libata: disable ATAPI AN by default
[linux-2.6-block.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
92c52c52
AC
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
1da177e4
LT
41 */
42
1da177e4
LT
43#include <linux/kernel.h>
44#include <linux/module.h>
45#include <linux/pci.h>
46#include <linux/init.h>
47#include <linux/list.h>
48#include <linux/mm.h>
1da177e4
LT
49#include <linux/spinlock.h>
50#include <linux/blkdev.h>
51#include <linux/delay.h>
52#include <linux/timer.h>
53#include <linux/interrupt.h>
54#include <linux/completion.h>
55#include <linux/suspend.h>
56#include <linux/workqueue.h>
378f058c 57#include <linux/scatterlist.h>
2dcb407e 58#include <linux/io.h>
79318057 59#include <linux/async.h>
e18086d6 60#include <linux/log2.h>
5a0e3ad6 61#include <linux/slab.h>
1da177e4 62#include <scsi/scsi.h>
193515d5 63#include <scsi/scsi_cmnd.h>
1da177e4
LT
64#include <scsi/scsi_host.h>
65#include <linux/libata.h>
1da177e4 66#include <asm/byteorder.h>
140b5e59 67#include <linux/cdrom.h>
9990b6f3 68#include <linux/ratelimit.h>
1da177e4
LT
69
70#include "libata.h"
71
fda0efc5 72
d7bb4cc7 73/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
74const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
75const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
76const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 77
029cfd6b 78const struct ata_port_operations ata_base_port_ops = {
0aa1113d 79 .prereset = ata_std_prereset,
203c75b8 80 .postreset = ata_std_postreset,
a1efdaba 81 .error_handler = ata_std_error_handler,
029cfd6b
TH
82};
83
84const struct ata_port_operations sata_port_ops = {
85 .inherits = &ata_base_port_ops,
86
87 .qc_defer = ata_std_qc_defer,
57c9efdf 88 .hardreset = sata_std_hardreset,
029cfd6b
TH
89};
90
3373efd8
TH
91static unsigned int ata_dev_init_params(struct ata_device *dev,
92 u16 heads, u16 sectors);
93static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
218f3d30
JG
94static unsigned int ata_dev_set_feature(struct ata_device *dev,
95 u8 enable, u8 feature);
3373efd8 96static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 97static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 98
f3187195 99unsigned int ata_print_id = 1;
1da177e4 100
453b07ac
TH
101struct workqueue_struct *ata_aux_wq;
102
33267325
TH
103struct ata_force_param {
104 const char *name;
105 unsigned int cbl;
106 int spd_limit;
107 unsigned long xfer_mask;
108 unsigned int horkage_on;
109 unsigned int horkage_off;
05944bdf 110 unsigned int lflags;
33267325
TH
111};
112
113struct ata_force_ent {
114 int port;
115 int device;
116 struct ata_force_param param;
117};
118
119static struct ata_force_ent *ata_force_tbl;
120static int ata_force_tbl_size;
121
122static char ata_force_param_buf[PAGE_SIZE] __initdata;
7afb4222
TH
123/* param_buf is thrown away after initialization, disallow read */
124module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
33267325
TH
125MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
126
2486fa56 127static int atapi_enabled = 1;
1623c81e 128module_param(atapi_enabled, int, 0444);
ad5d8eac 129MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
1623c81e 130
c5c61bda 131static int atapi_dmadir = 0;
95de719a 132module_param(atapi_dmadir, int, 0444);
ad5d8eac 133MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
95de719a 134
baf4fdfa
ML
135int atapi_passthru16 = 1;
136module_param(atapi_passthru16, int, 0444);
ad5d8eac 137MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
baf4fdfa 138
c3c013a2
JG
139int libata_fua = 0;
140module_param_named(fua, libata_fua, int, 0444);
ad5d8eac 141MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
c3c013a2 142
2dcb407e 143static int ata_ignore_hpa;
1e999736
AC
144module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
145MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
146
b3a70601
AC
147static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
148module_param_named(dma, libata_dma_mask, int, 0444);
149MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
150
87fbc5a0 151static int ata_probe_timeout;
a8601e5f
AM
152module_param(ata_probe_timeout, int, 0444);
153MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
154
6ebe9d86 155int libata_noacpi = 0;
d7d0dad6 156module_param_named(noacpi, libata_noacpi, int, 0444);
ad5d8eac 157MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
11ef697b 158
ae8d4ee7
AC
159int libata_allow_tpm = 0;
160module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
ad5d8eac 161MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
ae8d4ee7 162
e7ecd435
TH
163static int atapi_an;
164module_param(atapi_an, int, 0444);
165MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
166
1da177e4
LT
167MODULE_AUTHOR("Jeff Garzik");
168MODULE_DESCRIPTION("Library module for ATA devices");
169MODULE_LICENSE("GPL");
170MODULE_VERSION(DRV_VERSION);
171
0baab86b 172
9913ff8a
TH
173static bool ata_sstatus_online(u32 sstatus)
174{
175 return (sstatus & 0xf) == 0x3;
176}
177
1eca4365
TH
178/**
179 * ata_link_next - link iteration helper
180 * @link: the previous link, NULL to start
181 * @ap: ATA port containing links to iterate
182 * @mode: iteration mode, one of ATA_LITER_*
183 *
184 * LOCKING:
185 * Host lock or EH context.
aadffb68 186 *
1eca4365
TH
187 * RETURNS:
188 * Pointer to the next link.
aadffb68 189 */
1eca4365
TH
190struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
191 enum ata_link_iter_mode mode)
aadffb68 192{
1eca4365
TH
193 BUG_ON(mode != ATA_LITER_EDGE &&
194 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
195
aadffb68 196 /* NULL link indicates start of iteration */
1eca4365
TH
197 if (!link)
198 switch (mode) {
199 case ATA_LITER_EDGE:
200 case ATA_LITER_PMP_FIRST:
201 if (sata_pmp_attached(ap))
202 return ap->pmp_link;
203 /* fall through */
204 case ATA_LITER_HOST_FIRST:
205 return &ap->link;
206 }
aadffb68 207
1eca4365
TH
208 /* we just iterated over the host link, what's next? */
209 if (link == &ap->link)
210 switch (mode) {
211 case ATA_LITER_HOST_FIRST:
212 if (sata_pmp_attached(ap))
213 return ap->pmp_link;
214 /* fall through */
215 case ATA_LITER_PMP_FIRST:
216 if (unlikely(ap->slave_link))
b1c72916 217 return ap->slave_link;
1eca4365
TH
218 /* fall through */
219 case ATA_LITER_EDGE:
aadffb68 220 return NULL;
b1c72916 221 }
aadffb68 222
b1c72916
TH
223 /* slave_link excludes PMP */
224 if (unlikely(link == ap->slave_link))
225 return NULL;
226
1eca4365 227 /* we were over a PMP link */
aadffb68
TH
228 if (++link < ap->pmp_link + ap->nr_pmp_links)
229 return link;
1eca4365
TH
230
231 if (mode == ATA_LITER_PMP_FIRST)
232 return &ap->link;
233
aadffb68
TH
234 return NULL;
235}
236
1eca4365
TH
237/**
238 * ata_dev_next - device iteration helper
239 * @dev: the previous device, NULL to start
240 * @link: ATA link containing devices to iterate
241 * @mode: iteration mode, one of ATA_DITER_*
242 *
243 * LOCKING:
244 * Host lock or EH context.
245 *
246 * RETURNS:
247 * Pointer to the next device.
248 */
249struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
250 enum ata_dev_iter_mode mode)
251{
252 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
253 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
254
255 /* NULL dev indicates start of iteration */
256 if (!dev)
257 switch (mode) {
258 case ATA_DITER_ENABLED:
259 case ATA_DITER_ALL:
260 dev = link->device;
261 goto check;
262 case ATA_DITER_ENABLED_REVERSE:
263 case ATA_DITER_ALL_REVERSE:
264 dev = link->device + ata_link_max_devices(link) - 1;
265 goto check;
266 }
267
268 next:
269 /* move to the next one */
270 switch (mode) {
271 case ATA_DITER_ENABLED:
272 case ATA_DITER_ALL:
273 if (++dev < link->device + ata_link_max_devices(link))
274 goto check;
275 return NULL;
276 case ATA_DITER_ENABLED_REVERSE:
277 case ATA_DITER_ALL_REVERSE:
278 if (--dev >= link->device)
279 goto check;
280 return NULL;
281 }
282
283 check:
284 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
285 !ata_dev_enabled(dev))
286 goto next;
287 return dev;
288}
289
b1c72916
TH
290/**
291 * ata_dev_phys_link - find physical link for a device
292 * @dev: ATA device to look up physical link for
293 *
294 * Look up physical link which @dev is attached to. Note that
295 * this is different from @dev->link only when @dev is on slave
296 * link. For all other cases, it's the same as @dev->link.
297 *
298 * LOCKING:
299 * Don't care.
300 *
301 * RETURNS:
302 * Pointer to the found physical link.
303 */
304struct ata_link *ata_dev_phys_link(struct ata_device *dev)
305{
306 struct ata_port *ap = dev->link->ap;
307
308 if (!ap->slave_link)
309 return dev->link;
310 if (!dev->devno)
311 return &ap->link;
312 return ap->slave_link;
313}
314
33267325
TH
315/**
316 * ata_force_cbl - force cable type according to libata.force
4cdfa1b3 317 * @ap: ATA port of interest
33267325
TH
318 *
319 * Force cable type according to libata.force and whine about it.
320 * The last entry which has matching port number is used, so it
321 * can be specified as part of device force parameters. For
322 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
323 * same effect.
324 *
325 * LOCKING:
326 * EH context.
327 */
328void ata_force_cbl(struct ata_port *ap)
329{
330 int i;
331
332 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
333 const struct ata_force_ent *fe = &ata_force_tbl[i];
334
335 if (fe->port != -1 && fe->port != ap->print_id)
336 continue;
337
338 if (fe->param.cbl == ATA_CBL_NONE)
339 continue;
340
341 ap->cbl = fe->param.cbl;
342 ata_port_printk(ap, KERN_NOTICE,
343 "FORCE: cable set to %s\n", fe->param.name);
344 return;
345 }
346}
347
348/**
05944bdf 349 * ata_force_link_limits - force link limits according to libata.force
33267325
TH
350 * @link: ATA link of interest
351 *
05944bdf
TH
352 * Force link flags and SATA spd limit according to libata.force
353 * and whine about it. When only the port part is specified
354 * (e.g. 1:), the limit applies to all links connected to both
355 * the host link and all fan-out ports connected via PMP. If the
356 * device part is specified as 0 (e.g. 1.00:), it specifies the
357 * first fan-out link not the host link. Device number 15 always
b1c72916
TH
358 * points to the host link whether PMP is attached or not. If the
359 * controller has slave link, device number 16 points to it.
33267325
TH
360 *
361 * LOCKING:
362 * EH context.
363 */
05944bdf 364static void ata_force_link_limits(struct ata_link *link)
33267325 365{
05944bdf 366 bool did_spd = false;
b1c72916
TH
367 int linkno = link->pmp;
368 int i;
33267325
TH
369
370 if (ata_is_host_link(link))
b1c72916 371 linkno += 15;
33267325
TH
372
373 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
374 const struct ata_force_ent *fe = &ata_force_tbl[i];
375
376 if (fe->port != -1 && fe->port != link->ap->print_id)
377 continue;
378
379 if (fe->device != -1 && fe->device != linkno)
380 continue;
381
05944bdf
TH
382 /* only honor the first spd limit */
383 if (!did_spd && fe->param.spd_limit) {
384 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
385 ata_link_printk(link, KERN_NOTICE,
386 "FORCE: PHY spd limit set to %s\n",
387 fe->param.name);
388 did_spd = true;
389 }
33267325 390
05944bdf
TH
391 /* let lflags stack */
392 if (fe->param.lflags) {
393 link->flags |= fe->param.lflags;
394 ata_link_printk(link, KERN_NOTICE,
395 "FORCE: link flag 0x%x forced -> 0x%x\n",
396 fe->param.lflags, link->flags);
397 }
33267325
TH
398 }
399}
400
401/**
402 * ata_force_xfermask - force xfermask according to libata.force
403 * @dev: ATA device of interest
404 *
405 * Force xfer_mask according to libata.force and whine about it.
406 * For consistency with link selection, device number 15 selects
407 * the first device connected to the host link.
408 *
409 * LOCKING:
410 * EH context.
411 */
412static void ata_force_xfermask(struct ata_device *dev)
413{
414 int devno = dev->link->pmp + dev->devno;
415 int alt_devno = devno;
416 int i;
417
b1c72916
TH
418 /* allow n.15/16 for devices attached to host port */
419 if (ata_is_host_link(dev->link))
420 alt_devno += 15;
33267325
TH
421
422 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
423 const struct ata_force_ent *fe = &ata_force_tbl[i];
424 unsigned long pio_mask, mwdma_mask, udma_mask;
425
426 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
427 continue;
428
429 if (fe->device != -1 && fe->device != devno &&
430 fe->device != alt_devno)
431 continue;
432
433 if (!fe->param.xfer_mask)
434 continue;
435
436 ata_unpack_xfermask(fe->param.xfer_mask,
437 &pio_mask, &mwdma_mask, &udma_mask);
438 if (udma_mask)
439 dev->udma_mask = udma_mask;
440 else if (mwdma_mask) {
441 dev->udma_mask = 0;
442 dev->mwdma_mask = mwdma_mask;
443 } else {
444 dev->udma_mask = 0;
445 dev->mwdma_mask = 0;
446 dev->pio_mask = pio_mask;
447 }
448
449 ata_dev_printk(dev, KERN_NOTICE,
450 "FORCE: xfer_mask set to %s\n", fe->param.name);
451 return;
452 }
453}
454
455/**
456 * ata_force_horkage - force horkage according to libata.force
457 * @dev: ATA device of interest
458 *
459 * Force horkage according to libata.force and whine about it.
460 * For consistency with link selection, device number 15 selects
461 * the first device connected to the host link.
462 *
463 * LOCKING:
464 * EH context.
465 */
466static void ata_force_horkage(struct ata_device *dev)
467{
468 int devno = dev->link->pmp + dev->devno;
469 int alt_devno = devno;
470 int i;
471
b1c72916
TH
472 /* allow n.15/16 for devices attached to host port */
473 if (ata_is_host_link(dev->link))
474 alt_devno += 15;
33267325
TH
475
476 for (i = 0; i < ata_force_tbl_size; i++) {
477 const struct ata_force_ent *fe = &ata_force_tbl[i];
478
479 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
480 continue;
481
482 if (fe->device != -1 && fe->device != devno &&
483 fe->device != alt_devno)
484 continue;
485
486 if (!(~dev->horkage & fe->param.horkage_on) &&
487 !(dev->horkage & fe->param.horkage_off))
488 continue;
489
490 dev->horkage |= fe->param.horkage_on;
491 dev->horkage &= ~fe->param.horkage_off;
492
493 ata_dev_printk(dev, KERN_NOTICE,
494 "FORCE: horkage modified (%s)\n", fe->param.name);
495 }
496}
497
436d34b3
TH
498/**
499 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
500 * @opcode: SCSI opcode
501 *
502 * Determine ATAPI command type from @opcode.
503 *
504 * LOCKING:
505 * None.
506 *
507 * RETURNS:
508 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
509 */
510int atapi_cmd_type(u8 opcode)
511{
512 switch (opcode) {
513 case GPCMD_READ_10:
514 case GPCMD_READ_12:
515 return ATAPI_READ;
516
517 case GPCMD_WRITE_10:
518 case GPCMD_WRITE_12:
519 case GPCMD_WRITE_AND_VERIFY_10:
520 return ATAPI_WRITE;
521
522 case GPCMD_READ_CD:
523 case GPCMD_READ_CD_MSF:
524 return ATAPI_READ_CD;
525
e52dcc48
TH
526 case ATA_16:
527 case ATA_12:
528 if (atapi_passthru16)
529 return ATAPI_PASS_THRU;
530 /* fall thru */
436d34b3
TH
531 default:
532 return ATAPI_MISC;
533 }
534}
535
1da177e4
LT
536/**
537 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
538 * @tf: Taskfile to convert
1da177e4 539 * @pmp: Port multiplier port
9977126c
TH
540 * @is_cmd: This FIS is for command
541 * @fis: Buffer into which data will output
1da177e4
LT
542 *
543 * Converts a standard ATA taskfile to a Serial ATA
544 * FIS structure (Register - Host to Device).
545 *
546 * LOCKING:
547 * Inherited from caller.
548 */
9977126c 549void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 550{
9977126c
TH
551 fis[0] = 0x27; /* Register - Host to Device FIS */
552 fis[1] = pmp & 0xf; /* Port multiplier number*/
553 if (is_cmd)
554 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
555
1da177e4
LT
556 fis[2] = tf->command;
557 fis[3] = tf->feature;
558
559 fis[4] = tf->lbal;
560 fis[5] = tf->lbam;
561 fis[6] = tf->lbah;
562 fis[7] = tf->device;
563
564 fis[8] = tf->hob_lbal;
565 fis[9] = tf->hob_lbam;
566 fis[10] = tf->hob_lbah;
567 fis[11] = tf->hob_feature;
568
569 fis[12] = tf->nsect;
570 fis[13] = tf->hob_nsect;
571 fis[14] = 0;
572 fis[15] = tf->ctl;
573
574 fis[16] = 0;
575 fis[17] = 0;
576 fis[18] = 0;
577 fis[19] = 0;
578}
579
580/**
581 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
582 * @fis: Buffer from which data will be input
583 * @tf: Taskfile to output
584 *
e12a1be6 585 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
586 *
587 * LOCKING:
588 * Inherited from caller.
589 */
590
057ace5e 591void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
592{
593 tf->command = fis[2]; /* status */
594 tf->feature = fis[3]; /* error */
595
596 tf->lbal = fis[4];
597 tf->lbam = fis[5];
598 tf->lbah = fis[6];
599 tf->device = fis[7];
600
601 tf->hob_lbal = fis[8];
602 tf->hob_lbam = fis[9];
603 tf->hob_lbah = fis[10];
604
605 tf->nsect = fis[12];
606 tf->hob_nsect = fis[13];
607}
608
8cbd6df1
AL
609static const u8 ata_rw_cmds[] = {
610 /* pio multi */
611 ATA_CMD_READ_MULTI,
612 ATA_CMD_WRITE_MULTI,
613 ATA_CMD_READ_MULTI_EXT,
614 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
615 0,
616 0,
617 0,
618 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
619 /* pio */
620 ATA_CMD_PIO_READ,
621 ATA_CMD_PIO_WRITE,
622 ATA_CMD_PIO_READ_EXT,
623 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
624 0,
625 0,
626 0,
627 0,
8cbd6df1
AL
628 /* dma */
629 ATA_CMD_READ,
630 ATA_CMD_WRITE,
631 ATA_CMD_READ_EXT,
9a3dccc4
TH
632 ATA_CMD_WRITE_EXT,
633 0,
634 0,
635 0,
636 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 637};
1da177e4
LT
638
639/**
8cbd6df1 640 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
641 * @tf: command to examine and configure
642 * @dev: device tf belongs to
1da177e4 643 *
2e9edbf8 644 * Examine the device configuration and tf->flags to calculate
8cbd6df1 645 * the proper read/write commands and protocol to use.
1da177e4
LT
646 *
647 * LOCKING:
648 * caller.
649 */
bd056d7e 650static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 651{
9a3dccc4 652 u8 cmd;
1da177e4 653
9a3dccc4 654 int index, fua, lba48, write;
2e9edbf8 655
9a3dccc4 656 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
657 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
658 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 659
8cbd6df1
AL
660 if (dev->flags & ATA_DFLAG_PIO) {
661 tf->protocol = ATA_PROT_PIO;
9a3dccc4 662 index = dev->multi_count ? 0 : 8;
9af5c9c9 663 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
664 /* Unable to use DMA due to host limitation */
665 tf->protocol = ATA_PROT_PIO;
0565c26d 666 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
667 } else {
668 tf->protocol = ATA_PROT_DMA;
9a3dccc4 669 index = 16;
8cbd6df1 670 }
1da177e4 671
9a3dccc4
TH
672 cmd = ata_rw_cmds[index + fua + lba48 + write];
673 if (cmd) {
674 tf->command = cmd;
675 return 0;
676 }
677 return -1;
1da177e4
LT
678}
679
35b649fe
TH
680/**
681 * ata_tf_read_block - Read block address from ATA taskfile
682 * @tf: ATA taskfile of interest
683 * @dev: ATA device @tf belongs to
684 *
685 * LOCKING:
686 * None.
687 *
688 * Read block address from @tf. This function can handle all
689 * three address formats - LBA, LBA48 and CHS. tf->protocol and
690 * flags select the address format to use.
691 *
692 * RETURNS:
693 * Block address read from @tf.
694 */
695u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
696{
697 u64 block = 0;
698
699 if (tf->flags & ATA_TFLAG_LBA) {
700 if (tf->flags & ATA_TFLAG_LBA48) {
701 block |= (u64)tf->hob_lbah << 40;
702 block |= (u64)tf->hob_lbam << 32;
44901a96 703 block |= (u64)tf->hob_lbal << 24;
35b649fe
TH
704 } else
705 block |= (tf->device & 0xf) << 24;
706
707 block |= tf->lbah << 16;
708 block |= tf->lbam << 8;
709 block |= tf->lbal;
710 } else {
711 u32 cyl, head, sect;
712
713 cyl = tf->lbam | (tf->lbah << 8);
714 head = tf->device & 0xf;
715 sect = tf->lbal;
716
ac8672ea
TH
717 if (!sect) {
718 ata_dev_printk(dev, KERN_WARNING, "device reported "
719 "invalid CHS sector 0\n");
720 sect = 1; /* oh well */
721 }
722
723 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
35b649fe
TH
724 }
725
726 return block;
727}
728
bd056d7e
TH
729/**
730 * ata_build_rw_tf - Build ATA taskfile for given read/write request
731 * @tf: Target ATA taskfile
732 * @dev: ATA device @tf belongs to
733 * @block: Block address
734 * @n_block: Number of blocks
735 * @tf_flags: RW/FUA etc...
736 * @tag: tag
737 *
738 * LOCKING:
739 * None.
740 *
741 * Build ATA taskfile @tf for read/write request described by
742 * @block, @n_block, @tf_flags and @tag on @dev.
743 *
744 * RETURNS:
745 *
746 * 0 on success, -ERANGE if the request is too large for @dev,
747 * -EINVAL if the request is invalid.
748 */
749int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
750 u64 block, u32 n_block, unsigned int tf_flags,
751 unsigned int tag)
752{
753 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
754 tf->flags |= tf_flags;
755
6d1245bf 756 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
757 /* yay, NCQ */
758 if (!lba_48_ok(block, n_block))
759 return -ERANGE;
760
761 tf->protocol = ATA_PROT_NCQ;
762 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
763
764 if (tf->flags & ATA_TFLAG_WRITE)
765 tf->command = ATA_CMD_FPDMA_WRITE;
766 else
767 tf->command = ATA_CMD_FPDMA_READ;
768
769 tf->nsect = tag << 3;
770 tf->hob_feature = (n_block >> 8) & 0xff;
771 tf->feature = n_block & 0xff;
772
773 tf->hob_lbah = (block >> 40) & 0xff;
774 tf->hob_lbam = (block >> 32) & 0xff;
775 tf->hob_lbal = (block >> 24) & 0xff;
776 tf->lbah = (block >> 16) & 0xff;
777 tf->lbam = (block >> 8) & 0xff;
778 tf->lbal = block & 0xff;
779
780 tf->device = 1 << 6;
781 if (tf->flags & ATA_TFLAG_FUA)
782 tf->device |= 1 << 7;
783 } else if (dev->flags & ATA_DFLAG_LBA) {
784 tf->flags |= ATA_TFLAG_LBA;
785
786 if (lba_28_ok(block, n_block)) {
787 /* use LBA28 */
788 tf->device |= (block >> 24) & 0xf;
789 } else if (lba_48_ok(block, n_block)) {
790 if (!(dev->flags & ATA_DFLAG_LBA48))
791 return -ERANGE;
792
793 /* use LBA48 */
794 tf->flags |= ATA_TFLAG_LBA48;
795
796 tf->hob_nsect = (n_block >> 8) & 0xff;
797
798 tf->hob_lbah = (block >> 40) & 0xff;
799 tf->hob_lbam = (block >> 32) & 0xff;
800 tf->hob_lbal = (block >> 24) & 0xff;
801 } else
802 /* request too large even for LBA48 */
803 return -ERANGE;
804
805 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
806 return -EINVAL;
807
808 tf->nsect = n_block & 0xff;
809
810 tf->lbah = (block >> 16) & 0xff;
811 tf->lbam = (block >> 8) & 0xff;
812 tf->lbal = block & 0xff;
813
814 tf->device |= ATA_LBA;
815 } else {
816 /* CHS */
817 u32 sect, head, cyl, track;
818
819 /* The request -may- be too large for CHS addressing. */
820 if (!lba_28_ok(block, n_block))
821 return -ERANGE;
822
823 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
824 return -EINVAL;
825
826 /* Convert LBA to CHS */
827 track = (u32)block / dev->sectors;
828 cyl = track / dev->heads;
829 head = track % dev->heads;
830 sect = (u32)block % dev->sectors + 1;
831
832 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
833 (u32)block, track, cyl, head, sect);
834
835 /* Check whether the converted CHS can fit.
836 Cylinder: 0-65535
837 Head: 0-15
838 Sector: 1-255*/
839 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
840 return -ERANGE;
841
842 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
843 tf->lbal = sect;
844 tf->lbam = cyl;
845 tf->lbah = cyl >> 8;
846 tf->device |= head;
847 }
848
849 return 0;
850}
851
cb95d562
TH
852/**
853 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
854 * @pio_mask: pio_mask
855 * @mwdma_mask: mwdma_mask
856 * @udma_mask: udma_mask
857 *
858 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
859 * unsigned int xfer_mask.
860 *
861 * LOCKING:
862 * None.
863 *
864 * RETURNS:
865 * Packed xfer_mask.
866 */
7dc951ae
TH
867unsigned long ata_pack_xfermask(unsigned long pio_mask,
868 unsigned long mwdma_mask,
869 unsigned long udma_mask)
cb95d562
TH
870{
871 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
872 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
873 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
874}
875
c0489e4e
TH
876/**
877 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
878 * @xfer_mask: xfer_mask to unpack
879 * @pio_mask: resulting pio_mask
880 * @mwdma_mask: resulting mwdma_mask
881 * @udma_mask: resulting udma_mask
882 *
883 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
884 * Any NULL distination masks will be ignored.
885 */
7dc951ae
TH
886void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
887 unsigned long *mwdma_mask, unsigned long *udma_mask)
c0489e4e
TH
888{
889 if (pio_mask)
890 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
891 if (mwdma_mask)
892 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
893 if (udma_mask)
894 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
895}
896
cb95d562 897static const struct ata_xfer_ent {
be9a50c8 898 int shift, bits;
cb95d562
TH
899 u8 base;
900} ata_xfer_tbl[] = {
70cd071e
TH
901 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
902 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
903 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
cb95d562
TH
904 { -1, },
905};
906
907/**
908 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
909 * @xfer_mask: xfer_mask of interest
910 *
911 * Return matching XFER_* value for @xfer_mask. Only the highest
912 * bit of @xfer_mask is considered.
913 *
914 * LOCKING:
915 * None.
916 *
917 * RETURNS:
70cd071e 918 * Matching XFER_* value, 0xff if no match found.
cb95d562 919 */
7dc951ae 920u8 ata_xfer_mask2mode(unsigned long xfer_mask)
cb95d562
TH
921{
922 int highbit = fls(xfer_mask) - 1;
923 const struct ata_xfer_ent *ent;
924
925 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
926 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
927 return ent->base + highbit - ent->shift;
70cd071e 928 return 0xff;
cb95d562
TH
929}
930
931/**
932 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
933 * @xfer_mode: XFER_* of interest
934 *
935 * Return matching xfer_mask for @xfer_mode.
936 *
937 * LOCKING:
938 * None.
939 *
940 * RETURNS:
941 * Matching xfer_mask, 0 if no match found.
942 */
7dc951ae 943unsigned long ata_xfer_mode2mask(u8 xfer_mode)
cb95d562
TH
944{
945 const struct ata_xfer_ent *ent;
946
947 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
948 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
70cd071e
TH
949 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
950 & ~((1 << ent->shift) - 1);
cb95d562
TH
951 return 0;
952}
953
954/**
955 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
956 * @xfer_mode: XFER_* of interest
957 *
958 * Return matching xfer_shift for @xfer_mode.
959 *
960 * LOCKING:
961 * None.
962 *
963 * RETURNS:
964 * Matching xfer_shift, -1 if no match found.
