libata-core/sff: Fix multiple assumptions about DMA
[linux-2.6-block.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
1da177e4
LT
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/mm.h>
41#include <linux/highmem.h>
42#include <linux/spinlock.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/completion.h>
48#include <linux/suspend.h>
49#include <linux/workqueue.h>
67846b30 50#include <linux/jiffies.h>
378f058c 51#include <linux/scatterlist.h>
1da177e4 52#include <scsi/scsi.h>
193515d5 53#include <scsi/scsi_cmnd.h>
1da177e4
LT
54#include <scsi/scsi_host.h>
55#include <linux/libata.h>
56#include <asm/io.h>
57#include <asm/semaphore.h>
58#include <asm/byteorder.h>
59
60#include "libata.h"
61
8bc3fc47 62#define DRV_VERSION "2.21" /* must be exactly four chars */
fda0efc5
JG
63
64
d7bb4cc7 65/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
66const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 69
3373efd8
TH
70static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73static void ata_dev_xfermask(struct ata_device *dev);
1da177e4 74
f3187195 75unsigned int ata_print_id = 1;
1da177e4
LT
76static struct workqueue_struct *ata_wq;
77
453b07ac
TH
78struct workqueue_struct *ata_aux_wq;
79
418dc1f5 80int atapi_enabled = 1;
1623c81e
JG
81module_param(atapi_enabled, int, 0444);
82MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
83
95de719a
AL
84int atapi_dmadir = 0;
85module_param(atapi_dmadir, int, 0444);
86MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
87
c3c013a2
JG
88int libata_fua = 0;
89module_param_named(fua, libata_fua, int, 0444);
90MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
91
1e999736
AC
92static int ata_ignore_hpa = 0;
93module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
94MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
95
a8601e5f
AM
96static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
97module_param(ata_probe_timeout, int, 0444);
98MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
99
d7d0dad6
JG
100int libata_noacpi = 1;
101module_param_named(noacpi, libata_noacpi, int, 0444);
11ef697b
KCA
102MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
103
1da177e4
LT
104MODULE_AUTHOR("Jeff Garzik");
105MODULE_DESCRIPTION("Library module for ATA devices");
106MODULE_LICENSE("GPL");
107MODULE_VERSION(DRV_VERSION);
108
0baab86b 109
1da177e4
LT
110/**
111 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
112 * @tf: Taskfile to convert
113 * @fis: Buffer into which data will output
114 * @pmp: Port multiplier port
115 *
116 * Converts a standard ATA taskfile to a Serial ATA
117 * FIS structure (Register - Host to Device).
118 *
119 * LOCKING:
120 * Inherited from caller.
121 */
122
057ace5e 123void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
124{
125 fis[0] = 0x27; /* Register - Host to Device FIS */
126 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
127 bit 7 indicates Command FIS */
128 fis[2] = tf->command;
129 fis[3] = tf->feature;
130
131 fis[4] = tf->lbal;
132 fis[5] = tf->lbam;
133 fis[6] = tf->lbah;
134 fis[7] = tf->device;
135
136 fis[8] = tf->hob_lbal;
137 fis[9] = tf->hob_lbam;
138 fis[10] = tf->hob_lbah;
139 fis[11] = tf->hob_feature;
140
141 fis[12] = tf->nsect;
142 fis[13] = tf->hob_nsect;
143 fis[14] = 0;
144 fis[15] = tf->ctl;
145
146 fis[16] = 0;
147 fis[17] = 0;
148 fis[18] = 0;
149 fis[19] = 0;
150}
151
152/**
153 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
154 * @fis: Buffer from which data will be input
155 * @tf: Taskfile to output
156 *
e12a1be6 157 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
158 *
159 * LOCKING:
160 * Inherited from caller.
161 */
162
057ace5e 163void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
164{
165 tf->command = fis[2]; /* status */
166 tf->feature = fis[3]; /* error */
167
168 tf->lbal = fis[4];
169 tf->lbam = fis[5];
170 tf->lbah = fis[6];
171 tf->device = fis[7];
172
173 tf->hob_lbal = fis[8];
174 tf->hob_lbam = fis[9];
175 tf->hob_lbah = fis[10];
176
177 tf->nsect = fis[12];
178 tf->hob_nsect = fis[13];
179}
180
8cbd6df1
AL
181static const u8 ata_rw_cmds[] = {
182 /* pio multi */
183 ATA_CMD_READ_MULTI,
184 ATA_CMD_WRITE_MULTI,
185 ATA_CMD_READ_MULTI_EXT,
186 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
187 0,
188 0,
189 0,
190 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
191 /* pio */
192 ATA_CMD_PIO_READ,
193 ATA_CMD_PIO_WRITE,
194 ATA_CMD_PIO_READ_EXT,
195 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
196 0,
197 0,
198 0,
199 0,
8cbd6df1
AL
200 /* dma */
201 ATA_CMD_READ,
202 ATA_CMD_WRITE,
203 ATA_CMD_READ_EXT,
9a3dccc4
TH
204 ATA_CMD_WRITE_EXT,
205 0,
206 0,
207 0,
208 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 209};
1da177e4
LT
210
211/**
8cbd6df1 212 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
213 * @tf: command to examine and configure
214 * @dev: device tf belongs to
1da177e4 215 *
2e9edbf8 216 * Examine the device configuration and tf->flags to calculate
8cbd6df1 217 * the proper read/write commands and protocol to use.
1da177e4
LT
218 *
219 * LOCKING:
220 * caller.
221 */
bd056d7e 222static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 223{
9a3dccc4 224 u8 cmd;
1da177e4 225
9a3dccc4 226 int index, fua, lba48, write;
2e9edbf8 227
9a3dccc4 228 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
229 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
230 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 231
8cbd6df1
AL
232 if (dev->flags & ATA_DFLAG_PIO) {
233 tf->protocol = ATA_PROT_PIO;
9a3dccc4 234 index = dev->multi_count ? 0 : 8;
bd056d7e 235 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
236 /* Unable to use DMA due to host limitation */
237 tf->protocol = ATA_PROT_PIO;
0565c26d 238 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
239 } else {
240 tf->protocol = ATA_PROT_DMA;
9a3dccc4 241 index = 16;
8cbd6df1 242 }
1da177e4 243
9a3dccc4
TH
244 cmd = ata_rw_cmds[index + fua + lba48 + write];
245 if (cmd) {
246 tf->command = cmd;
247 return 0;
248 }
249 return -1;
1da177e4
LT
250}
251
35b649fe
TH
252/**
253 * ata_tf_read_block - Read block address from ATA taskfile
254 * @tf: ATA taskfile of interest
255 * @dev: ATA device @tf belongs to
256 *
257 * LOCKING:
258 * None.
259 *
260 * Read block address from @tf. This function can handle all
261 * three address formats - LBA, LBA48 and CHS. tf->protocol and
262 * flags select the address format to use.
263 *
264 * RETURNS:
265 * Block address read from @tf.
266 */
267u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
268{
269 u64 block = 0;
270
271 if (tf->flags & ATA_TFLAG_LBA) {
272 if (tf->flags & ATA_TFLAG_LBA48) {
273 block |= (u64)tf->hob_lbah << 40;
274 block |= (u64)tf->hob_lbam << 32;
275 block |= tf->hob_lbal << 24;
276 } else
277 block |= (tf->device & 0xf) << 24;
278
279 block |= tf->lbah << 16;
280 block |= tf->lbam << 8;
281 block |= tf->lbal;
282 } else {
283 u32 cyl, head, sect;
284
285 cyl = tf->lbam | (tf->lbah << 8);
286 head = tf->device & 0xf;
287 sect = tf->lbal;
288
289 block = (cyl * dev->heads + head) * dev->sectors + sect;
290 }
291
292 return block;
293}
294
bd056d7e
TH
295/**
296 * ata_build_rw_tf - Build ATA taskfile for given read/write request
297 * @tf: Target ATA taskfile
298 * @dev: ATA device @tf belongs to
299 * @block: Block address
300 * @n_block: Number of blocks
301 * @tf_flags: RW/FUA etc...
302 * @tag: tag
303 *
304 * LOCKING:
305 * None.
306 *
307 * Build ATA taskfile @tf for read/write request described by
308 * @block, @n_block, @tf_flags and @tag on @dev.
309 *
310 * RETURNS:
311 *
312 * 0 on success, -ERANGE if the request is too large for @dev,
313 * -EINVAL if the request is invalid.
314 */
315int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
316 u64 block, u32 n_block, unsigned int tf_flags,
317 unsigned int tag)
318{
319 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
320 tf->flags |= tf_flags;
321
6d1245bf 322 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
323 /* yay, NCQ */
324 if (!lba_48_ok(block, n_block))
325 return -ERANGE;
326
327 tf->protocol = ATA_PROT_NCQ;
328 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
329
330 if (tf->flags & ATA_TFLAG_WRITE)
331 tf->command = ATA_CMD_FPDMA_WRITE;
332 else
333 tf->command = ATA_CMD_FPDMA_READ;
334
335 tf->nsect = tag << 3;
336 tf->hob_feature = (n_block >> 8) & 0xff;
337 tf->feature = n_block & 0xff;
338
339 tf->hob_lbah = (block >> 40) & 0xff;
340 tf->hob_lbam = (block >> 32) & 0xff;
341 tf->hob_lbal = (block >> 24) & 0xff;
342 tf->lbah = (block >> 16) & 0xff;
343 tf->lbam = (block >> 8) & 0xff;
344 tf->lbal = block & 0xff;
345
346 tf->device = 1 << 6;
347 if (tf->flags & ATA_TFLAG_FUA)
348 tf->device |= 1 << 7;
349 } else if (dev->flags & ATA_DFLAG_LBA) {
350 tf->flags |= ATA_TFLAG_LBA;
351
352 if (lba_28_ok(block, n_block)) {
353 /* use LBA28 */
354 tf->device |= (block >> 24) & 0xf;
355 } else if (lba_48_ok(block, n_block)) {
356 if (!(dev->flags & ATA_DFLAG_LBA48))
357 return -ERANGE;
358
359 /* use LBA48 */
360 tf->flags |= ATA_TFLAG_LBA48;
361
362 tf->hob_nsect = (n_block >> 8) & 0xff;
363
364 tf->hob_lbah = (block >> 40) & 0xff;
365 tf->hob_lbam = (block >> 32) & 0xff;
366 tf->hob_lbal = (block >> 24) & 0xff;
367 } else
368 /* request too large even for LBA48 */
369 return -ERANGE;
370
371 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
372 return -EINVAL;
373
374 tf->nsect = n_block & 0xff;
375
376 tf->lbah = (block >> 16) & 0xff;
377 tf->lbam = (block >> 8) & 0xff;
378 tf->lbal = block & 0xff;
379
380 tf->device |= ATA_LBA;
381 } else {
382 /* CHS */
383 u32 sect, head, cyl, track;
384
385 /* The request -may- be too large for CHS addressing. */
386 if (!lba_28_ok(block, n_block))
387 return -ERANGE;
388
389 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
390 return -EINVAL;
391
392 /* Convert LBA to CHS */
393 track = (u32)block / dev->sectors;
394 cyl = track / dev->heads;
395 head = track % dev->heads;
396 sect = (u32)block % dev->sectors + 1;
397
398 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
399 (u32)block, track, cyl, head, sect);
400
401 /* Check whether the converted CHS can fit.
402 Cylinder: 0-65535
403 Head: 0-15
404 Sector: 1-255*/
405 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
406 return -ERANGE;
407
408 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
409 tf->lbal = sect;
410 tf->lbam = cyl;
411 tf->lbah = cyl >> 8;
412 tf->device |= head;
413 }
414
415 return 0;
416}
417
cb95d562
TH
418/**
419 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
420 * @pio_mask: pio_mask
421 * @mwdma_mask: mwdma_mask
422 * @udma_mask: udma_mask
423 *
424 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
425 * unsigned int xfer_mask.
426 *
427 * LOCKING:
428 * None.
429 *
430 * RETURNS:
431 * Packed xfer_mask.
432 */
433static unsigned int ata_pack_xfermask(unsigned int pio_mask,
434 unsigned int mwdma_mask,
435 unsigned int udma_mask)
436{
437 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
438 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
439 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
440}
441
c0489e4e
TH
442/**
443 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
444 * @xfer_mask: xfer_mask to unpack
445 * @pio_mask: resulting pio_mask
446 * @mwdma_mask: resulting mwdma_mask
447 * @udma_mask: resulting udma_mask
448 *
449 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
450 * Any NULL distination masks will be ignored.
451 */
452static void ata_unpack_xfermask(unsigned int xfer_mask,
453 unsigned int *pio_mask,
454 unsigned int *mwdma_mask,
455 unsigned int *udma_mask)
456{
457 if (pio_mask)
458 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
459 if (mwdma_mask)
460 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
461 if (udma_mask)
462 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
463}
464
cb95d562 465static const struct ata_xfer_ent {
be9a50c8 466 int shift, bits;
cb95d562
TH
467 u8 base;
468} ata_xfer_tbl[] = {
469 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
470 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
471 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
472 { -1, },
473};
474
475/**
476 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
477 * @xfer_mask: xfer_mask of interest
478 *
479 * Return matching XFER_* value for @xfer_mask. Only the highest
480 * bit of @xfer_mask is considered.
481 *
482 * LOCKING:
483 * None.
484 *
485 * RETURNS:
486 * Matching XFER_* value, 0 if no match found.
487 */
488static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
489{
490 int highbit = fls(xfer_mask) - 1;
491 const struct ata_xfer_ent *ent;
492
493 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
494 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
495 return ent->base + highbit - ent->shift;
496 return 0;
497}
498
499/**
500 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
501 * @xfer_mode: XFER_* of interest
502 *
503 * Return matching xfer_mask for @xfer_mode.
504 *
505 * LOCKING:
506 * None.
507 *
508 * RETURNS:
509 * Matching xfer_mask, 0 if no match found.
510 */
511static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
512{
513 const struct ata_xfer_ent *ent;
514
515 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
516 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
517 return 1 << (ent->shift + xfer_mode - ent->base);
518 return 0;
519}
520
521/**
522 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
523 * @xfer_mode: XFER_* of interest
524 *
525 * Return matching xfer_shift for @xfer_mode.
526 *
527 * LOCKING:
528 * None.
529 *
530 * RETURNS:
531 * Matching xfer_shift, -1 if no match found.
532 */
533static int ata_xfer_mode2shift(unsigned int xfer_mode)
534{
535 const struct ata_xfer_ent *ent;
536
537 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
538 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
539 return ent->shift;
540 return -1;
541}
542
1da177e4 543/**
1da7b0d0
TH
544 * ata_mode_string - convert xfer_mask to string
545 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
546 *
547 * Determine string which represents the highest speed
1da7b0d0 548 * (highest bit in @modemask).
1da177e4
LT
549 *
550 * LOCKING:
551 * None.
552 *
553 * RETURNS:
554 * Constant C string representing highest speed listed in
1da7b0d0 555 * @mode_mask, or the constant C string "<n/a>".
1da177e4 556 */
1da7b0d0 557static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 558{
75f554bc
TH
559 static const char * const xfer_mode_str[] = {
560 "PIO0",
561 "PIO1",
562 "PIO2",
563 "PIO3",
564 "PIO4",
b352e57d
AC
565 "PIO5",
566 "PIO6",
75f554bc
TH
567 "MWDMA0",
568 "MWDMA1",
569 "MWDMA2",
b352e57d
AC
570 "MWDMA3",
571 "MWDMA4",
75f554bc
TH
572 "UDMA/16",
573 "UDMA/25",
574 "UDMA/33",
575 "UDMA/44",
576 "UDMA/66",
577 "UDMA/100",
578 "UDMA/133",
579 "UDMA7",
580 };
1da7b0d0 581 int highbit;
1da177e4 582
1da7b0d0
TH
583 highbit = fls(xfer_mask) - 1;
584 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
585 return xfer_mode_str[highbit];
1da177e4 586 return "<n/a>";
1da177e4
LT
587}
588
4c360c81
TH
589static const char *sata_spd_string(unsigned int spd)
590{
591 static const char * const spd_str[] = {
592 "1.5 Gbps",
593 "3.0 Gbps",
594 };
595
596 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
597 return "<unknown>";
598 return spd_str[spd - 1];
599}
600
3373efd8 601void ata_dev_disable(struct ata_device *dev)
0b8efb0a 602{
0dd4b21f 603 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
f15a1daf 604 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
4ae72a1e
TH
605 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
606 ATA_DNXFER_QUIET);
0b8efb0a
TH
607 dev->class++;
608 }
609}
610
1da177e4 611/**
0d5ff566 612 * ata_devchk - PATA device presence detection
1da177e4
LT
613 * @ap: ATA channel to examine
614 * @device: Device to examine (starting at zero)
615 *
616 * This technique was originally described in
617 * Hale Landis's ATADRVR (www.ata-atapi.com), and
618 * later found its way into the ATA/ATAPI spec.
619 *
620 * Write a pattern to the ATA shadow registers,
621 * and if a device is present, it will respond by
622 * correctly storing and echoing back the
623 * ATA shadow register contents.
624 *
625 * LOCKING:
626 * caller.
627 */
628
0d5ff566 629static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1da177e4
LT
630{
631 struct ata_ioports *ioaddr = &ap->ioaddr;
632 u8 nsect, lbal;
633
634 ap->ops->dev_select(ap, device);
635
0d5ff566
TH
636 iowrite8(0x55, ioaddr->nsect_addr);
637 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 638
0d5ff566
TH
639 iowrite8(0xaa, ioaddr->nsect_addr);
640 iowrite8(0x55, ioaddr->lbal_addr);
1da177e4 641
0d5ff566
TH
642 iowrite8(0x55, ioaddr->nsect_addr);
643 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 644
0d5ff566
TH
645 nsect = ioread8(ioaddr->nsect_addr);
646 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
647
648 if ((nsect == 0x55) && (lbal == 0xaa))
649 return 1; /* we found a device */
650
651 return 0; /* nothing found */
652}
653
1da177e4
LT
654/**
655 * ata_dev_classify - determine device type based on ATA-spec signature
656 * @tf: ATA taskfile register set for device to be identified
657 *
658 * Determine from taskfile register contents whether a device is
659 * ATA or ATAPI, as per "Signature and persistence" section
660 * of ATA/PI spec (volume 1, sect 5.14).
661 *
662 * LOCKING:
663 * None.
664 *
665 * RETURNS:
666 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
667 * the event of failure.
668 */
669
057ace5e 670unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
671{
672 /* Apple's open source Darwin code hints that some devices only
673 * put a proper signature into the LBA mid/high registers,
674 * So, we only check those. It's sufficient for uniqueness.
675 */
676
677 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
678 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
679 DPRINTK("found ATA device by sig\n");
680 return ATA_DEV_ATA;
681 }
682
683 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
684 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
685 DPRINTK("found ATAPI device by sig\n");
686 return ATA_DEV_ATAPI;
687 }
688
689 DPRINTK("unknown device\n");
690 return ATA_DEV_UNKNOWN;
691}
692
693/**
694 * ata_dev_try_classify - Parse returned ATA device signature
695 * @ap: ATA channel to examine
696 * @device: Device to examine (starting at zero)
b4dc7623 697 * @r_err: Value of error register on completion
1da177e4
LT
698 *
699 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
700 * an ATA/ATAPI-defined set of values is placed in the ATA
701 * shadow registers, indicating the results of device detection
702 * and diagnostics.
703 *
704 * Select the ATA device, and read the values from the ATA shadow
705 * registers. Then parse according to the Error register value,
706 * and the spec-defined values examined by ata_dev_classify().
707 *
708 * LOCKING:
709 * caller.
b4dc7623
TH
710 *
711 * RETURNS:
712 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
713 */
714
a619f981 715unsigned int
b4dc7623 716ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 717{
1da177e4
LT
718 struct ata_taskfile tf;
719 unsigned int class;
720 u8 err;
721
722 ap->ops->dev_select(ap, device);
723
724 memset(&tf, 0, sizeof(tf));
725
1da177e4 726 ap->ops->tf_read(ap, &tf);
0169e284 727 err = tf.feature;
b4dc7623
TH
728 if (r_err)
729 *r_err = err;
1da177e4 730
93590859
AC
731 /* see if device passed diags: if master then continue and warn later */
732 if (err == 0 && device == 0)
733 /* diagnostic fail : do nothing _YET_ */
734 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
735 else if (err == 1)
1da177e4
LT
736 /* do nothing */ ;
737 else if ((device == 0) && (err == 0x81))
738 /* do nothing */ ;
739 else
b4dc7623 740 return ATA_DEV_NONE;
1da177e4 741
b4dc7623 742 /* determine if device is ATA or ATAPI */
1da177e4 743 class = ata_dev_classify(&tf);
b4dc7623 744
1da177e4 745 if (class == ATA_DEV_UNKNOWN)
b4dc7623 746 return ATA_DEV_NONE;
1da177e4 747 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
748 return ATA_DEV_NONE;
749 return class;
1da177e4
LT
750}
751
752/**
6a62a04d 753 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
754 * @id: IDENTIFY DEVICE results we will examine
755 * @s: string into which data is output
756 * @ofs: offset into identify device page
757 * @len: length of string to return. must be an even number.
758 *
759 * The strings in the IDENTIFY DEVICE page are broken up into
760 * 16-bit chunks. Run through the string, and output each
761 * 8-bit chunk linearly, regardless of platform.
762 *
763 * LOCKING:
764 * caller.
765 */
766
6a62a04d
TH
767void ata_id_string(const u16 *id, unsigned char *s,
768 unsigned int ofs, unsigned int len)
1da177e4
LT
769{
770 unsigned int c;
771
772 while (len > 0) {
773 c = id[ofs] >> 8;
774 *s = c;
775 s++;
776
777 c = id[ofs] & 0xff;
778 *s = c;
779 s++;
780
781 ofs++;
782 len -= 2;
783 }
784}
785
0e949ff3 786/**
6a62a04d 787 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
788 * @id: IDENTIFY DEVICE results we will examine
789 * @s: string into which data is output
790 * @ofs: offset into identify device page
791 * @len: length of string to return. must be an odd number.
792 *
6a62a04d 793 * This function is identical to ata_id_string except that it
0e949ff3
TH
794 * trims trailing spaces and terminates the resulting string with
795 * null. @len must be actual maximum length (even number) + 1.
796 *
797 * LOCKING:
798 * caller.
799 */
6a62a04d
TH
800void ata_id_c_string(const u16 *id, unsigned char *s,
801 unsigned int ofs, unsigned int len)
0e949ff3
TH
802{
803 unsigned char *p;
804
805 WARN_ON(!(len & 1));
806
6a62a04d 807 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
808
809 p = s + strnlen(s, len - 1);
810 while (p > s && p[-1] == ' ')
811 p--;
812 *p = '\0';
813}
0baab86b 814
1e999736
AC
815static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
816{
817 u64 sectors = 0;
818
819 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
820 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
821 sectors |= (tf->hob_lbal & 0xff) << 24;
822 sectors |= (tf->lbah & 0xff) << 16;
823 sectors |= (tf->lbam & 0xff) << 8;
824 sectors |= (tf->lbal & 0xff);
825
826 return ++sectors;
827}
828
829static u64 ata_tf_to_lba(struct ata_taskfile *tf)
830{
831 u64 sectors = 0;
832
833 sectors |= (tf->device & 0x0f) << 24;
834 sectors |= (tf->lbah & 0xff) << 16;
835 sectors |= (tf->lbam & 0xff) << 8;
836 sectors |= (tf->lbal & 0xff);
837
838 return ++sectors;
839}
840
841/**
842 * ata_read_native_max_address_ext - LBA48 native max query
843 * @dev: Device to query
844 *
845 * Perform an LBA48 size query upon the device in question. Return the
846 * actual LBA48 size or zero if the command fails.
847 */
848
849static u64 ata_read_native_max_address_ext(struct ata_device *dev)
850{
851 unsigned int err;
852 struct ata_taskfile tf;
853
854 ata_tf_init(dev, &tf);
855
856 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
857 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
858 tf.protocol |= ATA_PROT_NODATA;
859 tf.device |= 0x40;
860
861 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
862 if (err)
863 return 0;
864
865 return ata_tf_to_lba48(&tf);
866}
867
868/**
869 * ata_read_native_max_address - LBA28 native max query
870 * @dev: Device to query
871 *
872 * Performa an LBA28 size query upon the device in question. Return the
873 * actual LBA28 size or zero if the command fails.
874 */
875
876static u64 ata_read_native_max_address(struct ata_device *dev)
877{
878 unsigned int err;
879 struct ata_taskfile tf;
880
881 ata_tf_init(dev, &tf);
882
883 tf.command = ATA_CMD_READ_NATIVE_MAX;
884 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
885 tf.protocol |= ATA_PROT_NODATA;
886 tf.device |= 0x40;
887
888 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
889 if (err)
890 return 0;
891
892 return ata_tf_to_lba(&tf);
893}
894
895/**
896 * ata_set_native_max_address_ext - LBA48 native max set
897 * @dev: Device to query
6b38d1d1 898 * @new_sectors: new max sectors value to set for the device
1e999736
AC
899 *
900 * Perform an LBA48 size set max upon the device in question. Return the
901 * actual LBA48 size or zero if the command fails.
902 */
903
904static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors)
905{
906 unsigned int err;
907 struct ata_taskfile tf;
908
909 new_sectors--;
910
911 ata_tf_init(dev, &tf);
912
913 tf.command = ATA_CMD_SET_MAX_EXT;
914 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
915 tf.protocol |= ATA_PROT_NODATA;
916 tf.device |= 0x40;
917
918 tf.lbal = (new_sectors >> 0) & 0xff;
919 tf.lbam = (new_sectors >> 8) & 0xff;
920 tf.lbah = (new_sectors >> 16) & 0xff;
921
922 tf.hob_lbal = (new_sectors >> 24) & 0xff;
923 tf.hob_lbam = (new_sectors >> 32) & 0xff;
924 tf.hob_lbah = (new_sectors >> 40) & 0xff;
925
926 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
927 if (err)
928 return 0;
929
930 return ata_tf_to_lba48(&tf);
931}
932
933/**
934 * ata_set_native_max_address - LBA28 native max set
935 * @dev: Device to query
6b38d1d1 936 * @new_sectors: new max sectors value to set for the device
1e999736
AC
937 *
938 * Perform an LBA28 size set max upon the device in question. Return the
939 * actual LBA28 size or zero if the command fails.
940 */
941
942static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors)
943{
944 unsigned int err;
945 struct ata_taskfile tf;
946
947 new_sectors--;
948
949 ata_tf_init(dev, &tf);
950
951 tf.command = ATA_CMD_SET_MAX;
952 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
953 tf.protocol |= ATA_PROT_NODATA;
954
955 tf.lbal = (new_sectors >> 0) & 0xff;
956 tf.lbam = (new_sectors >> 8) & 0xff;
957 tf.lbah = (new_sectors >> 16) & 0xff;
958 tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40;
959
960 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
961 if (err)
962 return 0;
963
964 return ata_tf_to_lba(&tf);
965}
966
967/**
968 * ata_hpa_resize - Resize a device with an HPA set
969 * @dev: Device to resize
970 *
971 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
972 * it if required to the full size of the media. The caller must check
973 * the drive has the HPA feature set enabled.
