libata-sff: clean up BMDMA initialization
[linux-2.6-block.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
92c52c52
AC
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
1da177e4
LT
41 */
42
1da177e4
LT
43#include <linux/kernel.h>
44#include <linux/module.h>
45#include <linux/pci.h>
46#include <linux/init.h>
47#include <linux/list.h>
48#include <linux/mm.h>
1da177e4
LT
49#include <linux/spinlock.h>
50#include <linux/blkdev.h>
51#include <linux/delay.h>
52#include <linux/timer.h>
53#include <linux/interrupt.h>
54#include <linux/completion.h>
55#include <linux/suspend.h>
56#include <linux/workqueue.h>
378f058c 57#include <linux/scatterlist.h>
2dcb407e 58#include <linux/io.h>
79318057 59#include <linux/async.h>
e18086d6 60#include <linux/log2.h>
5a0e3ad6 61#include <linux/slab.h>
1da177e4 62#include <scsi/scsi.h>
193515d5 63#include <scsi/scsi_cmnd.h>
1da177e4
LT
64#include <scsi/scsi_host.h>
65#include <linux/libata.h>
1da177e4 66#include <asm/byteorder.h>
140b5e59 67#include <linux/cdrom.h>
9990b6f3 68#include <linux/ratelimit.h>
1da177e4
LT
69
70#include "libata.h"
71
fda0efc5 72
d7bb4cc7 73/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
74const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
75const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
76const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 77
029cfd6b 78const struct ata_port_operations ata_base_port_ops = {
0aa1113d 79 .prereset = ata_std_prereset,
203c75b8 80 .postreset = ata_std_postreset,
a1efdaba 81 .error_handler = ata_std_error_handler,
029cfd6b
TH
82};
83
84const struct ata_port_operations sata_port_ops = {
85 .inherits = &ata_base_port_ops,
86
87 .qc_defer = ata_std_qc_defer,
57c9efdf 88 .hardreset = sata_std_hardreset,
029cfd6b
TH
89};
90
3373efd8
TH
91static unsigned int ata_dev_init_params(struct ata_device *dev,
92 u16 heads, u16 sectors);
93static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
218f3d30
JG
94static unsigned int ata_dev_set_feature(struct ata_device *dev,
95 u8 enable, u8 feature);
3373efd8 96static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 97static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 98
f3187195 99unsigned int ata_print_id = 1;
1da177e4
LT
100static struct workqueue_struct *ata_wq;
101
453b07ac
TH
102struct workqueue_struct *ata_aux_wq;
103
33267325
TH
104struct ata_force_param {
105 const char *name;
106 unsigned int cbl;
107 int spd_limit;
108 unsigned long xfer_mask;
109 unsigned int horkage_on;
110 unsigned int horkage_off;
05944bdf 111 unsigned int lflags;
33267325
TH
112};
113
114struct ata_force_ent {
115 int port;
116 int device;
117 struct ata_force_param param;
118};
119
120static struct ata_force_ent *ata_force_tbl;
121static int ata_force_tbl_size;
122
123static char ata_force_param_buf[PAGE_SIZE] __initdata;
7afb4222
TH
124/* param_buf is thrown away after initialization, disallow read */
125module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
33267325
TH
126MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
127
2486fa56 128static int atapi_enabled = 1;
1623c81e 129module_param(atapi_enabled, int, 0444);
ad5d8eac 130MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
1623c81e 131
c5c61bda 132static int atapi_dmadir = 0;
95de719a 133module_param(atapi_dmadir, int, 0444);
ad5d8eac 134MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
95de719a 135
baf4fdfa
ML
136int atapi_passthru16 = 1;
137module_param(atapi_passthru16, int, 0444);
ad5d8eac 138MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
baf4fdfa 139
c3c013a2
JG
140int libata_fua = 0;
141module_param_named(fua, libata_fua, int, 0444);
ad5d8eac 142MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
c3c013a2 143
2dcb407e 144static int ata_ignore_hpa;
1e999736
AC
145module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
146MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
147
b3a70601
AC
148static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
149module_param_named(dma, libata_dma_mask, int, 0444);
150MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
151
87fbc5a0 152static int ata_probe_timeout;
a8601e5f
AM
153module_param(ata_probe_timeout, int, 0444);
154MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
155
6ebe9d86 156int libata_noacpi = 0;
d7d0dad6 157module_param_named(noacpi, libata_noacpi, int, 0444);
ad5d8eac 158MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
11ef697b 159
ae8d4ee7
AC
160int libata_allow_tpm = 0;
161module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
ad5d8eac 162MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
ae8d4ee7 163
1da177e4
LT
164MODULE_AUTHOR("Jeff Garzik");
165MODULE_DESCRIPTION("Library module for ATA devices");
166MODULE_LICENSE("GPL");
167MODULE_VERSION(DRV_VERSION);
168
0baab86b 169
9913ff8a
TH
170static bool ata_sstatus_online(u32 sstatus)
171{
172 return (sstatus & 0xf) == 0x3;
173}
174
1eca4365
TH
175/**
176 * ata_link_next - link iteration helper
177 * @link: the previous link, NULL to start
178 * @ap: ATA port containing links to iterate
179 * @mode: iteration mode, one of ATA_LITER_*
180 *
181 * LOCKING:
182 * Host lock or EH context.
aadffb68 183 *
1eca4365
TH
184 * RETURNS:
185 * Pointer to the next link.
aadffb68 186 */
1eca4365
TH
187struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
188 enum ata_link_iter_mode mode)
aadffb68 189{
1eca4365
TH
190 BUG_ON(mode != ATA_LITER_EDGE &&
191 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
192
aadffb68 193 /* NULL link indicates start of iteration */
1eca4365
TH
194 if (!link)
195 switch (mode) {
196 case ATA_LITER_EDGE:
197 case ATA_LITER_PMP_FIRST:
198 if (sata_pmp_attached(ap))
199 return ap->pmp_link;
200 /* fall through */
201 case ATA_LITER_HOST_FIRST:
202 return &ap->link;
203 }
aadffb68 204
1eca4365
TH
205 /* we just iterated over the host link, what's next? */
206 if (link == &ap->link)
207 switch (mode) {
208 case ATA_LITER_HOST_FIRST:
209 if (sata_pmp_attached(ap))
210 return ap->pmp_link;
211 /* fall through */
212 case ATA_LITER_PMP_FIRST:
213 if (unlikely(ap->slave_link))
b1c72916 214 return ap->slave_link;
1eca4365
TH
215 /* fall through */
216 case ATA_LITER_EDGE:
aadffb68 217 return NULL;
b1c72916 218 }
aadffb68 219
b1c72916
TH
220 /* slave_link excludes PMP */
221 if (unlikely(link == ap->slave_link))
222 return NULL;
223
1eca4365 224 /* we were over a PMP link */
aadffb68
TH
225 if (++link < ap->pmp_link + ap->nr_pmp_links)
226 return link;
1eca4365
TH
227
228 if (mode == ATA_LITER_PMP_FIRST)
229 return &ap->link;
230
aadffb68
TH
231 return NULL;
232}
233
1eca4365
TH
234/**
235 * ata_dev_next - device iteration helper
236 * @dev: the previous device, NULL to start
237 * @link: ATA link containing devices to iterate
238 * @mode: iteration mode, one of ATA_DITER_*
239 *
240 * LOCKING:
241 * Host lock or EH context.
242 *
243 * RETURNS:
244 * Pointer to the next device.
245 */
246struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
247 enum ata_dev_iter_mode mode)
248{
249 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
250 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
251
252 /* NULL dev indicates start of iteration */
253 if (!dev)
254 switch (mode) {
255 case ATA_DITER_ENABLED:
256 case ATA_DITER_ALL:
257 dev = link->device;
258 goto check;
259 case ATA_DITER_ENABLED_REVERSE:
260 case ATA_DITER_ALL_REVERSE:
261 dev = link->device + ata_link_max_devices(link) - 1;
262 goto check;
263 }
264
265 next:
266 /* move to the next one */
267 switch (mode) {
268 case ATA_DITER_ENABLED:
269 case ATA_DITER_ALL:
270 if (++dev < link->device + ata_link_max_devices(link))
271 goto check;
272 return NULL;
273 case ATA_DITER_ENABLED_REVERSE:
274 case ATA_DITER_ALL_REVERSE:
275 if (--dev >= link->device)
276 goto check;
277 return NULL;
278 }
279
280 check:
281 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
282 !ata_dev_enabled(dev))
283 goto next;
284 return dev;
285}
286
b1c72916
TH
287/**
288 * ata_dev_phys_link - find physical link for a device
289 * @dev: ATA device to look up physical link for
290 *
291 * Look up physical link which @dev is attached to. Note that
292 * this is different from @dev->link only when @dev is on slave
293 * link. For all other cases, it's the same as @dev->link.
294 *
295 * LOCKING:
296 * Don't care.
297 *
298 * RETURNS:
299 * Pointer to the found physical link.
300 */
301struct ata_link *ata_dev_phys_link(struct ata_device *dev)
302{
303 struct ata_port *ap = dev->link->ap;
304
305 if (!ap->slave_link)
306 return dev->link;
307 if (!dev->devno)
308 return &ap->link;
309 return ap->slave_link;
310}
311
33267325
TH
312/**
313 * ata_force_cbl - force cable type according to libata.force
4cdfa1b3 314 * @ap: ATA port of interest
33267325
TH
315 *
316 * Force cable type according to libata.force and whine about it.
317 * The last entry which has matching port number is used, so it
318 * can be specified as part of device force parameters. For
319 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
320 * same effect.
321 *
322 * LOCKING:
323 * EH context.
324 */
325void ata_force_cbl(struct ata_port *ap)
326{
327 int i;
328
329 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
330 const struct ata_force_ent *fe = &ata_force_tbl[i];
331
332 if (fe->port != -1 && fe->port != ap->print_id)
333 continue;
334
335 if (fe->param.cbl == ATA_CBL_NONE)
336 continue;
337
338 ap->cbl = fe->param.cbl;
339 ata_port_printk(ap, KERN_NOTICE,
340 "FORCE: cable set to %s\n", fe->param.name);
341 return;
342 }
343}
344
345/**
05944bdf 346 * ata_force_link_limits - force link limits according to libata.force
33267325
TH
347 * @link: ATA link of interest
348 *
05944bdf
TH
349 * Force link flags and SATA spd limit according to libata.force
350 * and whine about it. When only the port part is specified
351 * (e.g. 1:), the limit applies to all links connected to both
352 * the host link and all fan-out ports connected via PMP. If the
353 * device part is specified as 0 (e.g. 1.00:), it specifies the
354 * first fan-out link not the host link. Device number 15 always
b1c72916
TH
355 * points to the host link whether PMP is attached or not. If the
356 * controller has slave link, device number 16 points to it.
33267325
TH
357 *
358 * LOCKING:
359 * EH context.
