return result;
2055}
2056
8d85fce7 2057static void nvme_remove(struct pci_dev *pdev)
b60503ba
MW
2058{
2059 struct nvme_dev *dev = pci_get_drvdata(pdev);
5e82e952
KB
2060 misc_deregister(&dev->miscdev);
2061 kref_put(&dev->kref, nvme_free_dev);
b60503ba
MW
2062}
2063
2064/* These functions are yet to be implemented */
2065#define nvme_error_detected NULL
2066#define nvme_dump_registers NULL
2067#define nvme_link_reset NULL
2068#define nvme_slot_reset NULL
2069#define nvme_error_resume NULL
2070#define nvme_suspend NULL
2071#define nvme_resume NULL
2072
1d352035 2073static const struct pci_error_handlers nvme_err_handler = {
b60503ba
MW
2074 .error_detected = nvme_error_detected,
2075 .mmio_enabled = nvme_dump_registers,
2076 .link_reset = nvme_link_reset,
2077 .slot_reset = nvme_slot_reset,
2078 .resume = nvme_error_resume,
2079};
2080
2081/* Move to pci_ids.h later */
2082#define PCI_CLASS_STORAGE_EXPRESS 0x010802
2083
2084static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
2085 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2086 { 0, }
2087};
2088MODULE_DEVICE_TABLE(pci, nvme_id_table);
2089
2090static struct pci_driver nvme_driver = {
2091 .name = "nvme",
2092 .id_table = nvme_id_table,
2093 .probe = nvme_probe,
8d85fce7 2094 .remove = nvme_remove,
b60503ba
MW
2095 .suspend = nvme_suspend,
2096 .resume = nvme_resume,
2097 .err_handler = &nvme_err_handler,
2098};
2099
2100static int __init nvme_init(void)
2101{
0ac13140 2102 int result;
1fa6aead
MW
2103
2104 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2105 if (IS_ERR(nvme_thread))
2106 return PTR_ERR(nvme_thread);
b60503ba 2107
5c42ea16
KB
2108 result = register_blkdev(nvme_major, "nvme");
2109 if (result < 0)
1fa6aead 2110 goto kill_kthread;
5c42ea16 2111 else if (result > 0)
0ac13140 2112 nvme_major = result;
b60503ba
MW
2113
2114 result = pci_register_driver(&nvme_driver);
1fa6aead
MW
2115 if (result)
2116 goto unregister_blkdev;
2117 return 0;
b60503ba 2118
1fa6aead 2119 unregister_blkdev:
b60503ba 2120 unregister_blkdev(nvme_major, "nvme");
1fa6aead
MW
2121 kill_kthread:
2122 kthread_stop(nvme_thread);
b60503ba
MW
2123 return result;
2124}
2125
2126static void __exit nvme_exit(void)
2127{
2128 pci_unregister_driver(&nvme_driver);
2129 unregister_blkdev(nvme_major, "nvme");
1fa6aead 2130 kthread_stop(nvme_thread);
b60503ba
MW
2131}
2132
2133MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2134MODULE_LICENSE("GPL");
366e8217 2135MODULE_VERSION("0.8");
b60503ba
MW
2136module_init(nvme_init);
2137module_exit(nvme_exit);