974 */
975
976static u64 ata_hpa_resize(struct ata_device *dev)
977{
978 u64 sectors = dev->n_sectors;
979 u64 hpa_sectors;
a617c09f 980
1e999736
AC
981 if (ata_id_has_lba48(dev->id))
982 hpa_sectors = ata_read_native_max_address_ext(dev);
983 else
984 hpa_sectors = ata_read_native_max_address(dev);
985
986 /* if no hpa, both should be equal */
bd1d5ec6
AM
987 ata_dev_printk(dev, KERN_INFO, "%s 1: sectors = %lld, "
988 "hpa_sectors = %lld\n",
989 __FUNCTION__, (long long)sectors, (long long)hpa_sectors);
1e999736
AC
990
991 if (hpa_sectors > sectors) {
992 ata_dev_printk(dev, KERN_INFO,
993 "Host Protected Area detected:\n"
994 "\tcurrent size: %lld sectors\n"
995 "\tnative size: %lld sectors\n",
bd1d5ec6 996 (long long)sectors, (long long)hpa_sectors);
1e999736
AC
997
998 if (ata_ignore_hpa) {
999 if (ata_id_has_lba48(dev->id))
1000 hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors);
1001 else
bd1d5ec6
AM
1002 hpa_sectors = ata_set_native_max_address(dev,
1003 hpa_sectors);
1e999736
AC
1004
1005 if (hpa_sectors) {
bd1d5ec6
AM
1006 ata_dev_printk(dev, KERN_INFO, "native size "
1007 "increased to %lld sectors\n",
1008 (long long)hpa_sectors);
1e999736
AC
1009 return hpa_sectors;
1010 }
1011 }
1012 }
1013 return sectors;
1014}
1015
2940740b
TH
1016static u64 ata_id_n_sectors(const u16 *id)
1017{
1018 if (ata_id_has_lba(id)) {
1019 if (ata_id_has_lba48(id))
1020 return ata_id_u64(id, 100);
1021 else
1022 return ata_id_u32(id, 60);
1023 } else {
1024 if (ata_id_current_chs_valid(id))
1025 return ata_id_u32(id, 57);
1026 else
1027 return id[1] * id[3] * id[6];
1028 }
1029}
1030
10305f0f
A
1031/**
1032 * ata_id_to_dma_mode - Identify DMA mode from id block
1033 * @dev: device to identify
cc261267 1034 * @unknown: mode to assume if we cannot tell
10305f0f
A
1035 *
1036 * Set up the timing values for the device based upon the identify
1037 * reported values for the DMA mode. This function is used by drivers
1038 * which rely upon firmware configured modes, but wish to report the
1039 * mode correctly when possible.
1040 *
1041 * In addition we emit similarly formatted messages to the default
1042 * ata_dev_set_mode handler, in order to provide consistency of
1043 * presentation.
1044 */
1045
1046void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1047{
1048 unsigned int mask;
1049 u8 mode;
1050
1051 /* Pack the DMA modes */
1052 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1053 if (dev->id[53] & 0x04)
1054 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1055
1056 /* Select the mode in use */
1057 mode = ata_xfer_mask2mode(mask);
1058
1059 if (mode != 0) {
1060 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1061 ata_mode_string(mask));
1062 } else {
1063 /* SWDMA perhaps ? */
1064 mode = unknown;
1065 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1066 }
1067
1068 /* Configure the device reporting */
1069 dev->xfer_mode = mode;
1070 dev->xfer_shift = ata_xfer_mode2shift(mode);
1071}
1072
0baab86b
EF
1073/**
1074 * ata_noop_dev_select - Select device 0/1 on ATA bus
1075 * @ap: ATA channel to manipulate
1076 * @device: ATA device (numbered from zero) to select
1077 *
1078 * This function performs no actual function.
1079 *
1080 * May be used as the dev_select() entry in ata_port_operations.
1081 *
1082 * LOCKING:
1083 * caller.
1084 */
1da177e4
LT
1085void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1086{
1087}
1088
0baab86b 1089
1da177e4
LT
1090/**
1091 * ata_std_dev_select - Select device 0/1 on ATA bus
1092 * @ap: ATA channel to manipulate
1093 * @device: ATA device (numbered from zero) to select
1094 *
1095 * Use the method defined in the ATA specification to
1096 * make either device 0, or device 1, active on the
0baab86b
EF
1097 * ATA channel. Works with both PIO and MMIO.
1098 *
1099 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
1100 *
1101 * LOCKING:
1102 * caller.
1103 */
1104
1105void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1106{
1107 u8 tmp;
1108
1109 if (device == 0)
1110 tmp = ATA_DEVICE_OBS;
1111 else
1112 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1113
0d5ff566 1114 iowrite8(tmp, ap->ioaddr.device_addr);
1da177e4
LT
1115 ata_pause(ap); /* needed; also flushes, for mmio */
1116}
1117
1118/**
1119 * ata_dev_select - Select device 0/1 on ATA bus
1120 * @ap: ATA channel to manipulate
1121 * @device: ATA device (numbered from zero) to select
1122 * @wait: non-zero to wait for Status register BSY bit to clear
1123 * @can_sleep: non-zero if context allows sleeping
1124 *
1125 * Use the method defined in the ATA specification to
1126 * make either device 0, or device 1, active on the
1127 * ATA channel.
1128 *
1129 * This is a high-level version of ata_std_dev_select(),
1130 * which additionally provides the services of inserting
1131 * the proper pauses and status polling, where needed.
1132 *
1133 * LOCKING:
1134 * caller.
1135 */
1136
1137void ata_dev_select(struct ata_port *ap, unsigned int device,
1138 unsigned int wait, unsigned int can_sleep)
1139{
88574551 1140 if (ata_msg_probe(ap))
44877b4e
TH
1141 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1142 "device %u, wait %u\n", device, wait);
1da177e4
LT
1143
1144 if (wait)
1145 ata_wait_idle(ap);
1146
1147 ap->ops->dev_select(ap, device);
1148
1149 if (wait) {
1150 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1151 msleep(150);
1152 ata_wait_idle(ap);
1153 }
1154}
1155
1156/**
1157 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1158 * @id: IDENTIFY DEVICE page to dump
1da177e4 1159 *
0bd3300a
TH
1160 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1161 * page.
1da177e4
LT
1162 *
1163 * LOCKING:
1164 * caller.
1165 */
1166
0bd3300a 1167static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1168{
1169 DPRINTK("49==0x%04x "
1170 "53==0x%04x "
1171 "63==0x%04x "
1172 "64==0x%04x "
1173 "75==0x%04x \n",
0bd3300a
TH
1174 id[49],
1175 id[53],
1176 id[63],
1177 id[64],
1178 id[75]);
1da177e4
LT
1179 DPRINTK("80==0x%04x "
1180 "81==0x%04x "
1181 "82==0x%04x "
1182 "83==0x%04x "
1183 "84==0x%04x \n",
0bd3300a
TH
1184 id[80],
1185 id[81],
1186 id[82],
1187 id[83],
1188 id[84]);
1da177e4
LT
1189 DPRINTK("88==0x%04x "
1190 "93==0x%04x\n",
0bd3300a
TH
1191 id[88],
1192 id[93]);
1da177e4
LT
1193}
1194
cb95d562
TH
1195/**
1196 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1197 * @id: IDENTIFY data to compute xfer mask from
1198 *
1199 * Compute the xfermask for this device. This is not as trivial
1200 * as it seems if we must consider early devices correctly.
1201 *
1202 * FIXME: pre IDE drive timing (do we care ?).
1203 *
1204 * LOCKING:
1205 * None.
1206 *
1207 * RETURNS:
1208 * Computed xfermask
1209 */
1210static unsigned int ata_id_xfermask(const u16 *id)
1211{
1212 unsigned int pio_mask, mwdma_mask, udma_mask;
1213
1214 /* Usual case. Word 53 indicates word 64 is valid */
1215 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1216 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1217 pio_mask <<= 3;
1218 pio_mask |= 0x7;
1219 } else {
1220 /* If word 64 isn't valid then Word 51 high byte holds
1221 * the PIO timing number for the maximum. Turn it into
1222 * a mask.
1223 */
7a0f1c8a 1224 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb
AC
1225 if (mode < 5) /* Valid PIO range */
1226 pio_mask = (2 << mode) - 1;
1227 else
1228 pio_mask = 1;
cb95d562
TH
1229
1230 /* But wait.. there's more. Design your standards by
1231 * committee and you too can get a free iordy field to
1232 * process. However its the speeds not the modes that
1233 * are supported... Note drivers using the timing API
1234 * will get this right anyway
1235 */
1236 }
1237
1238 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1239
b352e57d
AC
1240 if (ata_id_is_cfa(id)) {
1241 /*
1242 * Process compact flash extended modes
1243 */
1244 int pio = id[163] & 0x7;
1245 int dma = (id[163] >> 3) & 7;
1246
1247 if (pio)
1248 pio_mask |= (1 << 5);
1249 if (pio > 1)
1250 pio_mask |= (1 << 6);
1251 if (dma)
1252 mwdma_mask |= (1 << 3);
1253 if (dma > 1)
1254 mwdma_mask |= (1 << 4);
1255 }
1256
fb21f0d0
TH
1257 udma_mask = 0;
1258 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1259 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1260
1261 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1262}
1263
86e45b6b
TH
1264/**
1265 * ata_port_queue_task - Queue port_task
1266 * @ap: The ata_port to queue port_task for
e2a7f77a 1267 * @fn: workqueue function to be scheduled
65f27f38 1268 * @data: data for @fn to use
e2a7f77a 1269 * @delay: delay time for workqueue function
86e45b6b
TH
1270 *
1271 * Schedule @fn(@data) for execution after @delay jiffies using
1272 * port_task. There is one port_task per port and it's the
1273 * user(low level driver)'s responsibility to make sure that only
1274 * one task is active at any given time.
1275 *
1276 * libata core layer takes care of synchronization between
1277 * port_task and EH. ata_port_queue_task() may be ignored for EH
1278 * synchronization.
1279 *
1280 * LOCKING:
1281 * Inherited from caller.
1282 */
65f27f38 1283void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
86e45b6b
TH
1284 unsigned long delay)
1285{
1286 int rc;
1287
b51e9e5d 1288 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
86e45b6b
TH
1289 return;
1290
65f27f38
DH
1291 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1292 ap->port_task_data = data;
86e45b6b 1293
52bad64d 1294 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
86e45b6b
TH
1295
1296 /* rc == 0 means that another user is using port task */
1297 WARN_ON(rc == 0);
1298}
1299
1300/**
1301 * ata_port_flush_task - Flush port_task
1302 * @ap: The ata_port to flush port_task for
1303 *
1304 * After this function completes, port_task is guranteed not to
1305 * be running or scheduled.
1306 *
1307 * LOCKING:
1308 * Kernel thread context (may sleep)
1309 */
1310void ata_port_flush_task(struct ata_port *ap)
1311{
1312 unsigned long flags;
1313
1314 DPRINTK("ENTER\n");
1315
ba6a1308 1316 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 1317 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
ba6a1308 1318 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b
TH
1319
1320 DPRINTK("flush #1\n");
28e53bdd 1321 cancel_work_sync(&ap->port_task.work); /* akpm: seems unneeded */
86e45b6b
TH
1322
1323 /*
1324 * At this point, if a task is running, it's guaranteed to see
1325 * the FLUSH flag; thus, it will never queue pio tasks again.
1326 * Cancel and flush.
1327 */
1328 if (!cancel_delayed_work(&ap->port_task)) {
0dd4b21f 1329 if (ata_msg_ctl(ap))
88574551
TH
1330 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1331 __FUNCTION__);
28e53bdd 1332 cancel_work_sync(&ap->port_task.work);
86e45b6b
TH
1333 }
1334
ba6a1308 1335 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 1336 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
ba6a1308 1337 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b 1338
0dd4b21f
BP
1339 if (ata_msg_ctl(ap))
1340 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
1341}
1342
7102d230 1343static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1344{
77853bf2 1345 struct completion *waiting = qc->private_data;
a2a7a662 1346
a2a7a662 1347 complete(waiting);
a2a7a662
TH
1348}
1349
1350/**
2432697b 1351 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1352 * @dev: Device to which the command is sent
1353 * @tf: Taskfile registers for the command and the result
d69cf37d 1354 * @cdb: CDB for packet command
a2a7a662 1355 * @dma_dir: Data tranfer direction of the command
2432697b
TH
1356 * @sg: sg list for the data buffer of the command
1357 * @n_elem: Number of sg entries
a2a7a662
TH
1358 *
1359 * Executes libata internal command with timeout. @tf contains
1360 * command on entry and result on return. Timeout and error
1361 * conditions are reported via return value. No recovery action
1362 * is taken after a command times out. It's caller's duty to
1363 * clean up after timeout.
1364 *
1365 * LOCKING:
1366 * None. Should be called with kernel context, might sleep.
551e8889
TH
1367 *
1368 * RETURNS:
1369 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1370 */
2432697b
TH
1371unsigned ata_exec_internal_sg(struct ata_device *dev,
1372 struct ata_taskfile *tf, const u8 *cdb,
1373 int dma_dir, struct scatterlist *sg,
1374 unsigned int n_elem)
a2a7a662 1375{
3373efd8 1376 struct ata_port *ap = dev->ap;
a2a7a662
TH
1377 u8 command = tf->command;
1378 struct ata_queued_cmd *qc;
2ab7db1f 1379 unsigned int tag, preempted_tag;
dedaf2b0 1380 u32 preempted_sactive, preempted_qc_active;
60be6b9a 1381 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1382 unsigned long flags;
77853bf2 1383 unsigned int err_mask;
d95a717f 1384 int rc;
a2a7a662 1385
ba6a1308 1386 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1387
e3180499 1388 /* no internal command while frozen */
b51e9e5d 1389 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1390 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1391 return AC_ERR_SYSTEM;
1392 }
1393
2ab7db1f 1394 /* initialize internal qc */
a2a7a662 1395
2ab7db1f
TH
1396 /* XXX: Tag 0 is used for drivers with legacy EH as some
1397 * drivers choke if any other tag is given. This breaks
1398 * ata_tag_internal() test for those drivers. Don't use new
1399 * EH stuff without converting to it.
1400 */
1401 if (ap->ops->error_handler)
1402 tag = ATA_TAG_INTERNAL;
1403 else
1404 tag = 0;
1405
6cec4a39 1406 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1407 BUG();
f69499f4 1408 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1409
1410 qc->tag = tag;
1411 qc->scsicmd = NULL;
1412 qc->ap = ap;
1413 qc->dev = dev;
1414 ata_qc_reinit(qc);
1415
1416 preempted_tag = ap->active_tag;
dedaf2b0
TH
1417 preempted_sactive = ap->sactive;
1418 preempted_qc_active = ap->qc_active;
2ab7db1f 1419 ap->active_tag = ATA_TAG_POISON;
dedaf2b0
TH
1420 ap->sactive = 0;
1421 ap->qc_active = 0;
2ab7db1f
TH
1422
1423 /* prepare & issue qc */
a2a7a662 1424 qc->tf = *tf;
d69cf37d
TH
1425 if (cdb)
1426 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1427 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1428 qc->dma_dir = dma_dir;
1429 if (dma_dir != DMA_NONE) {
2432697b
TH
1430 unsigned int i, buflen = 0;
1431
1432 for (i = 0; i < n_elem; i++)
1433 buflen += sg[i].length;
1434
1435 ata_sg_init(qc, sg, n_elem);
49c80429 1436 qc->nbytes = buflen;
a2a7a662
TH
1437 }
1438
77853bf2 1439 qc->private_data = &wait;
a2a7a662
TH
1440 qc->complete_fn = ata_qc_complete_internal;
1441
8e0e694a 1442 ata_qc_issue(qc);
a2a7a662 1443
ba6a1308 1444 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1445
a8601e5f 1446 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
d95a717f
TH
1447
1448 ata_port_flush_task(ap);
41ade50c 1449
d95a717f 1450 if (!rc) {
ba6a1308 1451 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1452
1453 /* We're racing with irq here. If we lose, the
1454 * following test prevents us from completing the qc
d95a717f
TH
1455 * twice. If we win, the port is frozen and will be
1456 * cleaned up by ->post_internal_cmd().
a2a7a662 1457 */
77853bf2 1458 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1459 qc->err_mask |= AC_ERR_TIMEOUT;
1460
1461 if (ap->ops->error_handler)
1462 ata_port_freeze(ap);
1463 else
1464 ata_qc_complete(qc);
f15a1daf 1465
0dd4b21f
BP
1466 if (ata_msg_warn(ap))
1467 ata_dev_printk(dev, KERN_WARNING,
88574551 1468 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1469 }
1470
ba6a1308 1471 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1472 }
1473
d95a717f
TH
1474 /* do post_internal_cmd */
1475 if (ap->ops->post_internal_cmd)
1476 ap->ops->post_internal_cmd(qc);
1477
a51d644a
TH
1478 /* perform minimal error analysis */
1479 if (qc->flags & ATA_QCFLAG_FAILED) {
1480 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1481 qc->err_mask |= AC_ERR_DEV;
1482
1483 if (!qc->err_mask)
1484 qc->err_mask |= AC_ERR_OTHER;
1485
1486 if (qc->err_mask & ~AC_ERR_OTHER)
1487 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1488 }
1489
15869303 1490 /* finish up */
ba6a1308 1491 spin_lock_irqsave(ap->lock, flags);
15869303 1492
e61e0672 1493 *tf = qc->result_tf;
77853bf2
TH
1494 err_mask = qc->err_mask;
1495
1496 ata_qc_free(qc);
2ab7db1f 1497 ap->active_tag = preempted_tag;
dedaf2b0
TH
1498 ap->sactive = preempted_sactive;
1499 ap->qc_active = preempted_qc_active;
77853bf2 1500
1f7dd3e9
TH
1501 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1502 * Until those drivers are fixed, we detect the condition
1503 * here, fail the command with AC_ERR_SYSTEM and reenable the
1504 * port.
1505 *
1506 * Note that this doesn't change any behavior as internal
1507 * command failure results in disabling the device in the
1508 * higher layer for LLDDs without new reset/EH callbacks.
1509 *
1510 * Kill the following code as soon as those drivers are fixed.
1511 */
198e0fed 1512 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1513 err_mask |= AC_ERR_SYSTEM;
1514 ata_port_probe(ap);
1515 }
1516
ba6a1308 1517 spin_unlock_irqrestore(ap->lock, flags);
15869303 1518
77853bf2 1519 return err_mask;
a2a7a662
TH
1520}
1521
2432697b 1522/**
33480a0e 1523 * ata_exec_internal - execute libata internal command
2432697b
TH
1524 * @dev: Device to which the command is sent
1525 * @tf: Taskfile registers for the command and the result
1526 * @cdb: CDB for packet command
1527 * @dma_dir: Data tranfer direction of the command
1528 * @buf: Data buffer of the command
1529 * @buflen: Length of data buffer
1530 *
1531 * Wrapper around ata_exec_internal_sg() which takes simple
1532 * buffer instead of sg list.
1533 *
1534 * LOCKING:
1535 * None. Should be called with kernel context, might sleep.
1536 *
1537 * RETURNS:
1538 * Zero on success, AC_ERR_* mask on failure
1539 */
1540unsigned ata_exec_internal(struct ata_device *dev,
1541 struct ata_taskfile *tf, const u8 *cdb,
1542 int dma_dir, void *buf, unsigned int buflen)
1543{
33480a0e
TH
1544 struct scatterlist *psg = NULL, sg;
1545 unsigned int n_elem = 0;
2432697b 1546
33480a0e
TH
1547 if (dma_dir != DMA_NONE) {
1548 WARN_ON(!buf);
1549 sg_init_one(&sg, buf, buflen);
1550 psg = &sg;
1551 n_elem++;
1552 }
2432697b 1553
33480a0e 1554 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
2432697b
TH
1555}
1556
977e6b9f
TH
1557/**
1558 * ata_do_simple_cmd - execute simple internal command
1559 * @dev: Device to which the command is sent
1560 * @cmd: Opcode to execute
1561 *
1562 * Execute a 'simple' command, that only consists of the opcode
1563 * 'cmd' itself, without filling any other registers
1564 *
1565 * LOCKING:
1566 * Kernel thread context (may sleep).
1567 *
1568 * RETURNS:
1569 * Zero on success, AC_ERR_* mask on failure
e58eb583 1570 */
77b08fb5 1571unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1572{
1573 struct ata_taskfile tf;
e58eb583
TH
1574
1575 ata_tf_init(dev, &tf);
1576
1577 tf.command = cmd;
1578 tf.flags |= ATA_TFLAG_DEVICE;
1579 tf.protocol = ATA_PROT_NODATA;
1580
977e6b9f 1581 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
e58eb583
TH
1582}
1583
1bc4ccff
AC
1584/**
1585 * ata_pio_need_iordy - check if iordy needed
1586 * @adev: ATA device
1587 *
1588 * Check if the current speed of the device requires IORDY. Used
1589 * by various controllers for chip configuration.
1590 */
a617c09f 1591
1bc4ccff
AC
1592unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1593{
432729f0
AC
1594 /* Controller doesn't support IORDY. Probably a pointless check
1595 as the caller should know this */
1596 if (adev->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1597 return 0;
432729f0
AC
1598 /* PIO3 and higher it is mandatory */
1599 if (adev->pio_mode > XFER_PIO_2)
1600 return 1;
1601 /* We turn it on when possible */
1602 if (ata_id_has_iordy(adev->id))
1bc4ccff 1603 return 1;
432729f0
AC
1604 return 0;
1605}
2e9edbf8 1606
432729f0
AC
1607/**
1608 * ata_pio_mask_no_iordy - Return the non IORDY mask
1609 * @adev: ATA device
1610 *
1611 * Compute the highest mode possible if we are not using iordy. Return
1612 * -1 if no iordy mode is available.
1613 */
a617c09f 1614
432729f0
AC
1615static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1616{
1bc4ccff 1617 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1618 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1619 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1620 /* Is the speed faster than the drive allows non IORDY ? */
1621 if (pio) {
1622 /* This is cycle times not frequency - watch the logic! */
1623 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1624 return 3 << ATA_SHIFT_PIO;
1625 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1626 }
1627 }
432729f0 1628 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1629}
1630
1da177e4 1631/**
49016aca 1632 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1633 * @dev: target device
1634 * @p_class: pointer to class of the target device (may be changed)
bff04647 1635 * @flags: ATA_READID_* flags
fe635c7e 1636 * @id: buffer to read IDENTIFY data into
1da177e4 1637 *
49016aca
TH
1638 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1639 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1640 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1641 * for pre-ATA4 drives.
1da177e4
LT
1642 *
1643 * LOCKING:
49016aca
TH
1644 * Kernel thread context (may sleep)
1645 *
1646 * RETURNS:
1647 * 0 on success, -errno otherwise.
1da177e4 1648 */
a9beec95 1649int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1650 unsigned int flags, u16 *id)
1da177e4 1651{
3373efd8 1652 struct ata_port *ap = dev->ap;
49016aca 1653 unsigned int class = *p_class;
a0123703 1654 struct ata_taskfile tf;
49016aca
TH
1655 unsigned int err_mask = 0;
1656 const char *reason;
54936f8b 1657 int may_fallback = 1, tried_spinup = 0;
49016aca 1658 int rc;
1da177e4 1659
0dd4b21f 1660 if (ata_msg_ctl(ap))
44877b4e 1661 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1662
49016aca 1663 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
49016aca 1664 retry:
3373efd8 1665 ata_tf_init(dev, &tf);
a0123703 1666
49016aca
TH
1667 switch (class) {
1668 case ATA_DEV_ATA:
a0123703 1669 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1670 break;
1671 case ATA_DEV_ATAPI:
a0123703 1672 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1673 break;
1674 default:
1675 rc = -ENODEV;
1676 reason = "unsupported class";
1677 goto err_out;
1da177e4
LT
1678 }
1679
a0123703 1680 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1681
1682 /* Some devices choke if TF registers contain garbage. Make
1683 * sure those are properly initialized.
1684 */
1685 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1686
1687 /* Device presence detection is unreliable on some
1688 * controllers. Always poll IDENTIFY if available.
1689 */
1690 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1691
3373efd8 1692 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1693 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1694 if (err_mask) {
800b3996 1695 if (err_mask & AC_ERR_NODEV_HINT) {
55a8e2c8 1696 DPRINTK("ata%u.%d: NODEV after polling detection\n",
44877b4e 1697 ap->print_id, dev->devno);
55a8e2c8
TH
1698 return -ENOENT;
1699 }
1700
54936f8b
TH
1701 /* Device or controller might have reported the wrong
1702 * device class. Give a shot at the other IDENTIFY if
1703 * the current one is aborted by the device.
1704 */
1705 if (may_fallback &&
1706 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1707 may_fallback = 0;
1708
1709 if (class == ATA_DEV_ATA)
1710 class = ATA_DEV_ATAPI;
1711 else
1712 class = ATA_DEV_ATA;
1713 goto retry;
1714 }
1715
49016aca
TH
1716 rc = -EIO;
1717 reason = "I/O error";
1da177e4
LT
1718 goto err_out;
1719 }
1720
54936f8b
TH
1721 /* Falling back doesn't make sense if ID data was read
1722 * successfully at least once.
1723 */
1724 may_fallback = 0;
1725
49016aca 1726 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1727
49016aca 1728 /* sanity check */
a4f5749b
TH
1729 rc = -EINVAL;
1730 reason = "device reports illegal type";
1731
1732 if (class == ATA_DEV_ATA) {
1733 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1734 goto err_out;
1735 } else {
1736 if (ata_id_is_ata(id))
1737 goto err_out;
49016aca
TH
1738 }
1739
169439c2
ML
1740 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1741 tried_spinup = 1;
1742 /*
1743 * Drive powered-up in standby mode, and requires a specific
1744 * SET_FEATURES spin-up subcommand before it will accept
1745 * anything other than the original IDENTIFY command.
1746 */
1747 ata_tf_init(dev, &tf);
1748 tf.command = ATA_CMD_SET_FEATURES;
1749 tf.feature = SETFEATURES_SPINUP;
1750 tf.protocol = ATA_PROT_NODATA;
1751 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1752 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1753 if (err_mask) {
1754 rc = -EIO;
1755 reason = "SPINUP failed";
1756 goto err_out;
1757 }
1758 /*
1759 * If the drive initially returned incomplete IDENTIFY info,
1760 * we now must reissue the IDENTIFY command.
1761 */
1762 if (id[2] == 0x37c8)
1763 goto retry;
1764 }
1765
bff04647 1766 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
1767 /*
1768 * The exact sequence expected by certain pre-ATA4 drives is:
1769 * SRST RESET
1770 * IDENTIFY
1771 * INITIALIZE DEVICE PARAMETERS
1772 * anything else..
1773 * Some drives were very specific about that exact sequence.
1774 */
1775 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1776 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1777 if (err_mask) {
1778 rc = -EIO;
1779 reason = "INIT_DEV_PARAMS failed";
1780 goto err_out;
1781 }
1782
1783 /* current CHS translation info (id[53-58]) might be
1784 * changed. reread the identify device info.
1785 */
bff04647 1786 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
1787 goto retry;
1788 }
1789 }
1790
1791 *p_class = class;
fe635c7e 1792
49016aca
TH
1793 return 0;
1794
1795 err_out:
88574551 1796 if (ata_msg_warn(ap))
0dd4b21f 1797 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 1798 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1799 return rc;
1800}
1801
3373efd8 1802static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1803{
3373efd8 1804 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1805}
1806
a6e6ce8e
TH
1807static void ata_dev_config_ncq(struct ata_device *dev,
1808 char *desc, size_t desc_sz)
1809{
1810 struct ata_port *ap = dev->ap;
1811 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1812
1813 if (!ata_id_has_ncq(dev->id)) {
1814 desc[0] = '\0';
1815 return;
1816 }
6919a0a6
AC
1817 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1818 snprintf(desc, desc_sz, "NCQ (not used)");
1819 return;
1820 }
a6e6ce8e 1821 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 1822 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
1823 dev->flags |= ATA_DFLAG_NCQ;
1824 }
1825
1826 if (hdepth >= ddepth)
1827 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1828 else
1829 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1830}
1831
49016aca 1832/**
ffeae418 1833 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
1834 * @dev: Target device to configure
1835 *
1836 * Configure @dev according to @dev->id. Generic and low-level
1837 * driver specific fixups are also applied.