360 */
05944bdf 361static void ata_force_link_limits(struct ata_link *link)
33267325 362{
05944bdf 363 bool did_spd = false;
b1c72916
TH
364 int linkno = link->pmp;
365 int i;
33267325
TH
366
367 if (ata_is_host_link(link))
b1c72916 368 linkno += 15;
33267325
TH
369
370 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
371 const struct ata_force_ent *fe = &ata_force_tbl[i];
372
373 if (fe->port != -1 && fe->port != link->ap->print_id)
374 continue;
375
376 if (fe->device != -1 && fe->device != linkno)
377 continue;
378
05944bdf
TH
379 /* only honor the first spd limit */
380 if (!did_spd && fe->param.spd_limit) {
381 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
382 ata_link_printk(link, KERN_NOTICE,
383 "FORCE: PHY spd limit set to %s\n",
384 fe->param.name);
385 did_spd = true;
386 }
33267325 387
05944bdf
TH
388 /* let lflags stack */
389 if (fe->param.lflags) {
390 link->flags |= fe->param.lflags;
391 ata_link_printk(link, KERN_NOTICE,
392 "FORCE: link flag 0x%x forced -> 0x%x\n",
393 fe->param.lflags, link->flags);
394 }
33267325
TH
395 }
396}
397
398/**
399 * ata_force_xfermask - force xfermask according to libata.force
400 * @dev: ATA device of interest
401 *
402 * Force xfer_mask according to libata.force and whine about it.
403 * For consistency with link selection, device number 15 selects
404 * the first device connected to the host link.
405 *
406 * LOCKING:
407 * EH context.
408 */
409static void ata_force_xfermask(struct ata_device *dev)
410{
411 int devno = dev->link->pmp + dev->devno;
412 int alt_devno = devno;
413 int i;
414
b1c72916
TH
415 /* allow n.15/16 for devices attached to host port */
416 if (ata_is_host_link(dev->link))
417 alt_devno += 15;
33267325
TH
418
419 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
420 const struct ata_force_ent *fe = &ata_force_tbl[i];
421 unsigned long pio_mask, mwdma_mask, udma_mask;
422
423 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
424 continue;
425
426 if (fe->device != -1 && fe->device != devno &&
427 fe->device != alt_devno)
428 continue;
429
430 if (!fe->param.xfer_mask)
431 continue;
432
433 ata_unpack_xfermask(fe->param.xfer_mask,
434 &pio_mask, &mwdma_mask, &udma_mask);
435 if (udma_mask)
436 dev->udma_mask = udma_mask;
437 else if (mwdma_mask) {
438 dev->udma_mask = 0;
439 dev->mwdma_mask = mwdma_mask;
440 } else {
441 dev->udma_mask = 0;
442 dev->mwdma_mask = 0;
443 dev->pio_mask = pio_mask;
444 }
445
446 ata_dev_printk(dev, KERN_NOTICE,
447 "FORCE: xfer_mask set to %s\n", fe->param.name);
448 return;
449 }
450}
451
452/**
453 * ata_force_horkage - force horkage according to libata.force
454 * @dev: ATA device of interest
455 *
456 * Force horkage according to libata.force and whine about it.
457 * For consistency with link selection, device number 15 selects
458 * the first device connected to the host link.
459 *
460 * LOCKING:
461 * EH context.
462 */
463static void ata_force_horkage(struct ata_device *dev)
464{
465 int devno = dev->link->pmp + dev->devno;
466 int alt_devno = devno;
467 int i;
468
b1c72916
TH
469 /* allow n.15/16 for devices attached to host port */
470 if (ata_is_host_link(dev->link))
471 alt_devno += 15;
33267325
TH
472
473 for (i = 0; i < ata_force_tbl_size; i++) {
474 const struct ata_force_ent *fe = &ata_force_tbl[i];
475
476 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
477 continue;
478
479 if (fe->device != -1 && fe->device != devno &&
480 fe->device != alt_devno)
481 continue;
482
483 if (!(~dev->horkage & fe->param.horkage_on) &&
484 !(dev->horkage & fe->param.horkage_off))
485 continue;
486
487 dev->horkage |= fe->param.horkage_on;
488 dev->horkage &= ~fe->param.horkage_off;
489
490 ata_dev_printk(dev, KERN_NOTICE,
491 "FORCE: horkage modified (%s)\n", fe->param.name);
492 }
493}
494
436d34b3
TH
495/**
496 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
497 * @opcode: SCSI opcode
498 *
499 * Determine ATAPI command type from @opcode.
500 *
501 * LOCKING:
502 * None.
503 *
504 * RETURNS:
505 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
506 */
507int atapi_cmd_type(u8 opcode)
508{
509 switch (opcode) {
510 case GPCMD_READ_10:
511 case GPCMD_READ_12:
512 return ATAPI_READ;
513
514 case GPCMD_WRITE_10:
515 case GPCMD_WRITE_12:
516 case GPCMD_WRITE_AND_VERIFY_10:
517 return ATAPI_WRITE;
518
519 case GPCMD_READ_CD:
520 case GPCMD_READ_CD_MSF:
521 return ATAPI_READ_CD;
522
e52dcc48
TH
523 case ATA_16:
524 case ATA_12:
525 if (atapi_passthru16)
526 return ATAPI_PASS_THRU;
527 /* fall thru */
436d34b3
TH
528 default:
529 return ATAPI_MISC;
530 }
531}
532
1da177e4
LT
533/**
534 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
535 * @tf: Taskfile to convert
1da177e4 536 * @pmp: Port multiplier port
9977126c
TH
537 * @is_cmd: This FIS is for command
538 * @fis: Buffer into which data will output
1da177e4
LT
539 *
540 * Converts a standard ATA taskfile to a Serial ATA
541 * FIS structure (Register - Host to Device).
542 *
543 * LOCKING:
544 * Inherited from caller.
545 */
9977126c 546void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 547{
9977126c
TH
548 fis[0] = 0x27; /* Register - Host to Device FIS */
549 fis[1] = pmp & 0xf; /* Port multiplier number*/
550 if (is_cmd)
551 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
552
1da177e4
LT
553 fis[2] = tf->command;
554 fis[3] = tf->feature;
555
556 fis[4] = tf->lbal;
557 fis[5] = tf->lbam;
558 fis[6] = tf->lbah;
559 fis[7] = tf->device;
560
561 fis[8] = tf->hob_lbal;
562 fis[9] = tf->hob_lbam;
563 fis[10] = tf->hob_lbah;
564 fis[11] = tf->hob_feature;
565
566 fis[12] = tf->nsect;
567 fis[13] = tf->hob_nsect;
568 fis[14] = 0;
569 fis[15] = tf->ctl;
570
571 fis[16] = 0;
572 fis[17] = 0;
573 fis[18] = 0;
574 fis[19] = 0;
575}
576
577/**
578 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
579 * @fis: Buffer from which data will be input
580 * @tf: Taskfile to output
581 *
e12a1be6 582 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
583 *
584 * LOCKING:
585 * Inherited from caller.
586 */
587
057ace5e 588void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
589{
590 tf->command = fis[2]; /* status */
591 tf->feature = fis[3]; /* error */
592
593 tf->lbal = fis[4];
594 tf->lbam = fis[5];
595 tf->lbah = fis[6];
596 tf->device = fis[7];
597
598 tf->hob_lbal = fis[8];
599 tf->hob_lbam = fis[9];
600 tf->hob_lbah = fis[10];
601
602 tf->nsect = fis[12];
603 tf->hob_nsect = fis[13];
604}
605
8cbd6df1
AL
606static const u8 ata_rw_cmds[] = {
607 /* pio multi */
608 ATA_CMD_READ_MULTI,
609 ATA_CMD_WRITE_MULTI,
610 ATA_CMD_READ_MULTI_EXT,
611 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
612 0,
613 0,
614 0,
615 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
616 /* pio */
617 ATA_CMD_PIO_READ,
618 ATA_CMD_PIO_WRITE,
619 ATA_CMD_PIO_READ_EXT,
620 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
621 0,
622 0,
623 0,
624 0,
8cbd6df1
AL
625 /* dma */
626 ATA_CMD_READ,
627 ATA_CMD_WRITE,
628 ATA_CMD_READ_EXT,
9a3dccc4
TH
629 ATA_CMD_WRITE_EXT,
630 0,
631 0,
632 0,
633 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 634};
1da177e4
LT
635
636/**
8cbd6df1 637 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
638 * @tf: command to examine and configure
639 * @dev: device tf belongs to
1da177e4 640 *
2e9edbf8 641 * Examine the device configuration and tf->flags to calculate
8cbd6df1 642 * the proper read/write commands and protocol to use.
1da177e4
LT
643 *
644 * LOCKING:
645 * caller.
646 */
bd056d7e 647static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 648{
9a3dccc4 649 u8 cmd;
1da177e4 650
9a3dccc4 651 int index, fua, lba48, write;
2e9edbf8 652
9a3dccc4 653 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
654 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
655 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 656
8cbd6df1
AL
657 if (dev->flags & ATA_DFLAG_PIO) {
658 tf->protocol = ATA_PROT_PIO;
9a3dccc4 659 index = dev->multi_count ? 0 : 8;
9af5c9c9 660 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
661 /* Unable to use DMA due to host limitation */
662 tf->protocol = ATA_PROT_PIO;
0565c26d 663 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
664 } else {
665 tf->protocol = ATA_PROT_DMA;
9a3dccc4 666 index = 16;
8cbd6df1 667 }
1da177e4 668
9a3dccc4
TH
669 cmd = ata_rw_cmds[index + fua + lba48 + write];
670 if (cmd) {
671 tf->command = cmd;
672 return 0;
673 }
674 return -1;
1da177e4
LT
675}
676
35b649fe
TH
677/**
678 * ata_tf_read_block - Read block address from ATA taskfile
679 * @tf: ATA taskfile of interest
680 * @dev: ATA device @tf belongs to
681 *
682 * LOCKING:
683 * None.
684 *
685 * Read block address from @tf. This function can handle all
686 * three address formats - LBA, LBA48 and CHS. tf->protocol and
687 * flags select the address format to use.
688 *
689 * RETURNS:
690 * Block address read from @tf.
691 */
692u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
693{
694 u64 block = 0;
695
696 if (tf->flags & ATA_TFLAG_LBA) {
697 if (tf->flags & ATA_TFLAG_LBA48) {
698 block |= (u64)tf->hob_lbah << 40;
699 block |= (u64)tf->hob_lbam << 32;
44901a96 700 block |= (u64)tf->hob_lbal << 24;
35b649fe
TH
701 } else
702 block |= (tf->device & 0xf) << 24;
703
704 block |= tf->lbah << 16;
705 block |= tf->lbam << 8;
706 block |= tf->lbal;
707 } else {
708 u32 cyl, head, sect;
709
710 cyl = tf->lbam | (tf->lbah << 8);
711 head = tf->device & 0xf;
712 sect = tf->lbal;
713
ac8672ea
TH
714 if (!sect) {
715 ata_dev_printk(dev, KERN_WARNING, "device reported "
716 "invalid CHS sector 0\n");
717 sect = 1; /* oh well */
718 }
719
720 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
35b649fe
TH
721 }
722
723 return block;
724}
725
bd056d7e
TH
726/**
727 * ata_build_rw_tf - Build ATA taskfile for given read/write request
728 * @tf: Target ATA taskfile
729 * @dev: ATA device @tf belongs to
730 * @block: Block address
731 * @n_block: Number of blocks
732 * @tf_flags: RW/FUA etc...