965 */
7dc951ae 966int ata_xfer_mode2shift(unsigned long xfer_mode)
cb95d562
TH
967{
968 const struct ata_xfer_ent *ent;
969
970 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
971 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
972 return ent->shift;
973 return -1;
974}
975
1da177e4 976/**
1da7b0d0
TH
977 * ata_mode_string - convert xfer_mask to string
978 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
979 *
980 * Determine string which represents the highest speed
1da7b0d0 981 * (highest bit in @modemask).
1da177e4
LT
982 *
983 * LOCKING:
984 * None.
985 *
986 * RETURNS:
987 * Constant C string representing highest speed listed in
1da7b0d0 988 * @mode_mask, or the constant C string "<n/a>".
1da177e4 989 */
7dc951ae 990const char *ata_mode_string(unsigned long xfer_mask)
1da177e4 991{
75f554bc
TH
992 static const char * const xfer_mode_str[] = {
993 "PIO0",
994 "PIO1",
995 "PIO2",
996 "PIO3",
997 "PIO4",
b352e57d
AC
998 "PIO5",
999 "PIO6",
75f554bc
TH
1000 "MWDMA0",
1001 "MWDMA1",
1002 "MWDMA2",
b352e57d
AC
1003 "MWDMA3",
1004 "MWDMA4",
75f554bc
TH
1005 "UDMA/16",
1006 "UDMA/25",
1007 "UDMA/33",
1008 "UDMA/44",
1009 "UDMA/66",
1010 "UDMA/100",
1011 "UDMA/133",
1012 "UDMA7",
1013 };
1da7b0d0 1014 int highbit;
1da177e4 1015
1da7b0d0
TH
1016 highbit = fls(xfer_mask) - 1;
1017 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1018 return xfer_mode_str[highbit];
1da177e4 1019 return "<n/a>";
1da177e4
LT
1020}
1021
4c360c81
TH
1022static const char *sata_spd_string(unsigned int spd)
1023{
1024 static const char * const spd_str[] = {
1025 "1.5 Gbps",
1026 "3.0 Gbps",
8522ee25 1027 "6.0 Gbps",
4c360c81
TH
1028 };
1029
1030 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1031 return "<unknown>";
1032 return spd_str[spd - 1];
1033}
1034
ca77329f
KCA
1035static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
1036{
1037 struct ata_link *link = dev->link;
1038 struct ata_port *ap = link->ap;
1039 u32 scontrol;
1040 unsigned int err_mask;
1041 int rc;
1042
1043 /*
1044 * disallow DIPM for drivers which haven't set
1045 * ATA_FLAG_IPM. This is because when DIPM is enabled,
1046 * phy ready will be set in the interrupt status on
1047 * state changes, which will cause some drivers to
1048 * think there are errors - additionally drivers will
1049 * need to disable hot plug.
1050 */
1051 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
1052 ap->pm_policy = NOT_AVAILABLE;
1053 return -EINVAL;
1054 }
1055
1056 /*
1057 * For DIPM, we will only enable it for the
1058 * min_power setting.
1059 *
1060 * Why? Because Disks are too stupid to know that
1061 * If the host rejects a request to go to SLUMBER
1062 * they should retry at PARTIAL, and instead it
1063 * just would give up. So, for medium_power to
1064 * work at all, we need to only allow HIPM.
1065 */
1066 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
1067 if (rc)
1068 return rc;
1069
1070 switch (policy) {
1071 case MIN_POWER:
1072 /* no restrictions on IPM transitions */
1073 scontrol &= ~(0x3 << 8);
1074 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1075 if (rc)
1076 return rc;
1077
1078 /* enable DIPM */
1079 if (dev->flags & ATA_DFLAG_DIPM)
1080 err_mask = ata_dev_set_feature(dev,
1081 SETFEATURES_SATA_ENABLE, SATA_DIPM);
1082 break;
1083 case MEDIUM_POWER:
1084 /* allow IPM to PARTIAL */
1085 scontrol &= ~(0x1 << 8);
1086 scontrol |= (0x2 << 8);
1087 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1088 if (rc)
1089 return rc;
1090
f5456b63
KCA
1091 /*
1092 * we don't have to disable DIPM since IPM flags
1093 * disallow transitions to SLUMBER, which effectively
1094 * disable DIPM if it does not support PARTIAL
1095 */
ca77329f
KCA
1096 break;
1097 case NOT_AVAILABLE:
1098 case MAX_PERFORMANCE:
1099 /* disable all IPM transitions */
1100 scontrol |= (0x3 << 8);
1101 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1102 if (rc)
1103 return rc;
1104
f5456b63
KCA
1105 /*
1106 * we don't have to disable DIPM since IPM flags
1107 * disallow all transitions which effectively
1108 * disable DIPM anyway.
1109 */
ca77329f
KCA
1110 break;
1111 }
1112
1113 /* FIXME: handle SET FEATURES failure */
1114 (void) err_mask;
1115
1116 return 0;
1117}
1118
1119/**
1120 * ata_dev_enable_pm - enable SATA interface power management
48166fd9
SH
1121 * @dev: device to enable power management
1122 * @policy: the link power management policy
ca77329f
KCA
1123 *
1124 * Enable SATA Interface power management. This will enable
1125 * Device Interface Power Management (DIPM) for min_power
1126 * policy, and then call driver specific callbacks for
1127 * enabling Host Initiated Power management.
1128 *
1129 * Locking: Caller.
1130 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
1131 */
1132void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
1133{
1134 int rc = 0;
1135 struct ata_port *ap = dev->link->ap;
1136
1137 /* set HIPM first, then DIPM */
1138 if (ap->ops->enable_pm)
1139 rc = ap->ops->enable_pm(ap, policy);
1140 if (rc)
1141 goto enable_pm_out;
1142 rc = ata_dev_set_dipm(dev, policy);
1143
1144enable_pm_out:
1145 if (rc)
1146 ap->pm_policy = MAX_PERFORMANCE;
1147 else
1148 ap->pm_policy = policy;
1149 return /* rc */; /* hopefully we can use 'rc' eventually */
1150}
1151
1992a5ed 1152#ifdef CONFIG_PM
ca77329f
KCA
1153/**
1154 * ata_dev_disable_pm - disable SATA interface power management
48166fd9 1155 * @dev: device to disable power management
ca77329f
KCA
1156 *
1157 * Disable SATA Interface power management. This will disable
1158 * Device Interface Power Management (DIPM) without changing
1159 * policy, call driver specific callbacks for disabling Host
1160 * Initiated Power management.
1161 *
1162 * Locking: Caller.
1163 * Returns: void
1164 */
1165static void ata_dev_disable_pm(struct ata_device *dev)
1166{
1167 struct ata_port *ap = dev->link->ap;
1168
1169 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
1170 if (ap->ops->disable_pm)
1171 ap->ops->disable_pm(ap);
1172}
1992a5ed 1173#endif /* CONFIG_PM */
ca77329f
KCA
1174
1175void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
1176{
1177 ap->pm_policy = policy;
3ec25ebd 1178 ap->link.eh_info.action |= ATA_EH_LPM;
ca77329f
KCA
1179 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
1180 ata_port_schedule_eh(ap);
1181}
1182
1992a5ed 1183#ifdef CONFIG_PM
ca77329f
KCA
1184static void ata_lpm_enable(struct ata_host *host)
1185{
1186 struct ata_link *link;
1187 struct ata_port *ap;
1188 struct ata_device *dev;
1189 int i;
1190
1191 for (i = 0; i < host->n_ports; i++) {
1192 ap = host->ports[i];
1eca4365
TH
1193 ata_for_each_link(link, ap, EDGE) {
1194 ata_for_each_dev(dev, link, ALL)
ca77329f
KCA
1195 ata_dev_disable_pm(dev);
1196 }
1197 }
1198}
1199
1200static void ata_lpm_disable(struct ata_host *host)
1201{
1202 int i;
1203
1204 for (i = 0; i < host->n_ports; i++) {
1205 struct ata_port *ap = host->ports[i];
1206 ata_lpm_schedule(ap, ap->pm_policy);
1207 }
1208}
1992a5ed 1209#endif /* CONFIG_PM */
ca77329f 1210
1da177e4
LT
1211/**
1212 * ata_dev_classify - determine device type based on ATA-spec signature
1213 * @tf: ATA taskfile register set for device to be identified
1214 *
1215 * Determine from taskfile register contents whether a device is
1216 * ATA or ATAPI, as per "Signature and persistence" section
1217 * of ATA/PI spec (volume 1, sect 5.14).
1218 *
1219 * LOCKING:
1220 * None.
1221 *
1222 * RETURNS:
633273a3
TH
1223 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1224 * %ATA_DEV_UNKNOWN the event of failure.
1da177e4 1225 */
057ace5e 1226unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
1227{
1228 /* Apple's open source Darwin code hints that some devices only
1229 * put a proper signature into the LBA mid/high registers,
1230 * So, we only check those. It's sufficient for uniqueness.
633273a3
TH
1231 *
1232 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1233 * signatures for ATA and ATAPI devices attached on SerialATA,
1234 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1235 * spec has never mentioned about using different signatures
1236 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1237 * Multiplier specification began to use 0x69/0x96 to identify
1238 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1239 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1240 * 0x69/0x96 shortly and described them as reserved for
1241 * SerialATA.
1242 *
1243 * We follow the current spec and consider that 0x69/0x96
1244 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
79b42bab
TH
1245 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1246 * SEMB signature. This is worked around in
1247 * ata_dev_read_id().
1da177e4 1248 */
633273a3 1249 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1da177e4
LT
1250 DPRINTK("found ATA device by sig\n");
1251 return ATA_DEV_ATA;
1252 }
1253
633273a3 1254 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1da177e4
LT
1255 DPRINTK("found ATAPI device by sig\n");
1256 return ATA_DEV_ATAPI;
1257 }
1258
633273a3
TH
1259 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1260 DPRINTK("found PMP device by sig\n");
1261 return ATA_DEV_PMP;
1262 }
1263
1264 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
79b42bab
TH
1265 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1266 return ATA_DEV_SEMB;
633273a3
TH
1267 }
1268
1da177e4
LT
1269 DPRINTK("unknown device\n");
1270 return ATA_DEV_UNKNOWN;
1271}
1272
1da177e4 1273/**
6a62a04d 1274 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
1275 * @id: IDENTIFY DEVICE results we will examine
1276 * @s: string into which data is output
1277 * @ofs: offset into identify device page
1278 * @len: length of string to return. must be an even number.
1279 *
1280 * The strings in the IDENTIFY DEVICE page are broken up into
1281 * 16-bit chunks. Run through the string, and output each
1282 * 8-bit chunk linearly, regardless of platform.
1283 *
1284 * LOCKING:
1285 * caller.
1286 */
1287
6a62a04d
TH
1288void ata_id_string(const u16 *id, unsigned char *s,
1289 unsigned int ofs, unsigned int len)
1da177e4
LT
1290{
1291 unsigned int c;
1292
963e4975
AC
1293 BUG_ON(len & 1);
1294
1da177e4
LT
1295 while (len > 0) {
1296 c = id[ofs] >> 8;
1297 *s = c;
1298 s++;
1299
1300 c = id[ofs] & 0xff;
1301 *s = c;
1302 s++;
1303
1304 ofs++;
1305 len -= 2;
1306 }
1307}
1308
0e949ff3 1309/**
6a62a04d 1310 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
1311 * @id: IDENTIFY DEVICE results we will examine
1312 * @s: string into which data is output
1313 * @ofs: offset into identify device page
1314 * @len: length of string to return. must be an odd number.
1315 *
6a62a04d 1316 * This function is identical to ata_id_string except that it
0e949ff3
TH
1317 * trims trailing spaces and terminates the resulting string with
1318 * null. @len must be actual maximum length (even number) + 1.
1319 *
1320 * LOCKING:
1321 * caller.
1322 */
6a62a04d
TH
1323void ata_id_c_string(const u16 *id, unsigned char *s,
1324 unsigned int ofs, unsigned int len)
0e949ff3
TH
1325{
1326 unsigned char *p;
1327
6a62a04d 1328 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
1329
1330 p = s + strnlen(s, len - 1);
1331 while (p > s && p[-1] == ' ')
1332 p--;
1333 *p = '\0';
1334}
0baab86b 1335
db6f8759
TH
1336static u64 ata_id_n_sectors(const u16 *id)
1337{
1338 if (ata_id_has_lba(id)) {
1339 if (ata_id_has_lba48(id))
968e594a 1340 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
db6f8759 1341 else
968e594a 1342 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
db6f8759
TH
1343 } else {
1344 if (ata_id_current_chs_valid(id))
968e594a
RH
1345 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1346 id[ATA_ID_CUR_SECTORS];
db6f8759 1347 else
968e594a
RH
1348 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1349 id[ATA_ID_SECTORS];
db6f8759
TH
1350 }
1351}
1352
a5987e0a 1353u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1e999736
AC
1354{
1355 u64 sectors = 0;
1356
1357 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1358 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
ba14a9c2 1359 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1e999736
AC
1360 sectors |= (tf->lbah & 0xff) << 16;
1361 sectors |= (tf->lbam & 0xff) << 8;
1362 sectors |= (tf->lbal & 0xff);
1363
a5987e0a 1364 return sectors;
1e999736
AC
1365}
1366
a5987e0a 1367u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1e999736
AC
1368{
1369 u64 sectors = 0;
1370
1371 sectors |= (tf->device & 0x0f) << 24;
1372 sectors |= (tf->lbah & 0xff) << 16;
1373 sectors |= (tf->lbam & 0xff) << 8;
1374 sectors |= (tf->lbal & 0xff);
1375
a5987e0a 1376 return sectors;
1e999736
AC
1377}
1378
1379/**
c728a914
TH
1380 * ata_read_native_max_address - Read native max address
1381 * @dev: target device
1382 * @max_sectors: out parameter for the result native max address
1e999736 1383 *
c728a914
TH
1384 * Perform an LBA48 or LBA28 native size query upon the device in
1385 * question.
1e999736 1386 *
c728a914
TH
1387 * RETURNS:
1388 * 0 on success, -EACCES if command is aborted by the drive.
1389 * -EIO on other errors.
1e999736 1390 */
c728a914 1391static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1e999736 1392{
c728a914 1393 unsigned int err_mask;
1e999736 1394 struct ata_taskfile tf;
c728a914 1395 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1396
1397 ata_tf_init(dev, &tf);
1398
c728a914 1399 /* always clear all address registers */
1e999736 1400 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1e999736 1401
c728a914
TH
1402 if (lba48) {
1403 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1404 tf.flags |= ATA_TFLAG_LBA48;
1405 } else
1406 tf.command = ATA_CMD_READ_NATIVE_MAX;
1e999736 1407
1e999736 1408 tf.protocol |= ATA_PROT_NODATA;
c728a914
TH
1409 tf.device |= ATA_LBA;
1410
2b789108 1411 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1412 if (err_mask) {
1413 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1414 "max address (err_mask=0x%x)\n", err_mask);
1415 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1416 return -EACCES;
1417 return -EIO;
1418 }
1e999736 1419
c728a914 1420 if (lba48)
a5987e0a 1421 *max_sectors = ata_tf_to_lba48(&tf) + 1;
c728a914 1422 else
a5987e0a 1423 *max_sectors = ata_tf_to_lba(&tf) + 1;
2dcb407e 1424 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
93328e11 1425 (*max_sectors)--;
c728a914 1426 return 0;
1e999736
AC
1427}
1428
1429/**
c728a914
TH
1430 * ata_set_max_sectors - Set max sectors
1431 * @dev: target device
6b38d1d1 1432 * @new_sectors: new max sectors value to set for the device
1e999736 1433 *
c728a914
TH
1434 * Set max sectors of @dev to @new_sectors.
1435 *
1436 * RETURNS:
1437 * 0 on success, -EACCES if command is aborted or denied (due to
1438 * previous non-volatile SET_MAX) by the drive. -EIO on other
1439 * errors.
1e999736 1440 */
05027adc 1441static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1e999736 1442{
c728a914 1443 unsigned int err_mask;
1e999736 1444 struct ata_taskfile tf;
c728a914 1445 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1446
1447 new_sectors--;
1448
1449 ata_tf_init(dev, &tf);
1450
1e999736 1451 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
c728a914
TH
1452
1453 if (lba48) {
1454 tf.command = ATA_CMD_SET_MAX_EXT;
1455 tf.flags |= ATA_TFLAG_LBA48;
1456
1457 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1458 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1459 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1e582ba4 1460 } else {
c728a914
TH
1461 tf.command = ATA_CMD_SET_MAX;
1462
1e582ba4
TH
1463 tf.device |= (new_sectors >> 24) & 0xf;
1464 }
1465
1e999736 1466 tf.protocol |= ATA_PROT_NODATA;
c728a914 1467 tf.device |= ATA_LBA;
1e999736
AC
1468
1469 tf.lbal = (new_sectors >> 0) & 0xff;
1470 tf.lbam = (new_sectors >> 8) & 0xff;
1471 tf.lbah = (new_sectors >> 16) & 0xff;
1e999736 1472
2b789108 1473 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1474 if (err_mask) {
1475 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1476 "max address (err_mask=0x%x)\n", err_mask);
1477 if (err_mask == AC_ERR_DEV &&
1478 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1479 return -EACCES;
1480 return -EIO;
1481 }
1482
c728a914 1483 return 0;
1e999736
AC
1484}
1485
1486/**
1487 * ata_hpa_resize - Resize a device with an HPA set
1488 * @dev: Device to resize
1489 *
1490 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1491 * it if required to the full size of the media. The caller must check
1492 * the drive has the HPA feature set enabled.
05027adc
TH
1493 *
1494 * RETURNS:
1495 * 0 on success, -errno on failure.
1e999736 1496 */
05027adc 1497static int ata_hpa_resize(struct ata_device *dev)
1e999736 1498{
05027adc
TH
1499 struct ata_eh_context *ehc = &dev->link->eh_context;
1500 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
445d211b 1501 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
05027adc
TH
1502 u64 sectors = ata_id_n_sectors(dev->id);
1503 u64 native_sectors;
c728a914 1504 int rc;
a617c09f 1505
05027adc
TH
1506 /* do we need to do it? */
1507 if (dev->class != ATA_DEV_ATA ||
1508 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1509 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
c728a914 1510 return 0;
1e999736 1511
05027adc
TH
1512 /* read native max address */
1513 rc = ata_read_native_max_address(dev, &native_sectors);
1514 if (rc) {
dda7aba1
TH
1515 /* If device aborted the command or HPA isn't going to
1516 * be unlocked, skip HPA resizing.
05027adc 1517 */
445d211b 1518 if (rc == -EACCES || !unlock_hpa) {
05027adc 1519 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
dda7aba1 1520 "broken, skipping HPA handling\n");
05027adc
TH
1521 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1522
1523 /* we can continue if device aborted the command */
1524 if (rc == -EACCES)
1525 rc = 0;
1e999736 1526 }
37301a55 1527
05027adc
TH
1528 return rc;
1529 }
5920dadf 1530 dev->n_native_sectors = native_sectors;
05027adc
TH
1531
1532 /* nothing to do? */
445d211b 1533 if (native_sectors <= sectors || !unlock_hpa) {
05027adc
TH
1534 if (!print_info || native_sectors == sectors)
1535 return 0;
1536
1537 if (native_sectors > sectors)
1538 ata_dev_printk(dev, KERN_INFO,
1539 "HPA detected: current %llu, native %llu\n",
1540 (unsigned long long)sectors,
1541 (unsigned long long)native_sectors);
1542 else if (native_sectors < sectors)
1543 ata_dev_printk(dev, KERN_WARNING,
1544 "native sectors (%llu) is smaller than "
1545 "sectors (%llu)\n",
1546 (unsigned long long)native_sectors,
1547 (unsigned long long)sectors);
1548 return 0;
1549 }
1550
1551 /* let's unlock HPA */
1552 rc = ata_set_max_sectors(dev, native_sectors);
1553 if (rc == -EACCES) {
1554 /* if device aborted the command, skip HPA resizing */
1555 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1556 "(%llu -> %llu), skipping HPA handling\n",
1557 (unsigned long long)sectors,
1558 (unsigned long long)native_sectors);
1559 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1560 return 0;
1561 } else if (rc)
1562 return rc;
1563
1564 /* re-read IDENTIFY data */
1565 rc = ata_dev_reread_id(dev, 0);
1566 if (rc) {
1567 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1568 "data after HPA resizing\n");
1569 return rc;
1570 }
1571
1572 if (print_info) {
1573 u64 new_sectors = ata_id_n_sectors(dev->id);
1574 ata_dev_printk(dev, KERN_INFO,
1575 "HPA unlocked: %llu -> %llu, native %llu\n",
1576 (unsigned long long)sectors,
1577 (unsigned long long)new_sectors,
1578 (unsigned long long)native_sectors);
1579 }
1580
1581 return 0;
1e999736
AC
1582}
1583
1da177e4
LT
1584/**
1585 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1586 * @id: IDENTIFY DEVICE page to dump
1da177e4 1587 *
0bd3300a
TH
1588 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1589 * page.
1da177e4
LT
1590 *
1591 * LOCKING:
1592 * caller.
1593 */
1594
0bd3300a 1595static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1596{
1597 DPRINTK("49==0x%04x "
1598 "53==0x%04x "
1599 "63==0x%04x "
1600 "64==0x%04x "
1601 "75==0x%04x \n",
0bd3300a
TH
1602 id[49],
1603 id[53],
1604 id[63],
1605 id[64],
1606 id[75]);
1da177e4
LT
1607 DPRINTK("80==0x%04x "
1608 "81==0x%04x "
1609 "82==0x%04x "
1610 "83==0x%04x "
1611 "84==0x%04x \n",
0bd3300a
TH
1612 id[80],
1613 id[81],
1614 id[82],
1615 id[83],
1616 id[84]);
1da177e4
LT
1617 DPRINTK("88==0x%04x "
1618 "93==0x%04x\n",
0bd3300a
TH
1619 id[88],
1620 id[93]);
1da177e4
LT
1621}
1622
cb95d562
TH
1623/**
1624 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1625 * @id: IDENTIFY data to compute xfer mask from
1626 *
1627 * Compute the xfermask for this device. This is not as trivial
1628 * as it seems if we must consider early devices correctly.
1629 *
1630 * FIXME: pre IDE drive timing (do we care ?).
1631 *
1632 * LOCKING:
1633 * None.
1634 *
1635 * RETURNS:
1636 * Computed xfermask
1637 */
7dc951ae 1638unsigned long ata_id_xfermask(const u16 *id)
cb95d562 1639{
7dc951ae 1640 unsigned long pio_mask, mwdma_mask, udma_mask;
cb95d562
TH
1641
1642 /* Usual case. Word 53 indicates word 64 is valid */
1643 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1644 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1645 pio_mask <<= 3;
1646 pio_mask |= 0x7;
1647 } else {
1648 /* If word 64 isn't valid then Word 51 high byte holds
1649 * the PIO timing number for the maximum. Turn it into
1650 * a mask.
1651 */
7a0f1c8a 1652 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb 1653 if (mode < 5) /* Valid PIO range */
2dcb407e 1654 pio_mask = (2 << mode) - 1;
46767aeb
AC
1655 else
1656 pio_mask = 1;
cb95d562
TH
1657
1658 /* But wait.. there's more. Design your standards by
1659 * committee and you too can get a free iordy field to
1660 * process. However its the speeds not the modes that
1661 * are supported... Note drivers using the timing API
1662 * will get this right anyway
1663 */
1664 }
1665
1666 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1667
b352e57d
AC
1668 if (ata_id_is_cfa(id)) {
1669 /*
1670 * Process compact flash extended modes
1671 */
62afe5d7
SS
1672 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1673 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
b352e57d
AC
1674
1675 if (pio)
1676 pio_mask |= (1 << 5);
1677 if (pio > 1)
1678 pio_mask |= (1 << 6);
1679 if (dma)
1680 mwdma_mask |= (1 << 3);
1681 if (dma > 1)
1682 mwdma_mask |= (1 << 4);
1683 }
1684
fb21f0d0
TH
1685 udma_mask = 0;
1686 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1687 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1688
1689 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1690}
1691
7102d230 1692static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1693{
77853bf2 1694 struct completion *waiting = qc->private_data;
a2a7a662 1695
a2a7a662 1696 complete(waiting);
a2a7a662
TH
1697}
1698
1699/**
2432697b 1700 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1701 * @dev: Device to which the command is sent
1702 * @tf: Taskfile registers for the command and the result
d69cf37d 1703 * @cdb: CDB for packet command
a2a7a662 1704 * @dma_dir: Data tranfer direction of the command
5c1ad8b3 1705 * @sgl: sg list for the data buffer of the command
2432697b 1706 * @n_elem: Number of sg entries
2b789108 1707 * @timeout: Timeout in msecs (0 for default)
a2a7a662
TH
1708 *
1709 * Executes libata internal command with timeout. @tf contains
1710 * command on entry and result on return. Timeout and error
1711 * conditions are reported via return value. No recovery action
1712 * is taken after a command times out. It's caller's duty to
1713 * clean up after timeout.
1714 *
1715 * LOCKING:
1716 * None. Should be called with kernel context, might sleep.
551e8889
TH
1717 *
1718 * RETURNS:
1719 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1720 */
2432697b
TH
1721unsigned ata_exec_internal_sg(struct ata_device *dev,
1722 struct ata_taskfile *tf, const u8 *cdb,
87260216 1723 int dma_dir, struct scatterlist *sgl,
2b789108 1724 unsigned int n_elem, unsigned long timeout)
a2a7a662 1725{
9af5c9c9
TH
1726 struct ata_link *link = dev->link;
1727 struct ata_port *ap = link->ap;
a2a7a662 1728 u8 command = tf->command;
87fbc5a0 1729 int auto_timeout = 0;
a2a7a662 1730 struct ata_queued_cmd *qc;
2ab7db1f 1731 unsigned int tag, preempted_tag;
dedaf2b0 1732 u32 preempted_sactive, preempted_qc_active;
da917d69 1733 int preempted_nr_active_links;
60be6b9a 1734 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1735 unsigned long flags;
77853bf2 1736 unsigned int err_mask;
d95a717f 1737 int rc;
a2a7a662 1738
ba6a1308 1739 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1740
e3180499 1741 /* no internal command while frozen */
b51e9e5d 1742 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1743 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1744 return AC_ERR_SYSTEM;
1745 }
1746
2ab7db1f 1747 /* initialize internal qc */
a2a7a662 1748
2ab7db1f
TH
1749 /* XXX: Tag 0 is used for drivers with legacy EH as some
1750 * drivers choke if any other tag is given. This breaks
1751 * ata_tag_internal() test for those drivers. Don't use new
1752 * EH stuff without converting to it.