49016aca
TH
1838 *
1839 * LOCKING:
ffeae418
TH
1840 * Kernel thread context (may sleep)
1841 *
1842 * RETURNS:
1843 * 0 on success, -errno otherwise
49016aca 1844 */
efdaedc4 1845int ata_dev_configure(struct ata_device *dev)
49016aca 1846{
3373efd8 1847 struct ata_port *ap = dev->ap;
efdaedc4 1848 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1148c3a7 1849 const u16 *id = dev->id;
ff8854b2 1850 unsigned int xfer_mask;
b352e57d 1851 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
1852 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1853 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 1854 int rc;
49016aca 1855
0dd4b21f 1856 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e
TH
1857 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1858 __FUNCTION__);
ffeae418 1859 return 0;
49016aca
TH
1860 }
1861
0dd4b21f 1862 if (ata_msg_probe(ap))
44877b4e 1863 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1864
08573a86 1865 /* set _SDD */
3a32a8e9 1866 rc = ata_acpi_push_id(dev);
08573a86
KCA
1867 if (rc) {
1868 ata_dev_printk(dev, KERN_WARNING, "failed to set _SDD(%d)\n",
1869 rc);
1870 }
1871
1872 /* retrieve and execute the ATA task file of _GTF */
1873 ata_acpi_exec_tfs(ap);
1874
c39f5ebe 1875 /* print device capabilities */
0dd4b21f 1876 if (ata_msg_probe(ap))
88574551
TH
1877 ata_dev_printk(dev, KERN_DEBUG,
1878 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1879 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 1880 __FUNCTION__,
f15a1daf
TH
1881 id[49], id[82], id[83], id[84],
1882 id[85], id[86], id[87], id[88]);
c39f5ebe 1883
208a9933 1884 /* initialize to-be-configured parameters */
ea1dd4e1 1885 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1886 dev->max_sectors = 0;
1887 dev->cdb_len = 0;
1888 dev->n_sectors = 0;
1889 dev->cylinders = 0;
1890 dev->heads = 0;
1891 dev->sectors = 0;
1892
1da177e4
LT
1893 /*
1894 * common ATA, ATAPI feature tests
1895 */
1896
ff8854b2 1897 /* find max transfer mode; for printk only */
1148c3a7 1898 xfer_mask = ata_id_xfermask(id);
1da177e4 1899
0dd4b21f
BP
1900 if (ata_msg_probe(ap))
1901 ata_dump_id(id);
1da177e4 1902
ef143d57
AL
1903 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1904 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1905 sizeof(fwrevbuf));
1906
1907 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1908 sizeof(modelbuf));
1909
1da177e4
LT
1910 /* ATA-specific feature tests */
1911 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
1912 if (ata_id_is_cfa(id)) {
1913 if (id[162] & 1) /* CPRM may make this media unusable */
44877b4e
TH
1914 ata_dev_printk(dev, KERN_WARNING,
1915 "supports DRM functions and may "
1916 "not be fully accessable.\n");
b352e57d
AC
1917 snprintf(revbuf, 7, "CFA");
1918 }
1919 else
1920 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1921
1148c3a7 1922 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1923
3f64f565
EM
1924 if (dev->id[59] & 0x100)
1925 dev->multi_count = dev->id[59] & 0xff;
1926
1148c3a7 1927 if (ata_id_has_lba(id)) {
4c2d721a 1928 const char *lba_desc;
a6e6ce8e 1929 char ncq_desc[20];
8bf62ece 1930
4c2d721a
TH
1931 lba_desc = "LBA";
1932 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1933 if (ata_id_has_lba48(id)) {
8bf62ece 1934 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 1935 lba_desc = "LBA48";
6fc49adb
TH
1936
1937 if (dev->n_sectors >= (1UL << 28) &&
1938 ata_id_has_flush_ext(id))
1939 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 1940 }
8bf62ece 1941
1e999736
AC
1942 if (ata_id_hpa_enabled(dev->id))
1943 dev->n_sectors = ata_hpa_resize(dev);
1944
a6e6ce8e
TH
1945 /* config NCQ */
1946 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1947
8bf62ece 1948 /* print device info to dmesg */
3f64f565
EM
1949 if (ata_msg_drv(ap) && print_info) {
1950 ata_dev_printk(dev, KERN_INFO,
1951 "%s: %s, %s, max %s\n",
1952 revbuf, modelbuf, fwrevbuf,
1953 ata_mode_string(xfer_mask));
1954 ata_dev_printk(dev, KERN_INFO,
1955 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 1956 (unsigned long long)dev->n_sectors,
3f64f565
EM
1957 dev->multi_count, lba_desc, ncq_desc);
1958 }
ffeae418 1959 } else {
8bf62ece
AL
1960 /* CHS */
1961
1962 /* Default translation */
1148c3a7
TH
1963 dev->cylinders = id[1];
1964 dev->heads = id[3];
1965 dev->sectors = id[6];
8bf62ece 1966
1148c3a7 1967 if (ata_id_current_chs_valid(id)) {
8bf62ece 1968 /* Current CHS translation is valid. */
1148c3a7
TH
1969 dev->cylinders = id[54];
1970 dev->heads = id[55];
1971 dev->sectors = id[56];
8bf62ece
AL
1972 }
1973
1974 /* print device info to dmesg */
3f64f565 1975 if (ata_msg_drv(ap) && print_info) {
88574551 1976 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
1977 "%s: %s, %s, max %s\n",
1978 revbuf, modelbuf, fwrevbuf,
1979 ata_mode_string(xfer_mask));
a84471fe 1980 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
1981 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1982 (unsigned long long)dev->n_sectors,
1983 dev->multi_count, dev->cylinders,
1984 dev->heads, dev->sectors);
1985 }
07f6f7d0
AL
1986 }
1987
6e7846e9 1988 dev->cdb_len = 16;
1da177e4
LT
1989 }
1990
1991 /* ATAPI-specific feature tests */
2c13b7ce 1992 else if (dev->class == ATA_DEV_ATAPI) {
08a556db
AL
1993 char *cdb_intr_string = "";
1994
1148c3a7 1995 rc = atapi_cdb_len(id);
1da177e4 1996 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 1997 if (ata_msg_warn(ap))
88574551
TH
1998 ata_dev_printk(dev, KERN_WARNING,
1999 "unsupported CDB len\n");
ffeae418 2000 rc = -EINVAL;
1da177e4
LT
2001 goto err_out_nosup;
2002 }
6e7846e9 2003 dev->cdb_len = (unsigned int) rc;
1da177e4 2004
08a556db 2005 if (ata_id_cdb_intr(dev->id)) {
312f7da2 2006 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
2007 cdb_intr_string = ", CDB intr";
2008 }
312f7da2 2009
1da177e4 2010 /* print device info to dmesg */
5afc8142 2011 if (ata_msg_drv(ap) && print_info)
ef143d57
AL
2012 ata_dev_printk(dev, KERN_INFO,
2013 "ATAPI: %s, %s, max %s%s\n",
2014 modelbuf, fwrevbuf,
12436c30
TH
2015 ata_mode_string(xfer_mask),
2016 cdb_intr_string);
1da177e4
LT
2017 }
2018
914ed354
TH
2019 /* determine max_sectors */
2020 dev->max_sectors = ATA_MAX_SECTORS;
2021 if (dev->flags & ATA_DFLAG_LBA48)
2022 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2023
93590859
AC
2024 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2025 /* Let the user know. We don't want to disallow opens for
2026 rescue purposes, or in case the vendor is just a blithering
2027 idiot */
2028 if (print_info) {
2029 ata_dev_printk(dev, KERN_WARNING,
2030"Drive reports diagnostics failure. This may indicate a drive\n");
2031 ata_dev_printk(dev, KERN_WARNING,
2032"fault or invalid emulation. Contact drive vendor for information.\n");
2033 }
2034 }
2035
4b2f3ede 2036 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 2037 if (ata_dev_knobble(dev)) {
5afc8142 2038 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2039 ata_dev_printk(dev, KERN_INFO,
2040 "applying bridge limits\n");
5a529139 2041 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2042 dev->max_sectors = ATA_MAX_SECTORS;
2043 }
2044
18d6e9d5 2045 if (ata_device_blacklisted(dev) & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2046 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2047 dev->max_sectors);
18d6e9d5 2048
6f23a31d
AL
2049 /* limit ATAPI DMA to R/W commands only */
2050 if (ata_device_blacklisted(dev) & ATA_HORKAGE_DMA_RW_ONLY)
2051 dev->horkage |= ATA_HORKAGE_DMA_RW_ONLY;
2052
4b2f3ede 2053 if (ap->ops->dev_config)
cd0d3bbc 2054 ap->ops->dev_config(dev);
4b2f3ede 2055
0dd4b21f
BP
2056 if (ata_msg_probe(ap))
2057 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2058 __FUNCTION__, ata_chk_status(ap));
ffeae418 2059 return 0;
1da177e4
LT
2060
2061err_out_nosup:
0dd4b21f 2062 if (ata_msg_probe(ap))
88574551
TH
2063 ata_dev_printk(dev, KERN_DEBUG,
2064 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 2065 return rc;
1da177e4
LT
2066}
2067
be0d18df 2068/**
2e41e8e6 2069 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2070 * @ap: port
2071 *
2e41e8e6 2072 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2073 * detection.
2074 */
2075
2076int ata_cable_40wire(struct ata_port *ap)
2077{
2078 return ATA_CBL_PATA40;
2079}
2080
2081/**
2e41e8e6 2082 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2083 * @ap: port
2084 *
2e41e8e6 2085 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2086 * detection.
2087 */
2088
2089int ata_cable_80wire(struct ata_port *ap)
2090{
2091 return ATA_CBL_PATA80;
2092}
2093
2094/**
2095 * ata_cable_unknown - return unknown PATA cable.
2096 * @ap: port
2097 *
2098 * Helper method for drivers which have no PATA cable detection.
2099 */
2100
2101int ata_cable_unknown(struct ata_port *ap)
2102{
2103 return ATA_CBL_PATA_UNK;
2104}
2105
2106/**
2107 * ata_cable_sata - return SATA cable type
2108 * @ap: port
2109 *
2110 * Helper method for drivers which have SATA cables
2111 */
2112
2113int ata_cable_sata(struct ata_port *ap)
2114{
2115 return ATA_CBL_SATA;
2116}
2117
1da177e4
LT
2118/**
2119 * ata_bus_probe - Reset and probe ATA bus
2120 * @ap: Bus to probe
2121 *
0cba632b
JG
2122 * Master ATA bus probing function. Initiates a hardware-dependent
2123 * bus reset, then attempts to identify any devices found on
2124 * the bus.
2125 *
1da177e4 2126 * LOCKING:
0cba632b 2127 * PCI/etc. bus probe sem.
1da177e4
LT
2128 *
2129 * RETURNS:
96072e69 2130 * Zero on success, negative errno otherwise.
1da177e4
LT
2131 */
2132
80289167 2133int ata_bus_probe(struct ata_port *ap)
1da177e4 2134{
28ca5c57 2135 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2136 int tries[ATA_MAX_DEVICES];
4ae72a1e 2137 int i, rc;
e82cbdb9 2138 struct ata_device *dev;
1da177e4 2139
28ca5c57 2140 ata_port_probe(ap);
c19ba8af 2141
14d2bac1
TH
2142 for (i = 0; i < ATA_MAX_DEVICES; i++)
2143 tries[i] = ATA_PROBE_MAX_TRIES;
2144
2145 retry:
2044470c 2146 /* reset and determine device classes */
52783c5d 2147 ap->ops->phy_reset(ap);
2061a47a 2148
52783c5d
TH
2149 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2150 dev = &ap->device[i];
c19ba8af 2151
52783c5d
TH
2152 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2153 dev->class != ATA_DEV_UNKNOWN)
2154 classes[dev->devno] = dev->class;
2155 else
2156 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2157
52783c5d 2158 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2159 }
1da177e4 2160
52783c5d 2161 ata_port_probe(ap);
2044470c 2162
b6079ca4
AC
2163 /* after the reset the device state is PIO 0 and the controller
2164 state is undefined. Record the mode */
2165
2166 for (i = 0; i < ATA_MAX_DEVICES; i++)
2167 ap->device[i].pio_mode = XFER_PIO_0;
2168
f31f0cc2
JG
2169 /* read IDENTIFY page and configure devices. We have to do the identify
2170 specific sequence bass-ackwards so that PDIAG- is released by
2171 the slave device */
2172
2173 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) {
e82cbdb9 2174 dev = &ap->device[i];
28ca5c57 2175
ec573755
TH
2176 if (tries[i])
2177 dev->class = classes[i];
ffeae418 2178
14d2bac1 2179 if (!ata_dev_enabled(dev))
ffeae418 2180 continue;
ffeae418 2181
bff04647
TH
2182 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2183 dev->id);
14d2bac1
TH
2184 if (rc)
2185 goto fail;
f31f0cc2
JG
2186 }
2187
be0d18df
AC
2188 /* Now ask for the cable type as PDIAG- should have been released */
2189 if (ap->ops->cable_detect)
2190 ap->cbl = ap->ops->cable_detect(ap);
2191
f31f0cc2
JG
2192 /* After the identify sequence we can now set up the devices. We do
2193 this in the normal order so that the user doesn't get confused */
2194
2195 for(i = 0; i < ATA_MAX_DEVICES; i++) {
2196 dev = &ap->device[i];
2197 if (!ata_dev_enabled(dev))
2198 continue;
14d2bac1 2199
efdaedc4
TH
2200 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
2201 rc = ata_dev_configure(dev);
2202 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2203 if (rc)
2204 goto fail;
1da177e4
LT
2205 }
2206
e82cbdb9 2207 /* configure transfer mode */
3adcebb2 2208 rc = ata_set_mode(ap, &dev);
4ae72a1e 2209 if (rc)
51713d35 2210 goto fail;
1da177e4 2211
e82cbdb9
TH
2212 for (i = 0; i < ATA_MAX_DEVICES; i++)
2213 if (ata_dev_enabled(&ap->device[i]))
2214 return 0;
1da177e4 2215
e82cbdb9
TH
2216 /* no device present, disable port */
2217 ata_port_disable(ap);
1da177e4 2218 ap->ops->port_disable(ap);
96072e69 2219 return -ENODEV;
14d2bac1
TH
2220
2221 fail:
4ae72a1e
TH
2222 tries[dev->devno]--;
2223
14d2bac1
TH
2224 switch (rc) {
2225 case -EINVAL:
4ae72a1e 2226 /* eeek, something went very wrong, give up */
14d2bac1
TH
2227 tries[dev->devno] = 0;
2228 break;
4ae72a1e
TH
2229
2230 case -ENODEV:
2231 /* give it just one more chance */
2232 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2233 case -EIO:
4ae72a1e
TH
2234 if (tries[dev->devno] == 1) {
2235 /* This is the last chance, better to slow
2236 * down than lose it.
2237 */
2238 sata_down_spd_limit(ap);
2239 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2240 }
14d2bac1
TH
2241 }
2242
4ae72a1e 2243 if (!tries[dev->devno])
3373efd8 2244 ata_dev_disable(dev);
ec573755 2245
14d2bac1 2246 goto retry;
1da177e4
LT
2247}
2248
2249/**
0cba632b
JG
2250 * ata_port_probe - Mark port as enabled
2251 * @ap: Port for which we indicate enablement
1da177e4 2252 *
0cba632b
JG
2253 * Modify @ap data structure such that the system
2254 * thinks that the entire port is enabled.
2255 *
cca3974e 2256 * LOCKING: host lock, or some other form of
0cba632b 2257 * serialization.
1da177e4
LT
2258 */
2259
2260void ata_port_probe(struct ata_port *ap)
2261{
198e0fed 2262 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
2263}
2264
3be680b7
TH
2265/**
2266 * sata_print_link_status - Print SATA link status
2267 * @ap: SATA port to printk link status about
2268 *
2269 * This function prints link speed and status of a SATA link.
2270 *
2271 * LOCKING:
2272 * None.
2273 */
43727fbc 2274void sata_print_link_status(struct ata_port *ap)
3be680b7 2275{
6d5f9732 2276 u32 sstatus, scontrol, tmp;
3be680b7 2277
81952c54 2278 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
3be680b7 2279 return;
81952c54 2280 sata_scr_read(ap, SCR_CONTROL, &scontrol);
3be680b7 2281
81952c54 2282 if (ata_port_online(ap)) {
3be680b7 2283 tmp = (sstatus >> 4) & 0xf;
f15a1daf
TH
2284 ata_port_printk(ap, KERN_INFO,
2285 "SATA link up %s (SStatus %X SControl %X)\n",
2286 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2287 } else {
f15a1daf
TH
2288 ata_port_printk(ap, KERN_INFO,
2289 "SATA link down (SStatus %X SControl %X)\n",
2290 sstatus, scontrol);
3be680b7
TH
2291 }
2292}
2293
1da177e4 2294/**
780a87f7
JG
2295 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2296 * @ap: SATA port associated with target SATA PHY.
1da177e4 2297 *
780a87f7
JG
2298 * This function issues commands to standard SATA Sxxx
2299 * PHY registers, to wake up the phy (and device), and
2300 * clear any reset condition.
1da177e4
LT
2301 *
2302 * LOCKING:
0cba632b 2303 * PCI/etc. bus probe sem.
1da177e4
LT
2304 *
2305 */
2306void __sata_phy_reset(struct ata_port *ap)
2307{
2308 u32 sstatus;
2309 unsigned long timeout = jiffies + (HZ * 5);
2310
2311 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 2312 /* issue phy wake/reset */
81952c54 2313 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
2314 /* Couldn't find anything in SATA I/II specs, but
2315 * AHCI-1.1 10.4.2 says at least 1 ms. */
2316 mdelay(1);
1da177e4 2317 }
81952c54
TH
2318 /* phy wake/clear reset */
2319 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1da177e4
LT
2320
2321 /* wait for phy to become ready, if necessary */
2322 do {
2323 msleep(200);
81952c54 2324 sata_scr_read(ap, SCR_STATUS, &sstatus);
1da177e4
LT
2325 if ((sstatus & 0xf) != 1)
2326 break;
2327 } while (time_before(jiffies, timeout));
2328
3be680b7
TH
2329 /* print link status */
2330 sata_print_link_status(ap);
656563e3 2331
3be680b7 2332 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 2333 if (!ata_port_offline(ap))
1da177e4 2334 ata_port_probe(ap);
3be680b7 2335 else
1da177e4 2336 ata_port_disable(ap);
1da177e4 2337
198e0fed 2338 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2339 return;
2340
2341 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2342 ata_port_disable(ap);
2343 return;
2344 }
2345
2346 ap->cbl = ATA_CBL_SATA;
2347}
2348
2349/**
780a87f7
JG
2350 * sata_phy_reset - Reset SATA bus.
2351 * @ap: SATA port associated with target SATA PHY.
1da177e4 2352 *
780a87f7
JG
2353 * This function resets the SATA bus, and then probes
2354 * the bus for devices.
1da177e4
LT
2355 *
2356 * LOCKING:
0cba632b 2357 * PCI/etc. bus probe sem.
1da177e4
LT
2358 *
2359 */
2360void sata_phy_reset(struct ata_port *ap)
2361{
2362 __sata_phy_reset(ap);
198e0fed 2363 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2364 return;
2365 ata_bus_reset(ap);
2366}
2367
ebdfca6e
AC
2368/**
2369 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2370 * @adev: device
2371 *
2372 * Obtain the other device on the same cable, or if none is
2373 * present NULL is returned
2374 */
2e9edbf8 2375
3373efd8 2376struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2377{
3373efd8 2378 struct ata_port *ap = adev->ap;
ebdfca6e 2379 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 2380 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2381 return NULL;
2382 return pair;
2383}
2384
1da177e4 2385/**
780a87f7
JG
2386 * ata_port_disable - Disable port.
2387 * @ap: Port to be disabled.
1da177e4 2388 *
780a87f7
JG
2389 * Modify @ap data structure such that the system
2390 * thinks that the entire port is disabled, and should
2391 * never attempt to probe or communicate with devices
2392 * on this port.
2393 *
cca3974e 2394 * LOCKING: host lock, or some other form of
780a87f7 2395 * serialization.
1da177e4
LT
2396 */
2397
2398void ata_port_disable(struct ata_port *ap)
2399{
2400 ap->device[0].class = ATA_DEV_NONE;
2401 ap->device[1].class = ATA_DEV_NONE;
198e0fed 2402 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2403}
2404
1c3fae4d 2405/**
3c567b7d 2406 * sata_down_spd_limit - adjust SATA spd limit downward
1c3fae4d
TH
2407 * @ap: Port to adjust SATA spd limit for
2408 *
2409 * Adjust SATA spd limit of @ap downward. Note that this
2410 * function only adjusts the limit. The change must be applied
3c567b7d 2411 * using sata_set_spd().
1c3fae4d
TH
2412 *
2413 * LOCKING:
2414 * Inherited from caller.
2415 *
2416 * RETURNS:
2417 * 0 on success, negative errno on failure
2418 */
3c567b7d 2419int sata_down_spd_limit(struct ata_port *ap)
1c3fae4d 2420{
81952c54
TH
2421 u32 sstatus, spd, mask;
2422 int rc, highbit;
1c3fae4d 2423
81952c54
TH
2424 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2425 if (rc)
2426 return rc;
1c3fae4d
TH
2427
2428 mask = ap->sata_spd_limit;
2429 if (mask <= 1)
2430 return -EINVAL;
2431 highbit = fls(mask) - 1;
2432 mask &= ~(1 << highbit);
2433
81952c54 2434 spd = (sstatus >> 4) & 0xf;
1c3fae4d
TH
2435 if (spd <= 1)
2436 return -EINVAL;
2437 spd--;
2438 mask &= (1 << spd) - 1;
2439 if (!mask)
2440 return -EINVAL;
2441
2442 ap->sata_spd_limit = mask;
2443
f15a1daf
TH
2444 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2445 sata_spd_string(fls(mask)));
1c3fae4d
TH
2446
2447 return 0;
2448}
2449
3c567b7d 2450static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1c3fae4d
TH
2451{
2452 u32 spd, limit;
2453
2454 if (ap->sata_spd_limit == UINT_MAX)
2455 limit = 0;
2456 else
2457 limit = fls(ap->sata_spd_limit);
2458
2459 spd = (*scontrol >> 4) & 0xf;
2460 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2461
2462 return spd != limit;
2463}
2464
2465/**
3c567b7d 2466 * sata_set_spd_needed - is SATA spd configuration needed
1c3fae4d
TH
2467 * @ap: Port in question
2468 *
2469 * Test whether the spd limit in SControl matches
2470 * @ap->sata_spd_limit. This function is used to determine
2471 * whether hardreset is necessary to apply SATA spd
2472 * configuration.
2473 *
2474 * LOCKING:
2475 * Inherited from caller.
2476 *
2477 * RETURNS:
2478 * 1 if SATA spd configuration is needed, 0 otherwise.
2479 */
3c567b7d 2480int sata_set_spd_needed(struct ata_port *ap)
1c3fae4d
TH
2481{
2482 u32 scontrol;
2483
81952c54 2484 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1c3fae4d
TH
2485 return 0;
2486
3c567b7d 2487 return __sata_set_spd_needed(ap, &scontrol);
1c3fae4d
TH
2488}
2489
2490/**
3c567b7d 2491 * sata_set_spd - set SATA spd according to spd limit
1c3fae4d
TH
2492 * @ap: Port to set SATA spd for
2493 *
2494 * Set SATA spd of @ap according to sata_spd_limit.
2495 *
2496 * LOCKING:
2497 * Inherited from caller.
2498 *
2499 * RETURNS:
2500 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2501 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2502 */
3c567b7d 2503int sata_set_spd(struct ata_port *ap)
1c3fae4d
TH
2504{
2505 u32 scontrol;
81952c54 2506 int rc;
1c3fae4d 2507
81952c54
TH
2508 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2509 return rc;
1c3fae4d 2510
3c567b7d 2511 if (!__sata_set_spd_needed(ap, &scontrol))
1c3fae4d
TH
2512 return 0;
2513
81952c54
TH
2514 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2515 return rc;
2516
1c3fae4d
TH
2517 return 1;
2518}
2519
452503f9
AC
2520/*
2521 * This mode timing computation functionality is ported over from
2522 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2523 */
2524/*
b352e57d 2525 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2526 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2527 * for UDMA6, which is currently supported only by Maxtor drives.
2528 *
2529 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2530 */
2531
2532static const struct ata_timing ata_timing[] = {
2533
2534 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2535 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2536 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2537 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2538
b352e57d
AC
2539 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2540 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
452503f9
AC
2541 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2542 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2543 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2544
2545/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 2546
452503f9
AC
2547 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2548 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2549 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 2550
452503f9
AC
2551 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2552 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2553 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2554
b352e57d
AC
2555 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2556 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
452503f9
AC
2557 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2558 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2559
2560 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2561 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2562 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2563
2564/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2565
2566 { 0xFF }
2567};
2568
2569#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2570#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2571
2572static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2573{
2574 q->setup = EZ(t->setup * 1000, T);
2575 q->act8b = EZ(t->act8b * 1000, T);
2576 q->rec8b = EZ(t->rec8b * 1000, T);
2577 q->cyc8b = EZ(t->cyc8b * 1000, T);
2578 q->active = EZ(t->active * 1000, T);
2579 q->recover = EZ(t->recover * 1000, T);
2580 q->cycle = EZ(t->cycle * 1000, T);
2581 q->udma = EZ(t->udma * 1000, UT);
2582}
2583
2584void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2585 struct ata_timing *m, unsigned int what)
2586{
2587 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2588 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2589 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2590 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2591 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2592 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2593 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2594 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2595}
2596
2597static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2598{
2599 const struct ata_timing *t;
2600
2601 for (t = ata_timing; t->mode != speed; t++)
91190758 2602 if (t->mode == 0xFF)
452503f9 2603 return NULL;
2e9edbf8 2604 return t;
452503f9
AC
2605}
2606
2607int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2608 struct ata_timing *t, int T, int UT)
2609{
2610 const struct ata_timing *s;
2611 struct ata_timing p;
2612
2613 /*
2e9edbf8 2614 * Find the mode.
75b1f2f8 2615 */
452503f9
AC
2616
2617 if (!(s = ata_timing_find_mode(speed)))
2618 return -EINVAL;
2619
75b1f2f8
AL
2620 memcpy(t, s, sizeof(*s));
2621
452503f9
AC
2622 /*
2623 * If the drive is an EIDE drive, it can tell us it needs extended
2624 * PIO/MW_DMA cycle timing.
2625 */
2626
2627 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2628 memset(&p, 0, sizeof(p));
2629 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2630 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2631 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2632 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2633 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2634 }
2635 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2636 }
2637
2638 /*
2639 * Convert the timing to bus clock counts.
2640 */
2641
75b1f2f8 2642 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2643
2644 /*
c893a3ae
RD
2645 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2646 * S.M.A.R.T * and some other commands. We have to ensure that the
2647 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2648 */
2649
fd3367af 2650 if (speed > XFER_PIO_6) {
452503f9
AC
2651 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2652 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2653 }
2654
2655 /*
c893a3ae 2656 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2657 */
2658
2659 if (t->act8b + t->rec8b < t->cyc8b) {
2660 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2661 t->rec8b = t->cyc8b - t->act8b;
2662 }
2663
2664 if (t->active + t->recover < t->cycle) {
2665 t->active += (t->cycle - (t->active + t->recover)) / 2;
2666 t->recover = t->cycle - t->active;
2667 }
a617c09f 2668
4f701d1e
AC
2669 /* In a few cases quantisation may produce enough errors to
2670 leave t->cycle too low for the sum of active and recovery
2671 if so we must correct this */
2672 if (t->active + t->recover > t->cycle)
2673 t->cycle = t->active + t->recover;
452503f9
AC
2674
2675 return 0;
2676}
2677
cf176e1a
TH
2678/**
2679 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 2680 * @dev: Device to adjust xfer masks
458337db 2681 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
2682 *
2683 * Adjust xfer masks of @dev downward. Note that this function
2684 * does not apply the change. Invoking ata_set_mode() afterwards
2685 * will apply the limit.
2686 *
2687 * LOCKING:
2688 * Inherited from caller.