733 * @tag: tag
734 *
735 * LOCKING:
736 * None.
737 *
738 * Build ATA taskfile @tf for read/write request described by
739 * @block, @n_block, @tf_flags and @tag on @dev.
740 *
741 * RETURNS:
742 *
743 * 0 on success, -ERANGE if the request is too large for @dev,
744 * -EINVAL if the request is invalid.
745 */
746int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
747 u64 block, u32 n_block, unsigned int tf_flags,
748 unsigned int tag)
749{
750 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
751 tf->flags |= tf_flags;
752
6d1245bf 753 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
754 /* yay, NCQ */
755 if (!lba_48_ok(block, n_block))
756 return -ERANGE;
757
758 tf->protocol = ATA_PROT_NCQ;
759 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
760
761 if (tf->flags & ATA_TFLAG_WRITE)
762 tf->command = ATA_CMD_FPDMA_WRITE;
763 else
764 tf->command = ATA_CMD_FPDMA_READ;
765
766 tf->nsect = tag << 3;
767 tf->hob_feature = (n_block >> 8) & 0xff;
768 tf->feature = n_block & 0xff;
769
770 tf->hob_lbah = (block >> 40) & 0xff;
771 tf->hob_lbam = (block >> 32) & 0xff;
772 tf->hob_lbal = (block >> 24) & 0xff;
773 tf->lbah = (block >> 16) & 0xff;
774 tf->lbam = (block >> 8) & 0xff;
775 tf->lbal = block & 0xff;
776
777 tf->device = 1 << 6;
778 if (tf->flags & ATA_TFLAG_FUA)
779 tf->device |= 1 << 7;
780 } else if (dev->flags & ATA_DFLAG_LBA) {
781 tf->flags |= ATA_TFLAG_LBA;
782
783 if (lba_28_ok(block, n_block)) {
784 /* use LBA28 */
785 tf->device |= (block >> 24) & 0xf;
786 } else if (lba_48_ok(block, n_block)) {
787 if (!(dev->flags & ATA_DFLAG_LBA48))
788 return -ERANGE;
789
790 /* use LBA48 */
791 tf->flags |= ATA_TFLAG_LBA48;
792
793 tf->hob_nsect = (n_block >> 8) & 0xff;
794
795 tf->hob_lbah = (block >> 40) & 0xff;
796 tf->hob_lbam = (block >> 32) & 0xff;
797 tf->hob_lbal = (block >> 24) & 0xff;
798 } else
799 /* request too large even for LBA48 */
800 return -ERANGE;
801
802 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
803 return -EINVAL;
804
805 tf->nsect = n_block & 0xff;
806
807 tf->lbah = (block >> 16) & 0xff;
808 tf->lbam = (block >> 8) & 0xff;
809 tf->lbal = block & 0xff;
810
811 tf->device |= ATA_LBA;
812 } else {
813 /* CHS */
814 u32 sect, head, cyl, track;
815
816 /* The request -may- be too large for CHS addressing. */
817 if (!lba_28_ok(block, n_block))
818 return -ERANGE;
819
820 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
821 return -EINVAL;
822
823 /* Convert LBA to CHS */
824 track = (u32)block / dev->sectors;
825 cyl = track / dev->heads;
826 head = track % dev->heads;
827 sect = (u32)block % dev->sectors + 1;
828
829 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
830 (u32)block, track, cyl, head, sect);
831
832 /* Check whether the converted CHS can fit.
833 Cylinder: 0-65535
834 Head: 0-15
835 Sector: 1-255*/
836 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
837 return -ERANGE;
838
839 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
840 tf->lbal = sect;
841 tf->lbam = cyl;
842 tf->lbah = cyl >> 8;
843 tf->device |= head;
844 }
845
846 return 0;
847}
848
cb95d562
TH
849/**
850 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
851 * @pio_mask: pio_mask
852 * @mwdma_mask: mwdma_mask
853 * @udma_mask: udma_mask
854 *
855 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
856 * unsigned int xfer_mask.
857 *
858 * LOCKING:
859 * None.
860 *
861 * RETURNS:
862 * Packed xfer_mask.
863 */
7dc951ae
TH
864unsigned long ata_pack_xfermask(unsigned long pio_mask,
865 unsigned long mwdma_mask,
866 unsigned long udma_mask)
cb95d562
TH
867{
868 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
869 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
870 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
871}
872
c0489e4e
TH
873/**
874 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
875 * @xfer_mask: xfer_mask to unpack
876 * @pio_mask: resulting pio_mask
877 * @mwdma_mask: resulting mwdma_mask
878 * @udma_mask: resulting udma_mask
879 *
880 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
881 * Any NULL distination masks will be ignored.
882 */
7dc951ae
TH
883void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
884 unsigned long *mwdma_mask, unsigned long *udma_mask)
c0489e4e
TH
885{
886 if (pio_mask)
887 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
888 if (mwdma_mask)
889 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
890 if (udma_mask)
891 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
892}
893
cb95d562 894static const struct ata_xfer_ent {
be9a50c8 895 int shift, bits;
cb95d562
TH
896 u8 base;
897} ata_xfer_tbl[] = {
70cd071e
TH
898 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
899 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
900 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
cb95d562
TH
901 { -1, },
902};
903
904/**
905 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
906 * @xfer_mask: xfer_mask of interest
907 *
908 * Return matching XFER_* value for @xfer_mask. Only the highest
909 * bit of @xfer_mask is considered.
910 *
911 * LOCKING:
912 * None.
913 *
914 * RETURNS:
70cd071e 915 * Matching XFER_* value, 0xff if no match found.
cb95d562 916 */
7dc951ae 917u8 ata_xfer_mask2mode(unsigned long xfer_mask)
cb95d562
TH
918{
919 int highbit = fls(xfer_mask) - 1;
920 const struct ata_xfer_ent *ent;
921
922 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
923 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
924 return ent->base + highbit - ent->shift;
70cd071e 925 return 0xff;
cb95d562
TH
926}
927
928/**
929 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
930 * @xfer_mode: XFER_* of interest
931 *
932 * Return matching xfer_mask for @xfer_mode.
933 *
934 * LOCKING:
935 * None.
936 *
937 * RETURNS:
938 * Matching xfer_mask, 0 if no match found.
939 */
7dc951ae 940unsigned long ata_xfer_mode2mask(u8 xfer_mode)
cb95d562
TH
941{
942 const struct ata_xfer_ent *ent;
943
944 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
945 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
70cd071e
TH
946 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
947 & ~((1 << ent->shift) - 1);
cb95d562
TH
948 return 0;
949}
950
951/**
952 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
953 * @xfer_mode: XFER_* of interest
954 *
955 * Return matching xfer_shift for @xfer_mode.
956 *
957 * LOCKING:
958 * None.
959 *
960 * RETURNS:
961 * Matching xfer_shift, -1 if no match found.
962 */
7dc951ae 963int ata_xfer_mode2shift(unsigned long xfer_mode)
cb95d562
TH
964{
965 const struct ata_xfer_ent *ent;
966
967 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
968 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
969 return ent->shift;
970 return -1;
971}
972
1da177e4 973/**
1da7b0d0
TH
974 * ata_mode_string - convert xfer_mask to string
975 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
976 *
977 * Determine string which represents the highest speed
1da7b0d0 978 * (highest bit in @modemask).
1da177e4
LT
979 *
980 * LOCKING:
981 * None.
982 *
983 * RETURNS:
984 * Constant C string representing highest speed listed in
1da7b0d0 985 * @mode_mask, or the constant C string "<n/a>".
1da177e4 986 */
7dc951ae 987const char *ata_mode_string(unsigned long xfer_mask)
1da177e4 988{
75f554bc
TH
989 static const char * const xfer_mode_str[] = {
990 "PIO0",
991 "PIO1",
992 "PIO2",
993 "PIO3",
994 "PIO4",
b352e57d
AC
995 "PIO5",
996 "PIO6",
75f554bc
TH
997 "MWDMA0",
998 "MWDMA1",
999 "MWDMA2",
b352e57d
AC
1000 "MWDMA3",
1001 "MWDMA4",
75f554bc
TH
1002 "UDMA/16",
1003 "UDMA/25",
1004 "UDMA/33",
1005 "UDMA/44",
1006 "UDMA/66",
1007 "UDMA/100",
1008 "UDMA/133",
1009 "UDMA7",
1010 };
1da7b0d0 1011 int highbit;
1da177e4 1012
1da7b0d0
TH
1013 highbit = fls(xfer_mask) - 1;
1014 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1015 return xfer_mode_str[highbit];
1da177e4 1016 return "<n/a>";
1da177e4
LT
1017}
1018
4c360c81
TH
1019static const char *sata_spd_string(unsigned int spd)
1020{
1021 static const char * const spd_str[] = {
1022 "1.5 Gbps",
1023 "3.0 Gbps",
8522ee25 1024 "6.0 Gbps",
4c360c81
TH
1025 };
1026
1027 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1028 return "<unknown>";
1029 return spd_str[spd - 1];
1030}
1031
ca77329f
KCA
1032static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
1033{
1034 struct ata_link *link = dev->link;
1035 struct ata_port *ap = link->ap;
1036 u32 scontrol;
1037 unsigned int err_mask;
1038 int rc;
1039
1040 /*
1041 * disallow DIPM for drivers which haven't set
1042 * ATA_FLAG_IPM. This is because when DIPM is enabled,
1043 * phy ready will be set in the interrupt status on
1044 * state changes, which will cause some drivers to
1045 * think there are errors - additionally drivers will
1046 * need to disable hot plug.
1047 */
1048 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
1049 ap->pm_policy = NOT_AVAILABLE;
1050 return -EINVAL;
1051 }
1052
1053 /*
1054 * For DIPM, we will only enable it for the
1055 * min_power setting.
1056 *
1057 * Why? Because Disks are too stupid to know that
1058 * If the host rejects a request to go to SLUMBER
1059 * they should retry at PARTIAL, and instead it
1060 * just would give up. So, for medium_power to
1061 * work at all, we need to only allow HIPM.
1062 */
1063 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
1064 if (rc)
1065 return rc;
1066
1067 switch (policy) {
1068 case MIN_POWER:
1069 /* no restrictions on IPM transitions */
1070 scontrol &= ~(0x3 << 8);
1071 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1072 if (rc)
1073 return rc;
1074
1075 /* enable DIPM */
1076 if (dev->flags & ATA_DFLAG_DIPM)
1077 err_mask = ata_dev_set_feature(dev,
1078 SETFEATURES_SATA_ENABLE, SATA_DIPM);
1079 break;
1080 case MEDIUM_POWER:
1081 /* allow IPM to PARTIAL */
1082 scontrol &= ~(0x1 << 8);
1083 scontrol |= (0x2 << 8);
1084 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1085 if (rc)
1086 return rc;
1087
f5456b63
KCA
1088 /*
1089 * we don't have to disable DIPM since IPM flags
1090 * disallow transitions to SLUMBER, which effectively
1091 * disable DIPM if it does not support PARTIAL
1092 */
ca77329f
KCA
1093 break;
1094 case NOT_AVAILABLE:
1095 case MAX_PERFORMANCE:
1096 /* disable all IPM transitions */
1097 scontrol |= (0x3 << 8);
1098 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1099 if (rc)
1100 return rc;
1101
f5456b63
KCA
1102 /*
1103 * we don't have to disable DIPM since IPM flags
1104 * disallow all transitions which effectively
1105 * disable DIPM anyway.