1753 */
1754 if (ap->ops->error_handler)
1755 tag = ATA_TAG_INTERNAL;
1756 else
1757 tag = 0;
1758
8a8bc223
TH
1759 if (test_and_set_bit(tag, &ap->qc_allocated))
1760 BUG();
f69499f4 1761 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1762
1763 qc->tag = tag;
1764 qc->scsicmd = NULL;
1765 qc->ap = ap;
1766 qc->dev = dev;
1767 ata_qc_reinit(qc);
1768
9af5c9c9
TH
1769 preempted_tag = link->active_tag;
1770 preempted_sactive = link->sactive;
dedaf2b0 1771 preempted_qc_active = ap->qc_active;
da917d69 1772 preempted_nr_active_links = ap->nr_active_links;
9af5c9c9
TH
1773 link->active_tag = ATA_TAG_POISON;
1774 link->sactive = 0;
dedaf2b0 1775 ap->qc_active = 0;
da917d69 1776 ap->nr_active_links = 0;
2ab7db1f
TH
1777
1778 /* prepare & issue qc */
a2a7a662 1779 qc->tf = *tf;
d69cf37d
TH
1780 if (cdb)
1781 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1782 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1783 qc->dma_dir = dma_dir;
1784 if (dma_dir != DMA_NONE) {
2432697b 1785 unsigned int i, buflen = 0;
87260216 1786 struct scatterlist *sg;
2432697b 1787
87260216
JA
1788 for_each_sg(sgl, sg, n_elem, i)
1789 buflen += sg->length;
2432697b 1790
87260216 1791 ata_sg_init(qc, sgl, n_elem);
49c80429 1792 qc->nbytes = buflen;
a2a7a662
TH
1793 }
1794
77853bf2 1795 qc->private_data = &wait;
a2a7a662
TH
1796 qc->complete_fn = ata_qc_complete_internal;
1797
8e0e694a 1798 ata_qc_issue(qc);
a2a7a662 1799
ba6a1308 1800 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1801
87fbc5a0
TH
1802 if (!timeout) {
1803 if (ata_probe_timeout)
1804 timeout = ata_probe_timeout * 1000;
1805 else {
1806 timeout = ata_internal_cmd_timeout(dev, command);
1807 auto_timeout = 1;
1808 }
1809 }
2b789108
TH
1810
1811 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
d95a717f 1812
c429137a 1813 ata_sff_flush_pio_task(ap);
41ade50c 1814
d95a717f 1815 if (!rc) {
ba6a1308 1816 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1817
1818 /* We're racing with irq here. If we lose, the
1819 * following test prevents us from completing the qc
d95a717f
TH
1820 * twice. If we win, the port is frozen and will be
1821 * cleaned up by ->post_internal_cmd().
a2a7a662 1822 */
77853bf2 1823 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1824 qc->err_mask |= AC_ERR_TIMEOUT;
1825
1826 if (ap->ops->error_handler)
1827 ata_port_freeze(ap);
1828 else
1829 ata_qc_complete(qc);
f15a1daf 1830
0dd4b21f
BP
1831 if (ata_msg_warn(ap))
1832 ata_dev_printk(dev, KERN_WARNING,
88574551 1833 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1834 }
1835
ba6a1308 1836 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1837 }
1838
d95a717f
TH
1839 /* do post_internal_cmd */
1840 if (ap->ops->post_internal_cmd)
1841 ap->ops->post_internal_cmd(qc);
1842
a51d644a
TH
1843 /* perform minimal error analysis */
1844 if (qc->flags & ATA_QCFLAG_FAILED) {
1845 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1846 qc->err_mask |= AC_ERR_DEV;
1847
1848 if (!qc->err_mask)
1849 qc->err_mask |= AC_ERR_OTHER;
1850
1851 if (qc->err_mask & ~AC_ERR_OTHER)
1852 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1853 }
1854
15869303 1855 /* finish up */
ba6a1308 1856 spin_lock_irqsave(ap->lock, flags);
15869303 1857
e61e0672 1858 *tf = qc->result_tf;
77853bf2
TH
1859 err_mask = qc->err_mask;
1860
1861 ata_qc_free(qc);
9af5c9c9
TH
1862 link->active_tag = preempted_tag;
1863 link->sactive = preempted_sactive;
dedaf2b0 1864 ap->qc_active = preempted_qc_active;
da917d69 1865 ap->nr_active_links = preempted_nr_active_links;
77853bf2 1866
ba6a1308 1867 spin_unlock_irqrestore(ap->lock, flags);
15869303 1868
87fbc5a0
TH
1869 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1870 ata_internal_cmd_timed_out(dev, command);
1871
77853bf2 1872 return err_mask;
a2a7a662
TH
1873}
1874
2432697b 1875/**
33480a0e 1876 * ata_exec_internal - execute libata internal command
2432697b
TH
1877 * @dev: Device to which the command is sent
1878 * @tf: Taskfile registers for the command and the result
1879 * @cdb: CDB for packet command
1880 * @dma_dir: Data tranfer direction of the command
1881 * @buf: Data buffer of the command
1882 * @buflen: Length of data buffer
2b789108 1883 * @timeout: Timeout in msecs (0 for default)
2432697b
TH
1884 *
1885 * Wrapper around ata_exec_internal_sg() which takes simple
1886 * buffer instead of sg list.
1887 *
1888 * LOCKING:
1889 * None. Should be called with kernel context, might sleep.
1890 *
1891 * RETURNS:
1892 * Zero on success, AC_ERR_* mask on failure
1893 */
1894unsigned ata_exec_internal(struct ata_device *dev,
1895 struct ata_taskfile *tf, const u8 *cdb,
2b789108
TH
1896 int dma_dir, void *buf, unsigned int buflen,
1897 unsigned long timeout)
2432697b 1898{
33480a0e
TH
1899 struct scatterlist *psg = NULL, sg;
1900 unsigned int n_elem = 0;
2432697b 1901
33480a0e
TH
1902 if (dma_dir != DMA_NONE) {
1903 WARN_ON(!buf);
1904 sg_init_one(&sg, buf, buflen);
1905 psg = &sg;
1906 n_elem++;
1907 }
2432697b 1908
2b789108
TH
1909 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1910 timeout);
2432697b
TH
1911}
1912
977e6b9f
TH
1913/**
1914 * ata_do_simple_cmd - execute simple internal command
1915 * @dev: Device to which the command is sent
1916 * @cmd: Opcode to execute
1917 *
1918 * Execute a 'simple' command, that only consists of the opcode
1919 * 'cmd' itself, without filling any other registers
1920 *
1921 * LOCKING:
1922 * Kernel thread context (may sleep).
1923 *
1924 * RETURNS:
1925 * Zero on success, AC_ERR_* mask on failure
e58eb583 1926 */
77b08fb5 1927unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1928{
1929 struct ata_taskfile tf;
e58eb583
TH
1930
1931 ata_tf_init(dev, &tf);
1932
1933 tf.command = cmd;
1934 tf.flags |= ATA_TFLAG_DEVICE;
1935 tf.protocol = ATA_PROT_NODATA;
1936
2b789108 1937 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
e58eb583
TH
1938}
1939
1bc4ccff
AC
1940/**
1941 * ata_pio_need_iordy - check if iordy needed
1942 * @adev: ATA device
1943 *
1944 * Check if the current speed of the device requires IORDY. Used
1945 * by various controllers for chip configuration.
1946 */
1bc4ccff
AC
1947unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1948{
0d9e6659
TH
1949 /* Don't set IORDY if we're preparing for reset. IORDY may
1950 * lead to controller lock up on certain controllers if the
1951 * port is not occupied. See bko#11703 for details.
1952 */
1953 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1954 return 0;
1955 /* Controller doesn't support IORDY. Probably a pointless
1956 * check as the caller should know this.
1957 */
9af5c9c9 1958 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1959 return 0;
5c18c4d2
DD
1960 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1961 if (ata_id_is_cfa(adev->id)
1962 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1963 return 0;
432729f0
AC
1964 /* PIO3 and higher it is mandatory */
1965 if (adev->pio_mode > XFER_PIO_2)
1966 return 1;
1967 /* We turn it on when possible */
1968 if (ata_id_has_iordy(adev->id))
1bc4ccff 1969 return 1;
432729f0
AC
1970 return 0;
1971}
2e9edbf8 1972
432729f0
AC
1973/**
1974 * ata_pio_mask_no_iordy - Return the non IORDY mask
1975 * @adev: ATA device
1976 *
1977 * Compute the highest mode possible if we are not using iordy. Return
1978 * -1 if no iordy mode is available.
1979 */
432729f0
AC
1980static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1981{
1bc4ccff 1982 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1983 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1984 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1985 /* Is the speed faster than the drive allows non IORDY ? */
1986 if (pio) {
1987 /* This is cycle times not frequency - watch the logic! */
1988 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1989 return 3 << ATA_SHIFT_PIO;
1990 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1991 }
1992 }
432729f0 1993 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1994}
1995
963e4975
AC
1996/**
1997 * ata_do_dev_read_id - default ID read method
1998 * @dev: device
1999 * @tf: proposed taskfile
2000 * @id: data buffer
2001 *
2002 * Issue the identify taskfile and hand back the buffer containing
2003 * identify data. For some RAID controllers and for pre ATA devices
2004 * this function is wrapped or replaced by the driver
2005 */
2006unsigned int ata_do_dev_read_id(struct ata_device *dev,
2007 struct ata_taskfile *tf, u16 *id)
2008{
2009 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
2010 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
2011}
2012
1da177e4 2013/**
49016aca 2014 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
2015 * @dev: target device
2016 * @p_class: pointer to class of the target device (may be changed)
bff04647 2017 * @flags: ATA_READID_* flags
fe635c7e 2018 * @id: buffer to read IDENTIFY data into
1da177e4 2019 *
49016aca
TH
2020 * Read ID data from the specified device. ATA_CMD_ID_ATA is
2021 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
2022 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
2023 * for pre-ATA4 drives.
1da177e4 2024 *
50a99018 2025 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2dcb407e 2026 * now we abort if we hit that case.
50a99018 2027 *
1da177e4 2028 * LOCKING:
49016aca
TH
2029 * Kernel thread context (may sleep)
2030 *
2031 * RETURNS:
2032 * 0 on success, -errno otherwise.
1da177e4 2033 */
a9beec95 2034int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 2035 unsigned int flags, u16 *id)
1da177e4 2036{
9af5c9c9 2037 struct ata_port *ap = dev->link->ap;
49016aca 2038 unsigned int class = *p_class;
a0123703 2039 struct ata_taskfile tf;
49016aca
TH
2040 unsigned int err_mask = 0;
2041 const char *reason;
79b42bab 2042 bool is_semb = class == ATA_DEV_SEMB;
54936f8b 2043 int may_fallback = 1, tried_spinup = 0;
49016aca 2044 int rc;
1da177e4 2045
0dd4b21f 2046 if (ata_msg_ctl(ap))
7f5e4e8d 2047 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
1da177e4 2048
963e4975 2049retry:
3373efd8 2050 ata_tf_init(dev, &tf);
a0123703 2051
49016aca 2052 switch (class) {
79b42bab
TH
2053 case ATA_DEV_SEMB:
2054 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
49016aca 2055 case ATA_DEV_ATA:
a0123703 2056 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
2057 break;
2058 case ATA_DEV_ATAPI:
a0123703 2059 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
2060 break;
2061 default:
2062 rc = -ENODEV;
2063 reason = "unsupported class";
2064 goto err_out;
1da177e4
LT
2065 }
2066
a0123703 2067 tf.protocol = ATA_PROT_PIO;
81afe893
TH
2068
2069 /* Some devices choke if TF registers contain garbage. Make
2070 * sure those are properly initialized.
2071 */
2072 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2073
2074 /* Device presence detection is unreliable on some
2075 * controllers. Always poll IDENTIFY if available.
2076 */
2077 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 2078
963e4975
AC
2079 if (ap->ops->read_id)
2080 err_mask = ap->ops->read_id(dev, &tf, id);
2081 else
2082 err_mask = ata_do_dev_read_id(dev, &tf, id);
2083
a0123703 2084 if (err_mask) {
800b3996 2085 if (err_mask & AC_ERR_NODEV_HINT) {
1ffc151f
TH
2086 ata_dev_printk(dev, KERN_DEBUG,
2087 "NODEV after polling detection\n");
55a8e2c8
TH
2088 return -ENOENT;
2089 }
2090
79b42bab
TH
2091 if (is_semb) {
2092 ata_dev_printk(dev, KERN_INFO, "IDENTIFY failed on "
2093 "device w/ SEMB sig, disabled\n");
2094 /* SEMB is not supported yet */
2095 *p_class = ATA_DEV_SEMB_UNSUP;
2096 return 0;
2097 }
2098
1ffc151f
TH
2099 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
2100 /* Device or controller might have reported
2101 * the wrong device class. Give a shot at the
2102 * other IDENTIFY if the current one is
2103 * aborted by the device.
2104 */
2105 if (may_fallback) {
2106 may_fallback = 0;
2107
2108 if (class == ATA_DEV_ATA)
2109 class = ATA_DEV_ATAPI;
2110 else
2111 class = ATA_DEV_ATA;
2112 goto retry;
2113 }
2114
2115 /* Control reaches here iff the device aborted
2116 * both flavors of IDENTIFYs which happens
2117 * sometimes with phantom devices.
2118 */
2119 ata_dev_printk(dev, KERN_DEBUG,
2120 "both IDENTIFYs aborted, assuming NODEV\n");
2121 return -ENOENT;
54936f8b
TH
2122 }
2123
49016aca
TH
2124 rc = -EIO;
2125 reason = "I/O error";
1da177e4
LT
2126 goto err_out;
2127 }
2128
54936f8b
TH
2129 /* Falling back doesn't make sense if ID data was read
2130 * successfully at least once.
2131 */
2132 may_fallback = 0;
2133
49016aca 2134 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 2135
49016aca 2136 /* sanity check */
a4f5749b 2137 rc = -EINVAL;
6070068b 2138 reason = "device reports invalid type";
a4f5749b
TH
2139
2140 if (class == ATA_DEV_ATA) {
2141 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
2142 goto err_out;
2143 } else {
2144 if (ata_id_is_ata(id))
2145 goto err_out;
49016aca
TH
2146 }
2147
169439c2
ML
2148 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2149 tried_spinup = 1;
2150 /*
2151 * Drive powered-up in standby mode, and requires a specific
2152 * SET_FEATURES spin-up subcommand before it will accept
2153 * anything other than the original IDENTIFY command.
2154 */
218f3d30 2155 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
fb0582f9 2156 if (err_mask && id[2] != 0x738c) {
169439c2
ML
2157 rc = -EIO;
2158 reason = "SPINUP failed";
2159 goto err_out;
2160 }
2161 /*
2162 * If the drive initially returned incomplete IDENTIFY info,
2163 * we now must reissue the IDENTIFY command.
2164 */
2165 if (id[2] == 0x37c8)
2166 goto retry;
2167 }
2168
bff04647 2169 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
2170 /*
2171 * The exact sequence expected by certain pre-ATA4 drives is:
2172 * SRST RESET
50a99018
AC
2173 * IDENTIFY (optional in early ATA)
2174 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
49016aca
TH
2175 * anything else..
2176 * Some drives were very specific about that exact sequence.
50a99018
AC
2177 *
2178 * Note that ATA4 says lba is mandatory so the second check
c9404c9c 2179 * should never trigger.
49016aca
TH
2180 */
2181 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 2182 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
2183 if (err_mask) {
2184 rc = -EIO;
2185 reason = "INIT_DEV_PARAMS failed";
2186 goto err_out;
2187 }
2188
2189 /* current CHS translation info (id[53-58]) might be
2190 * changed. reread the identify device info.
2191 */
bff04647 2192 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
2193 goto retry;
2194 }
2195 }
2196
2197 *p_class = class;
fe635c7e 2198
49016aca
TH
2199 return 0;
2200
2201 err_out:
88574551 2202 if (ata_msg_warn(ap))
0dd4b21f 2203 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 2204 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
2205 return rc;
2206}
2207
9062712f
TH
2208static int ata_do_link_spd_horkage(struct ata_device *dev)
2209{
2210 struct ata_link *plink = ata_dev_phys_link(dev);
2211 u32 target, target_limit;
2212
2213 if (!sata_scr_valid(plink))
2214 return 0;
2215
2216 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2217 target = 1;
2218 else
2219 return 0;
2220
2221 target_limit = (1 << target) - 1;
2222
2223 /* if already on stricter limit, no need to push further */
2224 if (plink->sata_spd_limit <= target_limit)
2225 return 0;
2226
2227 plink->sata_spd_limit = target_limit;
2228
2229 /* Request another EH round by returning -EAGAIN if link is
2230 * going faster than the target speed. Forward progress is
2231 * guaranteed by setting sata_spd_limit to target_limit above.
2232 */
2233 if (plink->sata_spd > target) {
2234 ata_dev_printk(dev, KERN_INFO,
2235 "applying link speed limit horkage to %s\n",
2236 sata_spd_string(target));
2237 return -EAGAIN;
2238 }
2239 return 0;
2240}
2241
3373efd8 2242static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 2243{
9af5c9c9 2244 struct ata_port *ap = dev->link->ap;
9ce8e307
JA
2245
2246 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2247 return 0;
2248
9af5c9c9 2249 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
2250}
2251
388539f3 2252static int ata_dev_config_ncq(struct ata_device *dev,
a6e6ce8e
TH
2253 char *desc, size_t desc_sz)
2254{
9af5c9c9 2255 struct ata_port *ap = dev->link->ap;
a6e6ce8e 2256 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
388539f3
SL
2257 unsigned int err_mask;
2258 char *aa_desc = "";
a6e6ce8e
TH
2259
2260 if (!ata_id_has_ncq(dev->id)) {
2261 desc[0] = '\0';
388539f3 2262 return 0;
a6e6ce8e 2263 }
75683fe7 2264 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6 2265 snprintf(desc, desc_sz, "NCQ (not used)");
388539f3 2266 return 0;
6919a0a6 2267 }
a6e6ce8e 2268 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 2269 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
2270 dev->flags |= ATA_DFLAG_NCQ;
2271 }
2272
388539f3
SL
2273 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2274 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2275 ata_id_has_fpdma_aa(dev->id)) {
2276 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2277 SATA_FPDMA_AA);
2278 if (err_mask) {
2279 ata_dev_printk(dev, KERN_ERR, "failed to enable AA"
2280 "(error_mask=0x%x)\n", err_mask);
2281 if (err_mask != AC_ERR_DEV) {
2282 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2283 return -EIO;
2284 }
2285 } else
2286 aa_desc = ", AA";
2287 }
2288
a6e6ce8e 2289 if (hdepth >= ddepth)
388539f3 2290 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
a6e6ce8e 2291 else
388539f3
SL
2292 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2293 ddepth, aa_desc);
2294 return 0;
a6e6ce8e
TH
2295}
2296
49016aca 2297/**
ffeae418 2298 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
2299 * @dev: Target device to configure
2300 *
2301 * Configure @dev according to @dev->id. Generic and low-level
2302 * driver specific fixups are also applied.
49016aca
TH
2303 *
2304 * LOCKING:
ffeae418
TH
2305 * Kernel thread context (may sleep)
2306 *
2307 * RETURNS:
2308 * 0 on success, -errno otherwise
49016aca 2309 */
efdaedc4 2310int ata_dev_configure(struct ata_device *dev)
49016aca 2311{
9af5c9c9
TH
2312 struct ata_port *ap = dev->link->ap;
2313 struct ata_eh_context *ehc = &dev->link->eh_context;
6746544c 2314 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 2315 const u16 *id = dev->id;
7dc951ae 2316 unsigned long xfer_mask;
b352e57d 2317 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
2318 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2319 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 2320 int rc;
49016aca 2321
0dd4b21f 2322 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e 2323 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
7f5e4e8d 2324 __func__);
ffeae418 2325 return 0;
49016aca
TH
2326 }
2327
0dd4b21f 2328 if (ata_msg_probe(ap))
7f5e4e8d 2329 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
1da177e4 2330
75683fe7
TH
2331 /* set horkage */
2332 dev->horkage |= ata_dev_blacklisted(dev);
33267325 2333 ata_force_horkage(dev);
75683fe7 2334
50af2fa1
TH
2335 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2336 ata_dev_printk(dev, KERN_INFO,
2337 "unsupported device, disabling\n");
2338 ata_dev_disable(dev);
2339 return 0;
2340 }
2341
2486fa56
TH
2342 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2343 dev->class == ATA_DEV_ATAPI) {
2344 ata_dev_printk(dev, KERN_WARNING,
2345 "WARNING: ATAPI is %s, device ignored.\n",
2346 atapi_enabled ? "not supported with this driver"
2347 : "disabled");
2348 ata_dev_disable(dev);
2349 return 0;
2350 }
2351
9062712f
TH
2352 rc = ata_do_link_spd_horkage(dev);
2353 if (rc)
2354 return rc;
2355
6746544c
TH
2356 /* let ACPI work its magic */
2357 rc = ata_acpi_on_devcfg(dev);
2358 if (rc)
2359 return rc;
08573a86 2360
05027adc
TH
2361 /* massage HPA, do it early as it might change IDENTIFY data */
2362 rc = ata_hpa_resize(dev);
2363 if (rc)
2364 return rc;
2365
c39f5ebe 2366 /* print device capabilities */
0dd4b21f 2367 if (ata_msg_probe(ap))
88574551
TH
2368 ata_dev_printk(dev, KERN_DEBUG,
2369 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2370 "85:%04x 86:%04x 87:%04x 88:%04x\n",
7f5e4e8d 2371 __func__,
f15a1daf
TH
2372 id[49], id[82], id[83], id[84],
2373 id[85], id[86], id[87], id[88]);
c39f5ebe 2374
208a9933 2375 /* initialize to-be-configured parameters */
ea1dd4e1 2376 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
2377 dev->max_sectors = 0;
2378 dev->cdb_len = 0;
2379 dev->n_sectors = 0;
2380 dev->cylinders = 0;
2381 dev->heads = 0;
2382 dev->sectors = 0;
e18086d6 2383 dev->multi_count = 0;
208a9933 2384
1da177e4
LT
2385 /*
2386 * common ATA, ATAPI feature tests
2387 */
2388
ff8854b2 2389 /* find max transfer mode; for printk only */
1148c3a7 2390 xfer_mask = ata_id_xfermask(id);
1da177e4 2391
0dd4b21f
BP
2392 if (ata_msg_probe(ap))
2393 ata_dump_id(id);
1da177e4 2394
ef143d57
AL
2395 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2396 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2397 sizeof(fwrevbuf));
2398
2399 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2400 sizeof(modelbuf));
2401
1da177e4
LT
2402 /* ATA-specific feature tests */
2403 if (dev->class == ATA_DEV_ATA) {
b352e57d 2404 if (ata_id_is_cfa(id)) {
62afe5d7
SS
2405 /* CPRM may make this media unusable */
2406 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
44877b4e
TH
2407 ata_dev_printk(dev, KERN_WARNING,
2408 "supports DRM functions and may "
2409 "not be fully accessable.\n");
b352e57d 2410 snprintf(revbuf, 7, "CFA");
ae8d4ee7 2411 } else {
2dcb407e 2412 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
ae8d4ee7
AC
2413 /* Warn the user if the device has TPM extensions */
2414 if (ata_id_has_tpm(id))
2415 ata_dev_printk(dev, KERN_WARNING,
2416 "supports DRM functions and may "
2417 "not be fully accessable.\n");
2418 }
b352e57d 2419
1148c3a7 2420 dev->n_sectors = ata_id_n_sectors(id);
2940740b 2421
e18086d6
ML
2422 /* get current R/W Multiple count setting */
2423 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2424 unsigned int max = dev->id[47] & 0xff;
2425 unsigned int cnt = dev->id[59] & 0xff;
2426 /* only recognize/allow powers of two here */
2427 if (is_power_of_2(max) && is_power_of_2(cnt))
2428 if (cnt <= max)
2429 dev->multi_count = cnt;
2430 }
3f64f565 2431
1148c3a7 2432 if (ata_id_has_lba(id)) {
4c2d721a 2433 const char *lba_desc;
388539f3 2434 char ncq_desc[24];
8bf62ece 2435
4c2d721a
TH
2436 lba_desc = "LBA";
2437 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 2438 if (ata_id_has_lba48(id)) {
8bf62ece 2439 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 2440 lba_desc = "LBA48";
6fc49adb
TH
2441
2442 if (dev->n_sectors >= (1UL << 28) &&
2443 ata_id_has_flush_ext(id))
2444 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 2445 }
8bf62ece 2446
a6e6ce8e 2447 /* config NCQ */
388539f3
SL
2448 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2449 if (rc)
2450 return rc;
a6e6ce8e 2451
8bf62ece 2452 /* print device info to dmesg */
3f64f565
EM
2453 if (ata_msg_drv(ap) && print_info) {
2454 ata_dev_printk(dev, KERN_INFO,
2455 "%s: %s, %s, max %s\n",
2456 revbuf, modelbuf, fwrevbuf,
2457 ata_mode_string(xfer_mask));
2458 ata_dev_printk(dev, KERN_INFO,
2459 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 2460 (unsigned long long)dev->n_sectors,
3f64f565
EM
2461 dev->multi_count, lba_desc, ncq_desc);
2462 }
ffeae418 2463 } else {
8bf62ece
AL
2464 /* CHS */
2465
2466 /* Default translation */
1148c3a7
TH
2467 dev->cylinders = id[1];
2468 dev->heads = id[3];
2469 dev->sectors = id[6];
8bf62ece 2470
1148c3a7 2471 if (ata_id_current_chs_valid(id)) {
8bf62ece 2472 /* Current CHS translation is valid. */
1148c3a7
TH
2473 dev->cylinders = id[54];
2474 dev->heads = id[55];
2475 dev->sectors = id[56];
8bf62ece
AL
2476 }
2477
2478 /* print device info to dmesg */
3f64f565 2479 if (ata_msg_drv(ap) && print_info) {
88574551 2480 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2481 "%s: %s, %s, max %s\n",
2482 revbuf, modelbuf, fwrevbuf,
2483 ata_mode_string(xfer_mask));
a84471fe 2484 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2485 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2486 (unsigned long long)dev->n_sectors,
2487 dev->multi_count, dev->cylinders,
2488 dev->heads, dev->sectors);
2489 }
07f6f7d0
AL
2490 }
2491
6e7846e9 2492 dev->cdb_len = 16;
1da177e4
LT
2493 }
2494
2495 /* ATAPI-specific feature tests */
2c13b7ce 2496 else if (dev->class == ATA_DEV_ATAPI) {
854c73a2
TH
2497 const char *cdb_intr_string = "";
2498 const char *atapi_an_string = "";
91163006 2499 const char *dma_dir_string = "";
7d77b247 2500 u32 sntf;
08a556db 2501
1148c3a7 2502 rc = atapi_cdb_len(id);
1da177e4 2503 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 2504 if (ata_msg_warn(ap))
88574551
TH
2505 ata_dev_printk(dev, KERN_WARNING,
2506 "unsupported CDB len\n");
ffeae418 2507 rc = -EINVAL;
1da177e4
LT
2508 goto err_out_nosup;
2509 }
6e7846e9 2510 dev->cdb_len = (unsigned int) rc;
1da177e4 2511
7d77b247
TH
2512 /* Enable ATAPI AN if both the host and device have
2513 * the support. If PMP is attached, SNTF is required
2514 * to enable ATAPI AN to discern between PHY status
2515 * changed notifications and ATAPI ANs.
9f45cbd3 2516 */
e7ecd435
TH
2517 if (atapi_an &&
2518 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
071f44b1 2519 (!sata_pmp_attached(ap) ||
7d77b247 2520 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
854c73a2
TH
2521 unsigned int err_mask;
2522
9f45cbd3 2523 /* issue SET feature command to turn this on */
218f3d30
JG
2524 err_mask = ata_dev_set_feature(dev,
2525 SETFEATURES_SATA_ENABLE, SATA_AN);
854c73a2 2526 if (err_mask)
9f45cbd3 2527 ata_dev_printk(dev, KERN_ERR,
854c73a2
TH
2528 "failed to enable ATAPI AN "
2529 "(err_mask=0x%x)\n", err_mask);
2530 else {
9f45cbd3 2531 dev->flags |= ATA_DFLAG_AN;
854c73a2
TH
2532 atapi_an_string = ", ATAPI AN";
2533 }
9f45cbd3
KCA
2534 }
2535
08a556db 2536 if (ata_id_cdb_intr(dev->id)) {
312f7da2 2537 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
2538 cdb_intr_string = ", CDB intr";
2539 }
312f7da2 2540
91163006
TH
2541 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2542 dev->flags |= ATA_DFLAG_DMADIR;
2543 dma_dir_string = ", DMADIR";
2544 }
2545
1da177e4 2546 /* print device info to dmesg */
5afc8142 2547 if (ata_msg_drv(ap) && print_info)
ef143d57 2548 ata_dev_printk(dev, KERN_INFO,
91163006 2549 "ATAPI: %s, %s, max %s%s%s%s\n",
ef143d57 2550 modelbuf, fwrevbuf,
12436c30 2551 ata_mode_string(xfer_mask),
91163006
TH
2552 cdb_intr_string, atapi_an_string,
2553 dma_dir_string);
1da177e4
LT
2554 }
2555
914ed354
TH
2556 /* determine max_sectors */
2557 dev->max_sectors = ATA_MAX_SECTORS;
2558 if (dev->flags & ATA_DFLAG_LBA48)
2559 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2560
ca77329f
KCA
2561 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2562 if (ata_id_has_hipm(dev->id))
2563 dev->flags |= ATA_DFLAG_HIPM;
2564 if (ata_id_has_dipm(dev->id))
2565 dev->flags |= ATA_DFLAG_DIPM;
2566 }
2567
c5038fc0
AC
2568 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2569 200 sectors */
3373efd8 2570 if (ata_dev_knobble(dev)) {
5afc8142 2571 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2572 ata_dev_printk(dev, KERN_INFO,
2573 "applying bridge limits\n");
5a529139 2574 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2575 dev->max_sectors = ATA_MAX_SECTORS;
2576 }
2577
f8d8e579 2578 if ((dev->class == ATA_DEV_ATAPI) &&
f442cd86 2579 (atapi_command_packet_set(id) == TYPE_TAPE)) {
f8d8e579 2580 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
f442cd86
AL
2581 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2582 }
f8d8e579 2583
75683fe7 2584 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2585 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2586 dev->max_sectors);
18d6e9d5 2587
ca77329f
KCA
2588 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2589 dev->horkage |= ATA_HORKAGE_IPM;
2590
2591 /* reset link pm_policy for this port to no pm */
2592 ap->pm_policy = MAX_PERFORMANCE;
2593 }
2594
4b2f3ede 2595 if (ap->ops->dev_config)
cd0d3bbc 2596 ap->ops->dev_config(dev);
4b2f3ede 2597
c5038fc0
AC
2598 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2599 /* Let the user know. We don't want to disallow opens for
2600 rescue purposes, or in case the vendor is just a blithering
2601 idiot. Do this after the dev_config call as some controllers
2602 with buggy firmware may want to avoid reporting false device
2603 bugs */
2604
2605 if (print_info) {
2606 ata_dev_printk(dev, KERN_WARNING,
2607"Drive reports diagnostics failure. This may indicate a drive\n");
2608 ata_dev_printk(dev, KERN_WARNING,
2609"fault or invalid emulation. Contact drive vendor for information.\n");
2610 }
2611 }
2612
ac70a964
TH
2613 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2614 ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires "
2615 "firmware update to be fully functional.\n");
2616 ata_dev_printk(dev, KERN_WARNING, " contact the vendor "
2617 "or visit http://ata.wiki.kernel.org.\n");
2618 }
2619
ffeae418 2620 return 0;
1da177e4
LT
2621
2622err_out_nosup:
0dd4b21f 2623 if (ata_msg_probe(ap))
88574551 2624 ata_dev_printk(dev, KERN_DEBUG,
7f5e4e8d 2625 "%s: EXIT, err\n", __func__);
ffeae418 2626 return rc;
1da177e4
LT
2627}
2628
be0d18df 2629/**
2e41e8e6 2630 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2631 * @ap: port
2632 *
2e41e8e6 2633 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2634 * detection.