2689 *
2690 * RETURNS:
2691 * 0 on success, negative errno on failure
2692 */
458337db 2693int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 2694{
458337db
TH
2695 char buf[32];
2696 unsigned int orig_mask, xfer_mask;
2697 unsigned int pio_mask, mwdma_mask, udma_mask;
2698 int quiet, highbit;
cf176e1a 2699
458337db
TH
2700 quiet = !!(sel & ATA_DNXFER_QUIET);
2701 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 2702
458337db
TH
2703 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2704 dev->mwdma_mask,
2705 dev->udma_mask);
2706 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 2707
458337db
TH
2708 switch (sel) {
2709 case ATA_DNXFER_PIO:
2710 highbit = fls(pio_mask) - 1;
2711 pio_mask &= ~(1 << highbit);
2712 break;
2713
2714 case ATA_DNXFER_DMA:
2715 if (udma_mask) {
2716 highbit = fls(udma_mask) - 1;
2717 udma_mask &= ~(1 << highbit);
2718 if (!udma_mask)
2719 return -ENOENT;
2720 } else if (mwdma_mask) {
2721 highbit = fls(mwdma_mask) - 1;
2722 mwdma_mask &= ~(1 << highbit);
2723 if (!mwdma_mask)
2724 return -ENOENT;
2725 }
2726 break;
2727
2728 case ATA_DNXFER_40C:
2729 udma_mask &= ATA_UDMA_MASK_40C;
2730 break;
2731
2732 case ATA_DNXFER_FORCE_PIO0:
2733 pio_mask &= 1;
2734 case ATA_DNXFER_FORCE_PIO:
2735 mwdma_mask = 0;
2736 udma_mask = 0;
2737 break;
2738
458337db
TH
2739 default:
2740 BUG();
2741 }
2742
2743 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2744
2745 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2746 return -ENOENT;
2747
2748 if (!quiet) {
2749 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2750 snprintf(buf, sizeof(buf), "%s:%s",
2751 ata_mode_string(xfer_mask),
2752 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2753 else
2754 snprintf(buf, sizeof(buf), "%s",
2755 ata_mode_string(xfer_mask));
2756
2757 ata_dev_printk(dev, KERN_WARNING,
2758 "limiting speed to %s\n", buf);
2759 }
cf176e1a
TH
2760
2761 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2762 &dev->udma_mask);
2763
cf176e1a 2764 return 0;
cf176e1a
TH
2765}
2766
3373efd8 2767static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2768{
baa1e78a 2769 struct ata_eh_context *ehc = &dev->ap->eh_context;
83206a29
TH
2770 unsigned int err_mask;
2771 int rc;
1da177e4 2772
e8384607 2773 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2774 if (dev->xfer_shift == ATA_SHIFT_PIO)
2775 dev->flags |= ATA_DFLAG_PIO;
2776
3373efd8 2777 err_mask = ata_dev_set_xfermode(dev);
11750a40
A
2778 /* Old CFA may refuse this command, which is just fine */
2779 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2780 err_mask &= ~AC_ERR_DEV;
2781
83206a29 2782 if (err_mask) {
f15a1daf
TH
2783 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2784 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2785 return -EIO;
2786 }
1da177e4 2787
baa1e78a 2788 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3373efd8 2789 rc = ata_dev_revalidate(dev, 0);
baa1e78a 2790 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
5eb45c02 2791 if (rc)
83206a29 2792 return rc;
48a8a14f 2793
23e71c3d
TH
2794 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2795 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2796
f15a1daf
TH
2797 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2798 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2799 return 0;
1da177e4
LT
2800}
2801
1da177e4 2802/**
04351821 2803 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
1da177e4 2804 * @ap: port on which timings will be programmed
e82cbdb9 2805 * @r_failed_dev: out paramter for failed device
1da177e4 2806 *
04351821
A
2807 * Standard implementation of the function used to tune and set
2808 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2809 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 2810 * returned in @r_failed_dev.
780a87f7 2811 *
1da177e4 2812 * LOCKING:
0cba632b 2813 * PCI/etc. bus probe sem.
e82cbdb9
TH
2814 *
2815 * RETURNS:
2816 * 0 on success, negative errno otherwise
1da177e4 2817 */
04351821
A
2818
2819int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 2820{
e8e0619f 2821 struct ata_device *dev;
e82cbdb9 2822 int i, rc = 0, used_dma = 0, found = 0;
1da177e4 2823
3adcebb2 2824
a6d5a51c
TH
2825 /* step 1: calculate xfer_mask */
2826 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 2827 unsigned int pio_mask, dma_mask;
a6d5a51c 2828
e8e0619f
TH
2829 dev = &ap->device[i];
2830
e1211e3f 2831 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2832 continue;
2833
3373efd8 2834 ata_dev_xfermask(dev);
1da177e4 2835
acf356b1
TH
2836 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2837 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2838 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2839 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2840
4f65977d 2841 found = 1;
5444a6f4
AC
2842 if (dev->dma_mode)
2843 used_dma = 1;
a6d5a51c 2844 }
4f65977d 2845 if (!found)
e82cbdb9 2846 goto out;
a6d5a51c
TH
2847
2848 /* step 2: always set host PIO timings */
e8e0619f
TH
2849 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2850 dev = &ap->device[i];
2851 if (!ata_dev_enabled(dev))
2852 continue;
2853
2854 if (!dev->pio_mode) {
f15a1daf 2855 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2856 rc = -EINVAL;
e82cbdb9 2857 goto out;
e8e0619f
TH
2858 }
2859
2860 dev->xfer_mode = dev->pio_mode;
2861 dev->xfer_shift = ATA_SHIFT_PIO;
2862 if (ap->ops->set_piomode)
2863 ap->ops->set_piomode(ap, dev);
2864 }
1da177e4 2865
a6d5a51c 2866 /* step 3: set host DMA timings */
e8e0619f
TH
2867 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2868 dev = &ap->device[i];
2869
2870 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2871 continue;
2872
2873 dev->xfer_mode = dev->dma_mode;
2874 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2875 if (ap->ops->set_dmamode)
2876 ap->ops->set_dmamode(ap, dev);
2877 }
1da177e4
LT
2878
2879 /* step 4: update devices' xfer mode */
83206a29 2880 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 2881 dev = &ap->device[i];
1da177e4 2882
18d90deb 2883 /* don't update suspended devices' xfer mode */
9666f400 2884 if (!ata_dev_enabled(dev))
83206a29
TH
2885 continue;
2886
3373efd8 2887 rc = ata_dev_set_mode(dev);
5bbc53f4 2888 if (rc)
e82cbdb9 2889 goto out;
83206a29 2890 }
1da177e4 2891
e8e0619f
TH
2892 /* Record simplex status. If we selected DMA then the other
2893 * host channels are not permitted to do so.
5444a6f4 2894 */
cca3974e 2895 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 2896 ap->host->simplex_claimed = ap;
5444a6f4 2897
e82cbdb9
TH
2898 out:
2899 if (rc)
2900 *r_failed_dev = dev;
2901 return rc;
1da177e4
LT
2902}
2903
04351821
A
2904/**
2905 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2906 * @ap: port on which timings will be programmed
2907 * @r_failed_dev: out paramter for failed device
2908 *
2909 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2910 * ata_set_mode() fails, pointer to the failing device is
2911 * returned in @r_failed_dev.
2912 *
2913 * LOCKING:
2914 * PCI/etc. bus probe sem.
2915 *
2916 * RETURNS:
2917 * 0 on success, negative errno otherwise
2918 */
2919int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2920{
2921 /* has private set_mode? */
2922 if (ap->ops->set_mode)
2923 return ap->ops->set_mode(ap, r_failed_dev);
2924 return ata_do_set_mode(ap, r_failed_dev);
2925}
2926
1fdffbce
JG
2927/**
2928 * ata_tf_to_host - issue ATA taskfile to host controller
2929 * @ap: port to which command is being issued
2930 * @tf: ATA taskfile register set
2931 *
2932 * Issues ATA taskfile register set to ATA host controller,
2933 * with proper synchronization with interrupt handler and
2934 * other threads.
2935 *
2936 * LOCKING:
cca3974e 2937 * spin_lock_irqsave(host lock)
1fdffbce
JG
2938 */
2939
2940static inline void ata_tf_to_host(struct ata_port *ap,
2941 const struct ata_taskfile *tf)
2942{
2943 ap->ops->tf_load(ap, tf);
2944 ap->ops->exec_command(ap, tf);
2945}
2946
1da177e4
LT
2947/**
2948 * ata_busy_sleep - sleep until BSY clears, or timeout
2949 * @ap: port containing status register to be polled
2950 * @tmout_pat: impatience timeout
2951 * @tmout: overall timeout
2952 *
780a87f7
JG
2953 * Sleep until ATA Status register bit BSY clears,
2954 * or a timeout occurs.
2955 *
d1adc1bb
TH
2956 * LOCKING:
2957 * Kernel thread context (may sleep).
2958 *
2959 * RETURNS:
2960 * 0 on success, -errno otherwise.
1da177e4 2961 */
d1adc1bb
TH
2962int ata_busy_sleep(struct ata_port *ap,
2963 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2964{
2965 unsigned long timer_start, timeout;
2966 u8 status;
2967
2968 status = ata_busy_wait(ap, ATA_BUSY, 300);
2969 timer_start = jiffies;
2970 timeout = timer_start + tmout_pat;
d1adc1bb
TH
2971 while (status != 0xff && (status & ATA_BUSY) &&
2972 time_before(jiffies, timeout)) {
1da177e4
LT
2973 msleep(50);
2974 status = ata_busy_wait(ap, ATA_BUSY, 3);
2975 }
2976
d1adc1bb 2977 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 2978 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
2979 "port is slow to respond, please be patient "
2980 "(Status 0x%x)\n", status);
1da177e4
LT
2981
2982 timeout = timer_start + tmout;
d1adc1bb
TH
2983 while (status != 0xff && (status & ATA_BUSY) &&
2984 time_before(jiffies, timeout)) {
1da177e4
LT
2985 msleep(50);
2986 status = ata_chk_status(ap);
2987 }
2988
d1adc1bb
TH
2989 if (status == 0xff)
2990 return -ENODEV;
2991
1da177e4 2992 if (status & ATA_BUSY) {
f15a1daf 2993 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
2994 "(%lu secs, Status 0x%x)\n",
2995 tmout / HZ, status);
d1adc1bb 2996 return -EBUSY;
1da177e4
LT
2997 }
2998
2999 return 0;
3000}
3001
d4b2bab4
TH
3002/**
3003 * ata_wait_ready - sleep until BSY clears, or timeout
3004 * @ap: port containing status register to be polled
3005 * @deadline: deadline jiffies for the operation
3006 *
3007 * Sleep until ATA Status register bit BSY clears, or timeout
3008 * occurs.
3009 *
3010 * LOCKING:
3011 * Kernel thread context (may sleep).
3012 *
3013 * RETURNS:
3014 * 0 on success, -errno otherwise.
3015 */
3016int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3017{
3018 unsigned long start = jiffies;
3019 int warned = 0;
3020
3021 while (1) {
3022 u8 status = ata_chk_status(ap);
3023 unsigned long now = jiffies;
3024
3025 if (!(status & ATA_BUSY))
3026 return 0;
fd7fe701 3027 if (!ata_port_online(ap) && status == 0xff)
d4b2bab4
TH
3028 return -ENODEV;
3029 if (time_after(now, deadline))
3030 return -EBUSY;
3031
3032 if (!warned && time_after(now, start + 5 * HZ) &&
3033 (deadline - now > 3 * HZ)) {
3034 ata_port_printk(ap, KERN_WARNING,
3035 "port is slow to respond, please be patient "
3036 "(Status 0x%x)\n", status);
3037 warned = 1;
3038 }
3039
3040 msleep(50);
3041 }
3042}
3043
3044static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3045 unsigned long deadline)
1da177e4
LT
3046{
3047 struct ata_ioports *ioaddr = &ap->ioaddr;
3048 unsigned int dev0 = devmask & (1 << 0);
3049 unsigned int dev1 = devmask & (1 << 1);
9b89391c 3050 int rc, ret = 0;
1da177e4
LT
3051
3052 /* if device 0 was found in ata_devchk, wait for its
3053 * BSY bit to clear
3054 */
d4b2bab4
TH
3055 if (dev0) {
3056 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3057 if (rc) {
3058 if (rc != -ENODEV)
3059 return rc;
3060 ret = rc;
3061 }
d4b2bab4 3062 }
1da177e4
LT
3063
3064 /* if device 1 was found in ata_devchk, wait for
3065 * register access, then wait for BSY to clear
3066 */
1da177e4
LT
3067 while (dev1) {
3068 u8 nsect, lbal;
3069
3070 ap->ops->dev_select(ap, 1);
0d5ff566
TH
3071 nsect = ioread8(ioaddr->nsect_addr);
3072 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
3073 if ((nsect == 1) && (lbal == 1))
3074 break;
d4b2bab4
TH
3075 if (time_after(jiffies, deadline))
3076 return -EBUSY;
1da177e4
LT
3077 msleep(50); /* give drive a breather */
3078 }
d4b2bab4
TH
3079 if (dev1) {
3080 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3081 if (rc) {
3082 if (rc != -ENODEV)
3083 return rc;
3084 ret = rc;
3085 }
d4b2bab4 3086 }
1da177e4
LT
3087
3088 /* is all this really necessary? */
3089 ap->ops->dev_select(ap, 0);
3090 if (dev1)
3091 ap->ops->dev_select(ap, 1);
3092 if (dev0)
3093 ap->ops->dev_select(ap, 0);
d4b2bab4 3094
9b89391c 3095 return ret;
1da177e4
LT
3096}
3097
d4b2bab4
TH
3098static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3099 unsigned long deadline)
1da177e4
LT
3100{
3101 struct ata_ioports *ioaddr = &ap->ioaddr;
3102
44877b4e 3103 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1da177e4
LT
3104
3105 /* software reset. causes dev0 to be selected */
0d5ff566
TH
3106 iowrite8(ap->ctl, ioaddr->ctl_addr);
3107 udelay(20); /* FIXME: flush */
3108 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3109 udelay(20); /* FIXME: flush */
3110 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3111
3112 /* spec mandates ">= 2ms" before checking status.
3113 * We wait 150ms, because that was the magic delay used for
3114 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3115 * between when the ATA command register is written, and then
3116 * status is checked. Because waiting for "a while" before
3117 * checking status is fine, post SRST, we perform this magic
3118 * delay here as well.
09c7ad79
AC
3119 *
3120 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
3121 */
3122 msleep(150);
3123
2e9edbf8 3124 /* Before we perform post reset processing we want to see if
298a41ca
TH
3125 * the bus shows 0xFF because the odd clown forgets the D7
3126 * pulldown resistor.
3127 */
d1adc1bb 3128 if (ata_check_status(ap) == 0xFF)
9b89391c 3129 return -ENODEV;
09c7ad79 3130
d4b2bab4 3131 return ata_bus_post_reset(ap, devmask, deadline);
1da177e4
LT
3132}
3133
3134/**
3135 * ata_bus_reset - reset host port and associated ATA channel
3136 * @ap: port to reset
3137 *
3138 * This is typically the first time we actually start issuing
3139 * commands to the ATA channel. We wait for BSY to clear, then
3140 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3141 * result. Determine what devices, if any, are on the channel
3142 * by looking at the device 0/1 error register. Look at the signature
3143 * stored in each device's taskfile registers, to determine if
3144 * the device is ATA or ATAPI.
3145 *
3146 * LOCKING:
0cba632b 3147 * PCI/etc. bus probe sem.
cca3974e 3148 * Obtains host lock.
1da177e4
LT
3149 *
3150 * SIDE EFFECTS:
198e0fed 3151 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
3152 */
3153
3154void ata_bus_reset(struct ata_port *ap)
3155{
3156 struct ata_ioports *ioaddr = &ap->ioaddr;
3157 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3158 u8 err;
aec5c3c1 3159 unsigned int dev0, dev1 = 0, devmask = 0;
9b89391c 3160 int rc;
1da177e4 3161
44877b4e 3162 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
1da177e4
LT
3163
3164 /* determine if device 0/1 are present */
3165 if (ap->flags & ATA_FLAG_SATA_RESET)
3166 dev0 = 1;
3167 else {
3168 dev0 = ata_devchk(ap, 0);
3169 if (slave_possible)
3170 dev1 = ata_devchk(ap, 1);
3171 }
3172
3173 if (dev0)
3174 devmask |= (1 << 0);
3175 if (dev1)
3176 devmask |= (1 << 1);
3177
3178 /* select device 0 again */
3179 ap->ops->dev_select(ap, 0);
3180
3181 /* issue bus reset */
9b89391c
TH
3182 if (ap->flags & ATA_FLAG_SRST) {
3183 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3184 if (rc && rc != -ENODEV)
aec5c3c1 3185 goto err_out;
9b89391c 3186 }
1da177e4
LT
3187
3188 /*
3189 * determine by signature whether we have ATA or ATAPI devices
3190 */
b4dc7623 3191 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 3192 if ((slave_possible) && (err != 0x81))
b4dc7623 3193 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
3194
3195 /* re-enable interrupts */
83625006 3196 ap->ops->irq_on(ap);
1da177e4
LT
3197
3198 /* is double-select really necessary? */
3199 if (ap->device[1].class != ATA_DEV_NONE)
3200 ap->ops->dev_select(ap, 1);
3201 if (ap->device[0].class != ATA_DEV_NONE)
3202 ap->ops->dev_select(ap, 0);
3203
3204 /* if no devices were detected, disable this port */
3205 if ((ap->device[0].class == ATA_DEV_NONE) &&
3206 (ap->device[1].class == ATA_DEV_NONE))
3207 goto err_out;
3208
3209 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3210 /* set up device control for ATA_FLAG_SATA_RESET */
0d5ff566 3211 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3212 }
3213
3214 DPRINTK("EXIT\n");
3215 return;
3216
3217err_out:
f15a1daf 3218 ata_port_printk(ap, KERN_ERR, "disabling port\n");
1da177e4
LT
3219 ap->ops->port_disable(ap);
3220
3221 DPRINTK("EXIT\n");
3222}
3223
d7bb4cc7
TH
3224/**
3225 * sata_phy_debounce - debounce SATA phy status
3226 * @ap: ATA port to debounce SATA phy status for
3227 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3228 * @deadline: deadline jiffies for the operation
d7bb4cc7
TH
3229 *
3230 * Make sure SStatus of @ap reaches stable state, determined by
3231 * holding the same value where DET is not 1 for @duration polled
3232 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3233 * beginning of the stable state. Because DET gets stuck at 1 on
3234 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3235 * until timeout then returns 0 if DET is stable at 1.
3236 *
d4b2bab4
TH
3237 * @timeout is further limited by @deadline. The sooner of the
3238 * two is used.
3239 *
d7bb4cc7
TH
3240 * LOCKING:
3241 * Kernel thread context (may sleep)
3242 *
3243 * RETURNS:
3244 * 0 on success, -errno on failure.
3245 */
d4b2bab4
TH
3246int sata_phy_debounce(struct ata_port *ap, const unsigned long *params,
3247 unsigned long deadline)
7a7921e8 3248{
d7bb4cc7 3249 unsigned long interval_msec = params[0];
d4b2bab4
TH
3250 unsigned long duration = msecs_to_jiffies(params[1]);
3251 unsigned long last_jiffies, t;
d7bb4cc7
TH
3252 u32 last, cur;
3253 int rc;
3254
d4b2bab4
TH
3255 t = jiffies + msecs_to_jiffies(params[2]);
3256 if (time_before(t, deadline))
3257 deadline = t;
3258
d7bb4cc7
TH
3259 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3260 return rc;
3261 cur &= 0xf;
3262
3263 last = cur;
3264 last_jiffies = jiffies;
3265
3266 while (1) {
3267 msleep(interval_msec);
3268 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3269 return rc;
3270 cur &= 0xf;
3271
3272 /* DET stable? */
3273 if (cur == last) {
d4b2bab4 3274 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7
TH
3275 continue;
3276 if (time_after(jiffies, last_jiffies + duration))
3277 return 0;
3278 continue;
3279 }
3280
3281 /* unstable, start over */
3282 last = cur;
3283 last_jiffies = jiffies;
3284
d4b2bab4
TH
3285 /* check deadline */
3286 if (time_after(jiffies, deadline))
d7bb4cc7
TH
3287 return -EBUSY;
3288 }
3289}
3290
3291/**
3292 * sata_phy_resume - resume SATA phy
3293 * @ap: ATA port to resume SATA phy for
3294 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3295 * @deadline: deadline jiffies for the operation
d7bb4cc7
TH
3296 *
3297 * Resume SATA phy of @ap and debounce it.
3298 *
3299 * LOCKING:
3300 * Kernel thread context (may sleep)
3301 *
3302 * RETURNS:
3303 * 0 on success, -errno on failure.
3304 */
d4b2bab4
TH
3305int sata_phy_resume(struct ata_port *ap, const unsigned long *params,
3306 unsigned long deadline)
d7bb4cc7
TH
3307{
3308 u32 scontrol;
81952c54
TH
3309 int rc;
3310
3311 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3312 return rc;
7a7921e8 3313
852ee16a 3314 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54
TH
3315
3316 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3317 return rc;
7a7921e8 3318
d7bb4cc7
TH
3319 /* Some PHYs react badly if SStatus is pounded immediately
3320 * after resuming. Delay 200ms before debouncing.
3321 */
3322 msleep(200);
7a7921e8 3323
d4b2bab4 3324 return sata_phy_debounce(ap, params, deadline);
7a7921e8
TH
3325}
3326
f5914a46
TH
3327/**
3328 * ata_std_prereset - prepare for reset
3329 * @ap: ATA port to be reset
d4b2bab4 3330 * @deadline: deadline jiffies for the operation
f5914a46 3331 *
b8cffc6a
TH
3332 * @ap is about to be reset. Initialize it. Failure from
3333 * prereset makes libata abort whole reset sequence and give up
3334 * that port, so prereset should be best-effort. It does its
3335 * best to prepare for reset sequence but if things go wrong, it
3336 * should just whine, not fail.
f5914a46
TH
3337 *
3338 * LOCKING:
3339 * Kernel thread context (may sleep)
3340 *
3341 * RETURNS:
3342 * 0 on success, -errno otherwise.
3343 */
d4b2bab4 3344int ata_std_prereset(struct ata_port *ap, unsigned long deadline)
f5914a46
TH
3345{
3346 struct ata_eh_context *ehc = &ap->eh_context;
e9c83914 3347 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3348 int rc;
3349
31daabda 3350 /* handle link resume */
28324304
TH
3351 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3352 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
3353 ehc->i.action |= ATA_EH_HARDRESET;
3354
f5914a46
TH
3355 /* if we're about to do hardreset, nothing more to do */
3356 if (ehc->i.action & ATA_EH_HARDRESET)
3357 return 0;
3358
3359 /* if SATA, resume phy */
3360 if (ap->cbl == ATA_CBL_SATA) {
d4b2bab4 3361 rc = sata_phy_resume(ap, timing, deadline);
b8cffc6a
TH
3362 /* whine about phy resume failure but proceed */
3363 if (rc && rc != -EOPNOTSUPP)
f5914a46
TH
3364 ata_port_printk(ap, KERN_WARNING, "failed to resume "
3365 "link for reset (errno=%d)\n", rc);
f5914a46
TH
3366 }
3367
3368 /* Wait for !BSY if the controller can wait for the first D2H
3369 * Reg FIS and we don't know that no device is attached.
3370 */
b8cffc6a
TH
3371 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap)) {
3372 rc = ata_wait_ready(ap, deadline);
6dffaf61 3373 if (rc && rc != -ENODEV) {
b8cffc6a
TH
3374 ata_port_printk(ap, KERN_WARNING, "device not ready "
3375 "(errno=%d), forcing hardreset\n", rc);
3376 ehc->i.action |= ATA_EH_HARDRESET;
3377 }
3378 }
f5914a46
TH
3379
3380 return 0;
3381}
3382
c2bd5804
TH
3383/**
3384 * ata_std_softreset - reset host port via ATA SRST
3385 * @ap: port to reset
c2bd5804 3386 * @classes: resulting classes of attached devices
d4b2bab4 3387 * @deadline: deadline jiffies for the operation
c2bd5804 3388 *
52783c5d 3389 * Reset host port using ATA SRST.
c2bd5804
TH
3390 *
3391 * LOCKING:
3392 * Kernel thread context (may sleep)
3393 *
3394 * RETURNS:
3395 * 0 on success, -errno otherwise.
3396 */
d4b2bab4
TH
3397int ata_std_softreset(struct ata_port *ap, unsigned int *classes,
3398 unsigned long deadline)
c2bd5804
TH
3399{
3400 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
d4b2bab4
TH
3401 unsigned int devmask = 0;
3402 int rc;
c2bd5804
TH
3403 u8 err;
3404
3405 DPRINTK("ENTER\n");
3406
81952c54 3407 if (ata_port_offline(ap)) {
3a39746a
TH
3408 classes[0] = ATA_DEV_NONE;
3409 goto out;
3410 }
3411
c2bd5804
TH
3412 /* determine if device 0/1 are present */
3413 if (ata_devchk(ap, 0))
3414 devmask |= (1 << 0);
3415 if (slave_possible && ata_devchk(ap, 1))
3416 devmask |= (1 << 1);
3417
c2bd5804
TH
3418 /* select device 0 again */
3419 ap->ops->dev_select(ap, 0);
3420
3421 /* issue bus reset */
3422 DPRINTK("about to softreset, devmask=%x\n", devmask);
d4b2bab4 3423 rc = ata_bus_softreset(ap, devmask, deadline);
9b89391c
TH
3424 /* if link is occupied, -ENODEV too is an error */
3425 if (rc && (rc != -ENODEV || sata_scr_valid(ap))) {
d4b2bab4
TH
3426 ata_port_printk(ap, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3427 return rc;
c2bd5804
TH
3428 }
3429
3430 /* determine by signature whether we have ATA or ATAPI devices */
3431 classes[0] = ata_dev_try_classify(ap, 0, &err);
3432 if (slave_possible && err != 0x81)
3433 classes[1] = ata_dev_try_classify(ap, 1, &err);
3434
3a39746a 3435 out:
c2bd5804
TH
3436 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3437 return 0;
3438}
3439
3440/**
b6103f6d 3441 * sata_port_hardreset - reset port via SATA phy reset
c2bd5804 3442 * @ap: port to reset
b6103f6d 3443 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3444 * @deadline: deadline jiffies for the operation
c2bd5804
TH
3445 *
3446 * SATA phy-reset host port using DET bits of SControl register.
c2bd5804
TH
3447 *
3448 * LOCKING:
3449 * Kernel thread context (may sleep)
3450 *
3451 * RETURNS:
3452 * 0 on success, -errno otherwise.
3453 */
d4b2bab4
TH
3454int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing,
3455 unsigned long deadline)
c2bd5804 3456{
852ee16a 3457 u32 scontrol;
81952c54 3458 int rc;
852ee16a 3459
c2bd5804
TH
3460 DPRINTK("ENTER\n");
3461
3c567b7d 3462 if (sata_set_spd_needed(ap)) {
1c3fae4d
TH
3463 /* SATA spec says nothing about how to reconfigure
3464 * spd. To be on the safe side, turn off phy during
3465 * reconfiguration. This works for at least ICH7 AHCI
3466 * and Sil3124.
3467 */
81952c54 3468 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 3469 goto out;
81952c54 3470
a34b6fc0 3471 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54
TH
3472
3473 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
b6103f6d 3474 goto out;
1c3fae4d 3475
3c567b7d 3476 sata_set_spd(ap);
1c3fae4d
TH
3477 }
3478
3479 /* issue phy wake/reset */
81952c54 3480 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 3481 goto out;
81952c54 3482
852ee16a 3483 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54
TH
3484
3485 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
b6103f6d 3486 goto out;
c2bd5804 3487
1c3fae4d 3488 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3489 * 10.4.2 says at least 1 ms.
3490 */
3491 msleep(1);
3492
1c3fae4d 3493 /* bring phy back */
d4b2bab4 3494 rc = sata_phy_resume(ap, timing, deadline);
b6103f6d
TH
3495 out:
3496 DPRINTK("EXIT, rc=%d\n", rc);
3497 return rc;
3498}
3499
3500/**
3501 * sata_std_hardreset - reset host port via SATA phy reset
3502 * @ap: port to reset
3503 * @class: resulting class of attached device
d4b2bab4 3504 * @deadline: deadline jiffies for the operation
b6103f6d
TH
3505 *
3506 * SATA phy-reset host port using DET bits of SControl register,
3507 * wait for !BSY and classify the attached device.
3508 *
3509 * LOCKING:
3510 * Kernel thread context (may sleep)
3511 *
3512 * RETURNS:
3513 * 0 on success, -errno otherwise.