1106 */
ca77329f
KCA
1107 break;
1108 }
1109
1110 /* FIXME: handle SET FEATURES failure */
1111 (void) err_mask;
1112
1113 return 0;
1114}
1115
1116/**
1117 * ata_dev_enable_pm - enable SATA interface power management
48166fd9
SH
1118 * @dev: device to enable power management
1119 * @policy: the link power management policy
ca77329f
KCA
1120 *
1121 * Enable SATA Interface power management. This will enable
1122 * Device Interface Power Management (DIPM) for min_power
1123 * policy, and then call driver specific callbacks for
1124 * enabling Host Initiated Power management.
1125 *
1126 * Locking: Caller.
1127 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
1128 */
1129void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
1130{
1131 int rc = 0;
1132 struct ata_port *ap = dev->link->ap;
1133
1134 /* set HIPM first, then DIPM */
1135 if (ap->ops->enable_pm)
1136 rc = ap->ops->enable_pm(ap, policy);
1137 if (rc)
1138 goto enable_pm_out;
1139 rc = ata_dev_set_dipm(dev, policy);
1140
1141enable_pm_out:
1142 if (rc)
1143 ap->pm_policy = MAX_PERFORMANCE;
1144 else
1145 ap->pm_policy = policy;
1146 return /* rc */; /* hopefully we can use 'rc' eventually */
1147}
1148
1992a5ed 1149#ifdef CONFIG_PM
ca77329f
KCA
1150/**
1151 * ata_dev_disable_pm - disable SATA interface power management
48166fd9 1152 * @dev: device to disable power management
ca77329f
KCA
1153 *
1154 * Disable SATA Interface power management. This will disable
1155 * Device Interface Power Management (DIPM) without changing
1156 * policy, call driver specific callbacks for disabling Host
1157 * Initiated Power management.
1158 *
1159 * Locking: Caller.
1160 * Returns: void
1161 */
1162static void ata_dev_disable_pm(struct ata_device *dev)
1163{
1164 struct ata_port *ap = dev->link->ap;
1165
1166 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
1167 if (ap->ops->disable_pm)
1168 ap->ops->disable_pm(ap);
1169}
1992a5ed 1170#endif /* CONFIG_PM */
ca77329f
KCA
1171
1172void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
1173{
1174 ap->pm_policy = policy;
3ec25ebd 1175 ap->link.eh_info.action |= ATA_EH_LPM;
ca77329f
KCA
1176 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
1177 ata_port_schedule_eh(ap);
1178}
1179
1992a5ed 1180#ifdef CONFIG_PM
ca77329f
KCA
1181static void ata_lpm_enable(struct ata_host *host)
1182{
1183 struct ata_link *link;
1184 struct ata_port *ap;
1185 struct ata_device *dev;
1186 int i;
1187
1188 for (i = 0; i < host->n_ports; i++) {
1189 ap = host->ports[i];
1eca4365
TH
1190 ata_for_each_link(link, ap, EDGE) {
1191 ata_for_each_dev(dev, link, ALL)
ca77329f
KCA
1192 ata_dev_disable_pm(dev);
1193 }
1194 }
1195}
1196
1197static void ata_lpm_disable(struct ata_host *host)
1198{
1199 int i;
1200
1201 for (i = 0; i < host->n_ports; i++) {
1202 struct ata_port *ap = host->ports[i];
1203 ata_lpm_schedule(ap, ap->pm_policy);
1204 }
1205}
1992a5ed 1206#endif /* CONFIG_PM */
ca77329f 1207
1da177e4
LT
1208/**
1209 * ata_dev_classify - determine device type based on ATA-spec signature
1210 * @tf: ATA taskfile register set for device to be identified
1211 *
1212 * Determine from taskfile register contents whether a device is
1213 * ATA or ATAPI, as per "Signature and persistence" section
1214 * of ATA/PI spec (volume 1, sect 5.14).
1215 *
1216 * LOCKING:
1217 * None.
1218 *
1219 * RETURNS:
633273a3
TH
1220 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1221 * %ATA_DEV_UNKNOWN the event of failure.
1da177e4 1222 */
057ace5e 1223unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
1224{
1225 /* Apple's open source Darwin code hints that some devices only
1226 * put a proper signature into the LBA mid/high registers,
1227 * So, we only check those. It's sufficient for uniqueness.
633273a3
TH
1228 *
1229 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1230 * signatures for ATA and ATAPI devices attached on SerialATA,
1231 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1232 * spec has never mentioned about using different signatures
1233 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1234 * Multiplier specification began to use 0x69/0x96 to identify
1235 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1236 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1237 * 0x69/0x96 shortly and described them as reserved for
1238 * SerialATA.
1239 *
1240 * We follow the current spec and consider that 0x69/0x96
1241 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
79b42bab
TH
1242 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1243 * SEMB signature. This is worked around in
1244 * ata_dev_read_id().
1da177e4 1245 */
633273a3 1246 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1da177e4
LT
1247 DPRINTK("found ATA device by sig\n");
1248 return ATA_DEV_ATA;
1249 }
1250
633273a3 1251 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1da177e4
LT
1252 DPRINTK("found ATAPI device by sig\n");
1253 return ATA_DEV_ATAPI;
1254 }
1255
633273a3
TH
1256 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1257 DPRINTK("found PMP device by sig\n");
1258 return ATA_DEV_PMP;
1259 }
1260
1261 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
79b42bab
TH
1262 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1263 return ATA_DEV_SEMB;
633273a3
TH
1264 }
1265
1da177e4
LT
1266 DPRINTK("unknown device\n");
1267 return ATA_DEV_UNKNOWN;
1268}
1269
1da177e4 1270/**
6a62a04d 1271 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
1272 * @id: IDENTIFY DEVICE results we will examine
1273 * @s: string into which data is output
1274 * @ofs: offset into identify device page
1275 * @len: length of string to return. must be an even number.
1276 *
1277 * The strings in the IDENTIFY DEVICE page are broken up into
1278 * 16-bit chunks. Run through the string, and output each
1279 * 8-bit chunk linearly, regardless of platform.
1280 *
1281 * LOCKING:
1282 * caller.
1283 */
1284
6a62a04d
TH
1285void ata_id_string(const u16 *id, unsigned char *s,
1286 unsigned int ofs, unsigned int len)
1da177e4
LT
1287{
1288 unsigned int c;
1289
963e4975
AC
1290 BUG_ON(len & 1);
1291
1da177e4
LT
1292 while (len > 0) {
1293 c = id[ofs] >> 8;
1294 *s = c;
1295 s++;
1296
1297 c = id[ofs] & 0xff;
1298 *s = c;
1299 s++;
1300
1301 ofs++;
1302 len -= 2;
1303 }
1304}
1305
0e949ff3 1306/**
6a62a04d 1307 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
1308 * @id: IDENTIFY DEVICE results we will examine
1309 * @s: string into which data is output
1310 * @ofs: offset into identify device page
1311 * @len: length of string to return. must be an odd number.
1312 *
6a62a04d 1313 * This function is identical to ata_id_string except that it
0e949ff3
TH
1314 * trims trailing spaces and terminates the resulting string with
1315 * null. @len must be actual maximum length (even number) + 1.
1316 *
1317 * LOCKING:
1318 * caller.
1319 */
6a62a04d
TH
1320void ata_id_c_string(const u16 *id, unsigned char *s,
1321 unsigned int ofs, unsigned int len)
0e949ff3
TH
1322{
1323 unsigned char *p;
1324
6a62a04d 1325 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
1326
1327 p = s + strnlen(s, len - 1);
1328 while (p > s && p[-1] == ' ')
1329 p--;
1330 *p = '\0';
1331}
0baab86b 1332
db6f8759
TH
1333static u64 ata_id_n_sectors(const u16 *id)
1334{
1335 if (ata_id_has_lba(id)) {
1336 if (ata_id_has_lba48(id))
968e594a 1337 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
db6f8759 1338 else
968e594a 1339 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
db6f8759
TH
1340 } else {
1341 if (ata_id_current_chs_valid(id))
968e594a
RH
1342 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1343 id[ATA_ID_CUR_SECTORS];
db6f8759 1344 else
968e594a
RH
1345 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1346 id[ATA_ID_SECTORS];
db6f8759
TH
1347 }
1348}
1349
a5987e0a 1350u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1e999736
AC
1351{
1352 u64 sectors = 0;
1353
1354 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1355 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
ba14a9c2 1356 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1e999736
AC
1357 sectors |= (tf->lbah & 0xff) << 16;
1358 sectors |= (tf->lbam & 0xff) << 8;
1359 sectors |= (tf->lbal & 0xff);
1360
a5987e0a 1361 return sectors;
1e999736
AC
1362}
1363
a5987e0a 1364u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1e999736
AC
1365{
1366 u64 sectors = 0;
1367
1368 sectors |= (tf->device & 0x0f) << 24;
1369 sectors |= (tf->lbah & 0xff) << 16;
1370 sectors |= (tf->lbam & 0xff) << 8;
1371 sectors |= (tf->lbal & 0xff);
1372
a5987e0a 1373 return sectors;
1e999736
AC
1374}
1375
1376/**
c728a914
TH
1377 * ata_read_native_max_address - Read native max address
1378 * @dev: target device
1379 * @max_sectors: out parameter for the result native max address
1e999736 1380 *
c728a914
TH
1381 * Perform an LBA48 or LBA28 native size query upon the device in
1382 * question.
1e999736 1383 *
c728a914
TH
1384 * RETURNS:
1385 * 0 on success, -EACCES if command is aborted by the drive.
1386 * -EIO on other errors.
1e999736 1387 */
c728a914 1388static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1e999736 1389{
c728a914 1390 unsigned int err_mask;
1e999736 1391 struct ata_taskfile tf;
c728a914 1392 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1393
1394 ata_tf_init(dev, &tf);
1395
c728a914 1396 /* always clear all address registers */
1e999736 1397 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1e999736 1398
c728a914
TH
1399 if (lba48) {
1400 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1401 tf.flags |= ATA_TFLAG_LBA48;
1402 } else
1403 tf.command = ATA_CMD_READ_NATIVE_MAX;
1e999736 1404
1e999736 1405 tf.protocol |= ATA_PROT_NODATA;
c728a914
TH
1406 tf.device |= ATA_LBA;
1407
2b789108 1408 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1409 if (err_mask) {
1410 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1411 "max address (err_mask=0x%x)\n", err_mask);
1412 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1413 return -EACCES;
1414 return -EIO;
1415 }
1e999736 1416
c728a914 1417 if (lba48)
a5987e0a 1418 *max_sectors = ata_tf_to_lba48(&tf) + 1;
c728a914 1419 else
a5987e0a 1420 *max_sectors = ata_tf_to_lba(&tf) + 1;
2dcb407e 1421 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
93328e11 1422 (*max_sectors)--;
c728a914 1423 return 0;
1e999736
AC
1424}
1425
1426/**
c728a914
TH
1427 * ata_set_max_sectors - Set max sectors
1428 * @dev: target device
6b38d1d1 1429 * @new_sectors: new max sectors value to set for the device
1e999736 1430 *
c728a914
TH
1431 * Set max sectors of @dev to @new_sectors.