2635 */
2636
2637int ata_cable_40wire(struct ata_port *ap)
2638{
2639 return ATA_CBL_PATA40;
2640}
2641
2642/**
2e41e8e6 2643 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2644 * @ap: port
2645 *
2e41e8e6 2646 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2647 * detection.
2648 */
2649
2650int ata_cable_80wire(struct ata_port *ap)
2651{
2652 return ATA_CBL_PATA80;
2653}
2654
2655/**
2656 * ata_cable_unknown - return unknown PATA cable.
2657 * @ap: port
2658 *
2659 * Helper method for drivers which have no PATA cable detection.
2660 */
2661
2662int ata_cable_unknown(struct ata_port *ap)
2663{
2664 return ATA_CBL_PATA_UNK;
2665}
2666
c88f90c3
TH
2667/**
2668 * ata_cable_ignore - return ignored PATA cable.
2669 * @ap: port
2670 *
2671 * Helper method for drivers which don't use cable type to limit
2672 * transfer mode.
2673 */
2674int ata_cable_ignore(struct ata_port *ap)
2675{
2676 return ATA_CBL_PATA_IGN;
2677}
2678
be0d18df
AC
2679/**
2680 * ata_cable_sata - return SATA cable type
2681 * @ap: port
2682 *
2683 * Helper method for drivers which have SATA cables
2684 */
2685
2686int ata_cable_sata(struct ata_port *ap)
2687{
2688 return ATA_CBL_SATA;
2689}
2690
1da177e4
LT
2691/**
2692 * ata_bus_probe - Reset and probe ATA bus
2693 * @ap: Bus to probe
2694 *
0cba632b
JG
2695 * Master ATA bus probing function. Initiates a hardware-dependent
2696 * bus reset, then attempts to identify any devices found on
2697 * the bus.
2698 *
1da177e4 2699 * LOCKING:
0cba632b 2700 * PCI/etc. bus probe sem.
1da177e4
LT
2701 *
2702 * RETURNS:
96072e69 2703 * Zero on success, negative errno otherwise.
1da177e4
LT
2704 */
2705
80289167 2706int ata_bus_probe(struct ata_port *ap)
1da177e4 2707{
28ca5c57 2708 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2709 int tries[ATA_MAX_DEVICES];
f58229f8 2710 int rc;
e82cbdb9 2711 struct ata_device *dev;
1da177e4 2712
1eca4365 2713 ata_for_each_dev(dev, &ap->link, ALL)
f58229f8 2714 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
14d2bac1
TH
2715
2716 retry:
1eca4365 2717 ata_for_each_dev(dev, &ap->link, ALL) {
cdeab114
TH
2718 /* If we issue an SRST then an ATA drive (not ATAPI)
2719 * may change configuration and be in PIO0 timing. If
2720 * we do a hard reset (or are coming from power on)
2721 * this is true for ATA or ATAPI. Until we've set a
2722 * suitable controller mode we should not touch the
2723 * bus as we may be talking too fast.
2724 */
2725 dev->pio_mode = XFER_PIO_0;
2726
2727 /* If the controller has a pio mode setup function
2728 * then use it to set the chipset to rights. Don't
2729 * touch the DMA setup as that will be dealt with when
2730 * configuring devices.
2731 */
2732 if (ap->ops->set_piomode)
2733 ap->ops->set_piomode(ap, dev);
2734 }
2735
2044470c 2736 /* reset and determine device classes */
52783c5d 2737 ap->ops->phy_reset(ap);
2061a47a 2738
1eca4365 2739 ata_for_each_dev(dev, &ap->link, ALL) {
3e4ec344 2740 if (dev->class != ATA_DEV_UNKNOWN)
52783c5d
TH
2741 classes[dev->devno] = dev->class;
2742 else
2743 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2744
52783c5d 2745 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2746 }
1da177e4 2747
f31f0cc2
JG
2748 /* read IDENTIFY page and configure devices. We have to do the identify
2749 specific sequence bass-ackwards so that PDIAG- is released by
2750 the slave device */
2751
1eca4365 2752 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
f58229f8
TH
2753 if (tries[dev->devno])
2754 dev->class = classes[dev->devno];
ffeae418 2755
14d2bac1 2756 if (!ata_dev_enabled(dev))
ffeae418 2757 continue;
ffeae418 2758
bff04647
TH
2759 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2760 dev->id);
14d2bac1
TH
2761 if (rc)
2762 goto fail;
f31f0cc2
JG
2763 }
2764
be0d18df
AC
2765 /* Now ask for the cable type as PDIAG- should have been released */
2766 if (ap->ops->cable_detect)
2767 ap->cbl = ap->ops->cable_detect(ap);
2768
1eca4365
TH
2769 /* We may have SATA bridge glue hiding here irrespective of
2770 * the reported cable types and sensed types. When SATA
2771 * drives indicate we have a bridge, we don't know which end
2772 * of the link the bridge is which is a problem.
2773 */
2774 ata_for_each_dev(dev, &ap->link, ENABLED)
614fe29b
AC
2775 if (ata_id_is_sata(dev->id))
2776 ap->cbl = ATA_CBL_SATA;
614fe29b 2777
f31f0cc2
JG
2778 /* After the identify sequence we can now set up the devices. We do
2779 this in the normal order so that the user doesn't get confused */
2780
1eca4365 2781 ata_for_each_dev(dev, &ap->link, ENABLED) {
9af5c9c9 2782 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
efdaedc4 2783 rc = ata_dev_configure(dev);
9af5c9c9 2784 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2785 if (rc)
2786 goto fail;
1da177e4
LT
2787 }
2788
e82cbdb9 2789 /* configure transfer mode */
0260731f 2790 rc = ata_set_mode(&ap->link, &dev);
4ae72a1e 2791 if (rc)
51713d35 2792 goto fail;
1da177e4 2793
1eca4365
TH
2794 ata_for_each_dev(dev, &ap->link, ENABLED)
2795 return 0;
1da177e4 2796
96072e69 2797 return -ENODEV;
14d2bac1
TH
2798
2799 fail:
4ae72a1e
TH
2800 tries[dev->devno]--;
2801
14d2bac1
TH
2802 switch (rc) {
2803 case -EINVAL:
4ae72a1e 2804 /* eeek, something went very wrong, give up */
14d2bac1
TH
2805 tries[dev->devno] = 0;
2806 break;
4ae72a1e
TH
2807
2808 case -ENODEV:
2809 /* give it just one more chance */
2810 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2811 case -EIO:
4ae72a1e
TH
2812 if (tries[dev->devno] == 1) {
2813 /* This is the last chance, better to slow
2814 * down than lose it.
2815 */
a07d499b 2816 sata_down_spd_limit(&ap->link, 0);
4ae72a1e
TH
2817 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2818 }
14d2bac1
TH
2819 }
2820
4ae72a1e 2821 if (!tries[dev->devno])
3373efd8 2822 ata_dev_disable(dev);
ec573755 2823
14d2bac1 2824 goto retry;
1da177e4
LT
2825}
2826
3be680b7
TH
2827/**
2828 * sata_print_link_status - Print SATA link status
936fd732 2829 * @link: SATA link to printk link status about
3be680b7
TH
2830 *
2831 * This function prints link speed and status of a SATA link.
2832 *
2833 * LOCKING:
2834 * None.
2835 */
6bdb4fc9 2836static void sata_print_link_status(struct ata_link *link)
3be680b7 2837{
6d5f9732 2838 u32 sstatus, scontrol, tmp;
3be680b7 2839
936fd732 2840 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3be680b7 2841 return;
936fd732 2842 sata_scr_read(link, SCR_CONTROL, &scontrol);
3be680b7 2843
b1c72916 2844 if (ata_phys_link_online(link)) {
3be680b7 2845 tmp = (sstatus >> 4) & 0xf;
936fd732 2846 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2847 "SATA link up %s (SStatus %X SControl %X)\n",
2848 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2849 } else {
936fd732 2850 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2851 "SATA link down (SStatus %X SControl %X)\n",
2852 sstatus, scontrol);
3be680b7
TH
2853 }
2854}
2855
ebdfca6e
AC
2856/**
2857 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2858 * @adev: device
2859 *
2860 * Obtain the other device on the same cable, or if none is
2861 * present NULL is returned
2862 */
2e9edbf8 2863
3373efd8 2864struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2865{
9af5c9c9
TH
2866 struct ata_link *link = adev->link;
2867 struct ata_device *pair = &link->device[1 - adev->devno];
e1211e3f 2868 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2869 return NULL;
2870 return pair;
2871}
2872
1c3fae4d 2873/**
3c567b7d 2874 * sata_down_spd_limit - adjust SATA spd limit downward
936fd732 2875 * @link: Link to adjust SATA spd limit for
a07d499b 2876 * @spd_limit: Additional limit
1c3fae4d 2877 *
936fd732 2878 * Adjust SATA spd limit of @link downward. Note that this
1c3fae4d 2879 * function only adjusts the limit. The change must be applied
3c567b7d 2880 * using sata_set_spd().
1c3fae4d 2881 *
a07d499b
TH
2882 * If @spd_limit is non-zero, the speed is limited to equal to or
2883 * lower than @spd_limit if such speed is supported. If
2884 * @spd_limit is slower than any supported speed, only the lowest
2885 * supported speed is allowed.
2886 *
1c3fae4d
TH
2887 * LOCKING:
2888 * Inherited from caller.
2889 *
2890 * RETURNS:
2891 * 0 on success, negative errno on failure
2892 */
a07d499b 2893int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
1c3fae4d 2894{
81952c54 2895 u32 sstatus, spd, mask;
a07d499b 2896 int rc, bit;
1c3fae4d 2897
936fd732 2898 if (!sata_scr_valid(link))
008a7896
TH
2899 return -EOPNOTSUPP;
2900
2901 /* If SCR can be read, use it to determine the current SPD.
936fd732 2902 * If not, use cached value in link->sata_spd.
008a7896 2903 */
936fd732 2904 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
9913ff8a 2905 if (rc == 0 && ata_sstatus_online(sstatus))
008a7896
TH
2906 spd = (sstatus >> 4) & 0xf;
2907 else
936fd732 2908 spd = link->sata_spd;
1c3fae4d 2909
936fd732 2910 mask = link->sata_spd_limit;
1c3fae4d
TH
2911 if (mask <= 1)
2912 return -EINVAL;
008a7896
TH
2913
2914 /* unconditionally mask off the highest bit */
a07d499b
TH
2915 bit = fls(mask) - 1;
2916 mask &= ~(1 << bit);
1c3fae4d 2917
008a7896
TH
2918 /* Mask off all speeds higher than or equal to the current
2919 * one. Force 1.5Gbps if current SPD is not available.
2920 */
2921 if (spd > 1)
2922 mask &= (1 << (spd - 1)) - 1;
2923 else
2924 mask &= 1;
2925
2926 /* were we already at the bottom? */
1c3fae4d
TH
2927 if (!mask)
2928 return -EINVAL;
2929
a07d499b
TH
2930 if (spd_limit) {
2931 if (mask & ((1 << spd_limit) - 1))
2932 mask &= (1 << spd_limit) - 1;
2933 else {
2934 bit = ffs(mask) - 1;
2935 mask = 1 << bit;
2936 }
2937 }
2938
936fd732 2939 link->sata_spd_limit = mask;
1c3fae4d 2940
936fd732 2941 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
f15a1daf 2942 sata_spd_string(fls(mask)));
1c3fae4d
TH
2943
2944 return 0;
2945}
2946
936fd732 2947static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
1c3fae4d 2948{
5270222f
TH
2949 struct ata_link *host_link = &link->ap->link;
2950 u32 limit, target, spd;
1c3fae4d 2951
5270222f
TH
2952 limit = link->sata_spd_limit;
2953
2954 /* Don't configure downstream link faster than upstream link.
2955 * It doesn't speed up anything and some PMPs choke on such
2956 * configuration.
2957 */
2958 if (!ata_is_host_link(link) && host_link->sata_spd)
2959 limit &= (1 << host_link->sata_spd) - 1;
2960
2961 if (limit == UINT_MAX)
2962 target = 0;
1c3fae4d 2963 else
5270222f 2964 target = fls(limit);
1c3fae4d
TH
2965
2966 spd = (*scontrol >> 4) & 0xf;
5270222f 2967 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
1c3fae4d 2968
5270222f 2969 return spd != target;
1c3fae4d
TH
2970}
2971
2972/**
3c567b7d 2973 * sata_set_spd_needed - is SATA spd configuration needed
936fd732 2974 * @link: Link in question
1c3fae4d
TH
2975 *
2976 * Test whether the spd limit in SControl matches
936fd732 2977 * @link->sata_spd_limit. This function is used to determine
1c3fae4d
TH
2978 * whether hardreset is necessary to apply SATA spd
2979 * configuration.
2980 *
2981 * LOCKING:
2982 * Inherited from caller.
2983 *
2984 * RETURNS:
2985 * 1 if SATA spd configuration is needed, 0 otherwise.
2986 */
1dc55e87 2987static int sata_set_spd_needed(struct ata_link *link)
1c3fae4d
TH
2988{
2989 u32 scontrol;
2990
936fd732 2991 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
db64bcf3 2992 return 1;
1c3fae4d 2993
936fd732 2994 return __sata_set_spd_needed(link, &scontrol);
1c3fae4d
TH
2995}
2996
2997/**
3c567b7d 2998 * sata_set_spd - set SATA spd according to spd limit
936fd732 2999 * @link: Link to set SATA spd for
1c3fae4d 3000 *
936fd732 3001 * Set SATA spd of @link according to sata_spd_limit.
1c3fae4d
TH
3002 *
3003 * LOCKING:
3004 * Inherited from caller.
3005 *
3006 * RETURNS:
3007 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 3008 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 3009 */
936fd732 3010int sata_set_spd(struct ata_link *link)
1c3fae4d
TH
3011{
3012 u32 scontrol;
81952c54 3013 int rc;
1c3fae4d 3014
936fd732 3015 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3016 return rc;
1c3fae4d 3017
936fd732 3018 if (!__sata_set_spd_needed(link, &scontrol))
1c3fae4d
TH
3019 return 0;
3020
936fd732 3021 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54
TH
3022 return rc;
3023
1c3fae4d
TH
3024 return 1;
3025}
3026
452503f9
AC
3027/*
3028 * This mode timing computation functionality is ported over from
3029 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3030 */
3031/*
b352e57d 3032 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 3033 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
3034 * for UDMA6, which is currently supported only by Maxtor drives.
3035 *
3036 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
3037 */
3038
3039static const struct ata_timing ata_timing[] = {
3ada9c12
DD
3040/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
3041 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
3042 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
3043 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
3044 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
3045 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
3046 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
3047 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
3048
3049 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
3050 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
3051 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
3052
3053 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
3054 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
3055 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
3056 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
3057 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
3058
3059/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3060 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
3061 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
3062 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
3063 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
3064 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
3065 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
3066 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
452503f9
AC
3067
3068 { 0xFF }
3069};
3070
2dcb407e
JG
3071#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3072#define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
452503f9
AC
3073
3074static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3075{
3ada9c12
DD
3076 q->setup = EZ(t->setup * 1000, T);
3077 q->act8b = EZ(t->act8b * 1000, T);
3078 q->rec8b = EZ(t->rec8b * 1000, T);
3079 q->cyc8b = EZ(t->cyc8b * 1000, T);
3080 q->active = EZ(t->active * 1000, T);
3081 q->recover = EZ(t->recover * 1000, T);
3082 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
3083 q->cycle = EZ(t->cycle * 1000, T);
3084 q->udma = EZ(t->udma * 1000, UT);
452503f9
AC
3085}
3086
3087void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3088 struct ata_timing *m, unsigned int what)
3089{
3090 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3091 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3092 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3093 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3094 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3095 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3ada9c12 3096 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
452503f9
AC
3097 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3098 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3099}
3100
6357357c 3101const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
452503f9 3102{
70cd071e
TH
3103 const struct ata_timing *t = ata_timing;
3104
3105 while (xfer_mode > t->mode)
3106 t++;
452503f9 3107
70cd071e
TH
3108 if (xfer_mode == t->mode)
3109 return t;
3110 return NULL;
452503f9
AC
3111}
3112
3113int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3114 struct ata_timing *t, int T, int UT)
3115{
9e8808a9 3116 const u16 *id = adev->id;
452503f9
AC
3117 const struct ata_timing *s;
3118 struct ata_timing p;
3119
3120 /*
2e9edbf8 3121 * Find the mode.
75b1f2f8 3122 */
452503f9
AC
3123
3124 if (!(s = ata_timing_find_mode(speed)))
3125 return -EINVAL;
3126
75b1f2f8
AL
3127 memcpy(t, s, sizeof(*s));
3128
452503f9
AC
3129 /*
3130 * If the drive is an EIDE drive, it can tell us it needs extended
3131 * PIO/MW_DMA cycle timing.
3132 */
3133
9e8808a9 3134 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
452503f9 3135 memset(&p, 0, sizeof(p));
9e8808a9 3136
2dcb407e 3137 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
9e8808a9
BZ
3138 if (speed <= XFER_PIO_2)
3139 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3140 else if ((speed <= XFER_PIO_4) ||
3141 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3142 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3143 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3144 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3145
452503f9
AC
3146 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3147 }
3148
3149 /*
3150 * Convert the timing to bus clock counts.
3151 */
3152
75b1f2f8 3153 ata_timing_quantize(t, t, T, UT);
452503f9
AC
3154
3155 /*
c893a3ae
RD
3156 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3157 * S.M.A.R.T * and some other commands. We have to ensure that the
3158 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
3159 */
3160
fd3367af 3161 if (speed > XFER_PIO_6) {
452503f9
AC
3162 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3163 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3164 }
3165
3166 /*
c893a3ae 3167 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
3168 */
3169
3170 if (t->act8b + t->rec8b < t->cyc8b) {
3171 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3172 t->rec8b = t->cyc8b - t->act8b;
3173 }
3174
3175 if (t->active + t->recover < t->cycle) {
3176 t->active += (t->cycle - (t->active + t->recover)) / 2;
3177 t->recover = t->cycle - t->active;
3178 }
a617c09f 3179
4f701d1e
AC
3180 /* In a few cases quantisation may produce enough errors to
3181 leave t->cycle too low for the sum of active and recovery
3182 if so we must correct this */
3183 if (t->active + t->recover > t->cycle)
3184 t->cycle = t->active + t->recover;
452503f9
AC
3185
3186 return 0;
3187}
3188
a0f79b92
TH
3189/**
3190 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3191 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3192 * @cycle: cycle duration in ns
3193 *
3194 * Return matching xfer mode for @cycle. The returned mode is of
3195 * the transfer type specified by @xfer_shift. If @cycle is too
3196 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3197 * than the fastest known mode, the fasted mode is returned.
3198 *
3199 * LOCKING:
3200 * None.
3201 *
3202 * RETURNS:
3203 * Matching xfer_mode, 0xff if no match found.
3204 */
3205u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3206{
3207 u8 base_mode = 0xff, last_mode = 0xff;
3208 const struct ata_xfer_ent *ent;
3209 const struct ata_timing *t;
3210
3211 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3212 if (ent->shift == xfer_shift)
3213 base_mode = ent->base;
3214
3215 for (t = ata_timing_find_mode(base_mode);
3216 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3217 unsigned short this_cycle;
3218
3219 switch (xfer_shift) {
3220 case ATA_SHIFT_PIO:
3221 case ATA_SHIFT_MWDMA:
3222 this_cycle = t->cycle;
3223 break;
3224 case ATA_SHIFT_UDMA:
3225 this_cycle = t->udma;
3226 break;
3227 default:
3228 return 0xff;
3229 }
3230
3231 if (cycle > this_cycle)
3232 break;
3233
3234 last_mode = t->mode;
3235 }
3236
3237 return last_mode;
3238}
3239
cf176e1a
TH
3240/**
3241 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 3242 * @dev: Device to adjust xfer masks
458337db 3243 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
3244 *
3245 * Adjust xfer masks of @dev downward. Note that this function
3246 * does not apply the change. Invoking ata_set_mode() afterwards
3247 * will apply the limit.
3248 *
3249 * LOCKING:
3250 * Inherited from caller.
3251 *
3252 * RETURNS:
3253 * 0 on success, negative errno on failure
3254 */
458337db 3255int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 3256{
458337db 3257 char buf[32];
7dc951ae
TH
3258 unsigned long orig_mask, xfer_mask;
3259 unsigned long pio_mask, mwdma_mask, udma_mask;
458337db 3260 int quiet, highbit;
cf176e1a 3261
458337db
TH
3262 quiet = !!(sel & ATA_DNXFER_QUIET);
3263 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 3264
458337db
TH
3265 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3266 dev->mwdma_mask,
3267 dev->udma_mask);
3268 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 3269
458337db
TH
3270 switch (sel) {
3271 case ATA_DNXFER_PIO:
3272 highbit = fls(pio_mask) - 1;
3273 pio_mask &= ~(1 << highbit);
3274 break;
3275
3276 case ATA_DNXFER_DMA:
3277 if (udma_mask) {
3278 highbit = fls(udma_mask) - 1;
3279 udma_mask &= ~(1 << highbit);
3280 if (!udma_mask)
3281 return -ENOENT;
3282 } else if (mwdma_mask) {
3283 highbit = fls(mwdma_mask) - 1;
3284 mwdma_mask &= ~(1 << highbit);
3285 if (!mwdma_mask)
3286 return -ENOENT;
3287 }
3288 break;
3289
3290 case ATA_DNXFER_40C:
3291 udma_mask &= ATA_UDMA_MASK_40C;
3292 break;
3293
3294 case ATA_DNXFER_FORCE_PIO0:
3295 pio_mask &= 1;
3296 case ATA_DNXFER_FORCE_PIO:
3297 mwdma_mask = 0;
3298 udma_mask = 0;
3299 break;
3300
458337db
TH
3301 default:
3302 BUG();
3303 }
3304
3305 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3306
3307 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3308 return -ENOENT;
3309
3310 if (!quiet) {
3311 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3312 snprintf(buf, sizeof(buf), "%s:%s",
3313 ata_mode_string(xfer_mask),
3314 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3315 else
3316 snprintf(buf, sizeof(buf), "%s",
3317 ata_mode_string(xfer_mask));
3318
3319 ata_dev_printk(dev, KERN_WARNING,
3320 "limiting speed to %s\n", buf);
3321 }
cf176e1a
TH
3322
3323 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3324 &dev->udma_mask);
3325
cf176e1a 3326 return 0;
cf176e1a
TH
3327}
3328
3373efd8 3329static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 3330{
d0cb43b3 3331 struct ata_port *ap = dev->link->ap;
9af5c9c9 3332 struct ata_eh_context *ehc = &dev->link->eh_context;
d0cb43b3 3333 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
4055dee7
TH
3334 const char *dev_err_whine = "";
3335 int ign_dev_err = 0;
d0cb43b3 3336 unsigned int err_mask = 0;
83206a29 3337 int rc;
1da177e4 3338
e8384607 3339 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
3340 if (dev->xfer_shift == ATA_SHIFT_PIO)
3341 dev->flags |= ATA_DFLAG_PIO;
3342
d0cb43b3
TH
3343 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3344 dev_err_whine = " (SET_XFERMODE skipped)";
3345 else {
3346 if (nosetxfer)
3347 ata_dev_printk(dev, KERN_WARNING,
3348 "NOSETXFER but PATA detected - can't "
3349 "skip SETXFER, might malfunction\n");
3350 err_mask = ata_dev_set_xfermode(dev);
3351 }
2dcb407e 3352
4055dee7
TH
3353 if (err_mask & ~AC_ERR_DEV)
3354 goto fail;
3355
3356 /* revalidate */
3357 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3358 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3359 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3360 if (rc)
3361 return rc;
3362
b93fda12
AC
3363 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3364 /* Old CFA may refuse this command, which is just fine */
3365 if (ata_id_is_cfa(dev->id))
3366 ign_dev_err = 1;
3367 /* Catch several broken garbage emulations plus some pre
3368 ATA devices */
3369 if (ata_id_major_version(dev->id) == 0 &&
3370 dev->pio_mode <= XFER_PIO_2)
3371 ign_dev_err = 1;
3372 /* Some very old devices and some bad newer ones fail
3373 any kind of SET_XFERMODE request but support PIO0-2
3374 timings and no IORDY */
3375 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3376 ign_dev_err = 1;
3377 }
3acaf94b
AC
3378 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3379 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
c5038fc0 3380 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3acaf94b
AC
3381 dev->dma_mode == XFER_MW_DMA_0 &&
3382 (dev->id[63] >> 8) & 1)
4055dee7 3383 ign_dev_err = 1;
3acaf94b 3384
4055dee7
TH
3385 /* if the device is actually configured correctly, ignore dev err */
3386 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3387 ign_dev_err = 1;
1da177e4 3388
4055dee7
TH
3389 if (err_mask & AC_ERR_DEV) {
3390 if (!ign_dev_err)
3391 goto fail;
3392 else
3393 dev_err_whine = " (device error ignored)";
3394 }
48a8a14f 3395
23e71c3d
TH
3396 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3397 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 3398
4055dee7
TH
3399 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3400 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3401 dev_err_whine);
3402
83206a29 3403 return 0;
4055dee7
TH
3404
3405 fail:
3406 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3407 "(err_mask=0x%x)\n", err_mask);
3408 return -EIO;
1da177e4
LT
3409}
3410
1da177e4 3411/**
04351821 3412 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 3413 * @link: link on which timings will be programmed
1967b7ff 3414 * @r_failed_dev: out parameter for failed device
1da177e4 3415 *
04351821
A
3416 * Standard implementation of the function used to tune and set
3417 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3418 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 3419 * returned in @r_failed_dev.
780a87f7 3420 *
1da177e4 3421 * LOCKING:
0cba632b 3422 * PCI/etc. bus probe sem.
e82cbdb9
TH
3423 *
3424 * RETURNS:
3425 * 0 on success, negative errno otherwise
1da177e4 3426 */
04351821 3427
0260731f 3428int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
1da177e4 3429{
0260731f 3430 struct ata_port *ap = link->ap;
e8e0619f 3431 struct ata_device *dev;
f58229f8 3432 int rc = 0, used_dma = 0, found = 0;
3adcebb2 3433
a6d5a51c 3434 /* step 1: calculate xfer_mask */
1eca4365 3435 ata_for_each_dev(dev, link, ENABLED) {
7dc951ae 3436 unsigned long pio_mask, dma_mask;
b3a70601 3437 unsigned int mode_mask;
a6d5a51c 3438
b3a70601
AC
3439 mode_mask = ATA_DMA_MASK_ATA;
3440 if (dev->class == ATA_DEV_ATAPI)
3441 mode_mask = ATA_DMA_MASK_ATAPI;
3442 else if (ata_id_is_cfa(dev->id))
3443 mode_mask = ATA_DMA_MASK_CFA;
3444
3373efd8 3445 ata_dev_xfermask(dev);
33267325 3446 ata_force_xfermask(dev);
1da177e4 3447
acf356b1
TH
3448 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3449 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
b3a70601
AC
3450
3451 if (libata_dma_mask & mode_mask)
3452 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3453 else
3454 dma_mask = 0;
3455
acf356b1
TH
3456 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3457 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 3458
4f65977d 3459 found = 1;
b15b3eba 3460 if (ata_dma_enabled(dev))
5444a6f4 3461 used_dma = 1;
a6d5a51c 3462 }
4f65977d 3463 if (!found)
e82cbdb9 3464 goto out;
a6d5a51c
TH
3465
3466 /* step 2: always set host PIO timings */
1eca4365 3467 ata_for_each_dev(dev, link, ENABLED) {
70cd071e 3468 if (dev->pio_mode == 0xff) {
f15a1daf 3469 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 3470 rc = -EINVAL;
e82cbdb9 3471 goto out;
e8e0619f
TH
3472 }
3473
3474 dev->xfer_mode = dev->pio_mode;
3475 dev->xfer_shift = ATA_SHIFT_PIO;
3476 if (ap->ops->set_piomode)
3477 ap->ops->set_piomode(ap, dev);
3478 }
1da177e4 3479
a6d5a51c 3480 /* step 3: set host DMA timings */
1eca4365
TH
3481 ata_for_each_dev(dev, link, ENABLED) {
3482 if (!ata_dma_enabled(dev))
e8e0619f
TH
3483 continue;
3484
3485 dev->xfer_mode = dev->dma_mode;
3486 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3487 if (ap->ops->set_dmamode)
3488 ap->ops->set_dmamode(ap, dev);
3489 }
1da177e4
LT
3490
3491 /* step 4: update devices' xfer mode */
1eca4365 3492 ata_for_each_dev(dev, link, ENABLED) {
3373efd8 3493 rc = ata_dev_set_mode(dev);
5bbc53f4 3494 if (rc)
e82cbdb9 3495 goto out;
83206a29 3496 }
1da177e4 3497
e8e0619f
TH
3498 /* Record simplex status. If we selected DMA then the other
3499 * host channels are not permitted to do so.