3514 */
d4b2bab4
TH
3515int sata_std_hardreset(struct ata_port *ap, unsigned int *class,
3516 unsigned long deadline)
b6103f6d
TH
3517{
3518 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3519 int rc;
3520
3521 DPRINTK("ENTER\n");
3522
3523 /* do hardreset */
d4b2bab4 3524 rc = sata_port_hardreset(ap, timing, deadline);
b6103f6d
TH
3525 if (rc) {
3526 ata_port_printk(ap, KERN_ERR,
3527 "COMRESET failed (errno=%d)\n", rc);
3528 return rc;
3529 }
c2bd5804 3530
c2bd5804 3531 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 3532 if (ata_port_offline(ap)) {
c2bd5804
TH
3533 *class = ATA_DEV_NONE;
3534 DPRINTK("EXIT, link offline\n");
3535 return 0;
3536 }
3537
34fee227
TH
3538 /* wait a while before checking status, see SRST for more info */
3539 msleep(150);
3540
d4b2bab4 3541 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3542 /* link occupied, -ENODEV too is an error */
3543 if (rc) {
f15a1daf 3544 ata_port_printk(ap, KERN_ERR,
d4b2bab4
TH
3545 "COMRESET failed (errno=%d)\n", rc);
3546 return rc;
c2bd5804
TH
3547 }
3548
3a39746a
TH
3549 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3550
c2bd5804
TH
3551 *class = ata_dev_try_classify(ap, 0, NULL);
3552
3553 DPRINTK("EXIT, class=%u\n", *class);
3554 return 0;
3555}
3556
3557/**
3558 * ata_std_postreset - standard postreset callback
3559 * @ap: the target ata_port
3560 * @classes: classes of attached devices
3561 *
3562 * This function is invoked after a successful reset. Note that
3563 * the device might have been reset more than once using
3564 * different reset methods before postreset is invoked.
c2bd5804 3565 *
c2bd5804
TH
3566 * LOCKING:
3567 * Kernel thread context (may sleep)
3568 */
3569void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3570{
dc2b3515
TH
3571 u32 serror;
3572
c2bd5804
TH
3573 DPRINTK("ENTER\n");
3574
c2bd5804 3575 /* print link status */
81952c54 3576 sata_print_link_status(ap);
c2bd5804 3577
dc2b3515
TH
3578 /* clear SError */
3579 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3580 sata_scr_write(ap, SCR_ERROR, serror);
3581
3a39746a 3582 /* re-enable interrupts */
83625006
AI
3583 if (!ap->ops->error_handler)
3584 ap->ops->irq_on(ap);
c2bd5804
TH
3585
3586 /* is double-select really necessary? */
3587 if (classes[0] != ATA_DEV_NONE)
3588 ap->ops->dev_select(ap, 1);
3589 if (classes[1] != ATA_DEV_NONE)
3590 ap->ops->dev_select(ap, 0);
3591
3a39746a
TH
3592 /* bail out if no device is present */
3593 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3594 DPRINTK("EXIT, no device\n");
3595 return;
3596 }
3597
3598 /* set up device control */
0d5ff566
TH
3599 if (ap->ioaddr.ctl_addr)
3600 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
c2bd5804
TH
3601
3602 DPRINTK("EXIT\n");
3603}
3604
623a3128
TH
3605/**
3606 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3607 * @dev: device to compare against
3608 * @new_class: class of the new device
3609 * @new_id: IDENTIFY page of the new device
3610 *
3611 * Compare @new_class and @new_id against @dev and determine
3612 * whether @dev is the device indicated by @new_class and
3613 * @new_id.
3614 *
3615 * LOCKING:
3616 * None.
3617 *
3618 * RETURNS:
3619 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3620 */
3373efd8
TH
3621static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3622 const u16 *new_id)
623a3128
TH
3623{
3624 const u16 *old_id = dev->id;
a0cf733b
TH
3625 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3626 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3627
3628 if (dev->class != new_class) {
f15a1daf
TH
3629 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3630 dev->class, new_class);
623a3128
TH
3631 return 0;
3632 }
3633
a0cf733b
TH
3634 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3635 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3636 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3637 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3638
3639 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3640 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3641 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3642 return 0;
3643 }
3644
3645 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
3646 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3647 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3648 return 0;
3649 }
3650
623a3128
TH
3651 return 1;
3652}
3653
3654/**
fe30911b
TH
3655 * ata_dev_reread_id - Re-read IDENTIFY data
3656 * @adev: target ATA device
bff04647 3657 * @readid_flags: read ID flags
623a3128
TH
3658 *
3659 * Re-read IDENTIFY page and make sure @dev is still attached to
3660 * the port.
3661 *
3662 * LOCKING:
3663 * Kernel thread context (may sleep)
3664 *
3665 * RETURNS:
3666 * 0 on success, negative errno otherwise
3667 */
fe30911b 3668int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 3669{
5eb45c02 3670 unsigned int class = dev->class;
f15a1daf 3671 u16 *id = (void *)dev->ap->sector_buf;
623a3128
TH
3672 int rc;
3673
fe635c7e 3674 /* read ID data */
bff04647 3675 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 3676 if (rc)
fe30911b 3677 return rc;
623a3128
TH
3678
3679 /* is the device still there? */
fe30911b
TH
3680 if (!ata_dev_same_device(dev, class, id))
3681 return -ENODEV;
623a3128 3682
fe635c7e 3683 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
3684 return 0;
3685}
3686
3687/**
3688 * ata_dev_revalidate - Revalidate ATA device
3689 * @dev: device to revalidate
3690 * @readid_flags: read ID flags
3691 *
3692 * Re-read IDENTIFY page, make sure @dev is still attached to the
3693 * port and reconfigure it according to the new IDENTIFY page.
3694 *
3695 * LOCKING:
3696 * Kernel thread context (may sleep)
3697 *
3698 * RETURNS:
3699 * 0 on success, negative errno otherwise
3700 */
3701int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3702{
6ddcd3b0 3703 u64 n_sectors = dev->n_sectors;
fe30911b
TH
3704 int rc;
3705
3706 if (!ata_dev_enabled(dev))
3707 return -ENODEV;
3708
3709 /* re-read ID */
3710 rc = ata_dev_reread_id(dev, readid_flags);
3711 if (rc)
3712 goto fail;
623a3128
TH
3713
3714 /* configure device according to the new ID */
efdaedc4 3715 rc = ata_dev_configure(dev);
6ddcd3b0
TH
3716 if (rc)
3717 goto fail;
3718
3719 /* verify n_sectors hasn't changed */
3720 if (dev->class == ATA_DEV_ATA && dev->n_sectors != n_sectors) {
3721 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3722 "%llu != %llu\n",
3723 (unsigned long long)n_sectors,
3724 (unsigned long long)dev->n_sectors);
3725 rc = -ENODEV;
3726 goto fail;
3727 }
3728
3729 return 0;
623a3128
TH
3730
3731 fail:
f15a1daf 3732 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
3733 return rc;
3734}
3735
6919a0a6
AC
3736struct ata_blacklist_entry {
3737 const char *model_num;
3738 const char *model_rev;
3739 unsigned long horkage;
3740};
3741
3742static const struct ata_blacklist_entry ata_device_blacklist [] = {
3743 /* Devices with DMA related problems under Linux */
3744 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3745 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3746 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3747 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3748 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3749 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3750 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3751 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3752 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3753 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3754 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3755 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3756 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3757 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3758 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3759 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3760 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3761 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3762 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3763 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3764 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3765 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3766 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3767 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3768 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3769 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
3770 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3771 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3772 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
39f19886 3773 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
6919a0a6 3774
18d6e9d5 3775 /* Weird ATAPI devices */
6f23a31d
AL
3776 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 |
3777 ATA_HORKAGE_DMA_RW_ONLY },
18d6e9d5 3778
6919a0a6
AC
3779 /* Devices we expect to fail diagnostics */
3780
3781 /* Devices where NCQ should be avoided */
3782 /* NCQ is slow */
3783 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
09125ea6
TH
3784 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3785 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30
PR
3786 /* NCQ is broken */
3787 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
471e44b2 3788 { "Maxtor 6B200M0", "BANC1B10", ATA_HORKAGE_NONCQ },
96442925
JA
3789 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3790 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
36e337d0
RH
3791 /* Blacklist entries taken from Silicon Image 3124/3132
3792 Windows driver .inf file - also several Linux problem reports */
3793 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3794 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3795 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
bd9c5a39
TH
3796 /* Drives which do spurious command completion */
3797 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
6919a0a6
AC
3798
3799 /* Devices with NCQ limits */
3800
3801 /* End Marker */
3802 { }
1da177e4 3803};
2e9edbf8 3804
6919a0a6 3805unsigned long ata_device_blacklisted(const struct ata_device *dev)
1da177e4 3806{
8bfa79fc
TH
3807 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3808 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 3809 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 3810
8bfa79fc
TH
3811 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3812 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 3813
6919a0a6 3814 while (ad->model_num) {
8bfa79fc 3815 if (!strcmp(ad->model_num, model_num)) {
6919a0a6
AC
3816 if (ad->model_rev == NULL)
3817 return ad->horkage;
8bfa79fc 3818 if (!strcmp(ad->model_rev, model_rev))
6919a0a6 3819 return ad->horkage;
f4b15fef 3820 }
6919a0a6 3821 ad++;
f4b15fef 3822 }
1da177e4
LT
3823 return 0;
3824}
3825
6919a0a6
AC
3826static int ata_dma_blacklisted(const struct ata_device *dev)
3827{
3828 /* We don't support polling DMA.
3829 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3830 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3831 */
3832 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3833 (dev->flags & ATA_DFLAG_CDB_INTR))
3834 return 1;
3835 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3836}
3837
a6d5a51c
TH
3838/**
3839 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
3840 * @dev: Device to compute xfermask for
3841 *
acf356b1
TH
3842 * Compute supported xfermask of @dev and store it in
3843 * dev->*_mask. This function is responsible for applying all
3844 * known limits including host controller limits, device
3845 * blacklist, etc...
a6d5a51c
TH
3846 *
3847 * LOCKING:
3848 * None.
a6d5a51c 3849 */
3373efd8 3850static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 3851{
3373efd8 3852 struct ata_port *ap = dev->ap;
cca3974e 3853 struct ata_host *host = ap->host;
a6d5a51c 3854 unsigned long xfer_mask;
1da177e4 3855
37deecb5 3856 /* controller modes available */
565083e1
TH
3857 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3858 ap->mwdma_mask, ap->udma_mask);
3859
8343f889 3860 /* drive modes available */
37deecb5
TH
3861 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3862 dev->mwdma_mask, dev->udma_mask);
3863 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 3864
b352e57d
AC
3865 /*
3866 * CFA Advanced TrueIDE timings are not allowed on a shared
3867 * cable
3868 */
3869 if (ata_dev_pair(dev)) {
3870 /* No PIO5 or PIO6 */
3871 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3872 /* No MWDMA3 or MWDMA 4 */
3873 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3874 }
3875
37deecb5
TH
3876 if (ata_dma_blacklisted(dev)) {
3877 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
3878 ata_dev_printk(dev, KERN_WARNING,
3879 "device is on DMA blacklist, disabling DMA\n");
37deecb5 3880 }
a6d5a51c 3881
14d66ab7
PV
3882 if ((host->flags & ATA_HOST_SIMPLEX) &&
3883 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
3884 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3885 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3886 "other device, disabling DMA\n");
5444a6f4 3887 }
565083e1 3888
e424675f
JG
3889 if (ap->flags & ATA_FLAG_NO_IORDY)
3890 xfer_mask &= ata_pio_mask_no_iordy(dev);
3891
5444a6f4 3892 if (ap->ops->mode_filter)
a76b62ca 3893 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 3894
8343f889
RH
3895 /* Apply cable rule here. Don't apply it early because when
3896 * we handle hot plug the cable type can itself change.
3897 * Check this last so that we know if the transfer rate was
3898 * solely limited by the cable.
3899 * Unknown or 80 wire cables reported host side are checked
3900 * drive side as well. Cases where we know a 40wire cable
3901 * is used safely for 80 are not checked here.
3902 */
3903 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3904 /* UDMA/44 or higher would be available */
3905 if((ap->cbl == ATA_CBL_PATA40) ||
3906 (ata_drive_40wire(dev->id) &&
3907 (ap->cbl == ATA_CBL_PATA_UNK ||
3908 ap->cbl == ATA_CBL_PATA80))) {
3909 ata_dev_printk(dev, KERN_WARNING,
3910 "limited to UDMA/33 due to 40-wire cable\n");
3911 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3912 }
3913
565083e1
TH
3914 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3915 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
3916}
3917
1da177e4
LT
3918/**
3919 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
3920 * @dev: Device to which command will be sent
3921 *
780a87f7
JG
3922 * Issue SET FEATURES - XFER MODE command to device @dev
3923 * on port @ap.
3924 *
1da177e4 3925 * LOCKING:
0cba632b 3926 * PCI/etc. bus probe sem.
83206a29
TH
3927 *
3928 * RETURNS:
3929 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
3930 */
3931
3373efd8 3932static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 3933{
a0123703 3934 struct ata_taskfile tf;
83206a29 3935 unsigned int err_mask;
1da177e4
LT
3936
3937 /* set up set-features taskfile */
3938 DPRINTK("set features - xfer mode\n");
3939
464cf177
TH
3940 /* Some controllers and ATAPI devices show flaky interrupt
3941 * behavior after setting xfer mode. Use polling instead.
3942 */
3373efd8 3943 ata_tf_init(dev, &tf);
a0123703
TH
3944 tf.command = ATA_CMD_SET_FEATURES;
3945 tf.feature = SETFEATURES_XFER;
464cf177 3946 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703
TH
3947 tf.protocol = ATA_PROT_NODATA;
3948 tf.nsect = dev->xfer_mode;
1da177e4 3949
3373efd8 3950 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 3951
83206a29
TH
3952 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3953 return err_mask;
1da177e4
LT
3954}
3955
8bf62ece
AL
3956/**
3957 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 3958 * @dev: Device to which command will be sent
e2a7f77a
RD
3959 * @heads: Number of heads (taskfile parameter)
3960 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
3961 *
3962 * LOCKING:
6aff8f1f
TH
3963 * Kernel thread context (may sleep)
3964 *
3965 * RETURNS:
3966 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 3967 */
3373efd8
TH
3968static unsigned int ata_dev_init_params(struct ata_device *dev,
3969 u16 heads, u16 sectors)
8bf62ece 3970{
a0123703 3971 struct ata_taskfile tf;
6aff8f1f 3972 unsigned int err_mask;
8bf62ece
AL
3973
3974 /* Number of sectors per track 1-255. Number of heads 1-16 */
3975 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3976 return AC_ERR_INVALID;
8bf62ece
AL
3977
3978 /* set up init dev params taskfile */
3979 DPRINTK("init dev params \n");
3980
3373efd8 3981 ata_tf_init(dev, &tf);
a0123703
TH
3982 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3983 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3984 tf.protocol = ATA_PROT_NODATA;
3985 tf.nsect = sectors;
3986 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3987
3373efd8 3988 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
8bf62ece 3989
6aff8f1f
TH
3990 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3991 return err_mask;
8bf62ece
AL
3992}
3993
1da177e4 3994/**
0cba632b
JG
3995 * ata_sg_clean - Unmap DMA memory associated with command
3996 * @qc: Command containing DMA memory to be released
3997 *
3998 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
3999 *
4000 * LOCKING:
cca3974e 4001 * spin_lock_irqsave(host lock)
1da177e4 4002 */
70e6ad0c 4003void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
4004{
4005 struct ata_port *ap = qc->ap;
cedc9a47 4006 struct scatterlist *sg = qc->__sg;
1da177e4 4007 int dir = qc->dma_dir;
cedc9a47 4008 void *pad_buf = NULL;
1da177e4 4009
a4631474
TH
4010 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4011 WARN_ON(sg == NULL);
1da177e4
LT
4012
4013 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 4014 WARN_ON(qc->n_elem > 1);
1da177e4 4015
2c13b7ce 4016 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 4017
cedc9a47
JG
4018 /* if we padded the buffer out to 32-bit bound, and data
4019 * xfer direction is from-device, we must copy from the
4020 * pad buffer back into the supplied buffer
4021 */
4022 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4023 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4024
4025 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 4026 if (qc->n_elem)
2f1f610b 4027 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
4028 /* restore last sg */
4029 sg[qc->orig_n_elem - 1].length += qc->pad_len;
4030 if (pad_buf) {
4031 struct scatterlist *psg = &qc->pad_sgent;
4032 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4033 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 4034 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4035 }
4036 } else {
2e242fa9 4037 if (qc->n_elem)
2f1f610b 4038 dma_unmap_single(ap->dev,
e1410f2d
JG
4039 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4040 dir);
cedc9a47
JG
4041 /* restore sg */
4042 sg->length += qc->pad_len;
4043 if (pad_buf)
4044 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4045 pad_buf, qc->pad_len);
4046 }
1da177e4
LT
4047
4048 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 4049 qc->__sg = NULL;
1da177e4
LT
4050}
4051
4052/**
4053 * ata_fill_sg - Fill PCI IDE PRD table
4054 * @qc: Metadata associated with taskfile to be transferred
4055 *
780a87f7
JG
4056 * Fill PCI IDE PRD (scatter-gather) table with segments
4057 * associated with the current disk command.
4058 *
1da177e4 4059 * LOCKING:
cca3974e 4060 * spin_lock_irqsave(host lock)
1da177e4
LT
4061 *
4062 */
4063static void ata_fill_sg(struct ata_queued_cmd *qc)
4064{
1da177e4 4065 struct ata_port *ap = qc->ap;
cedc9a47
JG
4066 struct scatterlist *sg;
4067 unsigned int idx;
1da177e4 4068
a4631474 4069 WARN_ON(qc->__sg == NULL);
f131883e 4070 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
4071
4072 idx = 0;
cedc9a47 4073 ata_for_each_sg(sg, qc) {
1da177e4
LT
4074 u32 addr, offset;
4075 u32 sg_len, len;
4076
4077 /* determine if physical DMA addr spans 64K boundary.
4078 * Note h/w doesn't support 64-bit, so we unconditionally
4079 * truncate dma_addr_t to u32.
4080 */
4081 addr = (u32) sg_dma_address(sg);
4082 sg_len = sg_dma_len(sg);
4083
4084 while (sg_len) {
4085 offset = addr & 0xffff;
4086 len = sg_len;
4087 if ((offset + sg_len) > 0x10000)
4088 len = 0x10000 - offset;
4089
4090 ap->prd[idx].addr = cpu_to_le32(addr);
4091 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4092 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4093
4094 idx++;
4095 sg_len -= len;
4096 addr += len;
4097 }
4098 }
4099
4100 if (idx)
4101 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4102}
4103/**
4104 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4105 * @qc: Metadata associated with taskfile to check
4106 *
780a87f7
JG
4107 * Allow low-level driver to filter ATA PACKET commands, returning
4108 * a status indicating whether or not it is OK to use DMA for the
4109 * supplied PACKET command.
4110 *
1da177e4 4111 * LOCKING:
cca3974e 4112 * spin_lock_irqsave(host lock)
0cba632b 4113 *
1da177e4
LT
4114 * RETURNS: 0 when ATAPI DMA can be used
4115 * nonzero otherwise
4116 */
4117int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4118{
4119 struct ata_port *ap = qc->ap;
4120 int rc = 0; /* Assume ATAPI DMA is OK by default */
4121
6f23a31d
AL
4122 /* some drives can only do ATAPI DMA on read/write */
4123 if (unlikely(qc->dev->horkage & ATA_HORKAGE_DMA_RW_ONLY)) {
4124 struct scsi_cmnd *cmd = qc->scsicmd;
4125 u8 *scsicmd = cmd->cmnd;
4126
4127 switch (scsicmd[0]) {
4128 case READ_10:
4129 case WRITE_10:
4130 case READ_12:
4131 case WRITE_12:
4132 case READ_6:
4133 case WRITE_6:
4134 /* atapi dma maybe ok */
4135 break;
4136 default:
4137 /* turn off atapi dma */
4138 return 1;
4139 }
4140 }
4141
1da177e4
LT
4142 if (ap->ops->check_atapi_dma)
4143 rc = ap->ops->check_atapi_dma(qc);
4144
4145 return rc;
4146}
4147/**
4148 * ata_qc_prep - Prepare taskfile for submission
4149 * @qc: Metadata associated with taskfile to be prepared
4150 *
780a87f7
JG
4151 * Prepare ATA taskfile for submission.
4152 *
1da177e4 4153 * LOCKING:
cca3974e 4154 * spin_lock_irqsave(host lock)
1da177e4
LT
4155 */
4156void ata_qc_prep(struct ata_queued_cmd *qc)
4157{
4158 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4159 return;
4160
4161 ata_fill_sg(qc);
4162}
4163
e46834cd
BK
4164void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4165
0cba632b
JG
4166/**
4167 * ata_sg_init_one - Associate command with memory buffer
4168 * @qc: Command to be associated
4169 * @buf: Memory buffer
4170 * @buflen: Length of memory buffer, in bytes.
4171 *
4172 * Initialize the data-related elements of queued_cmd @qc
4173 * to point to a single memory buffer, @buf of byte length @buflen.
4174 *
4175 * LOCKING:
cca3974e 4176 * spin_lock_irqsave(host lock)
0cba632b
JG
4177 */
4178
1da177e4
LT
4179void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4180{
1da177e4
LT
4181 qc->flags |= ATA_QCFLAG_SINGLE;
4182
cedc9a47 4183 qc->__sg = &qc->sgent;
1da177e4 4184 qc->n_elem = 1;
cedc9a47 4185 qc->orig_n_elem = 1;
1da177e4 4186 qc->buf_virt = buf;
233277ca 4187 qc->nbytes = buflen;
1da177e4 4188
61c0596c 4189 sg_init_one(&qc->sgent, buf, buflen);
1da177e4
LT
4190}
4191
0cba632b
JG
4192/**
4193 * ata_sg_init - Associate command with scatter-gather table.
4194 * @qc: Command to be associated
4195 * @sg: Scatter-gather table.
4196 * @n_elem: Number of elements in s/g table.
4197 *
4198 * Initialize the data-related elements of queued_cmd @qc
4199 * to point to a scatter-gather table @sg, containing @n_elem
4200 * elements.
4201 *
4202 * LOCKING:
cca3974e 4203 * spin_lock_irqsave(host lock)
0cba632b
JG
4204 */
4205
1da177e4
LT
4206void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4207 unsigned int n_elem)
4208{
4209 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 4210 qc->__sg = sg;
1da177e4 4211 qc->n_elem = n_elem;
cedc9a47 4212 qc->orig_n_elem = n_elem;
1da177e4
LT
4213}
4214
4215/**
0cba632b
JG
4216 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4217 * @qc: Command with memory buffer to be mapped.
4218 *
4219 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
4220 *
4221 * LOCKING:
cca3974e 4222 * spin_lock_irqsave(host lock)
1da177e4
LT
4223 *
4224 * RETURNS:
0cba632b 4225 * Zero on success, negative on error.
1da177e4
LT
4226 */
4227
4228static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4229{
4230 struct ata_port *ap = qc->ap;
4231 int dir = qc->dma_dir;
cedc9a47 4232 struct scatterlist *sg = qc->__sg;
1da177e4 4233 dma_addr_t dma_address;
2e242fa9 4234 int trim_sg = 0;
1da177e4 4235
cedc9a47
JG
4236 /* we must lengthen transfers to end on a 32-bit boundary */
4237 qc->pad_len = sg->length & 3;
4238 if (qc->pad_len) {
4239 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4240 struct scatterlist *psg = &qc->pad_sgent;
4241
a4631474 4242 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4243
4244 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4245
4246 if (qc->tf.flags & ATA_TFLAG_WRITE)
4247 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4248 qc->pad_len);
4249
4250 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4251 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4252 /* trim sg */
4253 sg->length -= qc->pad_len;
2e242fa9
TH
4254 if (sg->length == 0)
4255 trim_sg = 1;
cedc9a47
JG
4256
4257 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4258 sg->length, qc->pad_len);
4259 }
4260
2e242fa9
TH
4261 if (trim_sg) {
4262 qc->n_elem--;
e1410f2d
JG
4263 goto skip_map;
4264 }
4265
2f1f610b 4266 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 4267 sg->length, dir);
537a95d9
TH
4268 if (dma_mapping_error(dma_address)) {
4269 /* restore sg */
4270 sg->length += qc->pad_len;
1da177e4 4271 return -1;
537a95d9 4272 }
1da177e4
LT
4273
4274 sg_dma_address(sg) = dma_address;
32529e01 4275 sg_dma_len(sg) = sg->length;
1da177e4 4276
2e242fa9 4277skip_map:
1da177e4
LT
4278 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4279 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4280
4281 return 0;
4282}
4283
4284/**
0cba632b
JG
4285 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4286 * @qc: Command with scatter-gather table to be mapped.
4287 *
4288 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
4289 *
4290 * LOCKING:
cca3974e 4291 * spin_lock_irqsave(host lock)
1da177e4
LT
4292 *
4293 * RETURNS:
0cba632b 4294 * Zero on success, negative on error.
1da177e4
LT
4295 *
4296 */
4297
4298static int ata_sg_setup(struct ata_queued_cmd *qc)
4299{
4300 struct ata_port *ap = qc->ap;
cedc9a47
JG
4301 struct scatterlist *sg = qc->__sg;
4302 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 4303 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4 4304
44877b4e 4305 VPRINTK("ENTER, ata%u\n", ap->print_id);
a4631474 4306 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 4307
cedc9a47
JG
4308 /* we must lengthen transfers to end on a 32-bit boundary */
4309 qc->pad_len = lsg->length & 3;
4310 if (qc->pad_len) {
4311 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4312 struct scatterlist *psg = &qc->pad_sgent;
4313 unsigned int offset;
4314
a4631474 4315 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4316
4317 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4318
4319 /*
4320 * psg->page/offset are used to copy to-be-written
4321 * data in this function or read data in ata_sg_clean.
4322 */
4323 offset = lsg->offset + lsg->length - qc->pad_len;
4324 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4325 psg->offset = offset_in_page(offset);
4326
4327 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4328 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4329 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 4330 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4331 }
4332
4333 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4334 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4335 /* trim last sg */
4336 lsg->length -= qc->pad_len;
e1410f2d
JG
4337 if (lsg->length == 0)
4338 trim_sg = 1;
cedc9a47
JG
4339
4340 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4341 qc->n_elem - 1, lsg->length, qc->pad_len);
4342 }
4343
e1410f2d
JG
4344 pre_n_elem = qc->n_elem;
4345 if (trim_sg && pre_n_elem)
4346 pre_n_elem--;
4347
4348 if (!pre_n_elem) {
4349 n_elem = 0;
4350 goto skip_map;
4351 }
4352
1da177e4 4353 dir = qc->dma_dir;
2f1f610b 4354 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
4355 if (n_elem < 1) {
4356 /* restore last sg */
4357 lsg->length += qc->pad_len;
1da177e4 4358 return -1;
537a95d9 4359 }
1da177e4
LT
4360
4361 DPRINTK("%d sg elements mapped\n", n_elem);
4362
e1410f2d 4363skip_map:
1da177e4
LT
4364 qc->n_elem = n_elem;
4365
4366 return 0;
4367}
4368
0baab86b 4369/**
c893a3ae 4370 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
4371 * @buf: Buffer to swap
4372 * @buf_words: Number of 16-bit words in buffer.
4373 *
4374 * Swap halves of 16-bit words if needed to convert from
4375 * little-endian byte order to native cpu byte order, or
4376 * vice-versa.
4377 *
4378 * LOCKING:
6f0ef4fa 4379 * Inherited from caller.
0baab86b 4380 */
1da177e4
LT
4381void swap_buf_le16(u16 *buf, unsigned int buf_words)
4382{
4383#ifdef __BIG_ENDIAN
4384 unsigned int i;
4385
4386 for (i = 0; i < buf_words; i++)
4387 buf[i] = le16_to_cpu(buf[i]);
4388#endif /* __BIG_ENDIAN */
4389}
4390
6ae4cfb5 4391/**
0d5ff566 4392 * ata_data_xfer - Transfer data by PIO
a6b2c5d4 4393 * @adev: device to target
6ae4cfb5
AL
4394 * @buf: data buffer
4395 * @buflen: buffer length
344babaa 4396 * @write_data: read/write
6ae4cfb5
AL
4397 *
4398 * Transfer data from/to the device data register by PIO.