1432 *
1433 * RETURNS:
1434 * 0 on success, -EACCES if command is aborted or denied (due to
1435 * previous non-volatile SET_MAX) by the drive. -EIO on other
1436 * errors.
1e999736 1437 */
05027adc 1438static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1e999736 1439{
c728a914 1440 unsigned int err_mask;
1e999736 1441 struct ata_taskfile tf;
c728a914 1442 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1443
1444 new_sectors--;
1445
1446 ata_tf_init(dev, &tf);
1447
1e999736 1448 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
c728a914
TH
1449
1450 if (lba48) {
1451 tf.command = ATA_CMD_SET_MAX_EXT;
1452 tf.flags |= ATA_TFLAG_LBA48;
1453
1454 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1455 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1456 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1e582ba4 1457 } else {
c728a914
TH
1458 tf.command = ATA_CMD_SET_MAX;
1459
1e582ba4
TH
1460 tf.device |= (new_sectors >> 24) & 0xf;
1461 }
1462
1e999736 1463 tf.protocol |= ATA_PROT_NODATA;
c728a914 1464 tf.device |= ATA_LBA;
1e999736
AC
1465
1466 tf.lbal = (new_sectors >> 0) & 0xff;
1467 tf.lbam = (new_sectors >> 8) & 0xff;
1468 tf.lbah = (new_sectors >> 16) & 0xff;
1e999736 1469
2b789108 1470 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1471 if (err_mask) {
1472 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1473 "max address (err_mask=0x%x)\n", err_mask);
1474 if (err_mask == AC_ERR_DEV &&
1475 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1476 return -EACCES;
1477 return -EIO;
1478 }
1479
c728a914 1480 return 0;
1e999736
AC
1481}
1482
1483/**
1484 * ata_hpa_resize - Resize a device with an HPA set
1485 * @dev: Device to resize
1486 *
1487 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1488 * it if required to the full size of the media. The caller must check
1489 * the drive has the HPA feature set enabled.
05027adc
TH
1490 *
1491 * RETURNS:
1492 * 0 on success, -errno on failure.
1e999736 1493 */
05027adc 1494static int ata_hpa_resize(struct ata_device *dev)
1e999736 1495{
05027adc
TH
1496 struct ata_eh_context *ehc = &dev->link->eh_context;
1497 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
445d211b 1498 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
05027adc
TH
1499 u64 sectors = ata_id_n_sectors(dev->id);
1500 u64 native_sectors;
c728a914 1501 int rc;
a617c09f 1502
05027adc
TH
1503 /* do we need to do it? */
1504 if (dev->class != ATA_DEV_ATA ||
1505 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1506 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
c728a914 1507 return 0;
1e999736 1508
05027adc
TH
1509 /* read native max address */
1510 rc = ata_read_native_max_address(dev, &native_sectors);
1511 if (rc) {
dda7aba1
TH
1512 /* If device aborted the command or HPA isn't going to
1513 * be unlocked, skip HPA resizing.
05027adc 1514 */
445d211b 1515 if (rc == -EACCES || !unlock_hpa) {
05027adc 1516 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
dda7aba1 1517 "broken, skipping HPA handling\n");
05027adc
TH
1518 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1519
1520 /* we can continue if device aborted the command */
1521 if (rc == -EACCES)
1522 rc = 0;
1e999736 1523 }
37301a55 1524
05027adc
TH
1525 return rc;
1526 }
5920dadf 1527 dev->n_native_sectors = native_sectors;
05027adc
TH
1528
1529 /* nothing to do? */
445d211b 1530 if (native_sectors <= sectors || !unlock_hpa) {
05027adc
TH
1531 if (!print_info || native_sectors == sectors)
1532 return 0;
1533
1534 if (native_sectors > sectors)
1535 ata_dev_printk(dev, KERN_INFO,
1536 "HPA detected: current %llu, native %llu\n",
1537 (unsigned long long)sectors,
1538 (unsigned long long)native_sectors);
1539 else if (native_sectors < sectors)
1540 ata_dev_printk(dev, KERN_WARNING,
1541 "native sectors (%llu) is smaller than "
1542 "sectors (%llu)\n",
1543 (unsigned long long)native_sectors,
1544 (unsigned long long)sectors);
1545 return 0;
1546 }
1547
1548 /* let's unlock HPA */
1549 rc = ata_set_max_sectors(dev, native_sectors);
1550 if (rc == -EACCES) {
1551 /* if device aborted the command, skip HPA resizing */
1552 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1553 "(%llu -> %llu), skipping HPA handling\n",
1554 (unsigned long long)sectors,
1555 (unsigned long long)native_sectors);
1556 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1557 return 0;
1558 } else if (rc)
1559 return rc;
1560
1561 /* re-read IDENTIFY data */
1562 rc = ata_dev_reread_id(dev, 0);
1563 if (rc) {
1564 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1565 "data after HPA resizing\n");
1566 return rc;
1567 }
1568
1569 if (print_info) {
1570 u64 new_sectors = ata_id_n_sectors(dev->id);
1571 ata_dev_printk(dev, KERN_INFO,
1572 "HPA unlocked: %llu -> %llu, native %llu\n",
1573 (unsigned long long)sectors,
1574 (unsigned long long)new_sectors,
1575 (unsigned long long)native_sectors);
1576 }
1577
1578 return 0;
1e999736
AC
1579}
1580
1da177e4
LT
1581/**
1582 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1583 * @id: IDENTIFY DEVICE page to dump
1da177e4 1584 *
0bd3300a
TH
1585 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1586 * page.
1da177e4
LT
1587 *
1588 * LOCKING:
1589 * caller.
1590 */
1591
0bd3300a 1592static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1593{
1594 DPRINTK("49==0x%04x "
1595 "53==0x%04x "
1596 "63==0x%04x "
1597 "64==0x%04x "
1598 "75==0x%04x \n",
0bd3300a
TH
1599 id[49],
1600 id[53],
1601 id[63],
1602 id[64],
1603 id[75]);
1da177e4
LT
1604 DPRINTK("80==0x%04x "
1605 "81==0x%04x "
1606 "82==0x%04x "
1607 "83==0x%04x "
1608 "84==0x%04x \n",
0bd3300a
TH
1609 id[80],
1610 id[81],
1611 id[82],
1612 id[83],
1613 id[84]);
1da177e4
LT
1614 DPRINTK("88==0x%04x "
1615 "93==0x%04x\n",
0bd3300a
TH
1616 id[88],
1617 id[93]);
1da177e4
LT
1618}
1619
cb95d562
TH
1620/**
1621 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1622 * @id: IDENTIFY data to compute xfer mask from
1623 *
1624 * Compute the xfermask for this device. This is not as trivial
1625 * as it seems if we must consider early devices correctly.
1626 *
1627 * FIXME: pre IDE drive timing (do we care ?).
1628 *
1629 * LOCKING:
1630 * None.
1631 *
1632 * RETURNS:
1633 * Computed xfermask
1634 */
7dc951ae 1635unsigned long ata_id_xfermask(const u16 *id)
cb95d562 1636{
7dc951ae 1637 unsigned long pio_mask, mwdma_mask, udma_mask;
cb95d562
TH
1638
1639 /* Usual case. Word 53 indicates word 64 is valid */
1640 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1641 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1642 pio_mask <<= 3;
1643 pio_mask |= 0x7;
1644 } else {
1645 /* If word 64 isn't valid then Word 51 high byte holds
1646 * the PIO timing number for the maximum. Turn it into
1647 * a mask.
1648 */
7a0f1c8a 1649 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb 1650 if (mode < 5) /* Valid PIO range */
2dcb407e 1651 pio_mask = (2 << mode) - 1;
46767aeb
AC
1652 else
1653 pio_mask = 1;
cb95d562
TH
1654
1655 /* But wait.. there's more. Design your standards by
1656 * committee and you too can get a free iordy field to
1657 * process. However its the speeds not the modes that
1658 * are supported... Note drivers using the timing API
1659 * will get this right anyway
1660 */
1661 }
1662
1663 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1664
b352e57d
AC
1665 if (ata_id_is_cfa(id)) {
1666 /*
1667 * Process compact flash extended modes
1668 */
62afe5d7
SS
1669 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1670 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
b352e57d
AC
1671
1672 if (pio)
1673 pio_mask |= (1 << 5);
1674 if (pio > 1)
1675 pio_mask |= (1 << 6);
1676 if (dma)
1677 mwdma_mask |= (1 << 3);
1678 if (dma > 1)
1679 mwdma_mask |= (1 << 4);
1680 }
1681
fb21f0d0
TH
1682 udma_mask = 0;
1683 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1684 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1685
1686 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1687}
1688
86e45b6b 1689/**
442eacc3 1690 * ata_pio_queue_task - Queue port_task
86e45b6b 1691 * @ap: The ata_port to queue port_task for
65f27f38 1692 * @data: data for @fn to use
341c2c95 1693 * @delay: delay time in msecs for workqueue function
86e45b6b
TH
1694 *
1695 * Schedule @fn(@data) for execution after @delay jiffies using
1696 * port_task. There is one port_task per port and it's the
1697 * user(low level driver)'s responsibility to make sure that only
1698 * one task is active at any given time.
1699 *
1700 * libata core layer takes care of synchronization between
442eacc3 1701 * port_task and EH. ata_pio_queue_task() may be ignored for EH
86e45b6b
TH
1702 * synchronization.
1703 *
1704 * LOCKING:
1705 * Inherited from caller.
1706 */
624d5c51 1707void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay)
86e45b6b 1708{
65f27f38 1709 ap->port_task_data = data;
86e45b6b 1710
45a66c1c 1711 /* may fail if ata_port_flush_task() in progress */
341c2c95 1712 queue_delayed_work(ata_wq, &ap->port_task, msecs_to_jiffies(delay));
86e45b6b
TH
1713}
1714
1715/**
1716 * ata_port_flush_task - Flush port_task
1717 * @ap: The ata_port to flush port_task for
1718 *
1719 * After this function completes, port_task is guranteed not to
1720 * be running or scheduled.