5444a6f4 3500 */
cca3974e 3501 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 3502 ap->host->simplex_claimed = ap;
5444a6f4 3503
e82cbdb9
TH
3504 out:
3505 if (rc)
3506 *r_failed_dev = dev;
3507 return rc;
1da177e4
LT
3508}
3509
aa2731ad
TH
3510/**
3511 * ata_wait_ready - wait for link to become ready
3512 * @link: link to be waited on
3513 * @deadline: deadline jiffies for the operation
3514 * @check_ready: callback to check link readiness
3515 *
3516 * Wait for @link to become ready. @check_ready should return
3517 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3518 * link doesn't seem to be occupied, other errno for other error
3519 * conditions.
3520 *
3521 * Transient -ENODEV conditions are allowed for
3522 * ATA_TMOUT_FF_WAIT.
3523 *
3524 * LOCKING:
3525 * EH context.
3526 *
3527 * RETURNS:
3528 * 0 if @linke is ready before @deadline; otherwise, -errno.
3529 */
3530int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3531 int (*check_ready)(struct ata_link *link))
3532{
3533 unsigned long start = jiffies;
b48d58f5 3534 unsigned long nodev_deadline;
aa2731ad
TH
3535 int warned = 0;
3536
b48d58f5
TH
3537 /* choose which 0xff timeout to use, read comment in libata.h */
3538 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3539 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3540 else
3541 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3542
b1c72916
TH
3543 /* Slave readiness can't be tested separately from master. On
3544 * M/S emulation configuration, this function should be called
3545 * only on the master and it will handle both master and slave.
3546 */
3547 WARN_ON(link == link->ap->slave_link);
3548
aa2731ad
TH
3549 if (time_after(nodev_deadline, deadline))
3550 nodev_deadline = deadline;
3551
3552 while (1) {
3553 unsigned long now = jiffies;
3554 int ready, tmp;
3555
3556 ready = tmp = check_ready(link);
3557 if (ready > 0)
3558 return 0;
3559
b48d58f5
TH
3560 /*
3561 * -ENODEV could be transient. Ignore -ENODEV if link
aa2731ad 3562 * is online. Also, some SATA devices take a long
b48d58f5
TH
3563 * time to clear 0xff after reset. Wait for
3564 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3565 * offline.
aa2731ad
TH
3566 *
3567 * Note that some PATA controllers (pata_ali) explode
3568 * if status register is read more than once when
3569 * there's no device attached.
3570 */
3571 if (ready == -ENODEV) {
3572 if (ata_link_online(link))
3573 ready = 0;
3574 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3575 !ata_link_offline(link) &&
3576 time_before(now, nodev_deadline))
3577 ready = 0;
3578 }
3579
3580 if (ready)
3581 return ready;
3582 if (time_after(now, deadline))
3583 return -EBUSY;
3584
3585 if (!warned && time_after(now, start + 5 * HZ) &&
3586 (deadline - now > 3 * HZ)) {
3587 ata_link_printk(link, KERN_WARNING,
3588 "link is slow to respond, please be patient "
3589 "(ready=%d)\n", tmp);
3590 warned = 1;
3591 }
3592
3593 msleep(50);
3594 }
3595}
3596
3597/**
3598 * ata_wait_after_reset - wait for link to become ready after reset
3599 * @link: link to be waited on
3600 * @deadline: deadline jiffies for the operation
3601 * @check_ready: callback to check link readiness
3602 *
3603 * Wait for @link to become ready after reset.
3604 *
3605 * LOCKING:
3606 * EH context.
3607 *
3608 * RETURNS:
3609 * 0 if @linke is ready before @deadline; otherwise, -errno.
3610 */
2b4221bb 3611int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
aa2731ad
TH
3612 int (*check_ready)(struct ata_link *link))
3613{
341c2c95 3614 msleep(ATA_WAIT_AFTER_RESET);
aa2731ad
TH
3615
3616 return ata_wait_ready(link, deadline, check_ready);
3617}
3618
d7bb4cc7 3619/**
936fd732
TH
3620 * sata_link_debounce - debounce SATA phy status
3621 * @link: ATA link to debounce SATA phy status for
d7bb4cc7 3622 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3623 * @deadline: deadline jiffies for the operation
d7bb4cc7 3624 *
936fd732 3625* Make sure SStatus of @link reaches stable state, determined by
d7bb4cc7
TH
3626 * holding the same value where DET is not 1 for @duration polled
3627 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3628 * beginning of the stable state. Because DET gets stuck at 1 on
3629 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3630 * until timeout then returns 0 if DET is stable at 1.
3631 *
d4b2bab4
TH
3632 * @timeout is further limited by @deadline. The sooner of the
3633 * two is used.
3634 *
d7bb4cc7
TH
3635 * LOCKING:
3636 * Kernel thread context (may sleep)
3637 *
3638 * RETURNS:
3639 * 0 on success, -errno on failure.
3640 */
936fd732
TH
3641int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3642 unsigned long deadline)
7a7921e8 3643{
341c2c95
TH
3644 unsigned long interval = params[0];
3645 unsigned long duration = params[1];
d4b2bab4 3646 unsigned long last_jiffies, t;
d7bb4cc7
TH
3647 u32 last, cur;
3648 int rc;
3649
341c2c95 3650 t = ata_deadline(jiffies, params[2]);
d4b2bab4
TH
3651 if (time_before(t, deadline))
3652 deadline = t;
3653
936fd732 3654 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3655 return rc;
3656 cur &= 0xf;
3657
3658 last = cur;
3659 last_jiffies = jiffies;
3660
3661 while (1) {
341c2c95 3662 msleep(interval);
936fd732 3663 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3664 return rc;
3665 cur &= 0xf;
3666
3667 /* DET stable? */
3668 if (cur == last) {
d4b2bab4 3669 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7 3670 continue;
341c2c95
TH
3671 if (time_after(jiffies,
3672 ata_deadline(last_jiffies, duration)))
d7bb4cc7
TH
3673 return 0;
3674 continue;
3675 }
3676
3677 /* unstable, start over */
3678 last = cur;
3679 last_jiffies = jiffies;
3680
f1545154
TH
3681 /* Check deadline. If debouncing failed, return
3682 * -EPIPE to tell upper layer to lower link speed.
3683 */
d4b2bab4 3684 if (time_after(jiffies, deadline))
f1545154 3685 return -EPIPE;
d7bb4cc7
TH
3686 }
3687}
3688
3689/**
936fd732
TH
3690 * sata_link_resume - resume SATA link
3691 * @link: ATA link to resume SATA
d7bb4cc7 3692 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3693 * @deadline: deadline jiffies for the operation
d7bb4cc7 3694 *
936fd732 3695 * Resume SATA phy @link and debounce it.
d7bb4cc7
TH
3696 *
3697 * LOCKING:
3698 * Kernel thread context (may sleep)
3699 *
3700 * RETURNS:
3701 * 0 on success, -errno on failure.
3702 */
936fd732
TH
3703int sata_link_resume(struct ata_link *link, const unsigned long *params,
3704 unsigned long deadline)
d7bb4cc7 3705{
5040ab67 3706 int tries = ATA_LINK_RESUME_TRIES;
ac371987 3707 u32 scontrol, serror;
81952c54
TH
3708 int rc;
3709
936fd732 3710 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3711 return rc;
7a7921e8 3712
5040ab67
TH
3713 /*
3714 * Writes to SControl sometimes get ignored under certain
3715 * controllers (ata_piix SIDPR). Make sure DET actually is
3716 * cleared.
3717 */
3718 do {
3719 scontrol = (scontrol & 0x0f0) | 0x300;
3720 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3721 return rc;
3722 /*
3723 * Some PHYs react badly if SStatus is pounded
3724 * immediately after resuming. Delay 200ms before
3725 * debouncing.
3726 */
3727 msleep(200);
81952c54 3728
5040ab67
TH
3729 /* is SControl restored correctly? */
3730 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3731 return rc;
3732 } while ((scontrol & 0xf0f) != 0x300 && --tries);
7a7921e8 3733
5040ab67
TH
3734 if ((scontrol & 0xf0f) != 0x300) {
3735 ata_link_printk(link, KERN_ERR,
3736 "failed to resume link (SControl %X)\n",
3737 scontrol);
3738 return 0;
3739 }
3740
3741 if (tries < ATA_LINK_RESUME_TRIES)
3742 ata_link_printk(link, KERN_WARNING,
3743 "link resume succeeded after %d retries\n",
3744 ATA_LINK_RESUME_TRIES - tries);
7a7921e8 3745
ac371987
TH
3746 if ((rc = sata_link_debounce(link, params, deadline)))
3747 return rc;
3748
f046519f 3749 /* clear SError, some PHYs require this even for SRST to work */
ac371987
TH
3750 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3751 rc = sata_scr_write(link, SCR_ERROR, serror);
ac371987 3752
f046519f 3753 return rc != -EINVAL ? rc : 0;
7a7921e8
TH
3754}
3755
f5914a46 3756/**
0aa1113d 3757 * ata_std_prereset - prepare for reset
cc0680a5 3758 * @link: ATA link to be reset
d4b2bab4 3759 * @deadline: deadline jiffies for the operation
f5914a46 3760 *
cc0680a5 3761 * @link is about to be reset. Initialize it. Failure from
b8cffc6a
TH
3762 * prereset makes libata abort whole reset sequence and give up
3763 * that port, so prereset should be best-effort. It does its
3764 * best to prepare for reset sequence but if things go wrong, it
3765 * should just whine, not fail.
f5914a46
TH
3766 *
3767 * LOCKING:
3768 * Kernel thread context (may sleep)
3769 *
3770 * RETURNS:
3771 * 0 on success, -errno otherwise.
3772 */
0aa1113d 3773int ata_std_prereset(struct ata_link *link, unsigned long deadline)
f5914a46 3774{
cc0680a5 3775 struct ata_port *ap = link->ap;
936fd732 3776 struct ata_eh_context *ehc = &link->eh_context;
e9c83914 3777 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3778 int rc;
3779
f5914a46
TH
3780 /* if we're about to do hardreset, nothing more to do */
3781 if (ehc->i.action & ATA_EH_HARDRESET)
3782 return 0;
3783
936fd732 3784 /* if SATA, resume link */
a16abc0b 3785 if (ap->flags & ATA_FLAG_SATA) {
936fd732 3786 rc = sata_link_resume(link, timing, deadline);
b8cffc6a
TH
3787 /* whine about phy resume failure but proceed */
3788 if (rc && rc != -EOPNOTSUPP)
cc0680a5 3789 ata_link_printk(link, KERN_WARNING, "failed to resume "
f5914a46 3790 "link for reset (errno=%d)\n", rc);
f5914a46
TH
3791 }
3792
45db2f6c 3793 /* no point in trying softreset on offline link */
b1c72916 3794 if (ata_phys_link_offline(link))
45db2f6c
TH
3795 ehc->i.action &= ~ATA_EH_SOFTRESET;
3796
f5914a46
TH
3797 return 0;
3798}
3799
c2bd5804 3800/**
624d5c51
TH
3801 * sata_link_hardreset - reset link via SATA phy reset
3802 * @link: link to reset
3803 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3804 * @deadline: deadline jiffies for the operation
9dadd45b
TH
3805 * @online: optional out parameter indicating link onlineness
3806 * @check_ready: optional callback to check link readiness
c2bd5804 3807 *
624d5c51 3808 * SATA phy-reset @link using DET bits of SControl register.
9dadd45b
TH
3809 * After hardreset, link readiness is waited upon using
3810 * ata_wait_ready() if @check_ready is specified. LLDs are
3811 * allowed to not specify @check_ready and wait itself after this
3812 * function returns. Device classification is LLD's
3813 * responsibility.
3814 *
3815 * *@online is set to one iff reset succeeded and @link is online
3816 * after reset.
c2bd5804
TH
3817 *
3818 * LOCKING:
3819 * Kernel thread context (may sleep)
3820 *
3821 * RETURNS:
3822 * 0 on success, -errno otherwise.
3823 */
624d5c51 3824int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
9dadd45b
TH
3825 unsigned long deadline,
3826 bool *online, int (*check_ready)(struct ata_link *))
c2bd5804 3827{
624d5c51 3828 u32 scontrol;
81952c54 3829 int rc;
852ee16a 3830
c2bd5804
TH
3831 DPRINTK("ENTER\n");
3832
9dadd45b
TH
3833 if (online)
3834 *online = false;
3835
936fd732 3836 if (sata_set_spd_needed(link)) {
1c3fae4d
TH
3837 /* SATA spec says nothing about how to reconfigure
3838 * spd. To be on the safe side, turn off phy during
3839 * reconfiguration. This works for at least ICH7 AHCI
3840 * and Sil3124.
3841 */
936fd732 3842 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3843 goto out;
81952c54 3844
a34b6fc0 3845 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54 3846
936fd732 3847 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
b6103f6d 3848 goto out;
1c3fae4d 3849
936fd732 3850 sata_set_spd(link);
1c3fae4d
TH
3851 }
3852
3853 /* issue phy wake/reset */
936fd732 3854 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3855 goto out;
81952c54 3856
852ee16a 3857 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54 3858
936fd732 3859 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
b6103f6d 3860 goto out;
c2bd5804 3861
1c3fae4d 3862 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3863 * 10.4.2 says at least 1 ms.
3864 */
3865 msleep(1);
3866
936fd732
TH
3867 /* bring link back */
3868 rc = sata_link_resume(link, timing, deadline);
9dadd45b
TH
3869 if (rc)
3870 goto out;
3871 /* if link is offline nothing more to do */
b1c72916 3872 if (ata_phys_link_offline(link))
9dadd45b
TH
3873 goto out;
3874
3875 /* Link is online. From this point, -ENODEV too is an error. */
3876 if (online)
3877 *online = true;
3878
071f44b1 3879 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
9dadd45b
TH
3880 /* If PMP is supported, we have to do follow-up SRST.
3881 * Some PMPs don't send D2H Reg FIS after hardreset if
3882 * the first port is empty. Wait only for
3883 * ATA_TMOUT_PMP_SRST_WAIT.
3884 */
3885 if (check_ready) {
3886 unsigned long pmp_deadline;
3887
341c2c95
TH
3888 pmp_deadline = ata_deadline(jiffies,
3889 ATA_TMOUT_PMP_SRST_WAIT);
9dadd45b
TH
3890 if (time_after(pmp_deadline, deadline))
3891 pmp_deadline = deadline;
3892 ata_wait_ready(link, pmp_deadline, check_ready);
3893 }
3894 rc = -EAGAIN;
3895 goto out;
3896 }
3897
3898 rc = 0;
3899 if (check_ready)
3900 rc = ata_wait_ready(link, deadline, check_ready);
b6103f6d 3901 out:
0cbf0711
TH
3902 if (rc && rc != -EAGAIN) {
3903 /* online is set iff link is online && reset succeeded */
3904 if (online)
3905 *online = false;
9dadd45b
TH
3906 ata_link_printk(link, KERN_ERR,
3907 "COMRESET failed (errno=%d)\n", rc);
0cbf0711 3908 }
b6103f6d
TH
3909 DPRINTK("EXIT, rc=%d\n", rc);
3910 return rc;
3911}
3912
57c9efdf
TH
3913/**
3914 * sata_std_hardreset - COMRESET w/o waiting or classification
3915 * @link: link to reset
3916 * @class: resulting class of attached device
3917 * @deadline: deadline jiffies for the operation
3918 *
3919 * Standard SATA COMRESET w/o waiting or classification.
3920 *
3921 * LOCKING:
3922 * Kernel thread context (may sleep)
3923 *
3924 * RETURNS:
3925 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3926 */
3927int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3928 unsigned long deadline)
3929{
3930 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3931 bool online;
3932 int rc;
3933
3934 /* do hardreset */
3935 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
57c9efdf
TH
3936 return online ? -EAGAIN : rc;
3937}
3938
c2bd5804 3939/**
203c75b8 3940 * ata_std_postreset - standard postreset callback
cc0680a5 3941 * @link: the target ata_link
c2bd5804
TH
3942 * @classes: classes of attached devices
3943 *
3944 * This function is invoked after a successful reset. Note that
3945 * the device might have been reset more than once using
3946 * different reset methods before postreset is invoked.
c2bd5804 3947 *
c2bd5804
TH
3948 * LOCKING:
3949 * Kernel thread context (may sleep)
3950 */
203c75b8 3951void ata_std_postreset(struct ata_link *link, unsigned int *classes)
c2bd5804 3952{
f046519f
TH
3953 u32 serror;
3954
c2bd5804
TH
3955 DPRINTK("ENTER\n");
3956
f046519f
TH
3957 /* reset complete, clear SError */
3958 if (!sata_scr_read(link, SCR_ERROR, &serror))
3959 sata_scr_write(link, SCR_ERROR, serror);
3960
c2bd5804 3961 /* print link status */
936fd732 3962 sata_print_link_status(link);
c2bd5804 3963
c2bd5804
TH
3964 DPRINTK("EXIT\n");
3965}
3966
623a3128
TH
3967/**
3968 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3969 * @dev: device to compare against
3970 * @new_class: class of the new device
3971 * @new_id: IDENTIFY page of the new device
3972 *
3973 * Compare @new_class and @new_id against @dev and determine
3974 * whether @dev is the device indicated by @new_class and
3975 * @new_id.
3976 *
3977 * LOCKING:
3978 * None.
3979 *
3980 * RETURNS:
3981 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3982 */
3373efd8
TH
3983static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3984 const u16 *new_id)
623a3128
TH
3985{
3986 const u16 *old_id = dev->id;
a0cf733b
TH
3987 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3988 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3989
3990 if (dev->class != new_class) {
f15a1daf
TH
3991 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3992 dev->class, new_class);
623a3128
TH
3993 return 0;
3994 }
3995
a0cf733b
TH
3996 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3997 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3998 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3999 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
4000
4001 if (strcmp(model[0], model[1])) {
f15a1daf
TH
4002 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
4003 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
4004 return 0;
4005 }
4006
4007 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
4008 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
4009 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
4010 return 0;
4011 }
4012
623a3128
TH
4013 return 1;
4014}
4015
4016/**
fe30911b 4017 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 4018 * @dev: target ATA device
bff04647 4019 * @readid_flags: read ID flags
623a3128
TH
4020 *
4021 * Re-read IDENTIFY page and make sure @dev is still attached to
4022 * the port.
4023 *
4024 * LOCKING:
4025 * Kernel thread context (may sleep)
4026 *
4027 * RETURNS:
4028 * 0 on success, negative errno otherwise
4029 */
fe30911b 4030int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 4031{
5eb45c02 4032 unsigned int class = dev->class;
9af5c9c9 4033 u16 *id = (void *)dev->link->ap->sector_buf;
623a3128
TH
4034 int rc;
4035
fe635c7e 4036 /* read ID data */
bff04647 4037 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 4038 if (rc)
fe30911b 4039 return rc;
623a3128
TH
4040
4041 /* is the device still there? */
fe30911b
TH
4042 if (!ata_dev_same_device(dev, class, id))
4043 return -ENODEV;
623a3128 4044
fe635c7e 4045 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
4046 return 0;
4047}
4048
4049/**
4050 * ata_dev_revalidate - Revalidate ATA device
4051 * @dev: device to revalidate
422c9daa 4052 * @new_class: new class code
fe30911b
TH
4053 * @readid_flags: read ID flags
4054 *
4055 * Re-read IDENTIFY page, make sure @dev is still attached to the
4056 * port and reconfigure it according to the new IDENTIFY page.
4057 *
4058 * LOCKING:
4059 * Kernel thread context (may sleep)
4060 *
4061 * RETURNS:
4062 * 0 on success, negative errno otherwise
4063 */
422c9daa
TH
4064int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4065 unsigned int readid_flags)
fe30911b 4066{
6ddcd3b0 4067 u64 n_sectors = dev->n_sectors;
5920dadf 4068 u64 n_native_sectors = dev->n_native_sectors;
fe30911b
TH
4069 int rc;
4070
4071 if (!ata_dev_enabled(dev))
4072 return -ENODEV;
4073
422c9daa
TH
4074 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4075 if (ata_class_enabled(new_class) &&
f0d0613d
BP
4076 new_class != ATA_DEV_ATA &&
4077 new_class != ATA_DEV_ATAPI &&
4078 new_class != ATA_DEV_SEMB) {
422c9daa
TH
4079 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4080 dev->class, new_class);
4081 rc = -ENODEV;
4082 goto fail;
4083 }
4084
fe30911b
TH
4085 /* re-read ID */
4086 rc = ata_dev_reread_id(dev, readid_flags);
4087 if (rc)
4088 goto fail;
623a3128
TH
4089
4090 /* configure device according to the new ID */
efdaedc4 4091 rc = ata_dev_configure(dev);
6ddcd3b0
TH
4092 if (rc)
4093 goto fail;
4094
4095 /* verify n_sectors hasn't changed */
445d211b
TH
4096 if (dev->class != ATA_DEV_ATA || !n_sectors ||
4097 dev->n_sectors == n_sectors)
4098 return 0;
4099
4100 /* n_sectors has changed */
4101 ata_dev_printk(dev, KERN_WARNING, "n_sectors mismatch %llu != %llu\n",
4102 (unsigned long long)n_sectors,
4103 (unsigned long long)dev->n_sectors);
4104
4105 /*
4106 * Something could have caused HPA to be unlocked
4107 * involuntarily. If n_native_sectors hasn't changed and the
4108 * new size matches it, keep the device.
4109 */
4110 if (dev->n_native_sectors == n_native_sectors &&
4111 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4112 ata_dev_printk(dev, KERN_WARNING,
4113 "new n_sectors matches native, probably "
4114 "late HPA unlock, continuing\n");
4115 /* keep using the old n_sectors */
4116 dev->n_sectors = n_sectors;
4117 return 0;
6ddcd3b0
TH
4118 }
4119
445d211b
TH
4120 /*
4121 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4122 * unlocking HPA in those cases.
4123 *
4124 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4125 */
4126 if (dev->n_native_sectors == n_native_sectors &&
4127 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4128 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4129 ata_dev_printk(dev, KERN_WARNING,
4130 "old n_sectors matches native, probably "
4131 "late HPA lock, will try to unlock HPA\n");
4132 /* try unlocking HPA */
4133 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4134 rc = -EIO;
4135 } else
4136 rc = -ENODEV;
623a3128 4137
445d211b
TH
4138 /* restore original n_[native_]sectors and fail */
4139 dev->n_native_sectors = n_native_sectors;
4140 dev->n_sectors = n_sectors;
623a3128 4141 fail:
f15a1daf 4142 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
4143 return rc;
4144}
4145
6919a0a6
AC
4146struct ata_blacklist_entry {
4147 const char *model_num;
4148 const char *model_rev;
4149 unsigned long horkage;
4150};
4151
4152static const struct ata_blacklist_entry ata_device_blacklist [] = {
4153 /* Devices with DMA related problems under Linux */
4154 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4155 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4156 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4157 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4158 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4159 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4160 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4161 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4162 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4163 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4164 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4165 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4166 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4167 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4168 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4169 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4170 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4171 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4172 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4173 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4174 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4175 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4176 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4177 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4178 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4179 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4180 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4181 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
2dcb407e 4182 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
39f19886 4183 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3af9a77a 4184 /* Odd clown on sil3726/4726 PMPs */
50af2fa1 4185 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
6919a0a6 4186
18d6e9d5 4187 /* Weird ATAPI devices */
40a1d531 4188 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
6a87e42e 4189 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
18d6e9d5 4190
6919a0a6
AC
4191 /* Devices we expect to fail diagnostics */
4192
4193 /* Devices where NCQ should be avoided */
4194 /* NCQ is slow */
2dcb407e 4195 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
459ad688 4196 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
09125ea6
TH
4197 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4198 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30 4199 /* NCQ is broken */
539cc7c7 4200 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
0e3dbc01 4201 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
da6f0ec2 4202 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
e41bd3e8 4203 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
5ccfca97 4204 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
539cc7c7 4205
ac70a964 4206 /* Seagate NCQ + FLUSH CACHE firmware bug */
d10d491f 4207 { "ST31500341AS", "SD15", ATA_HORKAGE_NONCQ |
ac70a964 4208 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f 4209 { "ST31500341AS", "SD16", ATA_HORKAGE_NONCQ |
ac70a964 4210 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f 4211 { "ST31500341AS", "SD17", ATA_HORKAGE_NONCQ |
ac70a964 4212 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f 4213 { "ST31500341AS", "SD18", ATA_HORKAGE_NONCQ |
ac70a964 4214 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f 4215 { "ST31500341AS", "SD19", ATA_HORKAGE_NONCQ |
ac70a964 4216 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f
TH
4217
4218 { "ST31000333AS", "SD15", ATA_HORKAGE_NONCQ |
4219 ATA_HORKAGE_FIRMWARE_WARN },
4220 { "ST31000333AS", "SD16", ATA_HORKAGE_NONCQ |
4221 ATA_HORKAGE_FIRMWARE_WARN },
4222 { "ST31000333AS", "SD17", ATA_HORKAGE_NONCQ |
4223 ATA_HORKAGE_FIRMWARE_WARN },
4224 { "ST31000333AS", "SD18", ATA_HORKAGE_NONCQ |
4225 ATA_HORKAGE_FIRMWARE_WARN },
4226 { "ST31000333AS", "SD19", ATA_HORKAGE_NONCQ |
4227 ATA_HORKAGE_FIRMWARE_WARN },
4228
4229 { "ST3640623AS", "SD15", ATA_HORKAGE_NONCQ |
4230 ATA_HORKAGE_FIRMWARE_WARN },
4231 { "ST3640623AS", "SD16", ATA_HORKAGE_NONCQ |
4232 ATA_HORKAGE_FIRMWARE_WARN },
4233 { "ST3640623AS", "SD17", ATA_HORKAGE_NONCQ |
4234 ATA_HORKAGE_FIRMWARE_WARN },
4235 { "ST3640623AS", "SD18", ATA_HORKAGE_NONCQ |
4236 ATA_HORKAGE_FIRMWARE_WARN },
4237 { "ST3640623AS", "SD19", ATA_HORKAGE_NONCQ |
4238 ATA_HORKAGE_FIRMWARE_WARN },
4239
4240 { "ST3640323AS", "SD15", ATA_HORKAGE_NONCQ |
4241 ATA_HORKAGE_FIRMWARE_WARN },
4242 { "ST3640323AS", "SD16", ATA_HORKAGE_NONCQ |
4243 ATA_HORKAGE_FIRMWARE_WARN },
4244 { "ST3640323AS", "SD17", ATA_HORKAGE_NONCQ |
4245 ATA_HORKAGE_FIRMWARE_WARN },
4246 { "ST3640323AS", "SD18", ATA_HORKAGE_NONCQ |
4247 ATA_HORKAGE_FIRMWARE_WARN },
4248 { "ST3640323AS", "SD19", ATA_HORKAGE_NONCQ |
4249 ATA_HORKAGE_FIRMWARE_WARN },
4250
4251 { "ST3320813AS", "SD15", ATA_HORKAGE_NONCQ |
4252 ATA_HORKAGE_FIRMWARE_WARN },
4253 { "ST3320813AS", "SD16", ATA_HORKAGE_NONCQ |
4254 ATA_HORKAGE_FIRMWARE_WARN },
4255 { "ST3320813AS", "SD17", ATA_HORKAGE_NONCQ |
4256 ATA_HORKAGE_FIRMWARE_WARN },
4257 { "ST3320813AS", "SD18", ATA_HORKAGE_NONCQ |
4258 ATA_HORKAGE_FIRMWARE_WARN },
4259 { "ST3320813AS", "SD19", ATA_HORKAGE_NONCQ |
4260 ATA_HORKAGE_FIRMWARE_WARN },
4261
4262 { "ST3320613AS", "SD15", ATA_HORKAGE_NONCQ |
4263 ATA_HORKAGE_FIRMWARE_WARN },
4264 { "ST3320613AS", "SD16", ATA_HORKAGE_NONCQ |
4265 ATA_HORKAGE_FIRMWARE_WARN },
4266 { "ST3320613AS", "SD17", ATA_HORKAGE_NONCQ |
4267 ATA_HORKAGE_FIRMWARE_WARN },
4268 { "ST3320613AS", "SD18", ATA_HORKAGE_NONCQ |
4269 ATA_HORKAGE_FIRMWARE_WARN },
4270 { "ST3320613AS", "SD19", ATA_HORKAGE_NONCQ |
ac70a964
TH
4271 ATA_HORKAGE_FIRMWARE_WARN },
4272
36e337d0
RH
4273 /* Blacklist entries taken from Silicon Image 3124/3132
4274 Windows driver .inf file - also several Linux problem reports */
4275 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4276 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4277 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
6919a0a6 4278
68b0ddb2
TH
4279 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4280 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4281
16c55b03
TH
4282 /* devices which puke on READ_NATIVE_MAX */
4283 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4284 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4285 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4286 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
6919a0a6 4287
7831387b
TH
4288 /* this one allows HPA unlocking but fails IOs on the area */
4289 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4290
93328e11
AC
4291 /* Devices which report 1 sector over size HPA */
4292 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4293 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
b152fcd3 4294 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
93328e11 4295
6bbfd53d
AC
4296 /* Devices which get the IVB wrong */
4297 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
a79067e5
AC
4298 /* Maybe we should just blacklist TSSTcorp... */
4299 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB, },
4300 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB, },
6bbfd53d 4301 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
e9f33406
PM
4302 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
4303 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
4304 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
6bbfd53d 4305
9ce8e307
JA
4306 /* Devices that do not need bridging limits applied */
4307 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4308
9062712f
TH
4309 /* Devices which aren't very happy with higher link speeds */
4310 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4311
d0cb43b3
TH
4312 /*
4313 * Devices which choke on SETXFER. Applies only if both the
4314 * device and controller are SATA.