4399 *
4400 * LOCKING:
4401 * Inherited from caller.
6ae4cfb5 4402 */
0d5ff566
TH
4403void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4404 unsigned int buflen, int write_data)
1da177e4 4405{
a6b2c5d4 4406 struct ata_port *ap = adev->ap;
6ae4cfb5 4407 unsigned int words = buflen >> 1;
1da177e4 4408
6ae4cfb5 4409 /* Transfer multiple of 2 bytes */
1da177e4 4410 if (write_data)
0d5ff566 4411 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
1da177e4 4412 else
0d5ff566 4413 ioread16_rep(ap->ioaddr.data_addr, buf, words);
6ae4cfb5
AL
4414
4415 /* Transfer trailing 1 byte, if any. */
4416 if (unlikely(buflen & 0x01)) {
4417 u16 align_buf[1] = { 0 };
4418 unsigned char *trailing_buf = buf + buflen - 1;
4419
4420 if (write_data) {
4421 memcpy(align_buf, trailing_buf, 1);
0d5ff566 4422 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
6ae4cfb5 4423 } else {
0d5ff566 4424 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
6ae4cfb5
AL
4425 memcpy(trailing_buf, align_buf, 1);
4426 }
4427 }
1da177e4
LT
4428}
4429
75e99585 4430/**
0d5ff566 4431 * ata_data_xfer_noirq - Transfer data by PIO
75e99585
AC
4432 * @adev: device to target
4433 * @buf: data buffer
4434 * @buflen: buffer length
4435 * @write_data: read/write
4436 *
88574551 4437 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
4438 * transfer with interrupts disabled.
4439 *
4440 * LOCKING:
4441 * Inherited from caller.
4442 */
0d5ff566
TH
4443void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4444 unsigned int buflen, int write_data)
75e99585
AC
4445{
4446 unsigned long flags;
4447 local_irq_save(flags);
0d5ff566 4448 ata_data_xfer(adev, buf, buflen, write_data);
75e99585
AC
4449 local_irq_restore(flags);
4450}
4451
4452
6ae4cfb5 4453/**
5a5dbd18 4454 * ata_pio_sector - Transfer a sector of data.
6ae4cfb5
AL
4455 * @qc: Command on going
4456 *
5a5dbd18 4457 * Transfer qc->sect_size bytes of data from/to the ATA device.
6ae4cfb5
AL
4458 *
4459 * LOCKING:
4460 * Inherited from caller.
4461 */
4462
1da177e4
LT
4463static void ata_pio_sector(struct ata_queued_cmd *qc)
4464{
4465 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4466 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4467 struct ata_port *ap = qc->ap;
4468 struct page *page;
4469 unsigned int offset;
4470 unsigned char *buf;
4471
5a5dbd18 4472 if (qc->curbytes == qc->nbytes - qc->sect_size)
14be71f4 4473 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4474
4475 page = sg[qc->cursg].page;
726f0785 4476 offset = sg[qc->cursg].offset + qc->cursg_ofs;
1da177e4
LT
4477
4478 /* get the current page and offset */
4479 page = nth_page(page, (offset >> PAGE_SHIFT));
4480 offset %= PAGE_SIZE;
4481
1da177e4
LT
4482 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4483
91b8b313
AL
4484 if (PageHighMem(page)) {
4485 unsigned long flags;
4486
a6b2c5d4 4487 /* FIXME: use a bounce buffer */
91b8b313
AL
4488 local_irq_save(flags);
4489 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4490
91b8b313 4491 /* do the actual data transfer */
5a5dbd18 4492 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
1da177e4 4493
91b8b313
AL
4494 kunmap_atomic(buf, KM_IRQ0);
4495 local_irq_restore(flags);
4496 } else {
4497 buf = page_address(page);
5a5dbd18 4498 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
91b8b313 4499 }
1da177e4 4500
5a5dbd18
ML
4501 qc->curbytes += qc->sect_size;
4502 qc->cursg_ofs += qc->sect_size;
1da177e4 4503
726f0785 4504 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
1da177e4
LT
4505 qc->cursg++;
4506 qc->cursg_ofs = 0;
4507 }
1da177e4 4508}
1da177e4 4509
07f6f7d0 4510/**
5a5dbd18 4511 * ata_pio_sectors - Transfer one or many sectors.
07f6f7d0
AL
4512 * @qc: Command on going
4513 *
5a5dbd18 4514 * Transfer one or many sectors of data from/to the
07f6f7d0
AL
4515 * ATA device for the DRQ request.
4516 *
4517 * LOCKING:
4518 * Inherited from caller.
4519 */
1da177e4 4520
07f6f7d0
AL
4521static void ata_pio_sectors(struct ata_queued_cmd *qc)
4522{
4523 if (is_multi_taskfile(&qc->tf)) {
4524 /* READ/WRITE MULTIPLE */
4525 unsigned int nsect;
4526
587005de 4527 WARN_ON(qc->dev->multi_count == 0);
1da177e4 4528
5a5dbd18 4529 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
726f0785 4530 qc->dev->multi_count);
07f6f7d0
AL
4531 while (nsect--)
4532 ata_pio_sector(qc);
4533 } else
4534 ata_pio_sector(qc);
4535}
4536
c71c1857
AL
4537/**
4538 * atapi_send_cdb - Write CDB bytes to hardware
4539 * @ap: Port to which ATAPI device is attached.
4540 * @qc: Taskfile currently active
4541 *
4542 * When device has indicated its readiness to accept
4543 * a CDB, this function is called. Send the CDB.
4544 *
4545 * LOCKING:
4546 * caller.
4547 */
4548
4549static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4550{
4551 /* send SCSI cdb */
4552 DPRINTK("send cdb\n");
db024d53 4553 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 4554
a6b2c5d4 4555 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
4556 ata_altstatus(ap); /* flush */
4557
4558 switch (qc->tf.protocol) {
4559 case ATA_PROT_ATAPI:
4560 ap->hsm_task_state = HSM_ST;
4561 break;
4562 case ATA_PROT_ATAPI_NODATA:
4563 ap->hsm_task_state = HSM_ST_LAST;
4564 break;
4565 case ATA_PROT_ATAPI_DMA:
4566 ap->hsm_task_state = HSM_ST_LAST;
4567 /* initiate bmdma */
4568 ap->ops->bmdma_start(qc);
4569 break;
4570 }
1da177e4
LT
4571}
4572
6ae4cfb5
AL
4573/**
4574 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4575 * @qc: Command on going
4576 * @bytes: number of bytes
4577 *
4578 * Transfer Transfer data from/to the ATAPI device.
4579 *
4580 * LOCKING:
4581 * Inherited from caller.
4582 *
4583 */
4584
1da177e4
LT
4585static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4586{
4587 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4588 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4589 struct ata_port *ap = qc->ap;
4590 struct page *page;
4591 unsigned char *buf;
4592 unsigned int offset, count;
4593
563a6e1f 4594 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 4595 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4596
4597next_sg:
563a6e1f 4598 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 4599 /*
563a6e1f
AL
4600 * The end of qc->sg is reached and the device expects
4601 * more data to transfer. In order not to overrun qc->sg
4602 * and fulfill length specified in the byte count register,
4603 * - for read case, discard trailing data from the device
4604 * - for write case, padding zero data to the device
4605 */
4606 u16 pad_buf[1] = { 0 };
4607 unsigned int words = bytes >> 1;
4608 unsigned int i;
4609
4610 if (words) /* warning if bytes > 1 */
f15a1daf
TH
4611 ata_dev_printk(qc->dev, KERN_WARNING,
4612 "%u bytes trailing data\n", bytes);
563a6e1f
AL
4613
4614 for (i = 0; i < words; i++)
a6b2c5d4 4615 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
563a6e1f 4616
14be71f4 4617 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
4618 return;
4619 }
4620
cedc9a47 4621 sg = &qc->__sg[qc->cursg];
1da177e4 4622
1da177e4
LT
4623 page = sg->page;
4624 offset = sg->offset + qc->cursg_ofs;
4625
4626 /* get the current page and offset */
4627 page = nth_page(page, (offset >> PAGE_SHIFT));
4628 offset %= PAGE_SIZE;
4629
6952df03 4630 /* don't overrun current sg */
32529e01 4631 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
4632
4633 /* don't cross page boundaries */
4634 count = min(count, (unsigned int)PAGE_SIZE - offset);
4635
7282aa4b
AL
4636 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4637
91b8b313
AL
4638 if (PageHighMem(page)) {
4639 unsigned long flags;
4640
a6b2c5d4 4641 /* FIXME: use bounce buffer */
91b8b313
AL
4642 local_irq_save(flags);
4643 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4644
91b8b313 4645 /* do the actual data transfer */
a6b2c5d4 4646 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 4647
91b8b313
AL
4648 kunmap_atomic(buf, KM_IRQ0);
4649 local_irq_restore(flags);
4650 } else {
4651 buf = page_address(page);
a6b2c5d4 4652 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 4653 }
1da177e4
LT
4654
4655 bytes -= count;
4656 qc->curbytes += count;
4657 qc->cursg_ofs += count;
4658
32529e01 4659 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
4660 qc->cursg++;
4661 qc->cursg_ofs = 0;
4662 }
4663
563a6e1f 4664 if (bytes)
1da177e4 4665 goto next_sg;
1da177e4
LT
4666}
4667
6ae4cfb5
AL
4668/**
4669 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4670 * @qc: Command on going
4671 *
4672 * Transfer Transfer data from/to the ATAPI device.
4673 *
4674 * LOCKING:
4675 * Inherited from caller.
6ae4cfb5
AL
4676 */
4677
1da177e4
LT
4678static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4679{
4680 struct ata_port *ap = qc->ap;
4681 struct ata_device *dev = qc->dev;
4682 unsigned int ireason, bc_lo, bc_hi, bytes;
4683 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4684
eec4c3f3
AL
4685 /* Abuse qc->result_tf for temp storage of intermediate TF
4686 * here to save some kernel stack usage.
4687 * For normal completion, qc->result_tf is not relevant. For
4688 * error, qc->result_tf is later overwritten by ata_qc_complete().
4689 * So, the correctness of qc->result_tf is not affected.
4690 */
4691 ap->ops->tf_read(ap, &qc->result_tf);
4692 ireason = qc->result_tf.nsect;
4693 bc_lo = qc->result_tf.lbam;
4694 bc_hi = qc->result_tf.lbah;
1da177e4
LT
4695 bytes = (bc_hi << 8) | bc_lo;
4696
4697 /* shall be cleared to zero, indicating xfer of data */
4698 if (ireason & (1 << 0))
4699 goto err_out;
4700
4701 /* make sure transfer direction matches expected */
4702 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4703 if (do_write != i_write)
4704 goto err_out;
4705
44877b4e 4706 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
312f7da2 4707
1da177e4
LT
4708 __atapi_pio_bytes(qc, bytes);
4709
4710 return;
4711
4712err_out:
f15a1daf 4713 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 4714 qc->err_mask |= AC_ERR_HSM;
14be71f4 4715 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
4716}
4717
4718/**
c234fb00
AL
4719 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4720 * @ap: the target ata_port
4721 * @qc: qc on going
1da177e4 4722 *
c234fb00
AL
4723 * RETURNS:
4724 * 1 if ok in workqueue, 0 otherwise.
1da177e4 4725 */
c234fb00
AL
4726
4727static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 4728{
c234fb00
AL
4729 if (qc->tf.flags & ATA_TFLAG_POLLING)
4730 return 1;
1da177e4 4731
c234fb00
AL
4732 if (ap->hsm_task_state == HSM_ST_FIRST) {
4733 if (qc->tf.protocol == ATA_PROT_PIO &&
4734 (qc->tf.flags & ATA_TFLAG_WRITE))
4735 return 1;
1da177e4 4736
c234fb00
AL
4737 if (is_atapi_taskfile(&qc->tf) &&
4738 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4739 return 1;
fe79e683
AL
4740 }
4741
c234fb00
AL
4742 return 0;
4743}
1da177e4 4744
c17ea20d
TH
4745/**
4746 * ata_hsm_qc_complete - finish a qc running on standard HSM
4747 * @qc: Command to complete
4748 * @in_wq: 1 if called from workqueue, 0 otherwise
4749 *
4750 * Finish @qc which is running on standard HSM.
4751 *
4752 * LOCKING:
cca3974e 4753 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
4754 * Otherwise, none on entry and grabs host lock.
4755 */
4756static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4757{
4758 struct ata_port *ap = qc->ap;
4759 unsigned long flags;
4760
4761 if (ap->ops->error_handler) {
4762 if (in_wq) {
ba6a1308 4763 spin_lock_irqsave(ap->lock, flags);
c17ea20d 4764
cca3974e
JG
4765 /* EH might have kicked in while host lock is
4766 * released.
c17ea20d
TH
4767 */
4768 qc = ata_qc_from_tag(ap, qc->tag);
4769 if (qc) {
4770 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
83625006 4771 ap->ops->irq_on(ap);
c17ea20d
TH
4772 ata_qc_complete(qc);
4773 } else
4774 ata_port_freeze(ap);
4775 }
4776
ba6a1308 4777 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4778 } else {
4779 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4780 ata_qc_complete(qc);
4781 else
4782 ata_port_freeze(ap);
4783 }
4784 } else {
4785 if (in_wq) {
ba6a1308 4786 spin_lock_irqsave(ap->lock, flags);
83625006 4787 ap->ops->irq_on(ap);
c17ea20d 4788 ata_qc_complete(qc);
ba6a1308 4789 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4790 } else
4791 ata_qc_complete(qc);
4792 }
1da177e4 4793
c81e29b4 4794 ata_altstatus(ap); /* flush */
c17ea20d
TH
4795}
4796
bb5cb290
AL
4797/**
4798 * ata_hsm_move - move the HSM to the next state.
4799 * @ap: the target ata_port
4800 * @qc: qc on going
4801 * @status: current device status
4802 * @in_wq: 1 if called from workqueue, 0 otherwise
4803 *
4804 * RETURNS:
4805 * 1 when poll next status needed, 0 otherwise.
4806 */
9a1004d0
TH
4807int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4808 u8 status, int in_wq)
e2cec771 4809{
bb5cb290
AL
4810 unsigned long flags = 0;
4811 int poll_next;
4812
6912ccd5
AL
4813 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4814
bb5cb290
AL
4815 /* Make sure ata_qc_issue_prot() does not throw things
4816 * like DMA polling into the workqueue. Notice that
4817 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4818 */
c234fb00 4819 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 4820
e2cec771 4821fsm_start:
999bb6f4 4822 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
44877b4e 4823 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
999bb6f4 4824
e2cec771
AL
4825 switch (ap->hsm_task_state) {
4826 case HSM_ST_FIRST:
bb5cb290
AL
4827 /* Send first data block or PACKET CDB */
4828
4829 /* If polling, we will stay in the work queue after
4830 * sending the data. Otherwise, interrupt handler
4831 * takes over after sending the data.
4832 */
4833 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4834
e2cec771 4835 /* check device status */
3655d1d3
AL
4836 if (unlikely((status & ATA_DRQ) == 0)) {
4837 /* handle BSY=0, DRQ=0 as error */
4838 if (likely(status & (ATA_ERR | ATA_DF)))
4839 /* device stops HSM for abort/error */
4840 qc->err_mask |= AC_ERR_DEV;
4841 else
4842 /* HSM violation. Let EH handle this */
4843 qc->err_mask |= AC_ERR_HSM;
4844
14be71f4 4845 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 4846 goto fsm_start;
1da177e4
LT
4847 }
4848
71601958
AL
4849 /* Device should not ask for data transfer (DRQ=1)
4850 * when it finds something wrong.
eee6c32f
AL
4851 * We ignore DRQ here and stop the HSM by
4852 * changing hsm_task_state to HSM_ST_ERR and
4853 * let the EH abort the command or reset the device.
71601958
AL
4854 */
4855 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
4856 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4857 "error, dev_stat 0x%X\n", status);
3655d1d3 4858 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4859 ap->hsm_task_state = HSM_ST_ERR;
4860 goto fsm_start;
71601958 4861 }
1da177e4 4862
bb5cb290
AL
4863 /* Send the CDB (atapi) or the first data block (ata pio out).
4864 * During the state transition, interrupt handler shouldn't
4865 * be invoked before the data transfer is complete and
4866 * hsm_task_state is changed. Hence, the following locking.
4867 */
4868 if (in_wq)
ba6a1308 4869 spin_lock_irqsave(ap->lock, flags);
1da177e4 4870
bb5cb290
AL
4871 if (qc->tf.protocol == ATA_PROT_PIO) {
4872 /* PIO data out protocol.
4873 * send first data block.
4874 */
0565c26d 4875
bb5cb290
AL
4876 /* ata_pio_sectors() might change the state
4877 * to HSM_ST_LAST. so, the state is changed here
4878 * before ata_pio_sectors().
4879 */
4880 ap->hsm_task_state = HSM_ST;
4881 ata_pio_sectors(qc);
4882 ata_altstatus(ap); /* flush */
4883 } else
4884 /* send CDB */
4885 atapi_send_cdb(ap, qc);
4886
4887 if (in_wq)
ba6a1308 4888 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
4889
4890 /* if polling, ata_pio_task() handles the rest.
4891 * otherwise, interrupt handler takes over from here.
4892 */
e2cec771 4893 break;
1c848984 4894
e2cec771
AL
4895 case HSM_ST:
4896 /* complete command or read/write the data register */
4897 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4898 /* ATAPI PIO protocol */
4899 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
4900 /* No more data to transfer or device error.
4901 * Device error will be tagged in HSM_ST_LAST.
4902 */
e2cec771
AL
4903 ap->hsm_task_state = HSM_ST_LAST;
4904 goto fsm_start;
4905 }
1da177e4 4906
71601958
AL
4907 /* Device should not ask for data transfer (DRQ=1)
4908 * when it finds something wrong.
eee6c32f
AL
4909 * We ignore DRQ here and stop the HSM by
4910 * changing hsm_task_state to HSM_ST_ERR and
4911 * let the EH abort the command or reset the device.
71601958
AL
4912 */
4913 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
4914 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4915 "device error, dev_stat 0x%X\n",
4916 status);
3655d1d3 4917 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4918 ap->hsm_task_state = HSM_ST_ERR;
4919 goto fsm_start;
71601958 4920 }
1da177e4 4921
e2cec771 4922 atapi_pio_bytes(qc);
7fb6ec28 4923
e2cec771
AL
4924 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4925 /* bad ireason reported by device */
4926 goto fsm_start;
1da177e4 4927
e2cec771
AL
4928 } else {
4929 /* ATA PIO protocol */
4930 if (unlikely((status & ATA_DRQ) == 0)) {
4931 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
4932 if (likely(status & (ATA_ERR | ATA_DF)))
4933 /* device stops HSM for abort/error */
4934 qc->err_mask |= AC_ERR_DEV;
4935 else
55a8e2c8
TH
4936 /* HSM violation. Let EH handle this.
4937 * Phantom devices also trigger this
4938 * condition. Mark hint.
4939 */
4940 qc->err_mask |= AC_ERR_HSM |
4941 AC_ERR_NODEV_HINT;
3655d1d3 4942
e2cec771
AL
4943 ap->hsm_task_state = HSM_ST_ERR;
4944 goto fsm_start;
4945 }
1da177e4 4946
eee6c32f
AL
4947 /* For PIO reads, some devices may ask for
4948 * data transfer (DRQ=1) alone with ERR=1.
4949 * We respect DRQ here and transfer one
4950 * block of junk data before changing the
4951 * hsm_task_state to HSM_ST_ERR.
4952 *
4953 * For PIO writes, ERR=1 DRQ=1 doesn't make
4954 * sense since the data block has been
4955 * transferred to the device.
71601958
AL
4956 */
4957 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
4958 /* data might be corrputed */
4959 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
4960
4961 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4962 ata_pio_sectors(qc);
4963 ata_altstatus(ap);
4964 status = ata_wait_idle(ap);
4965 }
4966
3655d1d3
AL
4967 if (status & (ATA_BUSY | ATA_DRQ))
4968 qc->err_mask |= AC_ERR_HSM;
4969
eee6c32f
AL
4970 /* ata_pio_sectors() might change the
4971 * state to HSM_ST_LAST. so, the state
4972 * is changed after ata_pio_sectors().
4973 */
4974 ap->hsm_task_state = HSM_ST_ERR;
4975 goto fsm_start;
71601958
AL
4976 }
4977
e2cec771
AL
4978 ata_pio_sectors(qc);
4979
4980 if (ap->hsm_task_state == HSM_ST_LAST &&
4981 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4982 /* all data read */
4983 ata_altstatus(ap);
52a32205 4984 status = ata_wait_idle(ap);
e2cec771
AL
4985 goto fsm_start;
4986 }
4987 }
4988
4989 ata_altstatus(ap); /* flush */
bb5cb290 4990 poll_next = 1;
1da177e4
LT
4991 break;
4992
14be71f4 4993 case HSM_ST_LAST:
6912ccd5
AL
4994 if (unlikely(!ata_ok(status))) {
4995 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
4996 ap->hsm_task_state = HSM_ST_ERR;
4997 goto fsm_start;
4998 }
4999
5000 /* no more data to transfer */
4332a771 5001 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
44877b4e 5002 ap->print_id, qc->dev->devno, status);
e2cec771 5003
6912ccd5
AL
5004 WARN_ON(qc->err_mask);
5005
e2cec771 5006 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 5007
e2cec771 5008 /* complete taskfile transaction */
c17ea20d 5009 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5010
5011 poll_next = 0;
1da177e4
LT
5012 break;
5013
14be71f4 5014 case HSM_ST_ERR:
e2cec771
AL
5015 /* make sure qc->err_mask is available to
5016 * know what's wrong and recover
5017 */
5018 WARN_ON(qc->err_mask == 0);
5019
5020 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 5021
999bb6f4 5022 /* complete taskfile transaction */
c17ea20d 5023 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5024
5025 poll_next = 0;
e2cec771
AL
5026 break;
5027 default:
bb5cb290 5028 poll_next = 0;
6912ccd5 5029 BUG();
1da177e4
LT
5030 }
5031
bb5cb290 5032 return poll_next;
1da177e4
LT
5033}
5034
65f27f38 5035static void ata_pio_task(struct work_struct *work)
8061f5f0 5036{
65f27f38
DH
5037 struct ata_port *ap =
5038 container_of(work, struct ata_port, port_task.work);
5039 struct ata_queued_cmd *qc = ap->port_task_data;
8061f5f0 5040 u8 status;
a1af3734 5041 int poll_next;
8061f5f0 5042
7fb6ec28 5043fsm_start:
a1af3734 5044 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 5045
a1af3734
AL
5046 /*
5047 * This is purely heuristic. This is a fast path.
5048 * Sometimes when we enter, BSY will be cleared in
5049 * a chk-status or two. If not, the drive is probably seeking
5050 * or something. Snooze for a couple msecs, then
5051 * chk-status again. If still busy, queue delayed work.
5052 */
5053 status = ata_busy_wait(ap, ATA_BUSY, 5);
5054 if (status & ATA_BUSY) {
5055 msleep(2);
5056 status = ata_busy_wait(ap, ATA_BUSY, 10);
5057 if (status & ATA_BUSY) {
31ce6dae 5058 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
5059 return;
5060 }
8061f5f0
TH
5061 }
5062
a1af3734
AL
5063 /* move the HSM */
5064 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 5065
a1af3734
AL
5066 /* another command or interrupt handler
5067 * may be running at this point.
5068 */
5069 if (poll_next)
7fb6ec28 5070 goto fsm_start;
8061f5f0
TH
5071}
5072
1da177e4
LT
5073/**
5074 * ata_qc_new - Request an available ATA command, for queueing
5075 * @ap: Port associated with device @dev
5076 * @dev: Device from whom we request an available command structure
5077 *
5078 * LOCKING:
0cba632b 5079 * None.
1da177e4
LT
5080 */
5081
5082static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5083{
5084 struct ata_queued_cmd *qc = NULL;
5085 unsigned int i;
5086
e3180499 5087 /* no command while frozen */
b51e9e5d 5088 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
5089 return NULL;
5090
2ab7db1f
TH
5091 /* the last tag is reserved for internal command. */
5092 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 5093 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 5094 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
5095 break;
5096 }
5097
5098 if (qc)
5099 qc->tag = i;
5100
5101 return qc;
5102}
5103
5104/**
5105 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
5106 * @dev: Device from whom we request an available command structure
5107 *
5108 * LOCKING:
0cba632b 5109 * None.
1da177e4
LT
5110 */
5111
3373efd8 5112struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 5113{
3373efd8 5114 struct ata_port *ap = dev->ap;
1da177e4
LT
5115 struct ata_queued_cmd *qc;
5116
5117 qc = ata_qc_new(ap);
5118 if (qc) {
1da177e4
LT
5119 qc->scsicmd = NULL;
5120 qc->ap = ap;
5121 qc->dev = dev;
1da177e4 5122
2c13b7ce 5123 ata_qc_reinit(qc);
1da177e4
LT
5124 }
5125
5126 return qc;
5127}
5128
1da177e4
LT
5129/**
5130 * ata_qc_free - free unused ata_queued_cmd
5131 * @qc: Command to complete
5132 *
5133 * Designed to free unused ata_queued_cmd object
5134 * in case something prevents using it.
5135 *
5136 * LOCKING:
cca3974e 5137 * spin_lock_irqsave(host lock)
1da177e4
LT
5138 */
5139void ata_qc_free(struct ata_queued_cmd *qc)
5140{
4ba946e9
TH
5141 struct ata_port *ap = qc->ap;
5142 unsigned int tag;
5143
a4631474 5144 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 5145
4ba946e9
TH
5146 qc->flags = 0;
5147 tag = qc->tag;
5148 if (likely(ata_tag_valid(tag))) {
4ba946e9 5149 qc->tag = ATA_TAG_POISON;
6cec4a39 5150 clear_bit(tag, &ap->qc_allocated);
4ba946e9 5151 }
1da177e4
LT
5152}
5153
76014427 5154void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 5155{
dedaf2b0
TH
5156 struct ata_port *ap = qc->ap;
5157
a4631474
TH
5158 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5159 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
5160
5161 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5162 ata_sg_clean(qc);
5163
7401abf2 5164 /* command should be marked inactive atomically with qc completion */
dedaf2b0
TH
5165 if (qc->tf.protocol == ATA_PROT_NCQ)
5166 ap->sactive &= ~(1 << qc->tag);
5167 else
5168 ap->active_tag = ATA_TAG_POISON;
7401abf2 5169
3f3791d3
AL
5170 /* atapi: mark qc as inactive to prevent the interrupt handler
5171 * from completing the command twice later, before the error handler
5172 * is called. (when rc != 0 and atapi request sense is needed)
5173 */
5174 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 5175 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 5176
1da177e4 5177 /* call completion callback */
77853bf2 5178 qc->complete_fn(qc);
1da177e4
LT
5179}
5180
39599a53
TH
5181static void fill_result_tf(struct ata_queued_cmd *qc)
5182{
5183 struct ata_port *ap = qc->ap;
5184
39599a53 5185 qc->result_tf.flags = qc->tf.flags;
4742d54f 5186 ap->ops->tf_read(ap, &qc->result_tf);
39599a53
TH
5187}
5188
f686bcb8
TH
5189/**
5190 * ata_qc_complete - Complete an active ATA command
5191 * @qc: Command to complete
5192 * @err_mask: ATA Status register contents
5193 *
5194 * Indicate to the mid and upper layers that an ATA
5195 * command has completed, with either an ok or not-ok status.
5196 *
5197 * LOCKING:
cca3974e 5198 * spin_lock_irqsave(host lock)
f686bcb8
TH
5199 */
5200void ata_qc_complete(struct ata_queued_cmd *qc)
5201{
5202 struct ata_port *ap = qc->ap;
5203
5204 /* XXX: New EH and old EH use different mechanisms to
5205 * synchronize EH with regular execution path.