1721 *
1722 * LOCKING:
1723 * Kernel thread context (may sleep)
1724 */
1725void ata_port_flush_task(struct ata_port *ap)
1726{
86e45b6b
TH
1727 DPRINTK("ENTER\n");
1728
45a66c1c 1729 cancel_rearming_delayed_work(&ap->port_task);
86e45b6b 1730
0dd4b21f 1731 if (ata_msg_ctl(ap))
7f5e4e8d 1732 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
86e45b6b
TH
1733}
1734
7102d230 1735static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1736{
77853bf2 1737 struct completion *waiting = qc->private_data;
a2a7a662 1738
a2a7a662 1739 complete(waiting);
a2a7a662
TH
1740}
1741
1742/**
2432697b 1743 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1744 * @dev: Device to which the command is sent
1745 * @tf: Taskfile registers for the command and the result
d69cf37d 1746 * @cdb: CDB for packet command
a2a7a662 1747 * @dma_dir: Data tranfer direction of the command
5c1ad8b3 1748 * @sgl: sg list for the data buffer of the command
2432697b 1749 * @n_elem: Number of sg entries
2b789108 1750 * @timeout: Timeout in msecs (0 for default)
a2a7a662
TH
1751 *
1752 * Executes libata internal command with timeout. @tf contains
1753 * command on entry and result on return. Timeout and error
1754 * conditions are reported via return value. No recovery action
1755 * is taken after a command times out. It's caller's duty to
1756 * clean up after timeout.
1757 *
1758 * LOCKING:
1759 * None. Should be called with kernel context, might sleep.
551e8889
TH
1760 *
1761 * RETURNS:
1762 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1763 */
2432697b
TH
1764unsigned ata_exec_internal_sg(struct ata_device *dev,
1765 struct ata_taskfile *tf, const u8 *cdb,
87260216 1766 int dma_dir, struct scatterlist *sgl,
2b789108 1767 unsigned int n_elem, unsigned long timeout)
a2a7a662 1768{
9af5c9c9
TH
1769 struct ata_link *link = dev->link;
1770 struct ata_port *ap = link->ap;
a2a7a662 1771 u8 command = tf->command;
87fbc5a0 1772 int auto_timeout = 0;
a2a7a662 1773 struct ata_queued_cmd *qc;
2ab7db1f 1774 unsigned int tag, preempted_tag;
dedaf2b0 1775 u32 preempted_sactive, preempted_qc_active;
da917d69 1776 int preempted_nr_active_links;
60be6b9a 1777 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1778 unsigned long flags;
77853bf2 1779 unsigned int err_mask;
d95a717f 1780 int rc;
a2a7a662 1781
ba6a1308 1782 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1783
e3180499 1784 /* no internal command while frozen */
b51e9e5d 1785 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1786 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1787 return AC_ERR_SYSTEM;
1788 }
1789
2ab7db1f 1790 /* initialize internal qc */
a2a7a662 1791
2ab7db1f
TH
1792 /* XXX: Tag 0 is used for drivers with legacy EH as some
1793 * drivers choke if any other tag is given. This breaks
1794 * ata_tag_internal() test for those drivers. Don't use new
1795 * EH stuff without converting to it.
1796 */
1797 if (ap->ops->error_handler)
1798 tag = ATA_TAG_INTERNAL;
1799 else
1800 tag = 0;
1801
8a8bc223
TH
1802 if (test_and_set_bit(tag, &ap->qc_allocated))
1803 BUG();
f69499f4 1804 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1805
1806 qc->tag = tag;
1807 qc->scsicmd = NULL;
1808 qc->ap = ap;
1809 qc->dev = dev;
1810 ata_qc_reinit(qc);
1811
9af5c9c9
TH
1812 preempted_tag = link->active_tag;
1813 preempted_sactive = link->sactive;
dedaf2b0 1814 preempted_qc_active = ap->qc_active;
da917d69 1815 preempted_nr_active_links = ap->nr_active_links;
9af5c9c9
TH
1816 link->active_tag = ATA_TAG_POISON;
1817 link->sactive = 0;
dedaf2b0 1818 ap->qc_active = 0;
da917d69 1819 ap->nr_active_links = 0;
2ab7db1f
TH
1820
1821 /* prepare & issue qc */
a2a7a662 1822 qc->tf = *tf;
d69cf37d
TH
1823 if (cdb)
1824 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1825 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1826 qc->dma_dir = dma_dir;
1827 if (dma_dir != DMA_NONE) {
2432697b 1828 unsigned int i, buflen = 0;
87260216 1829 struct scatterlist *sg;
2432697b 1830
87260216
JA
1831 for_each_sg(sgl, sg, n_elem, i)
1832 buflen += sg->length;
2432697b 1833
87260216 1834 ata_sg_init(qc, sgl, n_elem);
49c80429 1835 qc->nbytes = buflen;
a2a7a662
TH
1836 }
1837
77853bf2 1838 qc->private_data = &wait;
a2a7a662
TH
1839 qc->complete_fn = ata_qc_complete_internal;
1840
8e0e694a 1841 ata_qc_issue(qc);
a2a7a662 1842
ba6a1308 1843 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1844
87fbc5a0
TH
1845 if (!timeout) {
1846 if (ata_probe_timeout)
1847 timeout = ata_probe_timeout * 1000;
1848 else {
1849 timeout = ata_internal_cmd_timeout(dev, command);
1850 auto_timeout = 1;
1851 }
1852 }
2b789108
TH
1853
1854 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
d95a717f
TH
1855
1856 ata_port_flush_task(ap);
41ade50c 1857
d95a717f 1858 if (!rc) {
ba6a1308 1859 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1860
1861 /* We're racing with irq here. If we lose, the
1862 * following test prevents us from completing the qc
d95a717f
TH
1863 * twice. If we win, the port is frozen and will be
1864 * cleaned up by ->post_internal_cmd().
a2a7a662 1865 */
77853bf2 1866 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1867 qc->err_mask |= AC_ERR_TIMEOUT;
1868
1869 if (ap->ops->error_handler)
1870 ata_port_freeze(ap);
1871 else
1872 ata_qc_complete(qc);
f15a1daf 1873
0dd4b21f
BP
1874 if (ata_msg_warn(ap))
1875 ata_dev_printk(dev, KERN_WARNING,
88574551 1876 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1877 }
1878
ba6a1308 1879 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1880 }
1881
d95a717f
TH
1882 /* do post_internal_cmd */
1883 if (ap->ops->post_internal_cmd)
1884 ap->ops->post_internal_cmd(qc);
1885
a51d644a
TH
1886 /* perform minimal error analysis */
1887 if (qc->flags & ATA_QCFLAG_FAILED) {
1888 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1889 qc->err_mask |= AC_ERR_DEV;
1890
1891 if (!qc->err_mask)
1892 qc->err_mask |= AC_ERR_OTHER;
1893
1894 if (qc->err_mask & ~AC_ERR_OTHER)
1895 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1896 }
1897
15869303 1898 /* finish up */
ba6a1308 1899 spin_lock_irqsave(ap->lock, flags);
15869303 1900
e61e0672 1901 *tf = qc->result_tf;
77853bf2
TH
1902 err_mask = qc->err_mask;
1903
1904 ata_qc_free(qc);
9af5c9c9
TH
1905 link->active_tag = preempted_tag;
1906 link->sactive = preempted_sactive;
dedaf2b0 1907 ap->qc_active = preempted_qc_active;
da917d69 1908 ap->nr_active_links = preempted_nr_active_links;
77853bf2 1909
ba6a1308 1910 spin_unlock_irqrestore(ap->lock, flags);
15869303 1911
87fbc5a0
TH
1912 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1913 ata_internal_cmd_timed_out(dev, command);
1914
77853bf2 1915 return err_mask;
a2a7a662
TH
1916}
1917
2432697b 1918/**
33480a0e 1919 * ata_exec_internal - execute libata internal command
2432697b
TH
1920 * @dev: Device to which the command is sent
1921 * @tf: Taskfile registers for the command and the result
1922 * @cdb: CDB for packet command
1923 * @dma_dir: Data tranfer direction of the command
1924 * @buf: Data buffer of the command
1925 * @buflen: Length of data buffer
2b789108 1926 * @timeout: Timeout in msecs (0 for default)
2432697b
TH
1927 *
1928 * Wrapper around ata_exec_internal_sg() which takes simple
1929 * buffer instead of sg list.
1930 *
1931 * LOCKING:
1932 * None. Should be called with kernel context, might sleep.
1933 *
1934 * RETURNS:
1935 * Zero on success, AC_ERR_* mask on failure
1936 */
1937unsigned ata_exec_internal(struct ata_device *dev,
1938 struct ata_taskfile *tf, const u8 *cdb,
2b789108
TH
1939 int dma_dir, void *buf, unsigned int buflen,
1940 unsigned long timeout)
2432697b 1941{
33480a0e
TH
1942 struct scatterlist *psg = NULL, sg;
1943 unsigned int n_elem = 0;
2432697b 1944
33480a0e
TH
1945 if (dma_dir != DMA_NONE) {
1946 WARN_ON(!buf);
1947 sg_init_one(&sg, buf, buflen);
1948 psg = &sg;
1949 n_elem++;
1950 }
2432697b 1951
2b789108
TH
1952 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1953 timeout);
2432697b
TH
1954}
1955
977e6b9f
TH
1956/**
1957 * ata_do_simple_cmd - execute simple internal command
1958 * @dev: Device to which the command is sent
1959 * @cmd: Opcode to execute
1960 *
1961 * Execute a 'simple' command, that only consists of the opcode
1962 * 'cmd' itself, without filling any other registers
1963 *
1964 * LOCKING:
1965 * Kernel thread context (may sleep).
1966 *
1967 * RETURNS:
1968 * Zero on success, AC_ERR_* mask on failure
e58eb583 1969 */
77b08fb5 1970unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1971{
1972 struct ata_taskfile tf;
e58eb583
TH
1973
1974 ata_tf_init(dev, &tf);
1975
1976 tf.command = cmd;
1977 tf.flags |= ATA_TFLAG_DEVICE;
1978 tf.protocol = ATA_PROT_NODATA;
1979
2b789108 1980 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
e58eb583
TH
1981}
1982
1bc4ccff
AC
1983/**
1984 * ata_pio_need_iordy - check if iordy needed
1985 * @adev: ATA device
1986 *
1987 * Check if the current speed of the device requires IORDY. Used
1988 * by various controllers for chip configuration.
1989 */
1bc4ccff
AC
1990unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1991{
0d9e6659
TH
1992 /* Don't set IORDY if we're preparing for reset. IORDY may
1993 * lead to controller lock up on certain controllers if the
1994 * port is not occupied. See bko#11703 for details.
1995 */
1996 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1997 return 0;
1998 /* Controller doesn't support IORDY. Probably a pointless
1999 * check as the caller should know this.
2000 */
9af5c9c9 2001 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 2002 return 0;
5c18c4d2
DD
2003 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
2004 if (ata_id_is_cfa(adev->id)
2005 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
2006 return 0;
432729f0
AC
2007 /* PIO3 and higher it is mandatory */
2008 if (adev->pio_mode > XFER_PIO_2)
2009 return 1;
2010 /* We turn it on when possible */
2011 if (ata_id_has_iordy(adev->id))
1bc4ccff 2012 return 1;
432729f0
AC
2013 return 0;
2014}
2e9edbf8 2015
432729f0
AC
2016/**
2017 * ata_pio_mask_no_iordy - Return the non IORDY mask
2018 * @adev: ATA device
2019 *
2020 * Compute the highest mode possible if we are not using iordy. Return
2021 * -1 if no iordy mode is available.