4315 */
4316 { "PIONEER DVD-RW DVRTD08", "1.00", ATA_HORKAGE_NOSETXFER },
4317
6919a0a6
AC
4318 /* End Marker */
4319 { }
1da177e4 4320};
2e9edbf8 4321
741b7763 4322static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
539cc7c7
JG
4323{
4324 const char *p;
4325 int len;
4326
4327 /*
4328 * check for trailing wildcard: *\0
4329 */
4330 p = strchr(patt, wildchar);
4331 if (p && ((*(p + 1)) == 0))
4332 len = p - patt;
317b50b8 4333 else {
539cc7c7 4334 len = strlen(name);
317b50b8
AP
4335 if (!len) {
4336 if (!*patt)
4337 return 0;
4338 return -1;
4339 }
4340 }
539cc7c7
JG
4341
4342 return strncmp(patt, name, len);
4343}
4344
75683fe7 4345static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 4346{
8bfa79fc
TH
4347 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4348 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 4349 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 4350
8bfa79fc
TH
4351 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4352 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 4353
6919a0a6 4354 while (ad->model_num) {
539cc7c7 4355 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
6919a0a6
AC
4356 if (ad->model_rev == NULL)
4357 return ad->horkage;
539cc7c7 4358 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
6919a0a6 4359 return ad->horkage;
f4b15fef 4360 }
6919a0a6 4361 ad++;
f4b15fef 4362 }
1da177e4
LT
4363 return 0;
4364}
4365
6919a0a6
AC
4366static int ata_dma_blacklisted(const struct ata_device *dev)
4367{
4368 /* We don't support polling DMA.
4369 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4370 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4371 */
9af5c9c9 4372 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
6919a0a6
AC
4373 (dev->flags & ATA_DFLAG_CDB_INTR))
4374 return 1;
75683fe7 4375 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
4376}
4377
6bbfd53d
AC
4378/**
4379 * ata_is_40wire - check drive side detection
4380 * @dev: device
4381 *
4382 * Perform drive side detection decoding, allowing for device vendors
4383 * who can't follow the documentation.
4384 */
4385
4386static int ata_is_40wire(struct ata_device *dev)
4387{
4388 if (dev->horkage & ATA_HORKAGE_IVB)
4389 return ata_drive_40wire_relaxed(dev->id);
4390 return ata_drive_40wire(dev->id);
4391}
4392
15a5551c
AC
4393/**
4394 * cable_is_40wire - 40/80/SATA decider
4395 * @ap: port to consider
4396 *
4397 * This function encapsulates the policy for speed management
4398 * in one place. At the moment we don't cache the result but
4399 * there is a good case for setting ap->cbl to the result when
4400 * we are called with unknown cables (and figuring out if it
4401 * impacts hotplug at all).
4402 *
4403 * Return 1 if the cable appears to be 40 wire.
4404 */
4405
4406static int cable_is_40wire(struct ata_port *ap)
4407{
4408 struct ata_link *link;
4409 struct ata_device *dev;
4410
4a9c7b33 4411 /* If the controller thinks we are 40 wire, we are. */
15a5551c
AC
4412 if (ap->cbl == ATA_CBL_PATA40)
4413 return 1;
4a9c7b33
TH
4414
4415 /* If the controller thinks we are 80 wire, we are. */
15a5551c
AC
4416 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4417 return 0;
4a9c7b33
TH
4418
4419 /* If the system is known to be 40 wire short cable (eg
4420 * laptop), then we allow 80 wire modes even if the drive
4421 * isn't sure.
4422 */
f792068e
AC
4423 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4424 return 0;
4a9c7b33
TH
4425
4426 /* If the controller doesn't know, we scan.
4427 *
4428 * Note: We look for all 40 wire detects at this point. Any
4429 * 80 wire detect is taken to be 80 wire cable because
4430 * - in many setups only the one drive (slave if present) will
4431 * give a valid detect
4432 * - if you have a non detect capable drive you don't want it
4433 * to colour the choice
4434 */
1eca4365
TH
4435 ata_for_each_link(link, ap, EDGE) {
4436 ata_for_each_dev(dev, link, ENABLED) {
4437 if (!ata_is_40wire(dev))
15a5551c
AC
4438 return 0;
4439 }
4440 }
4441 return 1;
4442}
4443
a6d5a51c
TH
4444/**
4445 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
4446 * @dev: Device to compute xfermask for
4447 *
acf356b1
TH
4448 * Compute supported xfermask of @dev and store it in
4449 * dev->*_mask. This function is responsible for applying all
4450 * known limits including host controller limits, device
4451 * blacklist, etc...
a6d5a51c
TH
4452 *
4453 * LOCKING:
4454 * None.
a6d5a51c 4455 */
3373efd8 4456static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 4457{
9af5c9c9
TH
4458 struct ata_link *link = dev->link;
4459 struct ata_port *ap = link->ap;
cca3974e 4460 struct ata_host *host = ap->host;
a6d5a51c 4461 unsigned long xfer_mask;
1da177e4 4462
37deecb5 4463 /* controller modes available */
565083e1
TH
4464 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4465 ap->mwdma_mask, ap->udma_mask);
4466
8343f889 4467 /* drive modes available */
37deecb5
TH
4468 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4469 dev->mwdma_mask, dev->udma_mask);
4470 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 4471
b352e57d
AC
4472 /*
4473 * CFA Advanced TrueIDE timings are not allowed on a shared
4474 * cable
4475 */
4476 if (ata_dev_pair(dev)) {
4477 /* No PIO5 or PIO6 */
4478 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4479 /* No MWDMA3 or MWDMA 4 */
4480 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4481 }
4482
37deecb5
TH
4483 if (ata_dma_blacklisted(dev)) {
4484 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
4485 ata_dev_printk(dev, KERN_WARNING,
4486 "device is on DMA blacklist, disabling DMA\n");
37deecb5 4487 }
a6d5a51c 4488
14d66ab7 4489 if ((host->flags & ATA_HOST_SIMPLEX) &&
2dcb407e 4490 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
4491 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4492 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4493 "other device, disabling DMA\n");
5444a6f4 4494 }
565083e1 4495
e424675f
JG
4496 if (ap->flags & ATA_FLAG_NO_IORDY)
4497 xfer_mask &= ata_pio_mask_no_iordy(dev);
4498
5444a6f4 4499 if (ap->ops->mode_filter)
a76b62ca 4500 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 4501
8343f889
RH
4502 /* Apply cable rule here. Don't apply it early because when
4503 * we handle hot plug the cable type can itself change.
4504 * Check this last so that we know if the transfer rate was
4505 * solely limited by the cable.
4506 * Unknown or 80 wire cables reported host side are checked
4507 * drive side as well. Cases where we know a 40wire cable
4508 * is used safely for 80 are not checked here.
4509 */
4510 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4511 /* UDMA/44 or higher would be available */
15a5551c 4512 if (cable_is_40wire(ap)) {
2dcb407e 4513 ata_dev_printk(dev, KERN_WARNING,
8343f889
RH
4514 "limited to UDMA/33 due to 40-wire cable\n");
4515 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4516 }
4517
565083e1
TH
4518 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4519 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
4520}
4521
1da177e4
LT
4522/**
4523 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
4524 * @dev: Device to which command will be sent
4525 *
780a87f7
JG
4526 * Issue SET FEATURES - XFER MODE command to device @dev
4527 * on port @ap.
4528 *
1da177e4 4529 * LOCKING:
0cba632b 4530 * PCI/etc. bus probe sem.
83206a29
TH
4531 *
4532 * RETURNS:
4533 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
4534 */
4535
3373efd8 4536static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 4537{
a0123703 4538 struct ata_taskfile tf;
83206a29 4539 unsigned int err_mask;
1da177e4
LT
4540
4541 /* set up set-features taskfile */
4542 DPRINTK("set features - xfer mode\n");
4543
464cf177
TH
4544 /* Some controllers and ATAPI devices show flaky interrupt
4545 * behavior after setting xfer mode. Use polling instead.
4546 */
3373efd8 4547 ata_tf_init(dev, &tf);
a0123703
TH
4548 tf.command = ATA_CMD_SET_FEATURES;
4549 tf.feature = SETFEATURES_XFER;
464cf177 4550 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703 4551 tf.protocol = ATA_PROT_NODATA;
b9f8ab2d 4552 /* If we are using IORDY we must send the mode setting command */
11b7becc
JG
4553 if (ata_pio_need_iordy(dev))
4554 tf.nsect = dev->xfer_mode;
b9f8ab2d
AC
4555 /* If the device has IORDY and the controller does not - turn it off */
4556 else if (ata_id_has_iordy(dev->id))
11b7becc 4557 tf.nsect = 0x01;
b9f8ab2d
AC
4558 else /* In the ancient relic department - skip all of this */
4559 return 0;
1da177e4 4560
2b789108 4561 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
9f45cbd3
KCA
4562
4563 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4564 return err_mask;
4565}
9f45cbd3 4566/**
218f3d30 4567 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
9f45cbd3
KCA
4568 * @dev: Device to which command will be sent
4569 * @enable: Whether to enable or disable the feature
218f3d30 4570 * @feature: The sector count represents the feature to set
9f45cbd3
KCA
4571 *
4572 * Issue SET FEATURES - SATA FEATURES command to device @dev
218f3d30 4573 * on port @ap with sector count
9f45cbd3
KCA
4574 *
4575 * LOCKING:
4576 * PCI/etc. bus probe sem.
4577 *
4578 * RETURNS:
4579 * 0 on success, AC_ERR_* mask otherwise.
4580 */
218f3d30
JG
4581static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4582 u8 feature)
9f45cbd3
KCA
4583{
4584 struct ata_taskfile tf;
4585 unsigned int err_mask;
4586
4587 /* set up set-features taskfile */
4588 DPRINTK("set features - SATA features\n");
4589
4590 ata_tf_init(dev, &tf);
4591 tf.command = ATA_CMD_SET_FEATURES;
4592 tf.feature = enable;
4593 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4594 tf.protocol = ATA_PROT_NODATA;
218f3d30 4595 tf.nsect = feature;
9f45cbd3 4596
2b789108 4597 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1da177e4 4598
83206a29
TH
4599 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4600 return err_mask;
1da177e4
LT
4601}
4602
8bf62ece
AL
4603/**
4604 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 4605 * @dev: Device to which command will be sent
e2a7f77a
RD
4606 * @heads: Number of heads (taskfile parameter)
4607 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
4608 *
4609 * LOCKING:
6aff8f1f
TH
4610 * Kernel thread context (may sleep)
4611 *
4612 * RETURNS:
4613 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 4614 */
3373efd8
TH
4615static unsigned int ata_dev_init_params(struct ata_device *dev,
4616 u16 heads, u16 sectors)
8bf62ece 4617{
a0123703 4618 struct ata_taskfile tf;
6aff8f1f 4619 unsigned int err_mask;
8bf62ece
AL
4620
4621 /* Number of sectors per track 1-255. Number of heads 1-16 */
4622 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 4623 return AC_ERR_INVALID;
8bf62ece
AL
4624
4625 /* set up init dev params taskfile */
4626 DPRINTK("init dev params \n");
4627
3373efd8 4628 ata_tf_init(dev, &tf);
a0123703
TH
4629 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4630 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4631 tf.protocol = ATA_PROT_NODATA;
4632 tf.nsect = sectors;
4633 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 4634
2b789108 4635 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
18b2466c
AC
4636 /* A clean abort indicates an original or just out of spec drive
4637 and we should continue as we issue the setup based on the
4638 drive reported working geometry */
4639 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4640 err_mask = 0;
8bf62ece 4641
6aff8f1f
TH
4642 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4643 return err_mask;
8bf62ece
AL
4644}
4645
1da177e4 4646/**
0cba632b
JG
4647 * ata_sg_clean - Unmap DMA memory associated with command
4648 * @qc: Command containing DMA memory to be released
4649 *
4650 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
4651 *
4652 * LOCKING:
cca3974e 4653 * spin_lock_irqsave(host lock)
1da177e4 4654 */
70e6ad0c 4655void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
4656{
4657 struct ata_port *ap = qc->ap;
ff2aeb1e 4658 struct scatterlist *sg = qc->sg;
1da177e4
LT
4659 int dir = qc->dma_dir;
4660
efcb3cf7 4661 WARN_ON_ONCE(sg == NULL);
1da177e4 4662
dde20207 4663 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 4664
dde20207 4665 if (qc->n_elem)
5825627c 4666 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
1da177e4
LT
4667
4668 qc->flags &= ~ATA_QCFLAG_DMAMAP;
ff2aeb1e 4669 qc->sg = NULL;
1da177e4
LT
4670}
4671
1da177e4 4672/**
5895ef9a 4673 * atapi_check_dma - Check whether ATAPI DMA can be supported
1da177e4
LT
4674 * @qc: Metadata associated with taskfile to check
4675 *
780a87f7
JG
4676 * Allow low-level driver to filter ATA PACKET commands, returning
4677 * a status indicating whether or not it is OK to use DMA for the
4678 * supplied PACKET command.
4679 *
1da177e4 4680 * LOCKING:
624d5c51
TH
4681 * spin_lock_irqsave(host lock)
4682 *
4683 * RETURNS: 0 when ATAPI DMA can be used
4684 * nonzero otherwise
4685 */
5895ef9a 4686int atapi_check_dma(struct ata_queued_cmd *qc)
624d5c51
TH
4687{
4688 struct ata_port *ap = qc->ap;
71601958 4689
624d5c51
TH
4690 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4691 * few ATAPI devices choke on such DMA requests.
4692 */
6a87e42e
TH
4693 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4694 unlikely(qc->nbytes & 15))
624d5c51 4695 return 1;
e2cec771 4696
624d5c51
TH
4697 if (ap->ops->check_atapi_dma)
4698 return ap->ops->check_atapi_dma(qc);
e2cec771 4699
624d5c51
TH
4700 return 0;
4701}
1da177e4 4702
624d5c51
TH
4703/**
4704 * ata_std_qc_defer - Check whether a qc needs to be deferred
4705 * @qc: ATA command in question
4706 *
4707 * Non-NCQ commands cannot run with any other command, NCQ or
4708 * not. As upper layer only knows the queue depth, we are
4709 * responsible for maintaining exclusion. This function checks
4710 * whether a new command @qc can be issued.
4711 *
4712 * LOCKING:
4713 * spin_lock_irqsave(host lock)
4714 *
4715 * RETURNS:
4716 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4717 */
4718int ata_std_qc_defer(struct ata_queued_cmd *qc)
4719{
4720 struct ata_link *link = qc->dev->link;
e2cec771 4721
624d5c51
TH
4722 if (qc->tf.protocol == ATA_PROT_NCQ) {
4723 if (!ata_tag_valid(link->active_tag))
4724 return 0;
4725 } else {
4726 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4727 return 0;
4728 }
e2cec771 4729
624d5c51
TH
4730 return ATA_DEFER_LINK;
4731}
6912ccd5 4732
624d5c51 4733void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
1da177e4 4734
624d5c51
TH
4735/**
4736 * ata_sg_init - Associate command with scatter-gather table.
4737 * @qc: Command to be associated
4738 * @sg: Scatter-gather table.
4739 * @n_elem: Number of elements in s/g table.
4740 *
4741 * Initialize the data-related elements of queued_cmd @qc
4742 * to point to a scatter-gather table @sg, containing @n_elem
4743 * elements.
4744 *
4745 * LOCKING:
4746 * spin_lock_irqsave(host lock)
4747 */
4748void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4749 unsigned int n_elem)
4750{
4751 qc->sg = sg;
4752 qc->n_elem = n_elem;
4753 qc->cursg = qc->sg;
4754}
bb5cb290 4755
624d5c51
TH
4756/**
4757 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4758 * @qc: Command with scatter-gather table to be mapped.
4759 *
4760 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4761 *
4762 * LOCKING:
4763 * spin_lock_irqsave(host lock)
4764 *
4765 * RETURNS:
4766 * Zero on success, negative on error.
4767 *
4768 */
4769static int ata_sg_setup(struct ata_queued_cmd *qc)
4770{
4771 struct ata_port *ap = qc->ap;
4772 unsigned int n_elem;
1da177e4 4773
624d5c51 4774 VPRINTK("ENTER, ata%u\n", ap->print_id);
e2cec771 4775
624d5c51
TH
4776 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4777 if (n_elem < 1)
4778 return -1;
bb5cb290 4779
624d5c51 4780 DPRINTK("%d sg elements mapped\n", n_elem);
5825627c 4781 qc->orig_n_elem = qc->n_elem;
624d5c51
TH
4782 qc->n_elem = n_elem;
4783 qc->flags |= ATA_QCFLAG_DMAMAP;
1da177e4 4784
624d5c51 4785 return 0;
1da177e4
LT
4786}
4787
624d5c51
TH
4788/**
4789 * swap_buf_le16 - swap halves of 16-bit words in place
4790 * @buf: Buffer to swap
4791 * @buf_words: Number of 16-bit words in buffer.
4792 *
4793 * Swap halves of 16-bit words if needed to convert from
4794 * little-endian byte order to native cpu byte order, or
4795 * vice-versa.
4796 *
4797 * LOCKING:
4798 * Inherited from caller.
4799 */
4800void swap_buf_le16(u16 *buf, unsigned int buf_words)
8061f5f0 4801{
624d5c51
TH
4802#ifdef __BIG_ENDIAN
4803 unsigned int i;
8061f5f0 4804
624d5c51
TH
4805 for (i = 0; i < buf_words; i++)
4806 buf[i] = le16_to_cpu(buf[i]);
4807#endif /* __BIG_ENDIAN */
8061f5f0
TH
4808}
4809
8a8bc223
TH
4810/**
4811 * ata_qc_new - Request an available ATA command, for queueing
5eb66fe0 4812 * @ap: target port
8a8bc223
TH
4813 *
4814 * LOCKING:
4815 * None.
4816 */
4817
4818static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4819{
4820 struct ata_queued_cmd *qc = NULL;
4821 unsigned int i;
4822
4823 /* no command while frozen */
4824 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4825 return NULL;
4826
4827 /* the last tag is reserved for internal command. */
4828 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4829 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4830 qc = __ata_qc_from_tag(ap, i);
4831 break;
4832 }
4833
4834 if (qc)
4835 qc->tag = i;
4836
4837 return qc;
4838}
4839
1da177e4
LT
4840/**
4841 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
4842 * @dev: Device from whom we request an available command structure
4843 *
4844 * LOCKING:
0cba632b 4845 * None.
1da177e4
LT
4846 */
4847
8a8bc223 4848struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 4849{
9af5c9c9 4850 struct ata_port *ap = dev->link->ap;
1da177e4
LT
4851 struct ata_queued_cmd *qc;
4852
8a8bc223 4853 qc = ata_qc_new(ap);
1da177e4 4854 if (qc) {
1da177e4
LT
4855 qc->scsicmd = NULL;
4856 qc->ap = ap;
4857 qc->dev = dev;
1da177e4 4858
2c13b7ce 4859 ata_qc_reinit(qc);
1da177e4
LT
4860 }
4861
4862 return qc;
4863}
4864
8a8bc223
TH
4865/**
4866 * ata_qc_free - free unused ata_queued_cmd
4867 * @qc: Command to complete
4868 *
4869 * Designed to free unused ata_queued_cmd object
4870 * in case something prevents using it.
4871 *
4872 * LOCKING:
4873 * spin_lock_irqsave(host lock)
4874 */
4875void ata_qc_free(struct ata_queued_cmd *qc)
4876{
a1104016 4877 struct ata_port *ap;
8a8bc223
TH
4878 unsigned int tag;
4879
efcb3cf7 4880 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
a1104016 4881 ap = qc->ap;
8a8bc223
TH
4882
4883 qc->flags = 0;
4884 tag = qc->tag;
4885 if (likely(ata_tag_valid(tag))) {
4886 qc->tag = ATA_TAG_POISON;
4887 clear_bit(tag, &ap->qc_allocated);
4888 }
4889}
4890
76014427 4891void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4892{
a1104016
JL
4893 struct ata_port *ap;
4894 struct ata_link *link;
dedaf2b0 4895
efcb3cf7
TH
4896 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4897 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
a1104016
JL
4898 ap = qc->ap;
4899 link = qc->dev->link;
1da177e4
LT
4900
4901 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4902 ata_sg_clean(qc);
4903
7401abf2 4904 /* command should be marked inactive atomically with qc completion */
da917d69 4905 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 4906 link->sactive &= ~(1 << qc->tag);
da917d69
TH
4907 if (!link->sactive)
4908 ap->nr_active_links--;
4909 } else {
9af5c9c9 4910 link->active_tag = ATA_TAG_POISON;
da917d69
TH
4911 ap->nr_active_links--;
4912 }
4913
4914 /* clear exclusive status */
4915 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4916 ap->excl_link == link))
4917 ap->excl_link = NULL;
7401abf2 4918
3f3791d3
AL
4919 /* atapi: mark qc as inactive to prevent the interrupt handler
4920 * from completing the command twice later, before the error handler
4921 * is called. (when rc != 0 and atapi request sense is needed)
4922 */
4923 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 4924 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 4925
1da177e4 4926 /* call completion callback */
77853bf2 4927 qc->complete_fn(qc);
1da177e4
LT
4928}
4929
39599a53
TH
4930static void fill_result_tf(struct ata_queued_cmd *qc)
4931{
4932 struct ata_port *ap = qc->ap;
4933
39599a53 4934 qc->result_tf.flags = qc->tf.flags;
22183bf5 4935 ap->ops->qc_fill_rtf(qc);
39599a53
TH
4936}
4937
00115e0f
TH
4938static void ata_verify_xfer(struct ata_queued_cmd *qc)
4939{
4940 struct ata_device *dev = qc->dev;
4941
4942 if (ata_tag_internal(qc->tag))
4943 return;
4944
4945 if (ata_is_nodata(qc->tf.protocol))
4946 return;
4947
4948 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4949 return;
4950
4951 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4952}
4953
f686bcb8
TH
4954/**
4955 * ata_qc_complete - Complete an active ATA command
4956 * @qc: Command to complete
f686bcb8
TH
4957 *
4958 * Indicate to the mid and upper layers that an ATA
4959 * command has completed, with either an ok or not-ok status.
4960 *
4961 * LOCKING:
cca3974e 4962 * spin_lock_irqsave(host lock)
f686bcb8
TH
4963 */
4964void ata_qc_complete(struct ata_queued_cmd *qc)
4965{
4966 struct ata_port *ap = qc->ap;
4967
4968 /* XXX: New EH and old EH use different mechanisms to
4969 * synchronize EH with regular execution path.
4970 *
4971 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4972 * Normal execution path is responsible for not accessing a
4973 * failed qc. libata core enforces the rule by returning NULL
4974 * from ata_qc_from_tag() for failed qcs.
4975 *
4976 * Old EH depends on ata_qc_complete() nullifying completion
4977 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4978 * not synchronize with interrupt handler. Only PIO task is
4979 * taken care of.
4980 */
4981 if (ap->ops->error_handler) {
4dbfa39b
TH
4982 struct ata_device *dev = qc->dev;
4983 struct ata_eh_info *ehi = &dev->link->eh_info;
4984
f686bcb8
TH
4985 if (unlikely(qc->err_mask))
4986 qc->flags |= ATA_QCFLAG_FAILED;
4987
4988 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
f4b31db9
TH
4989 /* always fill result TF for failed qc */
4990 fill_result_tf(qc);
4991
4992 if (!ata_tag_internal(qc->tag))
f686bcb8 4993 ata_qc_schedule_eh(qc);
f4b31db9
TH
4994 else
4995 __ata_qc_complete(qc);
4996 return;
f686bcb8
TH
4997 }
4998
4dc738ed
TH
4999 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
5000
f686bcb8
TH
5001 /* read result TF if requested */
5002 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5003 fill_result_tf(qc);
f686bcb8 5004
4dbfa39b
TH
5005 /* Some commands need post-processing after successful
5006 * completion.
5007 */
5008 switch (qc->tf.command) {
5009 case ATA_CMD_SET_FEATURES:
5010 if (qc->tf.feature != SETFEATURES_WC_ON &&
5011 qc->tf.feature != SETFEATURES_WC_OFF)
5012 break;
5013 /* fall through */
5014 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5015 case ATA_CMD_SET_MULTI: /* multi_count changed */
5016 /* revalidate device */
5017 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5018 ata_port_schedule_eh(ap);
5019 break;
054a5fba
TH
5020
5021 case ATA_CMD_SLEEP:
5022 dev->flags |= ATA_DFLAG_SLEEPING;
5023 break;
4dbfa39b
TH
5024 }
5025
00115e0f
TH
5026 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5027 ata_verify_xfer(qc);
5028
f686bcb8
TH
5029 __ata_qc_complete(qc);
5030 } else {
5031 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5032 return;
5033
5034 /* read result TF if failed or requested */
5035 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5036 fill_result_tf(qc);
f686bcb8
TH
5037
5038 __ata_qc_complete(qc);
5039 }
5040}
5041
dedaf2b0
TH
5042/**
5043 * ata_qc_complete_multiple - Complete multiple qcs successfully
5044 * @ap: port in question
5045 * @qc_active: new qc_active mask
dedaf2b0
TH
5046 *
5047 * Complete in-flight commands. This functions is meant to be
5048 * called from low-level driver's interrupt routine to complete
5049 * requests normally. ap->qc_active and @qc_active is compared
5050 * and commands are completed accordingly.
5051 *
5052 * LOCKING:
cca3974e 5053 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5054 *
5055 * RETURNS:
5056 * Number of completed commands on success, -errno otherwise.
5057 */
79f97dad 5058int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
dedaf2b0
TH
5059{
5060 int nr_done = 0;
5061 u32 done_mask;
dedaf2b0
TH
5062
5063 done_mask = ap->qc_active ^ qc_active;
5064
5065 if (unlikely(done_mask & qc_active)) {
5066 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5067 "(%08x->%08x)\n", ap->qc_active, qc_active);
5068 return -EINVAL;
5069 }
5070
43768180 5071 while (done_mask) {
dedaf2b0 5072 struct ata_queued_cmd *qc;
43768180 5073 unsigned int tag = __ffs(done_mask);
dedaf2b0 5074
43768180
JA
5075 qc = ata_qc_from_tag(ap, tag);
5076 if (qc) {
dedaf2b0
TH
5077 ata_qc_complete(qc);
5078 nr_done++;
5079 }
43768180 5080 done_mask &= ~(1 << tag);
dedaf2b0
TH
5081 }
5082
5083 return nr_done;
5084}
5085
1da177e4
LT
5086/**
5087 * ata_qc_issue - issue taskfile to device
5088 * @qc: command to issue to device
5089 *
5090 * Prepare an ATA command to submission to device.