5206 *
5207 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5208 * Normal execution path is responsible for not accessing a
5209 * failed qc. libata core enforces the rule by returning NULL
5210 * from ata_qc_from_tag() for failed qcs.
5211 *
5212 * Old EH depends on ata_qc_complete() nullifying completion
5213 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5214 * not synchronize with interrupt handler. Only PIO task is
5215 * taken care of.
5216 */
5217 if (ap->ops->error_handler) {
b51e9e5d 5218 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
5219
5220 if (unlikely(qc->err_mask))
5221 qc->flags |= ATA_QCFLAG_FAILED;
5222
5223 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5224 if (!ata_tag_internal(qc->tag)) {
5225 /* always fill result TF for failed qc */
39599a53 5226 fill_result_tf(qc);
f686bcb8
TH
5227 ata_qc_schedule_eh(qc);
5228 return;
5229 }
5230 }
5231
5232 /* read result TF if requested */
5233 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5234 fill_result_tf(qc);
f686bcb8
TH
5235
5236 __ata_qc_complete(qc);
5237 } else {
5238 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5239 return;
5240
5241 /* read result TF if failed or requested */
5242 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5243 fill_result_tf(qc);
f686bcb8
TH
5244
5245 __ata_qc_complete(qc);
5246 }
5247}
5248
dedaf2b0
TH
5249/**
5250 * ata_qc_complete_multiple - Complete multiple qcs successfully
5251 * @ap: port in question
5252 * @qc_active: new qc_active mask
5253 * @finish_qc: LLDD callback invoked before completing a qc
5254 *
5255 * Complete in-flight commands. This functions is meant to be
5256 * called from low-level driver's interrupt routine to complete
5257 * requests normally. ap->qc_active and @qc_active is compared
5258 * and commands are completed accordingly.
5259 *
5260 * LOCKING:
cca3974e 5261 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5262 *
5263 * RETURNS:
5264 * Number of completed commands on success, -errno otherwise.
5265 */
5266int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5267 void (*finish_qc)(struct ata_queued_cmd *))
5268{
5269 int nr_done = 0;
5270 u32 done_mask;
5271 int i;
5272
5273 done_mask = ap->qc_active ^ qc_active;
5274
5275 if (unlikely(done_mask & qc_active)) {
5276 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5277 "(%08x->%08x)\n", ap->qc_active, qc_active);
5278 return -EINVAL;
5279 }
5280
5281 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5282 struct ata_queued_cmd *qc;
5283
5284 if (!(done_mask & (1 << i)))
5285 continue;
5286
5287 if ((qc = ata_qc_from_tag(ap, i))) {
5288 if (finish_qc)
5289 finish_qc(qc);
5290 ata_qc_complete(qc);
5291 nr_done++;
5292 }
5293 }
5294
5295 return nr_done;
5296}
5297
1da177e4
LT
5298static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5299{
5300 struct ata_port *ap = qc->ap;
5301
5302 switch (qc->tf.protocol) {
3dc1d881 5303 case ATA_PROT_NCQ:
1da177e4
LT
5304 case ATA_PROT_DMA:
5305 case ATA_PROT_ATAPI_DMA:
5306 return 1;
5307
5308 case ATA_PROT_ATAPI:
5309 case ATA_PROT_PIO:
1da177e4
LT
5310 if (ap->flags & ATA_FLAG_PIO_DMA)
5311 return 1;
5312
5313 /* fall through */
5314
5315 default:
5316 return 0;
5317 }
5318
5319 /* never reached */
5320}
5321
5322/**
5323 * ata_qc_issue - issue taskfile to device
5324 * @qc: command to issue to device
5325 *
5326 * Prepare an ATA command to submission to device.
5327 * This includes mapping the data into a DMA-able
5328 * area, filling in the S/G table, and finally
5329 * writing the taskfile to hardware, starting the command.
5330 *
5331 * LOCKING:
cca3974e 5332 * spin_lock_irqsave(host lock)
1da177e4 5333 */
8e0e694a 5334void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5335{
5336 struct ata_port *ap = qc->ap;
5337
dedaf2b0
TH
5338 /* Make sure only one non-NCQ command is outstanding. The
5339 * check is skipped for old EH because it reuses active qc to
5340 * request ATAPI sense.
5341 */
5342 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
5343
5344 if (qc->tf.protocol == ATA_PROT_NCQ) {
5345 WARN_ON(ap->sactive & (1 << qc->tag));
5346 ap->sactive |= 1 << qc->tag;
5347 } else {
5348 WARN_ON(ap->sactive);
5349 ap->active_tag = qc->tag;
5350 }
5351
e4a70e76 5352 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5353 ap->qc_active |= 1 << qc->tag;
e4a70e76 5354
1da177e4
LT
5355 if (ata_should_dma_map(qc)) {
5356 if (qc->flags & ATA_QCFLAG_SG) {
5357 if (ata_sg_setup(qc))
8e436af9 5358 goto sg_err;
1da177e4
LT
5359 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5360 if (ata_sg_setup_one(qc))
8e436af9 5361 goto sg_err;
1da177e4
LT
5362 }
5363 } else {
5364 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5365 }
5366
5367 ap->ops->qc_prep(qc);
5368
8e0e694a
TH
5369 qc->err_mask |= ap->ops->qc_issue(qc);
5370 if (unlikely(qc->err_mask))
5371 goto err;
5372 return;
1da177e4 5373
8e436af9
TH
5374sg_err:
5375 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
5376 qc->err_mask |= AC_ERR_SYSTEM;
5377err:
5378 ata_qc_complete(qc);
1da177e4
LT
5379}
5380
5381/**
5382 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5383 * @qc: command to issue to device
5384 *
5385 * Using various libata functions and hooks, this function
5386 * starts an ATA command. ATA commands are grouped into
5387 * classes called "protocols", and issuing each type of protocol
5388 * is slightly different.
5389 *
0baab86b
EF
5390 * May be used as the qc_issue() entry in ata_port_operations.
5391 *
1da177e4 5392 * LOCKING:
cca3974e 5393 * spin_lock_irqsave(host lock)
1da177e4
LT
5394 *
5395 * RETURNS:
9a3d9eb0 5396 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
5397 */
5398
9a3d9eb0 5399unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
5400{
5401 struct ata_port *ap = qc->ap;
5402
e50362ec
AL
5403 /* Use polling pio if the LLD doesn't handle
5404 * interrupt driven pio and atapi CDB interrupt.
5405 */
5406 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5407 switch (qc->tf.protocol) {
5408 case ATA_PROT_PIO:
e3472cbe 5409 case ATA_PROT_NODATA:
e50362ec
AL
5410 case ATA_PROT_ATAPI:
5411 case ATA_PROT_ATAPI_NODATA:
5412 qc->tf.flags |= ATA_TFLAG_POLLING;
5413 break;
5414 case ATA_PROT_ATAPI_DMA:
5415 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 5416 /* see ata_dma_blacklisted() */
e50362ec
AL
5417 BUG();
5418 break;
5419 default:
5420 break;
5421 }
5422 }
5423
312f7da2 5424 /* select the device */
1da177e4
LT
5425 ata_dev_select(ap, qc->dev->devno, 1, 0);
5426
312f7da2 5427 /* start the command */
1da177e4
LT
5428 switch (qc->tf.protocol) {
5429 case ATA_PROT_NODATA:
312f7da2
AL
5430 if (qc->tf.flags & ATA_TFLAG_POLLING)
5431 ata_qc_set_polling(qc);
5432
e5338254 5433 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
5434 ap->hsm_task_state = HSM_ST_LAST;
5435
5436 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5437 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 5438
1da177e4
LT
5439 break;
5440
5441 case ATA_PROT_DMA:
587005de 5442 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5443
1da177e4
LT
5444 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5445 ap->ops->bmdma_setup(qc); /* set up bmdma */
5446 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 5447 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
5448 break;
5449
312f7da2
AL
5450 case ATA_PROT_PIO:
5451 if (qc->tf.flags & ATA_TFLAG_POLLING)
5452 ata_qc_set_polling(qc);
1da177e4 5453
e5338254 5454 ata_tf_to_host(ap, &qc->tf);
312f7da2 5455
54f00389
AL
5456 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5457 /* PIO data out protocol */
5458 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 5459 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5460
5461 /* always send first data block using
e27486db 5462 * the ata_pio_task() codepath.
54f00389 5463 */
312f7da2 5464 } else {
54f00389
AL
5465 /* PIO data in protocol */
5466 ap->hsm_task_state = HSM_ST;
5467
5468 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5469 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5470
5471 /* if polling, ata_pio_task() handles the rest.
5472 * otherwise, interrupt handler takes over from here.
5473 */
312f7da2
AL
5474 }
5475
1da177e4
LT
5476 break;
5477
1da177e4 5478 case ATA_PROT_ATAPI:
1da177e4 5479 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
5480 if (qc->tf.flags & ATA_TFLAG_POLLING)
5481 ata_qc_set_polling(qc);
5482
e5338254 5483 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 5484
312f7da2
AL
5485 ap->hsm_task_state = HSM_ST_FIRST;
5486
5487 /* send cdb by polling if no cdb interrupt */
5488 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5489 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 5490 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5491 break;
5492
5493 case ATA_PROT_ATAPI_DMA:
587005de 5494 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5495
1da177e4
LT
5496 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5497 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
5498 ap->hsm_task_state = HSM_ST_FIRST;
5499
5500 /* send cdb by polling if no cdb interrupt */
5501 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 5502 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5503 break;
5504
5505 default:
5506 WARN_ON(1);
9a3d9eb0 5507 return AC_ERR_SYSTEM;
1da177e4
LT
5508 }
5509
5510 return 0;
5511}
5512
1da177e4
LT
5513/**
5514 * ata_host_intr - Handle host interrupt for given (port, task)
5515 * @ap: Port on which interrupt arrived (possibly...)
5516 * @qc: Taskfile currently active in engine
5517 *
5518 * Handle host interrupt for given queued command. Currently,
5519 * only DMA interrupts are handled. All other commands are
5520 * handled via polling with interrupts disabled (nIEN bit).
5521 *
5522 * LOCKING:
cca3974e 5523 * spin_lock_irqsave(host lock)
1da177e4
LT
5524 *
5525 * RETURNS:
5526 * One if interrupt was handled, zero if not (shared irq).
5527 */
5528
5529inline unsigned int ata_host_intr (struct ata_port *ap,
5530 struct ata_queued_cmd *qc)
5531{
ea54763f 5532 struct ata_eh_info *ehi = &ap->eh_info;
312f7da2 5533 u8 status, host_stat = 0;
1da177e4 5534
312f7da2 5535 VPRINTK("ata%u: protocol %d task_state %d\n",
44877b4e 5536 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 5537
312f7da2
AL
5538 /* Check whether we are expecting interrupt in this state */
5539 switch (ap->hsm_task_state) {
5540 case HSM_ST_FIRST:
6912ccd5
AL
5541 /* Some pre-ATAPI-4 devices assert INTRQ
5542 * at this state when ready to receive CDB.
5543 */
1da177e4 5544
312f7da2
AL
5545 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5546 * The flag was turned on only for atapi devices.
5547 * No need to check is_atapi_taskfile(&qc->tf) again.
5548 */
5549 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 5550 goto idle_irq;
1da177e4 5551 break;
312f7da2
AL
5552 case HSM_ST_LAST:
5553 if (qc->tf.protocol == ATA_PROT_DMA ||
5554 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5555 /* check status of DMA engine */
5556 host_stat = ap->ops->bmdma_status(ap);
44877b4e
TH
5557 VPRINTK("ata%u: host_stat 0x%X\n",
5558 ap->print_id, host_stat);
312f7da2
AL
5559
5560 /* if it's not our irq... */
5561 if (!(host_stat & ATA_DMA_INTR))
5562 goto idle_irq;
5563
5564 /* before we do anything else, clear DMA-Start bit */
5565 ap->ops->bmdma_stop(qc);
a4f16610
AL
5566
5567 if (unlikely(host_stat & ATA_DMA_ERR)) {
5568 /* error when transfering data to/from memory */
5569 qc->err_mask |= AC_ERR_HOST_BUS;
5570 ap->hsm_task_state = HSM_ST_ERR;
5571 }
312f7da2
AL
5572 }
5573 break;
5574 case HSM_ST:
5575 break;
1da177e4
LT
5576 default:
5577 goto idle_irq;
5578 }
5579
312f7da2
AL
5580 /* check altstatus */
5581 status = ata_altstatus(ap);
5582 if (status & ATA_BUSY)
5583 goto idle_irq;
1da177e4 5584
312f7da2
AL
5585 /* check main status, clearing INTRQ */
5586 status = ata_chk_status(ap);
5587 if (unlikely(status & ATA_BUSY))
5588 goto idle_irq;
1da177e4 5589
312f7da2
AL
5590 /* ack bmdma irq events */
5591 ap->ops->irq_clear(ap);
1da177e4 5592
bb5cb290 5593 ata_hsm_move(ap, qc, status, 0);
ea54763f
TH
5594
5595 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5596 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5597 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5598
1da177e4
LT
5599 return 1; /* irq handled */
5600
5601idle_irq:
5602 ap->stats.idle_irq++;
5603
5604#ifdef ATA_IRQ_TRAP
5605 if ((ap->stats.idle_irq % 1000) == 0) {
83625006 5606 ap->ops->irq_ack(ap, 0); /* debug trap */
f15a1daf 5607 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 5608 return 1;
1da177e4
LT
5609 }
5610#endif
5611 return 0; /* irq not handled */
5612}
5613
5614/**
5615 * ata_interrupt - Default ATA host interrupt handler
0cba632b 5616 * @irq: irq line (unused)
cca3974e 5617 * @dev_instance: pointer to our ata_host information structure
1da177e4 5618 *
0cba632b
JG
5619 * Default interrupt handler for PCI IDE devices. Calls
5620 * ata_host_intr() for each port that is not disabled.
5621 *
1da177e4 5622 * LOCKING:
cca3974e 5623 * Obtains host lock during operation.
1da177e4
LT
5624 *
5625 * RETURNS:
0cba632b 5626 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
5627 */
5628
7d12e780 5629irqreturn_t ata_interrupt (int irq, void *dev_instance)
1da177e4 5630{
cca3974e 5631 struct ata_host *host = dev_instance;
1da177e4
LT
5632 unsigned int i;
5633 unsigned int handled = 0;
5634 unsigned long flags;
5635
5636 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 5637 spin_lock_irqsave(&host->lock, flags);
1da177e4 5638
cca3974e 5639 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
5640 struct ata_port *ap;
5641
cca3974e 5642 ap = host->ports[i];
c1389503 5643 if (ap &&
029f5468 5644 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
5645 struct ata_queued_cmd *qc;
5646
5647 qc = ata_qc_from_tag(ap, ap->active_tag);
312f7da2 5648 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 5649 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
5650 handled |= ata_host_intr(ap, qc);
5651 }
5652 }
5653
cca3974e 5654 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
5655
5656 return IRQ_RETVAL(handled);
5657}
5658
34bf2170
TH
5659/**
5660 * sata_scr_valid - test whether SCRs are accessible
5661 * @ap: ATA port to test SCR accessibility for
5662 *
5663 * Test whether SCRs are accessible for @ap.
5664 *
5665 * LOCKING:
5666 * None.
5667 *
5668 * RETURNS:
5669 * 1 if SCRs are accessible, 0 otherwise.
5670 */
5671int sata_scr_valid(struct ata_port *ap)
5672{
5673 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5674}
5675
5676/**
5677 * sata_scr_read - read SCR register of the specified port
5678 * @ap: ATA port to read SCR for
5679 * @reg: SCR to read
5680 * @val: Place to store read value
5681 *
5682 * Read SCR register @reg of @ap into *@val. This function is
5683 * guaranteed to succeed if the cable type of the port is SATA
5684 * and the port implements ->scr_read.
5685 *
5686 * LOCKING:
5687 * None.
5688 *
5689 * RETURNS:
5690 * 0 on success, negative errno on failure.
5691 */
5692int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5693{
5694 if (sata_scr_valid(ap)) {
5695 *val = ap->ops->scr_read(ap, reg);
5696 return 0;
5697 }
5698 return -EOPNOTSUPP;
5699}
5700
5701/**
5702 * sata_scr_write - write SCR register of the specified port
5703 * @ap: ATA port to write SCR for
5704 * @reg: SCR to write
5705 * @val: value to write
5706 *
5707 * Write @val to SCR register @reg of @ap. This function is
5708 * guaranteed to succeed if the cable type of the port is SATA
5709 * and the port implements ->scr_read.
5710 *
5711 * LOCKING:
5712 * None.
5713 *
5714 * RETURNS:
5715 * 0 on success, negative errno on failure.
5716 */
5717int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5718{
5719 if (sata_scr_valid(ap)) {
5720 ap->ops->scr_write(ap, reg, val);
5721 return 0;
5722 }
5723 return -EOPNOTSUPP;
5724}
5725
5726/**
5727 * sata_scr_write_flush - write SCR register of the specified port and flush
5728 * @ap: ATA port to write SCR for
5729 * @reg: SCR to write
5730 * @val: value to write
5731 *
5732 * This function is identical to sata_scr_write() except that this
5733 * function performs flush after writing to the register.
5734 *
5735 * LOCKING:
5736 * None.
5737 *
5738 * RETURNS:
5739 * 0 on success, negative errno on failure.
5740 */
5741int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5742{
5743 if (sata_scr_valid(ap)) {
5744 ap->ops->scr_write(ap, reg, val);
5745 ap->ops->scr_read(ap, reg);
5746 return 0;
5747 }
5748 return -EOPNOTSUPP;
5749}
5750
5751/**
5752 * ata_port_online - test whether the given port is online
5753 * @ap: ATA port to test
5754 *
5755 * Test whether @ap is online. Note that this function returns 0
5756 * if online status of @ap cannot be obtained, so
5757 * ata_port_online(ap) != !ata_port_offline(ap).
5758 *
5759 * LOCKING:
5760 * None.
5761 *
5762 * RETURNS:
5763 * 1 if the port online status is available and online.
5764 */
5765int ata_port_online(struct ata_port *ap)
5766{
5767 u32 sstatus;
5768
5769 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5770 return 1;
5771 return 0;
5772}
5773
5774/**
5775 * ata_port_offline - test whether the given port is offline
5776 * @ap: ATA port to test
5777 *
5778 * Test whether @ap is offline. Note that this function returns
5779 * 0 if offline status of @ap cannot be obtained, so
5780 * ata_port_online(ap) != !ata_port_offline(ap).
5781 *
5782 * LOCKING:
5783 * None.
5784 *
5785 * RETURNS:
5786 * 1 if the port offline status is available and offline.
5787 */
5788int ata_port_offline(struct ata_port *ap)
5789{
5790 u32 sstatus;
5791
5792 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5793 return 1;
5794 return 0;
5795}
0baab86b 5796
77b08fb5 5797int ata_flush_cache(struct ata_device *dev)
9b847548 5798{
977e6b9f 5799 unsigned int err_mask;
9b847548
JA
5800 u8 cmd;
5801
5802 if (!ata_try_flush_cache(dev))
5803 return 0;
5804
6fc49adb 5805 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
9b847548
JA
5806 cmd = ATA_CMD_FLUSH_EXT;
5807 else
5808 cmd = ATA_CMD_FLUSH;
5809
977e6b9f
TH
5810 err_mask = ata_do_simple_cmd(dev, cmd);
5811 if (err_mask) {
5812 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5813 return -EIO;
5814 }
5815
5816 return 0;
9b847548
JA
5817}
5818
6ffa01d8 5819#ifdef CONFIG_PM
cca3974e
JG
5820static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5821 unsigned int action, unsigned int ehi_flags,
5822 int wait)
500530f6
TH
5823{
5824 unsigned long flags;
5825 int i, rc;
5826
cca3974e
JG
5827 for (i = 0; i < host->n_ports; i++) {
5828 struct ata_port *ap = host->ports[i];
500530f6
TH
5829
5830 /* Previous resume operation might still be in
5831 * progress. Wait for PM_PENDING to clear.
5832 */
5833 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5834 ata_port_wait_eh(ap);
5835 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5836 }
5837
5838 /* request PM ops to EH */
5839 spin_lock_irqsave(ap->lock, flags);
5840
5841 ap->pm_mesg = mesg;
5842 if (wait) {
5843 rc = 0;
5844 ap->pm_result = &rc;
5845 }
5846
5847 ap->pflags |= ATA_PFLAG_PM_PENDING;
5848 ap->eh_info.action |= action;
5849 ap->eh_info.flags |= ehi_flags;
5850
5851 ata_port_schedule_eh(ap);
5852
5853 spin_unlock_irqrestore(ap->lock, flags);
5854
5855 /* wait and check result */
5856 if (wait) {
5857 ata_port_wait_eh(ap);
5858 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5859 if (rc)
5860 return rc;
5861 }
5862 }
5863
5864 return 0;
5865}
5866
5867/**
cca3974e
JG
5868 * ata_host_suspend - suspend host
5869 * @host: host to suspend
500530f6
TH
5870 * @mesg: PM message
5871 *
cca3974e 5872 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
5873 * function requests EH to perform PM operations and waits for EH
5874 * to finish.
5875 *
5876 * LOCKING:
5877 * Kernel thread context (may sleep).
5878 *
5879 * RETURNS:
5880 * 0 on success, -errno on failure.
5881 */
cca3974e 5882int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 5883{
9666f400 5884 int rc;
500530f6 5885
cca3974e 5886 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
9666f400
TH
5887 if (rc == 0)
5888 host->dev->power.power_state = mesg;
500530f6
TH
5889 return rc;
5890}
5891
5892/**
cca3974e
JG
5893 * ata_host_resume - resume host
5894 * @host: host to resume
500530f6 5895 *
cca3974e 5896 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
5897 * function requests EH to perform PM operations and returns.
5898 * Note that all resume operations are performed parallely.
5899 *
5900 * LOCKING:
5901 * Kernel thread context (may sleep).
5902 */
cca3974e 5903void ata_host_resume(struct ata_host *host)
500530f6 5904{
cca3974e
JG
5905 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5906 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5907 host->dev->power.power_state = PMSG_ON;
500530f6 5908}
6ffa01d8 5909#endif
500530f6 5910
c893a3ae
RD
5911/**
5912 * ata_port_start - Set port up for dma.
5913 * @ap: Port to initialize
5914 *
5915 * Called just after data structures for each port are
5916 * initialized. Allocates space for PRD table.
5917 *
5918 * May be used as the port_start() entry in ata_port_operations.
5919 *
5920 * LOCKING:
5921 * Inherited from caller.
5922 */
f0d36efd 5923int ata_port_start(struct ata_port *ap)
1da177e4 5924{
2f1f610b 5925 struct device *dev = ap->dev;
6037d6bb 5926 int rc;
1da177e4 5927
f0d36efd
TH
5928 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5929 GFP_KERNEL);
1da177e4
LT
5930 if (!ap->prd)
5931 return -ENOMEM;
5932
6037d6bb 5933 rc = ata_pad_alloc(ap, dev);
f0d36efd 5934 if (rc)
6037d6bb 5935 return rc;
1da177e4 5936
f0d36efd
TH
5937 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
5938 (unsigned long long)ap->prd_dma);
1da177e4
LT
5939 return 0;
5940}
5941
3ef3b43d
TH
5942/**
5943 * ata_dev_init - Initialize an ata_device structure
5944 * @dev: Device structure to initialize
5945 *
5946 * Initialize @dev in preparation for probing.
5947 *
5948 * LOCKING:
5949 * Inherited from caller.
5950 */
5951void ata_dev_init(struct ata_device *dev)
5952{
5953 struct ata_port *ap = dev->ap;
72fa4b74
TH
5954 unsigned long flags;
5955
5a04bf4b
TH
5956 /* SATA spd limit is bound to the first device */
5957 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5958
72fa4b74
TH
5959 /* High bits of dev->flags are used to record warm plug
5960 * requests which occur asynchronously. Synchronize using
cca3974e 5961 * host lock.
72fa4b74 5962 */
ba6a1308 5963 spin_lock_irqsave(ap->lock, flags);
72fa4b74 5964 dev->flags &= ~ATA_DFLAG_INIT_MASK;
ba6a1308 5965 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 5966
72fa4b74
TH
5967 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5968 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
5969 dev->pio_mask = UINT_MAX;
5970 dev->mwdma_mask = UINT_MAX;
5971 dev->udma_mask = UINT_MAX;
5972}
5973
1da177e4 5974/**
f3187195
TH
5975 * ata_port_alloc - allocate and initialize basic ATA port resources
5976 * @host: ATA host this allocated port belongs to
1da177e4 5977 *
f3187195
TH
5978 * Allocate and initialize basic ATA port resources.
5979 *
5980 * RETURNS:
5981 * Allocate ATA port on success, NULL on failure.
0cba632b 5982 *
1da177e4 5983 * LOCKING:
f3187195 5984 * Inherited from calling layer (may sleep).
1da177e4 5985 */
f3187195 5986struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 5987{
f3187195 5988 struct ata_port *ap;
1da177e4
LT
5989 unsigned int i;
5990
f3187195
TH
5991 DPRINTK("ENTER\n");
5992
5993 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5994 if (!ap)
5995 return NULL;
5996
f4d6d004 5997 ap->pflags |= ATA_PFLAG_INITIALIZING;
cca3974e 5998 ap->lock = &host->lock;
198e0fed 5999 ap->flags = ATA_FLAG_DISABLED;
f3187195 6000 ap->print_id = -1;
1da177e4 6001 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 6002 ap->host = host;
f3187195
TH
6003 ap->dev = host->dev;
6004
5a04bf4b 6005 ap->hw_sata_spd_limit = UINT_MAX;
1da177e4
LT
6006 ap->active_tag = ATA_TAG_POISON;
6007 ap->last_ctl = 0xFF;
bd5d825c
BP
6008
6009#if defined(ATA_VERBOSE_DEBUG)
6010 /* turn on all debugging levels */
6011 ap->msg_enable = 0x00FF;
6012#elif defined(ATA_DEBUG)
6013 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 6014#else
0dd4b21f 6015 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 6016#endif
1da177e4 6017
65f27f38
DH
6018 INIT_DELAYED_WORK(&ap->port_task, NULL);
6019 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6020 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 6021 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 6022 init_waitqueue_head(&ap->eh_wait_q);
1da177e4 6023
838df628 6024 ap->cbl = ATA_CBL_NONE;
838df628 6025
acf356b1
TH
6026 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6027 struct ata_device *dev = &ap->device[i];
38d87234 6028 dev->ap = ap;
72fa4b74 6029 dev->devno = i;
3ef3b43d 6030 ata_dev_init(dev);
acf356b1 6031 }
1da177e4
LT
6032
6033#ifdef ATA_IRQ_TRAP
6034 ap->stats.unhandled_irq = 1;
6035 ap->stats.idle_irq = 1;
6036#endif
1da177e4 6037 return ap;
1da177e4
LT
6038}
6039
f0d36efd
TH
6040static void ata_host_release(struct device *gendev, void *res)
6041{
6042 struct ata_host *host = dev_get_drvdata(gendev);
6043 int i;
6044
6045 for (i = 0; i < host->n_ports; i++) {
6046 struct ata_port *ap = host->ports[i];
6047
ecef7253
TH
6048 if (!ap)
6049 continue;
6050
6051 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
f0d36efd 6052 ap->ops->port_stop(ap);
f0d36efd
TH
6053 }
6054
ecef7253 6055 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
f0d36efd 6056 host->ops->host_stop(host);
1aa56cca 6057
1aa506e4
TH
6058 for (i = 0; i < host->n_ports; i++) {
6059 struct ata_port *ap = host->ports[i];
6060
4911487a
TH
6061 if (!ap)
6062 continue;
6063
6064 if (ap->scsi_host)
1aa506e4
TH
6065 scsi_host_put(ap->scsi_host);
6066
4911487a 6067 kfree(ap);
1aa506e4
TH
6068 host->ports[i] = NULL;
6069 }
6070
1aa56cca 6071 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
6072}
6073
f3187195
TH
6074/**
6075 * ata_host_alloc - allocate and init basic ATA host resources
6076 * @dev: generic device this host is associated with
6077 * @max_ports: maximum number of ATA ports associated with this host
6078 *
6079 * Allocate and initialize basic ATA host resources. LLD calls
6080 * this function to allocate a host, initializes it fully and
6081 * attaches it using ata_host_register().