2022 */
432729f0
AC
2023static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
2024{
1bc4ccff 2025 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 2026 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 2027 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
2028 /* Is the speed faster than the drive allows non IORDY ? */
2029 if (pio) {
2030 /* This is cycle times not frequency - watch the logic! */
2031 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
2032 return 3 << ATA_SHIFT_PIO;
2033 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
2034 }
2035 }
432729f0 2036 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
2037}
2038
963e4975
AC
2039/**
2040 * ata_do_dev_read_id - default ID read method
2041 * @dev: device
2042 * @tf: proposed taskfile
2043 * @id: data buffer
2044 *
2045 * Issue the identify taskfile and hand back the buffer containing
2046 * identify data. For some RAID controllers and for pre ATA devices
2047 * this function is wrapped or replaced by the driver
2048 */
2049unsigned int ata_do_dev_read_id(struct ata_device *dev,
2050 struct ata_taskfile *tf, u16 *id)
2051{
2052 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
2053 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
2054}
2055
1da177e4 2056/**
49016aca 2057 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
2058 * @dev: target device
2059 * @p_class: pointer to class of the target device (may be changed)
bff04647 2060 * @flags: ATA_READID_* flags
fe635c7e 2061 * @id: buffer to read IDENTIFY data into
1da177e4 2062 *
49016aca
TH
2063 * Read ID data from the specified device. ATA_CMD_ID_ATA is
2064 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
2065 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
2066 * for pre-ATA4 drives.
1da177e4 2067 *
50a99018 2068 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2dcb407e 2069 * now we abort if we hit that case.
50a99018 2070 *
1da177e4 2071 * LOCKING:
49016aca
TH
2072 * Kernel thread context (may sleep)
2073 *
2074 * RETURNS:
2075 * 0 on success, -errno otherwise.
1da177e4 2076 */
a9beec95 2077int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 2078 unsigned int flags, u16 *id)
1da177e4 2079{
9af5c9c9 2080 struct ata_port *ap = dev->link->ap;
49016aca 2081 unsigned int class = *p_class;
a0123703 2082 struct ata_taskfile tf;
49016aca
TH
2083 unsigned int err_mask = 0;
2084 const char *reason;
79b42bab 2085 bool is_semb = class == ATA_DEV_SEMB;
54936f8b 2086 int may_fallback = 1, tried_spinup = 0;
49016aca 2087 int rc;
1da177e4 2088
0dd4b21f 2089 if (ata_msg_ctl(ap))
7f5e4e8d 2090 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
1da177e4 2091
963e4975 2092retry:
3373efd8 2093 ata_tf_init(dev, &tf);
a0123703 2094
49016aca 2095 switch (class) {
79b42bab
TH
2096 case ATA_DEV_SEMB:
2097 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
49016aca 2098 case ATA_DEV_ATA:
a0123703 2099 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
2100 break;
2101 case ATA_DEV_ATAPI:
a0123703 2102 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
2103 break;
2104 default:
2105 rc = -ENODEV;
2106 reason = "unsupported class";
2107 goto err_out;
1da177e4
LT
2108 }
2109
a0123703 2110 tf.protocol = ATA_PROT_PIO;
81afe893
TH
2111
2112 /* Some devices choke if TF registers contain garbage. Make
2113 * sure those are properly initialized.
2114 */
2115 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2116
2117 /* Device presence detection is unreliable on some
2118 * controllers. Always poll IDENTIFY if available.
2119 */
2120 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 2121
963e4975
AC
2122 if (ap->ops->read_id)
2123 err_mask = ap->ops->read_id(dev, &tf, id);
2124 else
2125 err_mask = ata_do_dev_read_id(dev, &tf, id);
2126
a0123703 2127 if (err_mask) {
800b3996 2128 if (err_mask & AC_ERR_NODEV_HINT) {
1ffc151f
TH
2129 ata_dev_printk(dev, KERN_DEBUG,
2130 "NODEV after polling detection\n");
55a8e2c8
TH
2131 return -ENOENT;
2132 }
2133
79b42bab
TH
2134 if (is_semb) {
2135 ata_dev_printk(dev, KERN_INFO, "IDENTIFY failed on "
2136 "device w/ SEMB sig, disabled\n");
2137 /* SEMB is not supported yet */
2138 *p_class = ATA_DEV_SEMB_UNSUP;
2139 return 0;
2140 }
2141
1ffc151f
TH
2142 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
2143 /* Device or controller might have reported
2144 * the wrong device class. Give a shot at the
2145 * other IDENTIFY if the current one is
2146 * aborted by the device.
2147 */
2148 if (may_fallback) {
2149 may_fallback = 0;
2150
2151 if (class == ATA_DEV_ATA)
2152 class = ATA_DEV_ATAPI;
2153 else
2154 class = ATA_DEV_ATA;
2155 goto retry;
2156 }
2157
2158 /* Control reaches here iff the device aborted
2159 * both flavors of IDENTIFYs which happens
2160 * sometimes with phantom devices.
2161 */
2162 ata_dev_printk(dev, KERN_DEBUG,
2163 "both IDENTIFYs aborted, assuming NODEV\n");
2164 return -ENOENT;
54936f8b
TH
2165 }
2166
49016aca
TH
2167 rc = -EIO;
2168 reason = "I/O error";
1da177e4
LT
2169 goto err_out;
2170 }
2171
54936f8b
TH
2172 /* Falling back doesn't make sense if ID data was read
2173 * successfully at least once.
2174 */
2175 may_fallback = 0;
2176
49016aca 2177 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 2178
49016aca 2179 /* sanity check */
a4f5749b 2180 rc = -EINVAL;
6070068b 2181 reason = "device reports invalid type";
a4f5749b
TH
2182
2183 if (class == ATA_DEV_ATA) {
2184 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
2185 goto err_out;
2186 } else {
2187 if (ata_id_is_ata(id))
2188 goto err_out;
49016aca
TH
2189 }
2190
169439c2
ML
2191 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2192 tried_spinup = 1;
2193 /*
2194 * Drive powered-up in standby mode, and requires a specific
2195 * SET_FEATURES spin-up subcommand before it will accept
2196 * anything other than the original IDENTIFY command.
2197 */
218f3d30 2198 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
fb0582f9 2199 if (err_mask && id[2] != 0x738c) {
169439c2
ML
2200 rc = -EIO;
2201 reason = "SPINUP failed";
2202 goto err_out;
2203 }
2204 /*
2205 * If the drive initially returned incomplete IDENTIFY info,
2206 * we now must reissue the IDENTIFY command.
2207 */
2208 if (id[2] == 0x37c8)
2209 goto retry;
2210 }
2211
bff04647 2212 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
2213 /*
2214 * The exact sequence expected by certain pre-ATA4 drives is:
2215 * SRST RESET
50a99018
AC
2216 * IDENTIFY (optional in early ATA)
2217 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
49016aca
TH
2218 * anything else..
2219 * Some drives were very specific about that exact sequence.
50a99018
AC
2220 *
2221 * Note that ATA4 says lba is mandatory so the second check
c9404c9c 2222 * should never trigger.
49016aca
TH
2223 */
2224 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 2225 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
2226 if (err_mask) {
2227 rc = -EIO;
2228 reason = "INIT_DEV_PARAMS failed";
2229 goto err_out;
2230 }
2231
2232 /* current CHS translation info (id[53-58]) might be
2233 * changed. reread the identify device info.
2234 */
bff04647 2235 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
2236 goto retry;
2237 }
2238 }
2239
2240 *p_class = class;
fe635c7e 2241
49016aca
TH
2242 return 0;
2243
2244 err_out:
88574551 2245 if (ata_msg_warn(ap))
0dd4b21f 2246 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 2247 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
2248 return rc;
2249}
2250
9062712f
TH
2251static int ata_do_link_spd_horkage(struct ata_device *dev)
2252{
2253 struct ata_link *plink = ata_dev_phys_link(dev);
2254 u32 target, target_limit;
2255
2256 if (!sata_scr_valid(plink))
2257 return 0;
2258
2259 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2260 target = 1;
2261 else
2262 return 0;
2263
2264 target_limit = (1 << target) - 1;
2265
2266 /* if already on stricter limit, no need to push further */
2267 if (plink->sata_spd_limit <= target_limit)
2268 return 0;
2269
2270 plink->sata_spd_limit = target_limit;
2271
2272 /* Request another EH round by returning -EAGAIN if link is
2273 * going faster than the target speed. Forward progress is
2274 * guaranteed by setting sata_spd_limit to target_limit above.
2275 */
2276 if (plink->sata_spd > target) {
2277 ata_dev_printk(dev, KERN_INFO,
2278 "applying link speed limit horkage to %s\n",
2279 sata_spd_string(target));
2280 return -EAGAIN;
2281 }
2282 return 0;
2283}
2284
3373efd8 2285static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 2286{
9af5c9c9 2287 struct ata_port *ap = dev->link->ap;
9ce8e307
JA
2288
2289 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2290 return 0;
2291
9af5c9c9 2292 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
2293}
2294
388539f3 2295static int ata_dev_config_ncq(struct ata_device *dev,
a6e6ce8e
TH
2296 char *desc, size_t desc_sz)
2297{
9af5c9c9 2298 struct ata_port *ap = dev->link->ap;
a6e6ce8e 2299 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
388539f3
SL
2300 unsigned int err_mask;
2301 char *aa_desc = "";
a6e6ce8e
TH
2302
2303 if (!ata_id_has_ncq(dev->id)) {
2304 desc[0] = '\0';
388539f3 2305 return 0;
a6e6ce8e 2306 }
75683fe7 2307 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6 2308 snprintf(desc, desc_sz, "NCQ (not used)");
388539f3 2309 return 0;
6919a0a6 2310 }
a6e6ce8e 2311 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 2312 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
2313 dev->flags |= ATA_DFLAG_NCQ;
2314 }
2315
388539f3
SL
2316 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2317 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2318 ata_id_has_fpdma_aa(dev->id)) {
2319 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2320 SATA_FPDMA_AA);
2321 if (err_mask) {
2322 ata_dev_printk(dev, KERN_ERR, "failed to enable AA"
2323 "(error_mask=0x%x)\n", err_mask);
2324 if (err_mask != AC_ERR_DEV) {
2325 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2326 return -EIO;
2327 }
2328 } else
2329 aa_desc = ", AA";
2330 }
2331
a6e6ce8e 2332 if (hdepth >= ddepth)
388539f3 2333 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
a6e6ce8e 2334 else
388539f3
SL
2335 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2336 ddepth, aa_desc);
2337 return 0;
a6e6ce8e
TH
2338}
2339
49016aca 2340/**
ffeae418 2341 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
2342 * @dev: Target device to configure
2343 *
2344 * Configure @dev according to @dev->id. Generic and low-level
2345 * driver specific fixups are also applied.