5091 * This includes mapping the data into a DMA-able
5092 * area, filling in the S/G table, and finally
5093 * writing the taskfile to hardware, starting the command.
5094 *
5095 * LOCKING:
cca3974e 5096 * spin_lock_irqsave(host lock)
1da177e4 5097 */
8e0e694a 5098void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5099{
5100 struct ata_port *ap = qc->ap;
9af5c9c9 5101 struct ata_link *link = qc->dev->link;
405e66b3 5102 u8 prot = qc->tf.protocol;
1da177e4 5103
dedaf2b0
TH
5104 /* Make sure only one non-NCQ command is outstanding. The
5105 * check is skipped for old EH because it reuses active qc to
5106 * request ATAPI sense.
5107 */
efcb3cf7 5108 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
dedaf2b0 5109
1973a023 5110 if (ata_is_ncq(prot)) {
efcb3cf7 5111 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
da917d69
TH
5112
5113 if (!link->sactive)
5114 ap->nr_active_links++;
9af5c9c9 5115 link->sactive |= 1 << qc->tag;
dedaf2b0 5116 } else {
efcb3cf7 5117 WARN_ON_ONCE(link->sactive);
da917d69
TH
5118
5119 ap->nr_active_links++;
9af5c9c9 5120 link->active_tag = qc->tag;
dedaf2b0
TH
5121 }
5122
e4a70e76 5123 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5124 ap->qc_active |= 1 << qc->tag;
e4a70e76 5125
f92a2636
TH
5126 /* We guarantee to LLDs that they will have at least one
5127 * non-zero sg if the command is a data command.
5128 */
ff2aeb1e 5129 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
f92a2636 5130
405e66b3 5131 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
f92a2636 5132 (ap->flags & ATA_FLAG_PIO_DMA)))
001102d7
TH
5133 if (ata_sg_setup(qc))
5134 goto sg_err;
1da177e4 5135
cf480626 5136 /* if device is sleeping, schedule reset and abort the link */
054a5fba 5137 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
cf480626 5138 link->eh_info.action |= ATA_EH_RESET;
054a5fba
TH
5139 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5140 ata_link_abort(link);
5141 return;
5142 }
5143
1da177e4
LT
5144 ap->ops->qc_prep(qc);
5145
8e0e694a
TH
5146 qc->err_mask |= ap->ops->qc_issue(qc);
5147 if (unlikely(qc->err_mask))
5148 goto err;
5149 return;
1da177e4 5150
8e436af9 5151sg_err:
8e0e694a
TH
5152 qc->err_mask |= AC_ERR_SYSTEM;
5153err:
5154 ata_qc_complete(qc);
1da177e4
LT
5155}
5156
34bf2170
TH
5157/**
5158 * sata_scr_valid - test whether SCRs are accessible
936fd732 5159 * @link: ATA link to test SCR accessibility for
34bf2170 5160 *
936fd732 5161 * Test whether SCRs are accessible for @link.
34bf2170
TH
5162 *
5163 * LOCKING:
5164 * None.
5165 *
5166 * RETURNS:
5167 * 1 if SCRs are accessible, 0 otherwise.
5168 */
936fd732 5169int sata_scr_valid(struct ata_link *link)
34bf2170 5170{
936fd732
TH
5171 struct ata_port *ap = link->ap;
5172
a16abc0b 5173 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
5174}
5175
5176/**
5177 * sata_scr_read - read SCR register of the specified port
936fd732 5178 * @link: ATA link to read SCR for
34bf2170
TH
5179 * @reg: SCR to read
5180 * @val: Place to store read value
5181 *
936fd732 5182 * Read SCR register @reg of @link into *@val. This function is
633273a3
TH
5183 * guaranteed to succeed if @link is ap->link, the cable type of
5184 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
5185 *
5186 * LOCKING:
633273a3 5187 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5188 *
5189 * RETURNS:
5190 * 0 on success, negative errno on failure.
5191 */
936fd732 5192int sata_scr_read(struct ata_link *link, int reg, u32 *val)
34bf2170 5193{
633273a3 5194 if (ata_is_host_link(link)) {
633273a3 5195 if (sata_scr_valid(link))
82ef04fb 5196 return link->ap->ops->scr_read(link, reg, val);
633273a3
TH
5197 return -EOPNOTSUPP;
5198 }
5199
5200 return sata_pmp_scr_read(link, reg, val);
34bf2170
TH
5201}
5202
5203/**
5204 * sata_scr_write - write SCR register of the specified port
936fd732 5205 * @link: ATA link to write SCR for
34bf2170
TH
5206 * @reg: SCR to write
5207 * @val: value to write
5208 *
936fd732 5209 * Write @val to SCR register @reg of @link. This function is
633273a3
TH
5210 * guaranteed to succeed if @link is ap->link, the cable type of
5211 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
5212 *
5213 * LOCKING:
633273a3 5214 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5215 *
5216 * RETURNS:
5217 * 0 on success, negative errno on failure.
5218 */
936fd732 5219int sata_scr_write(struct ata_link *link, int reg, u32 val)
34bf2170 5220{
633273a3 5221 if (ata_is_host_link(link)) {
633273a3 5222 if (sata_scr_valid(link))
82ef04fb 5223 return link->ap->ops->scr_write(link, reg, val);
633273a3
TH
5224 return -EOPNOTSUPP;
5225 }
936fd732 5226
633273a3 5227 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
5228}
5229
5230/**
5231 * sata_scr_write_flush - write SCR register of the specified port and flush
936fd732 5232 * @link: ATA link to write SCR for
34bf2170
TH
5233 * @reg: SCR to write
5234 * @val: value to write
5235 *
5236 * This function is identical to sata_scr_write() except that this
5237 * function performs flush after writing to the register.
5238 *
5239 * LOCKING:
633273a3 5240 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5241 *
5242 * RETURNS:
5243 * 0 on success, negative errno on failure.
5244 */
936fd732 5245int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
34bf2170 5246{
633273a3 5247 if (ata_is_host_link(link)) {
633273a3 5248 int rc;
da3dbb17 5249
633273a3 5250 if (sata_scr_valid(link)) {
82ef04fb 5251 rc = link->ap->ops->scr_write(link, reg, val);
633273a3 5252 if (rc == 0)
82ef04fb 5253 rc = link->ap->ops->scr_read(link, reg, &val);
633273a3
TH
5254 return rc;
5255 }
5256 return -EOPNOTSUPP;
34bf2170 5257 }
633273a3
TH
5258
5259 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
5260}
5261
5262/**
b1c72916 5263 * ata_phys_link_online - test whether the given link is online
936fd732 5264 * @link: ATA link to test
34bf2170 5265 *
936fd732
TH
5266 * Test whether @link is online. Note that this function returns
5267 * 0 if online status of @link cannot be obtained, so
5268 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5269 *
5270 * LOCKING:
5271 * None.
5272 *
5273 * RETURNS:
b5b3fa38 5274 * True if the port online status is available and online.
34bf2170 5275 */
b1c72916 5276bool ata_phys_link_online(struct ata_link *link)
34bf2170
TH
5277{
5278 u32 sstatus;
5279
936fd732 5280 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
9913ff8a 5281 ata_sstatus_online(sstatus))
b5b3fa38
TH
5282 return true;
5283 return false;
34bf2170
TH
5284}
5285
5286/**
b1c72916 5287 * ata_phys_link_offline - test whether the given link is offline
936fd732 5288 * @link: ATA link to test
34bf2170 5289 *
936fd732
TH
5290 * Test whether @link is offline. Note that this function
5291 * returns 0 if offline status of @link cannot be obtained, so
5292 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5293 *
5294 * LOCKING:
5295 * None.
5296 *
5297 * RETURNS:
b5b3fa38 5298 * True if the port offline status is available and offline.
34bf2170 5299 */
b1c72916 5300bool ata_phys_link_offline(struct ata_link *link)
34bf2170
TH
5301{
5302 u32 sstatus;
5303
936fd732 5304 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
9913ff8a 5305 !ata_sstatus_online(sstatus))
b5b3fa38
TH
5306 return true;
5307 return false;
34bf2170 5308}
0baab86b 5309
b1c72916
TH
5310/**
5311 * ata_link_online - test whether the given link is online
5312 * @link: ATA link to test
5313 *
5314 * Test whether @link is online. This is identical to
5315 * ata_phys_link_online() when there's no slave link. When
5316 * there's a slave link, this function should only be called on
5317 * the master link and will return true if any of M/S links is
5318 * online.
5319 *
5320 * LOCKING:
5321 * None.
5322 *
5323 * RETURNS:
5324 * True if the port online status is available and online.
5325 */
5326bool ata_link_online(struct ata_link *link)
5327{
5328 struct ata_link *slave = link->ap->slave_link;
5329
5330 WARN_ON(link == slave); /* shouldn't be called on slave link */
5331
5332 return ata_phys_link_online(link) ||
5333 (slave && ata_phys_link_online(slave));
5334}
5335
5336/**
5337 * ata_link_offline - test whether the given link is offline
5338 * @link: ATA link to test
5339 *
5340 * Test whether @link is offline. This is identical to
5341 * ata_phys_link_offline() when there's no slave link. When
5342 * there's a slave link, this function should only be called on
5343 * the master link and will return true if both M/S links are
5344 * offline.
5345 *
5346 * LOCKING:
5347 * None.
5348 *
5349 * RETURNS:
5350 * True if the port offline status is available and offline.
5351 */
5352bool ata_link_offline(struct ata_link *link)
5353{
5354 struct ata_link *slave = link->ap->slave_link;
5355
5356 WARN_ON(link == slave); /* shouldn't be called on slave link */
5357
5358 return ata_phys_link_offline(link) &&
5359 (!slave || ata_phys_link_offline(slave));
5360}
5361
6ffa01d8 5362#ifdef CONFIG_PM
cca3974e
JG
5363static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5364 unsigned int action, unsigned int ehi_flags,
5365 int wait)
500530f6
TH
5366{
5367 unsigned long flags;
5368 int i, rc;
5369
cca3974e
JG
5370 for (i = 0; i < host->n_ports; i++) {
5371 struct ata_port *ap = host->ports[i];
e3667ebf 5372 struct ata_link *link;
500530f6
TH
5373
5374 /* Previous resume operation might still be in
5375 * progress. Wait for PM_PENDING to clear.
5376 */
5377 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5378 ata_port_wait_eh(ap);
5379 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5380 }
5381
5382 /* request PM ops to EH */
5383 spin_lock_irqsave(ap->lock, flags);
5384
5385 ap->pm_mesg = mesg;
5386 if (wait) {
5387 rc = 0;
5388 ap->pm_result = &rc;
5389 }
5390
5391 ap->pflags |= ATA_PFLAG_PM_PENDING;
1eca4365 5392 ata_for_each_link(link, ap, HOST_FIRST) {
e3667ebf
TH
5393 link->eh_info.action |= action;
5394 link->eh_info.flags |= ehi_flags;
5395 }
500530f6
TH
5396
5397 ata_port_schedule_eh(ap);
5398
5399 spin_unlock_irqrestore(ap->lock, flags);
5400
5401 /* wait and check result */
5402 if (wait) {
5403 ata_port_wait_eh(ap);
5404 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5405 if (rc)
5406 return rc;
5407 }
5408 }
5409
5410 return 0;
5411}
5412
5413/**
cca3974e
JG
5414 * ata_host_suspend - suspend host
5415 * @host: host to suspend
500530f6
TH
5416 * @mesg: PM message
5417 *
cca3974e 5418 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
5419 * function requests EH to perform PM operations and waits for EH
5420 * to finish.
5421 *
5422 * LOCKING:
5423 * Kernel thread context (may sleep).
5424 *
5425 * RETURNS:
5426 * 0 on success, -errno on failure.
5427 */
cca3974e 5428int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 5429{
9666f400 5430 int rc;
500530f6 5431
ca77329f
KCA
5432 /*
5433 * disable link pm on all ports before requesting
5434 * any pm activity
5435 */
5436 ata_lpm_enable(host);
5437
cca3974e 5438 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
72ad6ec4
JG
5439 if (rc == 0)
5440 host->dev->power.power_state = mesg;
500530f6
TH
5441 return rc;
5442}
5443
5444/**
cca3974e
JG
5445 * ata_host_resume - resume host
5446 * @host: host to resume
500530f6 5447 *
cca3974e 5448 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
5449 * function requests EH to perform PM operations and returns.
5450 * Note that all resume operations are performed parallely.
5451 *
5452 * LOCKING:
5453 * Kernel thread context (may sleep).
5454 */
cca3974e 5455void ata_host_resume(struct ata_host *host)
500530f6 5456{
cf480626 5457 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
cca3974e 5458 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
72ad6ec4 5459 host->dev->power.power_state = PMSG_ON;
ca77329f
KCA
5460
5461 /* reenable link pm */
5462 ata_lpm_disable(host);
500530f6 5463}
6ffa01d8 5464#endif
500530f6 5465
3ef3b43d
TH
5466/**
5467 * ata_dev_init - Initialize an ata_device structure
5468 * @dev: Device structure to initialize
5469 *
5470 * Initialize @dev in preparation for probing.
5471 *
5472 * LOCKING:
5473 * Inherited from caller.
5474 */
5475void ata_dev_init(struct ata_device *dev)
5476{
b1c72916 5477 struct ata_link *link = ata_dev_phys_link(dev);
9af5c9c9 5478 struct ata_port *ap = link->ap;
72fa4b74
TH
5479 unsigned long flags;
5480
b1c72916 5481 /* SATA spd limit is bound to the attached device, reset together */
9af5c9c9
TH
5482 link->sata_spd_limit = link->hw_sata_spd_limit;
5483 link->sata_spd = 0;
5a04bf4b 5484
72fa4b74
TH
5485 /* High bits of dev->flags are used to record warm plug
5486 * requests which occur asynchronously. Synchronize using
cca3974e 5487 * host lock.
72fa4b74 5488 */
ba6a1308 5489 spin_lock_irqsave(ap->lock, flags);
72fa4b74 5490 dev->flags &= ~ATA_DFLAG_INIT_MASK;
3dcc323f 5491 dev->horkage = 0;
ba6a1308 5492 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 5493
99cf610a
TH
5494 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5495 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
3ef3b43d
TH
5496 dev->pio_mask = UINT_MAX;
5497 dev->mwdma_mask = UINT_MAX;
5498 dev->udma_mask = UINT_MAX;
5499}
5500
4fb37a25
TH
5501/**
5502 * ata_link_init - Initialize an ata_link structure
5503 * @ap: ATA port link is attached to
5504 * @link: Link structure to initialize
8989805d 5505 * @pmp: Port multiplier port number
4fb37a25
TH
5506 *
5507 * Initialize @link.
5508 *
5509 * LOCKING:
5510 * Kernel thread context (may sleep)
5511 */
fb7fd614 5512void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
4fb37a25
TH
5513{
5514 int i;
5515
5516 /* clear everything except for devices */
5517 memset(link, 0, offsetof(struct ata_link, device[0]));
5518
5519 link->ap = ap;
8989805d 5520 link->pmp = pmp;
4fb37a25
TH
5521 link->active_tag = ATA_TAG_POISON;
5522 link->hw_sata_spd_limit = UINT_MAX;
5523
5524 /* can't use iterator, ap isn't initialized yet */
5525 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5526 struct ata_device *dev = &link->device[i];
5527
5528 dev->link = link;
5529 dev->devno = dev - link->device;
110f66d2
TH
5530#ifdef CONFIG_ATA_ACPI
5531 dev->gtf_filter = ata_acpi_gtf_filter;
5532#endif
4fb37a25
TH
5533 ata_dev_init(dev);
5534 }
5535}
5536
5537/**
5538 * sata_link_init_spd - Initialize link->sata_spd_limit
5539 * @link: Link to configure sata_spd_limit for
5540 *
5541 * Initialize @link->[hw_]sata_spd_limit to the currently
5542 * configured value.
5543 *
5544 * LOCKING:
5545 * Kernel thread context (may sleep).
5546 *
5547 * RETURNS:
5548 * 0 on success, -errno on failure.
5549 */
fb7fd614 5550int sata_link_init_spd(struct ata_link *link)
4fb37a25 5551{
33267325 5552 u8 spd;
4fb37a25
TH
5553 int rc;
5554
d127ea7b 5555 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
4fb37a25
TH
5556 if (rc)
5557 return rc;
5558
d127ea7b 5559 spd = (link->saved_scontrol >> 4) & 0xf;
4fb37a25
TH
5560 if (spd)
5561 link->hw_sata_spd_limit &= (1 << spd) - 1;
5562
05944bdf 5563 ata_force_link_limits(link);
33267325 5564
4fb37a25
TH
5565 link->sata_spd_limit = link->hw_sata_spd_limit;
5566
5567 return 0;
5568}
5569
1da177e4 5570/**
f3187195
TH
5571 * ata_port_alloc - allocate and initialize basic ATA port resources
5572 * @host: ATA host this allocated port belongs to
1da177e4 5573 *
f3187195
TH
5574 * Allocate and initialize basic ATA port resources.
5575 *
5576 * RETURNS:
5577 * Allocate ATA port on success, NULL on failure.
0cba632b 5578 *
1da177e4 5579 * LOCKING:
f3187195 5580 * Inherited from calling layer (may sleep).
1da177e4 5581 */
f3187195 5582struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 5583{
f3187195 5584 struct ata_port *ap;
1da177e4 5585
f3187195
TH
5586 DPRINTK("ENTER\n");
5587
5588 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5589 if (!ap)
5590 return NULL;
5591
f4d6d004 5592 ap->pflags |= ATA_PFLAG_INITIALIZING;
cca3974e 5593 ap->lock = &host->lock;
f3187195 5594 ap->print_id = -1;
cca3974e 5595 ap->host = host;
f3187195 5596 ap->dev = host->dev;
bd5d825c
BP
5597
5598#if defined(ATA_VERBOSE_DEBUG)
5599 /* turn on all debugging levels */
5600 ap->msg_enable = 0x00FF;
5601#elif defined(ATA_DEBUG)
5602 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 5603#else
0dd4b21f 5604 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 5605#endif
1da177e4 5606
65f27f38
DH
5607 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5608 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 5609 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 5610 init_waitqueue_head(&ap->eh_wait_q);
45fabbb7 5611 init_completion(&ap->park_req_pending);
5ddf24c5
TH
5612 init_timer_deferrable(&ap->fastdrain_timer);
5613 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5614 ap->fastdrain_timer.data = (unsigned long)ap;
1da177e4 5615
838df628 5616 ap->cbl = ATA_CBL_NONE;
838df628 5617
8989805d 5618 ata_link_init(ap, &ap->link, 0);
1da177e4
LT
5619
5620#ifdef ATA_IRQ_TRAP
5621 ap->stats.unhandled_irq = 1;
5622 ap->stats.idle_irq = 1;
5623#endif
270390e1
TH
5624 ata_sff_port_init(ap);
5625
1da177e4 5626 return ap;
1da177e4
LT
5627}
5628
f0d36efd
TH
5629static void ata_host_release(struct device *gendev, void *res)
5630{
5631 struct ata_host *host = dev_get_drvdata(gendev);
5632 int i;
5633
1aa506e4
TH
5634 for (i = 0; i < host->n_ports; i++) {
5635 struct ata_port *ap = host->ports[i];
5636
4911487a
TH
5637 if (!ap)
5638 continue;
5639
5640 if (ap->scsi_host)
1aa506e4
TH
5641 scsi_host_put(ap->scsi_host);
5642
633273a3 5643 kfree(ap->pmp_link);
b1c72916 5644 kfree(ap->slave_link);
4911487a 5645 kfree(ap);
1aa506e4
TH
5646 host->ports[i] = NULL;
5647 }
5648
1aa56cca 5649 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
5650}
5651
f3187195
TH
5652/**
5653 * ata_host_alloc - allocate and init basic ATA host resources
5654 * @dev: generic device this host is associated with
5655 * @max_ports: maximum number of ATA ports associated with this host
5656 *
5657 * Allocate and initialize basic ATA host resources. LLD calls
5658 * this function to allocate a host, initializes it fully and
5659 * attaches it using ata_host_register().
5660 *
5661 * @max_ports ports are allocated and host->n_ports is
5662 * initialized to @max_ports. The caller is allowed to decrease
5663 * host->n_ports before calling ata_host_register(). The unused
5664 * ports will be automatically freed on registration.
5665 *
5666 * RETURNS:
5667 * Allocate ATA host on success, NULL on failure.
5668 *
5669 * LOCKING:
5670 * Inherited from calling layer (may sleep).
5671 */
5672struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5673{
5674 struct ata_host *host;
5675 size_t sz;
5676 int i;
5677
5678 DPRINTK("ENTER\n");
5679
5680 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5681 return NULL;
5682
5683 /* alloc a container for our list of ATA ports (buses) */
5684 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5685 /* alloc a container for our list of ATA ports (buses) */
5686 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5687 if (!host)
5688 goto err_out;
5689
5690 devres_add(dev, host);
5691 dev_set_drvdata(dev, host);
5692
5693 spin_lock_init(&host->lock);
5694 host->dev = dev;
5695 host->n_ports = max_ports;
5696
5697 /* allocate ports bound to this host */
5698 for (i = 0; i < max_ports; i++) {
5699 struct ata_port *ap;
5700
5701 ap = ata_port_alloc(host);
5702 if (!ap)
5703 goto err_out;
5704
5705 ap->port_no = i;
5706 host->ports[i] = ap;
5707 }
5708
5709 devres_remove_group(dev, NULL);
5710 return host;
5711
5712 err_out:
5713 devres_release_group(dev, NULL);
5714 return NULL;
5715}
5716
f5cda257
TH
5717/**
5718 * ata_host_alloc_pinfo - alloc host and init with port_info array
5719 * @dev: generic device this host is associated with
5720 * @ppi: array of ATA port_info to initialize host with
5721 * @n_ports: number of ATA ports attached to this host
5722 *
5723 * Allocate ATA host and initialize with info from @ppi. If NULL
5724 * terminated, @ppi may contain fewer entries than @n_ports. The
5725 * last entry will be used for the remaining ports.
5726 *
5727 * RETURNS:
5728 * Allocate ATA host on success, NULL on failure.
5729 *
5730 * LOCKING:
5731 * Inherited from calling layer (may sleep).
5732 */
5733struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5734 const struct ata_port_info * const * ppi,
5735 int n_ports)
5736{
5737 const struct ata_port_info *pi;
5738 struct ata_host *host;
5739 int i, j;
5740
5741 host = ata_host_alloc(dev, n_ports);
5742 if (!host)
5743 return NULL;
5744
5745 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5746 struct ata_port *ap = host->ports[i];
5747
5748 if (ppi[j])
5749 pi = ppi[j++];
5750
5751 ap->pio_mask = pi->pio_mask;
5752 ap->mwdma_mask = pi->mwdma_mask;
5753 ap->udma_mask = pi->udma_mask;
5754 ap->flags |= pi->flags;
0c88758b 5755 ap->link.flags |= pi->link_flags;
f5cda257
TH
5756 ap->ops = pi->port_ops;
5757
5758 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5759 host->ops = pi->port_ops;
f5cda257
TH
5760 }
5761
5762 return host;
5763}
5764
b1c72916
TH
5765/**
5766 * ata_slave_link_init - initialize slave link
5767 * @ap: port to initialize slave link for
5768 *
5769 * Create and initialize slave link for @ap. This enables slave
5770 * link handling on the port.
5771 *
5772 * In libata, a port contains links and a link contains devices.
5773 * There is single host link but if a PMP is attached to it,
5774 * there can be multiple fan-out links. On SATA, there's usually
5775 * a single device connected to a link but PATA and SATA
5776 * controllers emulating TF based interface can have two - master
5777 * and slave.
5778 *
5779 * However, there are a few controllers which don't fit into this
5780 * abstraction too well - SATA controllers which emulate TF
5781 * interface with both master and slave devices but also have
5782 * separate SCR register sets for each device. These controllers
5783 * need separate links for physical link handling
5784 * (e.g. onlineness, link speed) but should be treated like a
5785 * traditional M/S controller for everything else (e.g. command
5786 * issue, softreset).
5787 *
5788 * slave_link is libata's way of handling this class of
5789 * controllers without impacting core layer too much. For
5790 * anything other than physical link handling, the default host
5791 * link is used for both master and slave. For physical link
5792 * handling, separate @ap->slave_link is used. All dirty details
5793 * are implemented inside libata core layer. From LLD's POV, the
5794 * only difference is that prereset, hardreset and postreset are
5795 * called once more for the slave link, so the reset sequence
5796 * looks like the following.
5797 *
5798 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5799 * softreset(M) -> postreset(M) -> postreset(S)
5800 *
5801 * Note that softreset is called only for the master. Softreset
5802 * resets both M/S by definition, so SRST on master should handle
5803 * both (the standard method will work just fine).
5804 *
5805 * LOCKING:
5806 * Should be called before host is registered.
5807 *
5808 * RETURNS:
5809 * 0 on success, -errno on failure.
5810 */
5811int ata_slave_link_init(struct ata_port *ap)
5812{
5813 struct ata_link *link;
5814
5815 WARN_ON(ap->slave_link);
5816 WARN_ON(ap->flags & ATA_FLAG_PMP);
5817
5818 link = kzalloc(sizeof(*link), GFP_KERNEL);
5819 if (!link)
5820 return -ENOMEM;
5821
5822 ata_link_init(ap, link, 1);
5823 ap->slave_link = link;
5824 return 0;
5825}
5826
32ebbc0c
TH
5827static void ata_host_stop(struct device *gendev, void *res)
5828{
5829 struct ata_host *host = dev_get_drvdata(gendev);
5830 int i;
5831
5832 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5833
5834 for (i = 0; i < host->n_ports; i++) {
5835 struct ata_port *ap = host->ports[i];
5836
5837 if (ap->ops->port_stop)
5838 ap->ops->port_stop(ap);
5839 }
5840
5841 if (host->ops->host_stop)
5842 host->ops->host_stop(host);
5843}
5844
029cfd6b
TH
5845/**
5846 * ata_finalize_port_ops - finalize ata_port_operations
5847 * @ops: ata_port_operations to finalize
5848 *
5849 * An ata_port_operations can inherit from another ops and that
5850 * ops can again inherit from another. This can go on as many
5851 * times as necessary as long as there is no loop in the
5852 * inheritance chain.
5853 *
5854 * Ops tables are finalized when the host is started. NULL or
5855 * unspecified entries are inherited from the closet ancestor
5856 * which has the method and the entry is populated with it.
5857 * After finalization, the ops table directly points to all the
5858 * methods and ->inherits is no longer necessary and cleared.
5859 *
5860 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5861 *
5862 * LOCKING:
5863 * None.
5864 */
5865static void ata_finalize_port_ops(struct ata_port_operations *ops)
5866{
2da67659 5867 static DEFINE_SPINLOCK(lock);
029cfd6b
TH
5868 const struct ata_port_operations *cur;
5869 void **begin = (void **)ops;
5870 void **end = (void **)&ops->inherits;
5871 void **pp;
5872
5873 if (!ops || !ops->inherits)
5874 return;
5875
5876 spin_lock(&lock);
5877
5878 for (cur = ops->inherits; cur; cur = cur->inherits) {
5879 void **inherit = (void **)cur;
5880
5881 for (pp = begin; pp < end; pp++, inherit++)
5882 if (!*pp)
5883 *pp = *inherit;
5884 }
5885
5886 for (pp = begin; pp < end; pp++)
5887 if (IS_ERR(*pp))
5888 *pp = NULL;
5889
5890 ops->inherits = NULL;
5891
5892 spin_unlock(&lock);
5893}
5894
ecef7253
TH
5895/**
5896 * ata_host_start - start and freeze ports of an ATA host
5897 * @host: ATA host to start ports for
5898 *
5899 * Start and then freeze ports of @host. Started status is
5900 * recorded in host->flags, so this function can be called
5901 * multiple times. Ports are guaranteed to get started only
f3187195
TH
5902 * once. If host->ops isn't initialized yet, its set to the
5903 * first non-dummy port ops.
ecef7253
TH
5904 *
5905 * LOCKING:
5906 * Inherited from calling layer (may sleep).
5907 *
5908 * RETURNS:
5909 * 0 if all ports are started successfully, -errno otherwise.