6082 *
6083 * @max_ports ports are allocated and host->n_ports is
6084 * initialized to @max_ports. The caller is allowed to decrease
6085 * host->n_ports before calling ata_host_register(). The unused
6086 * ports will be automatically freed on registration.
6087 *
6088 * RETURNS:
6089 * Allocate ATA host on success, NULL on failure.
6090 *
6091 * LOCKING:
6092 * Inherited from calling layer (may sleep).
6093 */
6094struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6095{
6096 struct ata_host *host;
6097 size_t sz;
6098 int i;
6099
6100 DPRINTK("ENTER\n");
6101
6102 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6103 return NULL;
6104
6105 /* alloc a container for our list of ATA ports (buses) */
6106 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6107 /* alloc a container for our list of ATA ports (buses) */
6108 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6109 if (!host)
6110 goto err_out;
6111
6112 devres_add(dev, host);
6113 dev_set_drvdata(dev, host);
6114
6115 spin_lock_init(&host->lock);
6116 host->dev = dev;
6117 host->n_ports = max_ports;
6118
6119 /* allocate ports bound to this host */
6120 for (i = 0; i < max_ports; i++) {
6121 struct ata_port *ap;
6122
6123 ap = ata_port_alloc(host);
6124 if (!ap)
6125 goto err_out;
6126
6127 ap->port_no = i;
6128 host->ports[i] = ap;
6129 }
6130
6131 devres_remove_group(dev, NULL);
6132 return host;
6133
6134 err_out:
6135 devres_release_group(dev, NULL);
6136 return NULL;
6137}
6138
f5cda257
TH
6139/**
6140 * ata_host_alloc_pinfo - alloc host and init with port_info array
6141 * @dev: generic device this host is associated with
6142 * @ppi: array of ATA port_info to initialize host with
6143 * @n_ports: number of ATA ports attached to this host
6144 *
6145 * Allocate ATA host and initialize with info from @ppi. If NULL
6146 * terminated, @ppi may contain fewer entries than @n_ports. The
6147 * last entry will be used for the remaining ports.
6148 *
6149 * RETURNS:
6150 * Allocate ATA host on success, NULL on failure.
6151 *
6152 * LOCKING:
6153 * Inherited from calling layer (may sleep).
6154 */
6155struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6156 const struct ata_port_info * const * ppi,
6157 int n_ports)
6158{
6159 const struct ata_port_info *pi;
6160 struct ata_host *host;
6161 int i, j;
6162
6163 host = ata_host_alloc(dev, n_ports);
6164 if (!host)
6165 return NULL;
6166
6167 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6168 struct ata_port *ap = host->ports[i];
6169
6170 if (ppi[j])
6171 pi = ppi[j++];
6172
6173 ap->pio_mask = pi->pio_mask;
6174 ap->mwdma_mask = pi->mwdma_mask;
6175 ap->udma_mask = pi->udma_mask;
6176 ap->flags |= pi->flags;
6177 ap->ops = pi->port_ops;
6178
6179 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6180 host->ops = pi->port_ops;
6181 if (!host->private_data && pi->private_data)
6182 host->private_data = pi->private_data;
6183 }
6184
6185 return host;
6186}
6187
ecef7253
TH
6188/**
6189 * ata_host_start - start and freeze ports of an ATA host
6190 * @host: ATA host to start ports for
6191 *
6192 * Start and then freeze ports of @host. Started status is
6193 * recorded in host->flags, so this function can be called
6194 * multiple times. Ports are guaranteed to get started only
f3187195
TH
6195 * once. If host->ops isn't initialized yet, its set to the
6196 * first non-dummy port ops.
ecef7253
TH
6197 *
6198 * LOCKING:
6199 * Inherited from calling layer (may sleep).
6200 *
6201 * RETURNS:
6202 * 0 if all ports are started successfully, -errno otherwise.
6203 */
6204int ata_host_start(struct ata_host *host)
6205{
6206 int i, rc;
6207
6208 if (host->flags & ATA_HOST_STARTED)
6209 return 0;
6210
6211 for (i = 0; i < host->n_ports; i++) {
6212 struct ata_port *ap = host->ports[i];
6213
f3187195
TH
6214 if (!host->ops && !ata_port_is_dummy(ap))
6215 host->ops = ap->ops;
6216
ecef7253
TH
6217 if (ap->ops->port_start) {
6218 rc = ap->ops->port_start(ap);
6219 if (rc) {
6220 ata_port_printk(ap, KERN_ERR, "failed to "
6221 "start port (errno=%d)\n", rc);
6222 goto err_out;
6223 }
6224 }
6225
6226 ata_eh_freeze_port(ap);
6227 }
6228
6229 host->flags |= ATA_HOST_STARTED;
6230 return 0;
6231
6232 err_out:
6233 while (--i >= 0) {
6234 struct ata_port *ap = host->ports[i];
6235
6236 if (ap->ops->port_stop)
6237 ap->ops->port_stop(ap);
6238 }
6239 return rc;
6240}
6241
b03732f0 6242/**
cca3974e
JG
6243 * ata_sas_host_init - Initialize a host struct
6244 * @host: host to initialize
6245 * @dev: device host is attached to
6246 * @flags: host flags
6247 * @ops: port_ops
b03732f0
BK
6248 *
6249 * LOCKING:
6250 * PCI/etc. bus probe sem.
6251 *
6252 */
f3187195 6253/* KILLME - the only user left is ipr */
cca3974e
JG
6254void ata_host_init(struct ata_host *host, struct device *dev,
6255 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 6256{
cca3974e
JG
6257 spin_lock_init(&host->lock);
6258 host->dev = dev;
6259 host->flags = flags;
6260 host->ops = ops;
b03732f0
BK
6261}
6262
f3187195
TH
6263/**
6264 * ata_host_register - register initialized ATA host
6265 * @host: ATA host to register
6266 * @sht: template for SCSI host
6267 *
6268 * Register initialized ATA host. @host is allocated using
6269 * ata_host_alloc() and fully initialized by LLD. This function
6270 * starts ports, registers @host with ATA and SCSI layers and
6271 * probe registered devices.
6272 *
6273 * LOCKING:
6274 * Inherited from calling layer (may sleep).
6275 *
6276 * RETURNS:
6277 * 0 on success, -errno otherwise.
6278 */
6279int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6280{
6281 int i, rc;
6282
6283 /* host must have been started */
6284 if (!(host->flags & ATA_HOST_STARTED)) {
6285 dev_printk(KERN_ERR, host->dev,
6286 "BUG: trying to register unstarted host\n");
6287 WARN_ON(1);
6288 return -EINVAL;
6289 }
6290
6291 /* Blow away unused ports. This happens when LLD can't
6292 * determine the exact number of ports to allocate at
6293 * allocation time.
6294 */
6295 for (i = host->n_ports; host->ports[i]; i++)
6296 kfree(host->ports[i]);
6297
6298 /* give ports names and add SCSI hosts */
6299 for (i = 0; i < host->n_ports; i++)
6300 host->ports[i]->print_id = ata_print_id++;
6301
6302 rc = ata_scsi_add_hosts(host, sht);
6303 if (rc)
6304 return rc;
6305
6306 /* set cable, sata_spd_limit and report */
6307 for (i = 0; i < host->n_ports; i++) {
6308 struct ata_port *ap = host->ports[i];
6309 int irq_line;
6310 u32 scontrol;
6311 unsigned long xfer_mask;
6312
6313 /* set SATA cable type if still unset */
6314 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6315 ap->cbl = ATA_CBL_SATA;
6316
6317 /* init sata_spd_limit to the current value */
6318 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
6319 int spd = (scontrol >> 4) & 0xf;
afe3cc51
TH
6320 if (spd)
6321 ap->hw_sata_spd_limit &= (1 << spd) - 1;
f3187195
TH
6322 }
6323 ap->sata_spd_limit = ap->hw_sata_spd_limit;
6324
6325 /* report the secondary IRQ for second channel legacy */
6326 irq_line = host->irq;
6327 if (i == 1 && host->irq2)
6328 irq_line = host->irq2;
6329
6330 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6331 ap->udma_mask);
6332
6333 /* print per-port info to dmesg */
6334 if (!ata_port_is_dummy(ap))
6335 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
6336 "ctl 0x%p bmdma 0x%p irq %d\n",
6337 ap->cbl == ATA_CBL_SATA ? 'S' : 'P',
6338 ata_mode_string(xfer_mask),
6339 ap->ioaddr.cmd_addr,
6340 ap->ioaddr.ctl_addr,
6341 ap->ioaddr.bmdma_addr,
6342 irq_line);
6343 else
6344 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6345 }
6346
6347 /* perform each probe synchronously */
6348 DPRINTK("probe begin\n");
6349 for (i = 0; i < host->n_ports; i++) {
6350 struct ata_port *ap = host->ports[i];
6351 int rc;
6352
6353 /* probe */
6354 if (ap->ops->error_handler) {
6355 struct ata_eh_info *ehi = &ap->eh_info;
6356 unsigned long flags;
6357
6358 ata_port_probe(ap);
6359
6360 /* kick EH for boot probing */
6361 spin_lock_irqsave(ap->lock, flags);
6362
6363 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
6364 ehi->action |= ATA_EH_SOFTRESET;
6365 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6366
f4d6d004 6367 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
f3187195
TH
6368 ap->pflags |= ATA_PFLAG_LOADING;
6369 ata_port_schedule_eh(ap);
6370
6371 spin_unlock_irqrestore(ap->lock, flags);
6372
6373 /* wait for EH to finish */
6374 ata_port_wait_eh(ap);
6375 } else {
6376 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6377 rc = ata_bus_probe(ap);
6378 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6379
6380 if (rc) {
6381 /* FIXME: do something useful here?
6382 * Current libata behavior will
6383 * tear down everything when
6384 * the module is removed
6385 * or the h/w is unplugged.
6386 */
6387 }
6388 }
6389 }
6390
6391 /* probes are done, now scan each port's disk(s) */
6392 DPRINTK("host probe begin\n");
6393 for (i = 0; i < host->n_ports; i++) {
6394 struct ata_port *ap = host->ports[i];
6395
6396 ata_scsi_scan_host(ap);
6397 }
6398
6399 return 0;
6400}
6401
f5cda257
TH
6402/**
6403 * ata_host_activate - start host, request IRQ and register it
6404 * @host: target ATA host
6405 * @irq: IRQ to request
6406 * @irq_handler: irq_handler used when requesting IRQ
6407 * @irq_flags: irq_flags used when requesting IRQ
6408 * @sht: scsi_host_template to use when registering the host
6409 *
6410 * After allocating an ATA host and initializing it, most libata
6411 * LLDs perform three steps to activate the host - start host,
6412 * request IRQ and register it. This helper takes necessasry
6413 * arguments and performs the three steps in one go.
6414 *
6415 * LOCKING:
6416 * Inherited from calling layer (may sleep).
6417 *
6418 * RETURNS:
6419 * 0 on success, -errno otherwise.
6420 */
6421int ata_host_activate(struct ata_host *host, int irq,
6422 irq_handler_t irq_handler, unsigned long irq_flags,
6423 struct scsi_host_template *sht)
6424{
6425 int rc;
6426
6427 rc = ata_host_start(host);
6428 if (rc)
6429 return rc;
6430
6431 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6432 dev_driver_string(host->dev), host);
6433 if (rc)
6434 return rc;
6435
6436 rc = ata_host_register(host, sht);
6437 /* if failed, just free the IRQ and leave ports alone */
6438 if (rc)
6439 devm_free_irq(host->dev, irq, host);
6440
22888423
OJ
6441 /* Used to print device info at probe */
6442 host->irq = irq;
6443
f5cda257
TH
6444 return rc;
6445}
6446
720ba126
TH
6447/**
6448 * ata_port_detach - Detach ATA port in prepration of device removal
6449 * @ap: ATA port to be detached
6450 *
6451 * Detach all ATA devices and the associated SCSI devices of @ap;
6452 * then, remove the associated SCSI host. @ap is guaranteed to
6453 * be quiescent on return from this function.
6454 *
6455 * LOCKING:
6456 * Kernel thread context (may sleep).
6457 */
6458void ata_port_detach(struct ata_port *ap)
6459{
6460 unsigned long flags;
6461 int i;
6462
6463 if (!ap->ops->error_handler)
c3cf30a9 6464 goto skip_eh;
720ba126
TH
6465
6466 /* tell EH we're leaving & flush EH */
ba6a1308 6467 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 6468 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 6469 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6470
6471 ata_port_wait_eh(ap);
6472
6473 /* EH is now guaranteed to see UNLOADING, so no new device
6474 * will be attached. Disable all existing devices.
6475 */
ba6a1308 6476 spin_lock_irqsave(ap->lock, flags);
720ba126
TH
6477
6478 for (i = 0; i < ATA_MAX_DEVICES; i++)
6479 ata_dev_disable(&ap->device[i]);
6480
ba6a1308 6481 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6482
6483 /* Final freeze & EH. All in-flight commands are aborted. EH
6484 * will be skipped and retrials will be terminated with bad
6485 * target.
6486 */
ba6a1308 6487 spin_lock_irqsave(ap->lock, flags);
720ba126 6488 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 6489 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6490
6491 ata_port_wait_eh(ap);
6492
6493 /* Flush hotplug task. The sequence is similar to
6494 * ata_port_flush_task().
6495 */
28e53bdd 6496 cancel_work_sync(&ap->hotplug_task.work); /* akpm: why? */
720ba126 6497 cancel_delayed_work(&ap->hotplug_task);
28e53bdd 6498 cancel_work_sync(&ap->hotplug_task.work);
720ba126 6499
c3cf30a9 6500 skip_eh:
720ba126 6501 /* remove the associated SCSI host */
cca3974e 6502 scsi_remove_host(ap->scsi_host);
720ba126
TH
6503}
6504
0529c159
TH
6505/**
6506 * ata_host_detach - Detach all ports of an ATA host
6507 * @host: Host to detach
6508 *
6509 * Detach all ports of @host.
6510 *
6511 * LOCKING:
6512 * Kernel thread context (may sleep).
6513 */
6514void ata_host_detach(struct ata_host *host)
6515{
6516 int i;
6517
6518 for (i = 0; i < host->n_ports; i++)
6519 ata_port_detach(host->ports[i]);
6520}
6521
1da177e4
LT
6522/**
6523 * ata_std_ports - initialize ioaddr with standard port offsets.
6524 * @ioaddr: IO address structure to be initialized
0baab86b
EF
6525 *
6526 * Utility function which initializes data_addr, error_addr,
6527 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6528 * device_addr, status_addr, and command_addr to standard offsets
6529 * relative to cmd_addr.
6530 *
6531 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 6532 */
0baab86b 6533
1da177e4
LT
6534void ata_std_ports(struct ata_ioports *ioaddr)
6535{
6536 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6537 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6538 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6539 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6540 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6541 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6542 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6543 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6544 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6545 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6546}
6547
0baab86b 6548
374b1873
JG
6549#ifdef CONFIG_PCI
6550
1da177e4
LT
6551/**
6552 * ata_pci_remove_one - PCI layer callback for device removal
6553 * @pdev: PCI device that was removed
6554 *
b878ca5d
TH
6555 * PCI layer indicates to libata via this hook that hot-unplug or
6556 * module unload event has occurred. Detach all ports. Resource
6557 * release is handled via devres.
1da177e4
LT
6558 *
6559 * LOCKING:
6560 * Inherited from PCI layer (may sleep).
6561 */
f0d36efd 6562void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4
LT
6563{
6564 struct device *dev = pci_dev_to_dev(pdev);
cca3974e 6565 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 6566
b878ca5d 6567 ata_host_detach(host);
1da177e4
LT
6568}
6569
6570/* move to PCI subsystem */
057ace5e 6571int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6572{
6573 unsigned long tmp = 0;
6574
6575 switch (bits->width) {
6576 case 1: {
6577 u8 tmp8 = 0;
6578 pci_read_config_byte(pdev, bits->reg, &tmp8);
6579 tmp = tmp8;
6580 break;
6581 }
6582 case 2: {
6583 u16 tmp16 = 0;
6584 pci_read_config_word(pdev, bits->reg, &tmp16);
6585 tmp = tmp16;
6586 break;
6587 }
6588 case 4: {
6589 u32 tmp32 = 0;
6590 pci_read_config_dword(pdev, bits->reg, &tmp32);
6591 tmp = tmp32;
6592 break;
6593 }
6594
6595 default:
6596 return -EINVAL;
6597 }
6598
6599 tmp &= bits->mask;
6600
6601 return (tmp == bits->val) ? 1 : 0;
6602}
9b847548 6603
6ffa01d8 6604#ifdef CONFIG_PM
3c5100c1 6605void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6606{
6607 pci_save_state(pdev);
4c90d971 6608 pci_disable_device(pdev);
500530f6 6609
4c90d971 6610 if (mesg.event == PM_EVENT_SUSPEND)
500530f6 6611 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
6612}
6613
553c4aa6 6614int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 6615{
553c4aa6
TH
6616 int rc;
6617
9b847548
JA
6618 pci_set_power_state(pdev, PCI_D0);
6619 pci_restore_state(pdev);
553c4aa6 6620
b878ca5d 6621 rc = pcim_enable_device(pdev);
553c4aa6
TH
6622 if (rc) {
6623 dev_printk(KERN_ERR, &pdev->dev,
6624 "failed to enable device after resume (%d)\n", rc);
6625 return rc;
6626 }
6627
9b847548 6628 pci_set_master(pdev);
553c4aa6 6629 return 0;
500530f6
TH
6630}
6631
3c5100c1 6632int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6633{
cca3974e 6634 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
6635 int rc = 0;
6636
cca3974e 6637 rc = ata_host_suspend(host, mesg);
500530f6
TH
6638 if (rc)
6639 return rc;
6640
3c5100c1 6641 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6642
6643 return 0;
6644}
6645
6646int ata_pci_device_resume(struct pci_dev *pdev)
6647{
cca3974e 6648 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 6649 int rc;
500530f6 6650
553c4aa6
TH
6651 rc = ata_pci_device_do_resume(pdev);
6652 if (rc == 0)
6653 ata_host_resume(host);
6654 return rc;
9b847548 6655}
6ffa01d8
TH
6656#endif /* CONFIG_PM */
6657
1da177e4
LT
6658#endif /* CONFIG_PCI */
6659
6660
1da177e4
LT
6661static int __init ata_init(void)
6662{
a8601e5f 6663 ata_probe_timeout *= HZ;
1da177e4
LT
6664 ata_wq = create_workqueue("ata");
6665 if (!ata_wq)
6666 return -ENOMEM;
6667
453b07ac
TH
6668 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6669 if (!ata_aux_wq) {
6670 destroy_workqueue(ata_wq);
6671 return -ENOMEM;
6672 }
6673
1da177e4
LT
6674 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6675 return 0;
6676}
6677
6678static void __exit ata_exit(void)
6679{
6680 destroy_workqueue(ata_wq);
453b07ac 6681 destroy_workqueue(ata_aux_wq);
1da177e4
LT
6682}
6683
a4625085 6684subsys_initcall(ata_init);
1da177e4
LT
6685module_exit(ata_exit);
6686
67846b30 6687static unsigned long ratelimit_time;
34af946a 6688static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
6689
6690int ata_ratelimit(void)
6691{
6692 int rc;
6693 unsigned long flags;
6694
6695 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6696
6697 if (time_after(jiffies, ratelimit_time)) {
6698 rc = 1;
6699 ratelimit_time = jiffies + (HZ/5);
6700 } else
6701 rc = 0;
6702
6703 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6704
6705 return rc;
6706}
6707
c22daff4
TH
6708/**
6709 * ata_wait_register - wait until register value changes
6710 * @reg: IO-mapped register
6711 * @mask: Mask to apply to read register value
6712 * @val: Wait condition
6713 * @interval_msec: polling interval in milliseconds
6714 * @timeout_msec: timeout in milliseconds
6715 *
6716 * Waiting for some bits of register to change is a common
6717 * operation for ATA controllers. This function reads 32bit LE
6718 * IO-mapped register @reg and tests for the following condition.
6719 *
6720 * (*@reg & mask) != val
6721 *
6722 * If the condition is met, it returns; otherwise, the process is
6723 * repeated after @interval_msec until timeout.
6724 *
6725 * LOCKING:
6726 * Kernel thread context (may sleep)
6727 *
6728 * RETURNS:
6729 * The final register value.
6730 */
6731u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6732 unsigned long interval_msec,
6733 unsigned long timeout_msec)
6734{
6735 unsigned long timeout;
6736 u32 tmp;
6737
6738 tmp = ioread32(reg);
6739
6740 /* Calculate timeout _after_ the first read to make sure
6741 * preceding writes reach the controller before starting to
6742 * eat away the timeout.
6743 */
6744 timeout = jiffies + (timeout_msec * HZ) / 1000;
6745
6746 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6747 msleep(interval_msec);
6748 tmp = ioread32(reg);
6749 }
6750
6751 return tmp;
6752}
6753
dd5b06c4
TH
6754/*
6755 * Dummy port_ops
6756 */
6757static void ata_dummy_noret(struct ata_port *ap) { }
6758static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6759static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6760
6761static u8 ata_dummy_check_status(struct ata_port *ap)
6762{
6763 return ATA_DRDY;
6764}
6765
6766static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6767{
6768 return AC_ERR_SYSTEM;
6769}
6770
6771const struct ata_port_operations ata_dummy_port_ops = {
6772 .port_disable = ata_port_disable,
6773 .check_status = ata_dummy_check_status,
6774 .check_altstatus = ata_dummy_check_status,
6775 .dev_select = ata_noop_dev_select,
6776 .qc_prep = ata_noop_qc_prep,
6777 .qc_issue = ata_dummy_qc_issue,
6778 .freeze = ata_dummy_noret,
6779 .thaw = ata_dummy_noret,
6780 .error_handler = ata_dummy_noret,
6781 .post_internal_cmd = ata_dummy_qc_noret,
6782 .irq_clear = ata_dummy_noret,
6783 .port_start = ata_dummy_ret0,
6784 .port_stop = ata_dummy_noret,
6785};
6786
21b0ad4f
TH
6787const struct ata_port_info ata_dummy_port_info = {
6788 .port_ops = &ata_dummy_port_ops,
6789};
6790
1da177e4
LT
6791/*
6792 * libata is essentially a library of internal helper functions for
6793 * low-level ATA host controller drivers. As such, the API/ABI is
6794 * likely to change as new drivers are added and updated.
6795 * Do not depend on ABI/API stability.
6796 */
6797
e9c83914
TH
6798EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6799EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6800EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 6801EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 6802EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1da177e4
LT
6803EXPORT_SYMBOL_GPL(ata_std_bios_param);
6804EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 6805EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 6806EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 6807EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
ecef7253 6808EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 6809EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 6810EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 6811EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4
LT
6812EXPORT_SYMBOL_GPL(ata_sg_init);
6813EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 6814EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 6815EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 6816EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 6817EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
6818EXPORT_SYMBOL_GPL(ata_tf_load);
6819EXPORT_SYMBOL_GPL(ata_tf_read);
6820EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6821EXPORT_SYMBOL_GPL(ata_std_dev_select);
43727fbc 6822EXPORT_SYMBOL_GPL(sata_print_link_status);
1da177e4
LT
6823EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6824EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6825EXPORT_SYMBOL_GPL(ata_check_status);
6826EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
6827EXPORT_SYMBOL_GPL(ata_exec_command);
6828EXPORT_SYMBOL_GPL(ata_port_start);
d92e74d3 6829EXPORT_SYMBOL_GPL(ata_sff_port_start);
1da177e4 6830EXPORT_SYMBOL_GPL(ata_interrupt);
04351821 6831EXPORT_SYMBOL_GPL(ata_do_set_mode);
0d5ff566
TH
6832EXPORT_SYMBOL_GPL(ata_data_xfer);
6833EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
1da177e4 6834EXPORT_SYMBOL_GPL(ata_qc_prep);
e46834cd 6835EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
6836EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6837EXPORT_SYMBOL_GPL(ata_bmdma_start);
6838EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6839EXPORT_SYMBOL_GPL(ata_bmdma_status);
6840EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
6841EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6842EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6843EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6844EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6845EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 6846EXPORT_SYMBOL_GPL(ata_port_probe);
10305f0f 6847EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 6848EXPORT_SYMBOL_GPL(sata_set_spd);
d7bb4cc7
TH
6849EXPORT_SYMBOL_GPL(sata_phy_debounce);
6850EXPORT_SYMBOL_GPL(sata_phy_resume);
1da177e4
LT
6851EXPORT_SYMBOL_GPL(sata_phy_reset);
6852EXPORT_SYMBOL_GPL(__sata_phy_reset);
6853EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 6854EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 6855EXPORT_SYMBOL_GPL(ata_std_softreset);
b6103f6d 6856EXPORT_SYMBOL_GPL(sata_port_hardreset);
c2bd5804
TH
6857EXPORT_SYMBOL_GPL(sata_std_hardreset);
6858EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
6859EXPORT_SYMBOL_GPL(ata_dev_classify);
6860EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 6861EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 6862EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 6863EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 6864EXPORT_SYMBOL_GPL(ata_busy_sleep);
d4b2bab4 6865EXPORT_SYMBOL_GPL(ata_wait_ready);
86e45b6b 6866EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
6867EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6868EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 6869EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 6870EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 6871EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4 6872EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
6873EXPORT_SYMBOL_GPL(sata_scr_valid);
6874EXPORT_SYMBOL_GPL(sata_scr_read);
6875EXPORT_SYMBOL_GPL(sata_scr_write);
6876EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6877EXPORT_SYMBOL_GPL(ata_port_online);
6878EXPORT_SYMBOL_GPL(ata_port_offline);
6ffa01d8 6879#ifdef CONFIG_PM
cca3974e
JG
6880EXPORT_SYMBOL_GPL(ata_host_suspend);
6881EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 6882#endif /* CONFIG_PM */
6a62a04d
TH
6883EXPORT_SYMBOL_GPL(ata_id_string);
6884EXPORT_SYMBOL_GPL(ata_id_c_string);
10305f0f 6885EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
6919a0a6 6886EXPORT_SYMBOL_GPL(ata_device_blacklisted);
1da177e4
LT
6887EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6888
1bc4ccff 6889EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
6890EXPORT_SYMBOL_GPL(ata_timing_compute);
6891EXPORT_SYMBOL_GPL(ata_timing_merge);
6892
1da177e4
LT
6893#ifdef CONFIG_PCI
6894EXPORT_SYMBOL_GPL(pci_test_config_bits);
d491b27b 6895EXPORT_SYMBOL_GPL(ata_pci_init_native_host);
1626aeb8 6896EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
21b0ad4f 6897EXPORT_SYMBOL_GPL(ata_pci_prepare_native_host);
1da177e4
LT
6898EXPORT_SYMBOL_GPL(ata_pci_init_one);
6899EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 6900#ifdef CONFIG_PM
500530f6
TH
6901EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6902EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
6903EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6904EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 6905#endif /* CONFIG_PM */
67951ade
AC
6906EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6907EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 6908#endif /* CONFIG_PCI */
9b847548 6909
ece1d636 6910EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03
TH
6911EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6912EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499
TH
6913EXPORT_SYMBOL_GPL(ata_port_freeze);
6914EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6915EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
6916EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6917EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 6918EXPORT_SYMBOL_GPL(ata_do_eh);
83625006
AI
6919EXPORT_SYMBOL_GPL(ata_irq_on);
6920EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6921EXPORT_SYMBOL_GPL(ata_irq_ack);
6922EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
a619f981 6923EXPORT_SYMBOL_GPL(ata_dev_try_classify);
be0d18df
AC
6924
6925EXPORT_SYMBOL_GPL(ata_cable_40wire);
6926EXPORT_SYMBOL_GPL(ata_cable_80wire);
6927EXPORT_SYMBOL_GPL(ata_cable_unknown);
6928EXPORT_SYMBOL_GPL(ata_cable_sata);