5910 */
5911int ata_host_start(struct ata_host *host)
5912{
32ebbc0c
TH
5913 int have_stop = 0;
5914 void *start_dr = NULL;
ecef7253
TH
5915 int i, rc;
5916
5917 if (host->flags & ATA_HOST_STARTED)
5918 return 0;
5919
029cfd6b
TH
5920 ata_finalize_port_ops(host->ops);
5921
ecef7253
TH
5922 for (i = 0; i < host->n_ports; i++) {
5923 struct ata_port *ap = host->ports[i];
5924
029cfd6b
TH
5925 ata_finalize_port_ops(ap->ops);
5926
f3187195
TH
5927 if (!host->ops && !ata_port_is_dummy(ap))
5928 host->ops = ap->ops;
5929
32ebbc0c
TH
5930 if (ap->ops->port_stop)
5931 have_stop = 1;
5932 }
5933
5934 if (host->ops->host_stop)
5935 have_stop = 1;
5936
5937 if (have_stop) {
5938 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5939 if (!start_dr)
5940 return -ENOMEM;
5941 }
5942
5943 for (i = 0; i < host->n_ports; i++) {
5944 struct ata_port *ap = host->ports[i];
5945
ecef7253
TH
5946 if (ap->ops->port_start) {
5947 rc = ap->ops->port_start(ap);
5948 if (rc) {
0f9fe9b7 5949 if (rc != -ENODEV)
0f757743
AM
5950 dev_printk(KERN_ERR, host->dev,
5951 "failed to start port %d "
5952 "(errno=%d)\n", i, rc);
ecef7253
TH
5953 goto err_out;
5954 }
5955 }
ecef7253
TH
5956 ata_eh_freeze_port(ap);
5957 }
5958
32ebbc0c
TH
5959 if (start_dr)
5960 devres_add(host->dev, start_dr);
ecef7253
TH
5961 host->flags |= ATA_HOST_STARTED;
5962 return 0;
5963
5964 err_out:
5965 while (--i >= 0) {
5966 struct ata_port *ap = host->ports[i];
5967
5968 if (ap->ops->port_stop)
5969 ap->ops->port_stop(ap);
5970 }
32ebbc0c 5971 devres_free(start_dr);
ecef7253
TH
5972 return rc;
5973}
5974
b03732f0 5975/**
cca3974e
JG
5976 * ata_sas_host_init - Initialize a host struct
5977 * @host: host to initialize
5978 * @dev: device host is attached to
5979 * @flags: host flags
5980 * @ops: port_ops
b03732f0
BK
5981 *
5982 * LOCKING:
5983 * PCI/etc. bus probe sem.
5984 *
5985 */
f3187195 5986/* KILLME - the only user left is ipr */
cca3974e 5987void ata_host_init(struct ata_host *host, struct device *dev,
029cfd6b 5988 unsigned long flags, struct ata_port_operations *ops)
b03732f0 5989{
cca3974e
JG
5990 spin_lock_init(&host->lock);
5991 host->dev = dev;
5992 host->flags = flags;
5993 host->ops = ops;
b03732f0
BK
5994}
5995
79318057
AV
5996
5997static void async_port_probe(void *data, async_cookie_t cookie)
5998{
5999 int rc;
6000 struct ata_port *ap = data;
886ad09f
AV
6001
6002 /*
6003 * If we're not allowed to scan this host in parallel,
6004 * we need to wait until all previous scans have completed
6005 * before going further.
fa853a48
AV
6006 * Jeff Garzik says this is only within a controller, so we
6007 * don't need to wait for port 0, only for later ports.
886ad09f 6008 */
fa853a48 6009 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
886ad09f
AV
6010 async_synchronize_cookie(cookie);
6011
79318057
AV
6012 /* probe */
6013 if (ap->ops->error_handler) {
6014 struct ata_eh_info *ehi = &ap->link.eh_info;
6015 unsigned long flags;
6016
79318057
AV
6017 /* kick EH for boot probing */
6018 spin_lock_irqsave(ap->lock, flags);
6019
6020 ehi->probe_mask |= ATA_ALL_DEVICES;
6021 ehi->action |= ATA_EH_RESET | ATA_EH_LPM;
6022 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6023
6024 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6025 ap->pflags |= ATA_PFLAG_LOADING;
6026 ata_port_schedule_eh(ap);
6027
6028 spin_unlock_irqrestore(ap->lock, flags);
6029
6030 /* wait for EH to finish */
6031 ata_port_wait_eh(ap);
6032 } else {
6033 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6034 rc = ata_bus_probe(ap);
6035 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6036
6037 if (rc) {
6038 /* FIXME: do something useful here?
6039 * Current libata behavior will
6040 * tear down everything when
6041 * the module is removed
6042 * or the h/w is unplugged.
6043 */
6044 }
6045 }
f29d3b23
AV
6046
6047 /* in order to keep device order, we need to synchronize at this point */
6048 async_synchronize_cookie(cookie);
6049
6050 ata_scsi_scan_host(ap, 1);
6051
79318057 6052}
f3187195
TH
6053/**
6054 * ata_host_register - register initialized ATA host
6055 * @host: ATA host to register
6056 * @sht: template for SCSI host
6057 *
6058 * Register initialized ATA host. @host is allocated using
6059 * ata_host_alloc() and fully initialized by LLD. This function
6060 * starts ports, registers @host with ATA and SCSI layers and
6061 * probe registered devices.
6062 *
6063 * LOCKING:
6064 * Inherited from calling layer (may sleep).
6065 *
6066 * RETURNS:
6067 * 0 on success, -errno otherwise.
6068 */
6069int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6070{
6071 int i, rc;
6072
6073 /* host must have been started */
6074 if (!(host->flags & ATA_HOST_STARTED)) {
6075 dev_printk(KERN_ERR, host->dev,
6076 "BUG: trying to register unstarted host\n");
6077 WARN_ON(1);
6078 return -EINVAL;
6079 }
6080
6081 /* Blow away unused ports. This happens when LLD can't
6082 * determine the exact number of ports to allocate at
6083 * allocation time.
6084 */
6085 for (i = host->n_ports; host->ports[i]; i++)
6086 kfree(host->ports[i]);
6087
6088 /* give ports names and add SCSI hosts */
6089 for (i = 0; i < host->n_ports; i++)
6090 host->ports[i]->print_id = ata_print_id++;
6091
6092 rc = ata_scsi_add_hosts(host, sht);
6093 if (rc)
6094 return rc;
6095
fafbae87
TH
6096 /* associate with ACPI nodes */
6097 ata_acpi_associate(host);
6098
f3187195
TH
6099 /* set cable, sata_spd_limit and report */
6100 for (i = 0; i < host->n_ports; i++) {
6101 struct ata_port *ap = host->ports[i];
f3187195
TH
6102 unsigned long xfer_mask;
6103
6104 /* set SATA cable type if still unset */
6105 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6106 ap->cbl = ATA_CBL_SATA;
6107
6108 /* init sata_spd_limit to the current value */
4fb37a25 6109 sata_link_init_spd(&ap->link);
b1c72916
TH
6110 if (ap->slave_link)
6111 sata_link_init_spd(ap->slave_link);
f3187195 6112
cbcdd875 6113 /* print per-port info to dmesg */
f3187195
TH
6114 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6115 ap->udma_mask);
6116
abf6e8ed 6117 if (!ata_port_is_dummy(ap)) {
cbcdd875
TH
6118 ata_port_printk(ap, KERN_INFO,
6119 "%cATA max %s %s\n",
a16abc0b 6120 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
f3187195 6121 ata_mode_string(xfer_mask),
cbcdd875 6122 ap->link.eh_info.desc);
abf6e8ed
TH
6123 ata_ehi_clear_desc(&ap->link.eh_info);
6124 } else
f3187195
TH
6125 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6126 }
6127
f6005354 6128 /* perform each probe asynchronously */
f3187195
TH
6129 for (i = 0; i < host->n_ports; i++) {
6130 struct ata_port *ap = host->ports[i];
79318057 6131 async_schedule(async_port_probe, ap);
f3187195 6132 }
f3187195
TH
6133
6134 return 0;
6135}
6136
f5cda257
TH
6137/**
6138 * ata_host_activate - start host, request IRQ and register it
6139 * @host: target ATA host
6140 * @irq: IRQ to request
6141 * @irq_handler: irq_handler used when requesting IRQ
6142 * @irq_flags: irq_flags used when requesting IRQ
6143 * @sht: scsi_host_template to use when registering the host
6144 *
6145 * After allocating an ATA host and initializing it, most libata
6146 * LLDs perform three steps to activate the host - start host,
6147 * request IRQ and register it. This helper takes necessasry
6148 * arguments and performs the three steps in one go.
6149 *
3d46b2e2
PM
6150 * An invalid IRQ skips the IRQ registration and expects the host to
6151 * have set polling mode on the port. In this case, @irq_handler
6152 * should be NULL.
6153 *
f5cda257
TH
6154 * LOCKING:
6155 * Inherited from calling layer (may sleep).
6156 *
6157 * RETURNS:
6158 * 0 on success, -errno otherwise.
6159 */
6160int ata_host_activate(struct ata_host *host, int irq,
6161 irq_handler_t irq_handler, unsigned long irq_flags,
6162 struct scsi_host_template *sht)
6163{
cbcdd875 6164 int i, rc;
f5cda257
TH
6165
6166 rc = ata_host_start(host);
6167 if (rc)
6168 return rc;
6169
3d46b2e2
PM
6170 /* Special case for polling mode */
6171 if (!irq) {
6172 WARN_ON(irq_handler);
6173 return ata_host_register(host, sht);
6174 }
6175
f5cda257
TH
6176 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6177 dev_driver_string(host->dev), host);
6178 if (rc)
6179 return rc;
6180
cbcdd875
TH
6181 for (i = 0; i < host->n_ports; i++)
6182 ata_port_desc(host->ports[i], "irq %d", irq);
4031826b 6183
f5cda257
TH
6184 rc = ata_host_register(host, sht);
6185 /* if failed, just free the IRQ and leave ports alone */
6186 if (rc)
6187 devm_free_irq(host->dev, irq, host);
6188
6189 return rc;
6190}
6191
720ba126
TH
6192/**
6193 * ata_port_detach - Detach ATA port in prepration of device removal
6194 * @ap: ATA port to be detached
6195 *
6196 * Detach all ATA devices and the associated SCSI devices of @ap;
6197 * then, remove the associated SCSI host. @ap is guaranteed to
6198 * be quiescent on return from this function.
6199 *
6200 * LOCKING:
6201 * Kernel thread context (may sleep).
6202 */
741b7763 6203static void ata_port_detach(struct ata_port *ap)
720ba126
TH
6204{
6205 unsigned long flags;
720ba126
TH
6206
6207 if (!ap->ops->error_handler)
c3cf30a9 6208 goto skip_eh;
720ba126
TH
6209
6210 /* tell EH we're leaving & flush EH */
ba6a1308 6211 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 6212 ap->pflags |= ATA_PFLAG_UNLOADING;
ece180d1 6213 ata_port_schedule_eh(ap);
ba6a1308 6214 spin_unlock_irqrestore(ap->lock, flags);
720ba126 6215
ece180d1 6216 /* wait till EH commits suicide */
720ba126
TH
6217 ata_port_wait_eh(ap);
6218
ece180d1
TH
6219 /* it better be dead now */
6220 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
720ba126 6221
45a66c1c 6222 cancel_rearming_delayed_work(&ap->hotplug_task);
720ba126 6223
c3cf30a9 6224 skip_eh:
720ba126 6225 /* remove the associated SCSI host */
cca3974e 6226 scsi_remove_host(ap->scsi_host);
720ba126
TH
6227}
6228
0529c159
TH
6229/**
6230 * ata_host_detach - Detach all ports of an ATA host
6231 * @host: Host to detach
6232 *
6233 * Detach all ports of @host.
6234 *
6235 * LOCKING:
6236 * Kernel thread context (may sleep).
6237 */
6238void ata_host_detach(struct ata_host *host)
6239{
6240 int i;
6241
6242 for (i = 0; i < host->n_ports; i++)
6243 ata_port_detach(host->ports[i]);
562f0c2d
TH
6244
6245 /* the host is dead now, dissociate ACPI */
6246 ata_acpi_dissociate(host);
0529c159
TH
6247}
6248
374b1873
JG
6249#ifdef CONFIG_PCI
6250
1da177e4
LT
6251/**
6252 * ata_pci_remove_one - PCI layer callback for device removal
6253 * @pdev: PCI device that was removed
6254 *
b878ca5d
TH
6255 * PCI layer indicates to libata via this hook that hot-unplug or
6256 * module unload event has occurred. Detach all ports. Resource
6257 * release is handled via devres.
1da177e4
LT
6258 *
6259 * LOCKING:
6260 * Inherited from PCI layer (may sleep).
6261 */
f0d36efd 6262void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4 6263{
2855568b 6264 struct device *dev = &pdev->dev;
cca3974e 6265 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 6266
b878ca5d 6267 ata_host_detach(host);
1da177e4
LT
6268}
6269
6270/* move to PCI subsystem */
057ace5e 6271int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6272{
6273 unsigned long tmp = 0;
6274
6275 switch (bits->width) {
6276 case 1: {
6277 u8 tmp8 = 0;
6278 pci_read_config_byte(pdev, bits->reg, &tmp8);
6279 tmp = tmp8;
6280 break;
6281 }
6282 case 2: {
6283 u16 tmp16 = 0;
6284 pci_read_config_word(pdev, bits->reg, &tmp16);
6285 tmp = tmp16;
6286 break;
6287 }
6288 case 4: {
6289 u32 tmp32 = 0;
6290 pci_read_config_dword(pdev, bits->reg, &tmp32);
6291 tmp = tmp32;
6292 break;
6293 }
6294
6295 default:
6296 return -EINVAL;
6297 }
6298
6299 tmp &= bits->mask;
6300
6301 return (tmp == bits->val) ? 1 : 0;
6302}
9b847548 6303
6ffa01d8 6304#ifdef CONFIG_PM
3c5100c1 6305void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6306{
6307 pci_save_state(pdev);
4c90d971 6308 pci_disable_device(pdev);
500530f6 6309
3a2d5b70 6310 if (mesg.event & PM_EVENT_SLEEP)
500530f6 6311 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
6312}
6313
553c4aa6 6314int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 6315{
553c4aa6
TH
6316 int rc;
6317
9b847548
JA
6318 pci_set_power_state(pdev, PCI_D0);
6319 pci_restore_state(pdev);
553c4aa6 6320
b878ca5d 6321 rc = pcim_enable_device(pdev);
553c4aa6
TH
6322 if (rc) {
6323 dev_printk(KERN_ERR, &pdev->dev,
6324 "failed to enable device after resume (%d)\n", rc);
6325 return rc;
6326 }
6327
9b847548 6328 pci_set_master(pdev);
553c4aa6 6329 return 0;
500530f6
TH
6330}
6331
3c5100c1 6332int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6333{
cca3974e 6334 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
6335 int rc = 0;
6336
cca3974e 6337 rc = ata_host_suspend(host, mesg);
500530f6
TH
6338 if (rc)
6339 return rc;
6340
3c5100c1 6341 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6342
6343 return 0;
6344}
6345
6346int ata_pci_device_resume(struct pci_dev *pdev)
6347{
cca3974e 6348 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 6349 int rc;
500530f6 6350
553c4aa6
TH
6351 rc = ata_pci_device_do_resume(pdev);
6352 if (rc == 0)
6353 ata_host_resume(host);
6354 return rc;
9b847548 6355}
6ffa01d8
TH
6356#endif /* CONFIG_PM */
6357
1da177e4
LT
6358#endif /* CONFIG_PCI */
6359
33267325
TH
6360static int __init ata_parse_force_one(char **cur,
6361 struct ata_force_ent *force_ent,
6362 const char **reason)
6363{
6364 /* FIXME: Currently, there's no way to tag init const data and
6365 * using __initdata causes build failure on some versions of
6366 * gcc. Once __initdataconst is implemented, add const to the
6367 * following structure.
6368 */
6369 static struct ata_force_param force_tbl[] __initdata = {
6370 { "40c", .cbl = ATA_CBL_PATA40 },
6371 { "80c", .cbl = ATA_CBL_PATA80 },
6372 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6373 { "unk", .cbl = ATA_CBL_PATA_UNK },
6374 { "ign", .cbl = ATA_CBL_PATA_IGN },
6375 { "sata", .cbl = ATA_CBL_SATA },
6376 { "1.5Gbps", .spd_limit = 1 },
6377 { "3.0Gbps", .spd_limit = 2 },
6378 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6379 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6380 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6381 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6382 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6383 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6384 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6385 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6386 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6387 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6388 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6389 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6390 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6391 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6392 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6393 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6394 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6395 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6396 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6397 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6398 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6399 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6400 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6401 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6402 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6403 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6404 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6405 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6406 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6407 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6408 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6409 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6410 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6411 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6412 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6413 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
05944bdf
TH
6414 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6415 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6416 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
33267325
TH
6417 };
6418 char *start = *cur, *p = *cur;
6419 char *id, *val, *endp;
6420 const struct ata_force_param *match_fp = NULL;
6421 int nr_matches = 0, i;
6422
6423 /* find where this param ends and update *cur */
6424 while (*p != '\0' && *p != ',')
6425 p++;
6426
6427 if (*p == '\0')
6428 *cur = p;
6429 else
6430 *cur = p + 1;
6431
6432 *p = '\0';
6433
6434 /* parse */
6435 p = strchr(start, ':');
6436 if (!p) {
6437 val = strstrip(start);
6438 goto parse_val;
6439 }
6440 *p = '\0';
6441
6442 id = strstrip(start);
6443 val = strstrip(p + 1);
6444
6445 /* parse id */
6446 p = strchr(id, '.');
6447 if (p) {
6448 *p++ = '\0';
6449 force_ent->device = simple_strtoul(p, &endp, 10);
6450 if (p == endp || *endp != '\0') {
6451 *reason = "invalid device";
6452 return -EINVAL;
6453 }
6454 }
6455
6456 force_ent->port = simple_strtoul(id, &endp, 10);
6457 if (p == endp || *endp != '\0') {
6458 *reason = "invalid port/link";
6459 return -EINVAL;
6460 }
6461
6462 parse_val:
6463 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6464 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6465 const struct ata_force_param *fp = &force_tbl[i];
6466
6467 if (strncasecmp(val, fp->name, strlen(val)))
6468 continue;
6469
6470 nr_matches++;
6471 match_fp = fp;
6472
6473 if (strcasecmp(val, fp->name) == 0) {
6474 nr_matches = 1;
6475 break;
6476 }
6477 }
6478
6479 if (!nr_matches) {
6480 *reason = "unknown value";
6481 return -EINVAL;
6482 }
6483 if (nr_matches > 1) {
6484 *reason = "ambigious value";
6485 return -EINVAL;
6486 }
6487
6488 force_ent->param = *match_fp;
6489
6490 return 0;
6491}
6492
6493static void __init ata_parse_force_param(void)
6494{
6495 int idx = 0, size = 1;
6496 int last_port = -1, last_device = -1;
6497 char *p, *cur, *next;
6498
6499 /* calculate maximum number of params and allocate force_tbl */
6500 for (p = ata_force_param_buf; *p; p++)
6501 if (*p == ',')
6502 size++;
6503
6504 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6505 if (!ata_force_tbl) {
6506 printk(KERN_WARNING "ata: failed to extend force table, "
6507 "libata.force ignored\n");
6508 return;
6509 }
6510
6511 /* parse and populate the table */
6512 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6513 const char *reason = "";
6514 struct ata_force_ent te = { .port = -1, .device = -1 };
6515
6516 next = cur;
6517 if (ata_parse_force_one(&next, &te, &reason)) {
6518 printk(KERN_WARNING "ata: failed to parse force "
6519 "parameter \"%s\" (%s)\n",
6520 cur, reason);
6521 continue;
6522 }
6523
6524 if (te.port == -1) {
6525 te.port = last_port;
6526 te.device = last_device;
6527 }
6528
6529 ata_force_tbl[idx++] = te;
6530
6531 last_port = te.port;
6532 last_device = te.device;
6533 }
6534
6535 ata_force_tbl_size = idx;
6536}
1da177e4 6537
1da177e4
LT
6538static int __init ata_init(void)
6539{
270390e1
TH
6540 int rc = -ENOMEM;
6541
33267325
TH
6542 ata_parse_force_param();
6543
453b07ac 6544 ata_aux_wq = create_singlethread_workqueue("ata_aux");
49ea3b04 6545 if (!ata_aux_wq)
270390e1
TH
6546 goto fail;
6547
6548 rc = ata_sff_init();
6549 if (rc)
6550 goto fail;
453b07ac 6551
1da177e4
LT
6552 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6553 return 0;
49ea3b04 6554
270390e1 6555fail:
49ea3b04 6556 kfree(ata_force_tbl);
270390e1
TH
6557 if (ata_aux_wq)
6558 destroy_workqueue(ata_aux_wq);
6559 return rc;
1da177e4
LT
6560}
6561
6562static void __exit ata_exit(void)
6563{
270390e1 6564 ata_sff_exit();
33267325 6565 kfree(ata_force_tbl);
453b07ac 6566 destroy_workqueue(ata_aux_wq);
1da177e4
LT
6567}
6568
a4625085 6569subsys_initcall(ata_init);
1da177e4
LT
6570module_exit(ata_exit);
6571
9990b6f3 6572static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
67846b30
JG
6573
6574int ata_ratelimit(void)
6575{
9990b6f3 6576 return __ratelimit(&ratelimit);
67846b30
JG
6577}
6578
c22daff4
TH
6579/**
6580 * ata_wait_register - wait until register value changes
6581 * @reg: IO-mapped register
6582 * @mask: Mask to apply to read register value
6583 * @val: Wait condition
341c2c95
TH
6584 * @interval: polling interval in milliseconds
6585 * @timeout: timeout in milliseconds
c22daff4
TH
6586 *
6587 * Waiting for some bits of register to change is a common
6588 * operation for ATA controllers. This function reads 32bit LE
6589 * IO-mapped register @reg and tests for the following condition.
6590 *
6591 * (*@reg & mask) != val
6592 *
6593 * If the condition is met, it returns; otherwise, the process is
6594 * repeated after @interval_msec until timeout.
6595 *
6596 * LOCKING:
6597 * Kernel thread context (may sleep)
6598 *
6599 * RETURNS:
6600 * The final register value.
6601 */
6602u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
341c2c95 6603 unsigned long interval, unsigned long timeout)
c22daff4 6604{
341c2c95 6605 unsigned long deadline;
c22daff4
TH
6606 u32 tmp;
6607
6608 tmp = ioread32(reg);
6609
6610 /* Calculate timeout _after_ the first read to make sure
6611 * preceding writes reach the controller before starting to
6612 * eat away the timeout.
6613 */
341c2c95 6614 deadline = ata_deadline(jiffies, timeout);
c22daff4 6615
341c2c95
TH
6616 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6617 msleep(interval);
c22daff4
TH
6618 tmp = ioread32(reg);
6619 }
6620
6621 return tmp;
6622}
6623
dd5b06c4
TH
6624/*
6625 * Dummy port_ops
6626 */
182d7bba 6627static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
dd5b06c4 6628{
182d7bba 6629 return AC_ERR_SYSTEM;
dd5b06c4
TH
6630}
6631
182d7bba 6632static void ata_dummy_error_handler(struct ata_port *ap)
dd5b06c4 6633{
182d7bba 6634 /* truly dummy */
dd5b06c4
TH
6635}
6636
029cfd6b 6637struct ata_port_operations ata_dummy_port_ops = {
dd5b06c4
TH
6638 .qc_prep = ata_noop_qc_prep,
6639 .qc_issue = ata_dummy_qc_issue,
182d7bba 6640 .error_handler = ata_dummy_error_handler,
dd5b06c4
TH
6641};
6642
21b0ad4f
TH
6643const struct ata_port_info ata_dummy_port_info = {
6644 .port_ops = &ata_dummy_port_ops,
6645};
6646
1da177e4
LT
6647/*
6648 * libata is essentially a library of internal helper functions for
6649 * low-level ATA host controller drivers. As such, the API/ABI is
6650 * likely to change as new drivers are added and updated.
6651 * Do not depend on ABI/API stability.
6652 */
e9c83914
TH
6653EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6654EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6655EXPORT_SYMBOL_GPL(sata_deb_timing_long);
029cfd6b
TH
6656EXPORT_SYMBOL_GPL(ata_base_port_ops);
6657EXPORT_SYMBOL_GPL(sata_port_ops);
dd5b06c4 6658EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 6659EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1eca4365
TH
6660EXPORT_SYMBOL_GPL(ata_link_next);
6661EXPORT_SYMBOL_GPL(ata_dev_next);
1da177e4 6662EXPORT_SYMBOL_GPL(ata_std_bios_param);
cca3974e 6663EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 6664EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 6665EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
b1c72916 6666EXPORT_SYMBOL_GPL(ata_slave_link_init);
ecef7253 6667EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 6668EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 6669EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 6670EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4 6671EXPORT_SYMBOL_GPL(ata_sg_init);
f686bcb8 6672EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 6673EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
436d34b3 6674EXPORT_SYMBOL_GPL(atapi_cmd_type);
1da177e4
LT
6675EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6676EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6357357c
TH
6677EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6678EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6679EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6680EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6681EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6682EXPORT_SYMBOL_GPL(ata_mode_string);
6683EXPORT_SYMBOL_GPL(ata_id_xfermask);
04351821 6684EXPORT_SYMBOL_GPL(ata_do_set_mode);
31cc23b3 6685EXPORT_SYMBOL_GPL(ata_std_qc_defer);
e46834cd 6686EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
10305f0f 6687EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 6688EXPORT_SYMBOL_GPL(sata_set_spd);
aa2731ad 6689EXPORT_SYMBOL_GPL(ata_wait_after_reset);
936fd732
TH
6690EXPORT_SYMBOL_GPL(sata_link_debounce);
6691EXPORT_SYMBOL_GPL(sata_link_resume);
0aa1113d 6692EXPORT_SYMBOL_GPL(ata_std_prereset);
cc0680a5 6693EXPORT_SYMBOL_GPL(sata_link_hardreset);
57c9efdf 6694EXPORT_SYMBOL_GPL(sata_std_hardreset);
203c75b8 6695EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
6696EXPORT_SYMBOL_GPL(ata_dev_classify);
6697EXPORT_SYMBOL_GPL(ata_dev_pair);
67846b30 6698EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 6699EXPORT_SYMBOL_GPL(ata_wait_register);
1da177e4 6700EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 6701EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 6702EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 6703EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
34bf2170
TH
6704EXPORT_SYMBOL_GPL(sata_scr_valid);
6705EXPORT_SYMBOL_GPL(sata_scr_read);
6706EXPORT_SYMBOL_GPL(sata_scr_write);
6707EXPORT_SYMBOL_GPL(sata_scr_write_flush);
936fd732
TH
6708EXPORT_SYMBOL_GPL(ata_link_online);
6709EXPORT_SYMBOL_GPL(ata_link_offline);
6ffa01d8 6710#ifdef CONFIG_PM
cca3974e
JG
6711EXPORT_SYMBOL_GPL(ata_host_suspend);
6712EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 6713#endif /* CONFIG_PM */
6a62a04d
TH
6714EXPORT_SYMBOL_GPL(ata_id_string);
6715EXPORT_SYMBOL_GPL(ata_id_c_string);
963e4975 6716EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1da177e4
LT
6717EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6718
1bc4ccff 6719EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6357357c 6720EXPORT_SYMBOL_GPL(ata_timing_find_mode);
452503f9
AC
6721EXPORT_SYMBOL_GPL(ata_timing_compute);
6722EXPORT_SYMBOL_GPL(ata_timing_merge);
a0f79b92 6723EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
452503f9 6724
1da177e4
LT
6725#ifdef CONFIG_PCI
6726EXPORT_SYMBOL_GPL(pci_test_config_bits);
1da177e4 6727EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 6728#ifdef CONFIG_PM
500530f6
TH
6729EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6730EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
6731EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6732EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 6733#endif /* CONFIG_PM */
1da177e4 6734#endif /* CONFIG_PCI */
9b847548 6735
b64bbc39
TH
6736EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6737EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6738EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
cbcdd875
TH
6739EXPORT_SYMBOL_GPL(ata_port_desc);
6740#ifdef CONFIG_PCI
6741EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6742#endif /* CONFIG_PCI */
7b70fc03 6743EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
dbd82616 6744EXPORT_SYMBOL_GPL(ata_link_abort);
7b70fc03 6745EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499 6746EXPORT_SYMBOL_GPL(ata_port_freeze);
7d77b247 6747EXPORT_SYMBOL_GPL(sata_async_notification);
e3180499
TH
6748EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6749EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
6750EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6751EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
10acf3b0 6752EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
022bdb07 6753EXPORT_SYMBOL_GPL(ata_do_eh);
a1efdaba 6754EXPORT_SYMBOL_GPL(ata_std_error_handler);
be0d18df
AC
6755
6756EXPORT_SYMBOL_GPL(ata_cable_40wire);
6757EXPORT_SYMBOL_GPL(ata_cable_80wire);
6758EXPORT_SYMBOL_GPL(ata_cable_unknown);
c88f90c3 6759EXPORT_SYMBOL_GPL(ata_cable_ignore);
be0d18df 6760EXPORT_SYMBOL_GPL(ata_cable_sata);