49016aca
TH
2346 *
2347 * LOCKING:
ffeae418
TH
2348 * Kernel thread context (may sleep)
2349 *
2350 * RETURNS:
2351 * 0 on success, -errno otherwise
49016aca 2352 */
efdaedc4 2353int ata_dev_configure(struct ata_device *dev)
49016aca 2354{
9af5c9c9
TH
2355 struct ata_port *ap = dev->link->ap;
2356 struct ata_eh_context *ehc = &dev->link->eh_context;
6746544c 2357 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 2358 const u16 *id = dev->id;
7dc951ae 2359 unsigned long xfer_mask;
b352e57d 2360 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
2361 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2362 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 2363 int rc;
49016aca 2364
0dd4b21f 2365 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e 2366 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
7f5e4e8d 2367 __func__);
ffeae418 2368 return 0;
49016aca
TH
2369 }
2370
0dd4b21f 2371 if (ata_msg_probe(ap))
7f5e4e8d 2372 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
1da177e4 2373
75683fe7
TH
2374 /* set horkage */
2375 dev->horkage |= ata_dev_blacklisted(dev);
33267325 2376 ata_force_horkage(dev);
75683fe7 2377
50af2fa1
TH
2378 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2379 ata_dev_printk(dev, KERN_INFO,
2380 "unsupported device, disabling\n");
2381 ata_dev_disable(dev);
2382 return 0;
2383 }
2384
2486fa56
TH
2385 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2386 dev->class == ATA_DEV_ATAPI) {
2387 ata_dev_printk(dev, KERN_WARNING,
2388 "WARNING: ATAPI is %s, device ignored.\n",
2389 atapi_enabled ? "not supported with this driver"
2390 : "disabled");
2391 ata_dev_disable(dev);
2392 return 0;
2393 }
2394
9062712f
TH
2395 rc = ata_do_link_spd_horkage(dev);
2396 if (rc)
2397 return rc;
2398
6746544c
TH
2399 /* let ACPI work its magic */
2400 rc = ata_acpi_on_devcfg(dev);
2401 if (rc)
2402 return rc;
08573a86 2403
05027adc
TH
2404 /* massage HPA, do it early as it might change IDENTIFY data */
2405 rc = ata_hpa_resize(dev);
2406 if (rc)
2407 return rc;
2408
c39f5ebe 2409 /* print device capabilities */
0dd4b21f 2410 if (ata_msg_probe(ap))
88574551
TH
2411 ata_dev_printk(dev, KERN_DEBUG,
2412 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2413 "85:%04x 86:%04x 87:%04x 88:%04x\n",
7f5e4e8d 2414 __func__,
f15a1daf
TH
2415 id[49], id[82], id[83], id[84],
2416 id[85], id[86], id[87], id[88]);
c39f5ebe 2417
208a9933 2418 /* initialize to-be-configured parameters */
ea1dd4e1 2419 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
2420 dev->max_sectors = 0;
2421 dev->cdb_len = 0;
2422 dev->n_sectors = 0;
2423 dev->cylinders = 0;
2424 dev->heads = 0;
2425 dev->sectors = 0;
e18086d6 2426 dev->multi_count = 0;
208a9933 2427
1da177e4
LT
2428 /*
2429 * common ATA, ATAPI feature tests
2430 */
2431
ff8854b2 2432 /* find max transfer mode; for printk only */
1148c3a7 2433 xfer_mask = ata_id_xfermask(id);
1da177e4 2434
0dd4b21f
BP
2435 if (ata_msg_probe(ap))
2436 ata_dump_id(id);
1da177e4 2437
ef143d57
AL
2438 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2439 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2440 sizeof(fwrevbuf));
2441
2442 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2443 sizeof(modelbuf));
2444
1da177e4
LT
2445 /* ATA-specific feature tests */
2446 if (dev->class == ATA_DEV_ATA) {
b352e57d 2447 if (ata_id_is_cfa(id)) {
62afe5d7
SS
2448 /* CPRM may make this media unusable */
2449 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
44877b4e
TH
2450 ata_dev_printk(dev, KERN_WARNING,
2451 "supports DRM functions and may "
2452 "not be fully accessable.\n");
b352e57d 2453 snprintf(revbuf, 7, "CFA");
ae8d4ee7 2454 } else {
2dcb407e 2455 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
ae8d4ee7
AC
2456 /* Warn the user if the device has TPM extensions */
2457 if (ata_id_has_tpm(id))
2458 ata_dev_printk(dev, KERN_WARNING,
2459 "supports DRM functions and may "
2460 "not be fully accessable.\n");
2461 }
b352e57d 2462
1148c3a7 2463 dev->n_sectors = ata_id_n_sectors(id);
2940740b 2464
e18086d6
ML
2465 /* get current R/W Multiple count setting */
2466 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2467 unsigned int max = dev->id[47] & 0xff;
2468 unsigned int cnt = dev->id[59] & 0xff;
2469 /* only recognize/allow powers of two here */
2470 if (is_power_of_2(max) && is_power_of_2(cnt))
2471 if (cnt <= max)
2472 dev->multi_count = cnt;
2473 }
3f64f565 2474
1148c3a7 2475 if (ata_id_has_lba(id)) {
4c2d721a 2476 const char *lba_desc;
388539f3 2477 char ncq_desc[24];
8bf62ece 2478
4c2d721a
TH
2479 lba_desc = "LBA";
2480 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 2481 if (ata_id_has_lba48(id)) {
8bf62ece 2482 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 2483 lba_desc = "LBA48";
6fc49adb
TH
2484
2485 if (dev->n_sectors >= (1UL << 28) &&
2486 ata_id_has_flush_ext(id))
2487 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 2488 }
8bf62ece 2489
a6e6ce8e 2490 /* config NCQ */
388539f3
SL
2491 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2492 if (rc)
2493 return rc;
a6e6ce8e 2494
8bf62ece 2495 /* print device info to dmesg */
3f64f565
EM
2496 if (ata_msg_drv(ap) && print_info) {
2497 ata_dev_printk(dev, KERN_INFO,
2498 "%s: %s, %s, max %s\n",
2499 revbuf, modelbuf, fwrevbuf,
2500 ata_mode_string(xfer_mask));
2501 ata_dev_printk(dev, KERN_INFO,
2502 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 2503 (unsigned long long)dev->n_sectors,
3f64f565
EM
2504 dev->multi_count, lba_desc, ncq_desc);
2505 }
ffeae418 2506 } else {
8bf62ece
AL
2507 /* CHS */
2508
2509 /* Default translation */
1148c3a7
TH
2510 dev->cylinders = id[1];
2511 dev->heads = id[3];
2512 dev->sectors = id[6];
8bf62ece 2513
1148c3a7 2514 if (ata_id_current_chs_valid(id)) {
8bf62ece 2515 /* Current CHS translation is valid. */
1148c3a7
TH
2516 dev->cylinders = id[54];
2517 dev->heads = id[55];
2518 dev->sectors = id[56];
8bf62ece
AL
2519 }
2520
2521 /* print device info to dmesg */
3f64f565 2522 if (ata_msg_drv(ap) && print_info) {
88574551 2523 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2524 "%s: %s, %s, max %s\n",
2525 revbuf, modelbuf, fwrevbuf,
2526 ata_mode_string(xfer_mask));
a84471fe 2527 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2528 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2529 (unsigned long long)dev->n_sectors,
2530 dev->multi_count, dev->cylinders,
2531 dev->heads, dev->sectors);
2532 }
07f6f7d0
AL
2533 }
2534
6e7846e9 2535 dev->cdb_len = 16;
1da177e4
LT
2536 }
2537
2538 /* ATAPI-specific feature tests */
2c13b7ce 2539 else if (dev->class == ATA_DEV_ATAPI) {
854c73a2
TH
2540 const char *cdb_intr_string = "";
2541 const char *atapi_an_string = "";
91163006 2542 const char *dma_dir_string = "";
7d77b247 2543 u32 sntf;
08a556db 2544
1148c3a7 2545 rc = atapi_cdb_len(id);
1da177e4 2546 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 2547 if (ata_msg_warn(ap))
88574551
TH
2548 ata_dev_printk(dev, KERN_WARNING,
2549 "unsupported CDB len\n");
ffeae418 2550 rc = -EINVAL;
1da177e4
LT
2551 goto err_out_nosup;
2552 }
6e7846e9 2553 dev->cdb_len = (unsigned int) rc;
1da177e4 2554
7d77b247
TH
2555 /* Enable ATAPI AN if both the host and device have
2556 * the support. If PMP is attached, SNTF is required
2557 * to enable ATAPI AN to discern between PHY status
2558 * changed notifications and ATAPI ANs.
9f45cbd3 2559 */
7d77b247 2560 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
071f44b1 2561 (!sata_pmp_attached(ap) ||
7d77b247 2562 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
854c73a2
TH
2563 unsigned int err_mask;
2564
9f45cbd3 2565 /* issue SET feature command to turn this on */
218f3d30
JG
2566 err_mask = ata_dev_set_feature(dev,
2567 SETFEATURES_SATA_ENABLE, SATA_AN);
854c73a2 2568 if (err_mask)
9f45cbd3 2569 ata_dev_printk(dev, KERN_ERR,
854c73a2
TH
2570 "failed to enable ATAPI AN "
2571 "(err_mask=0x%x)\n", err_mask);
2572 else {
9f45cbd3 2573 dev->flags |= ATA_DFLAG_AN;
854c73a2
TH
2574 atapi_an_string = ", ATAPI AN";
2575 }
9f45cbd3
KCA
2576 }
2577
08a556db 2578 if (ata_id_cdb_intr(dev->id)) {
312f7da2 2579 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
2580 cdb_intr_string = ", CDB intr";
2581 }
312f7da2 2582
91163006
TH
2583 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2584 dev->flags |= ATA_DFLAG_DMADIR;
2585 dma_dir_string = ", DMADIR";
2586 }
2587
1da177e4 2588 /* print device info to dmesg */
5afc8142 2589 if (ata_msg_drv(ap) && print_info)
ef143d57 2590 ata_dev_printk(dev, KERN_INFO,
91163006 2591 "ATAPI: %s, %s, max %s%s%s%s\n",
ef143d57 2592 modelbuf, fwrevbuf,
12436c30 2593 ata_mode_string(xfer_mask),
91163006
TH
2594 cdb_intr_string, atapi_an_string,
2595 dma_dir_string);
1da177e4
LT
2596 }
2597
914ed354
TH
2598 /* determine max_sectors */
2599 dev->max_sectors = ATA_MAX_SECTORS;
2600 if (dev->flags & ATA_DFLAG_LBA48)
2601 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2602
ca77329f
KCA
2603 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2604 if (ata_id_has_hipm(dev->id))
2605 dev->flags |= ATA_DFLAG_HIPM;
2606 if (ata_id_has_dipm(dev->id))
2607 dev->flags |= ATA_DFLAG_DIPM;
2608 }
2609
c5038fc0
AC
2610 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2611 200 sectors */
3373efd8 2612 if (ata_dev_knobble(dev)) {
5afc8142 2613 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2614 ata_dev_printk(dev, KERN_INFO,
2615 "applying bridge limits\n");
5a529139 2616 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2617 dev->max_sectors = ATA_MAX_SECTORS;
2618 }
2619
f8d8e579 2620 if ((dev->class == ATA_DEV_ATAPI) &&
f442cd86 2621 (atapi_command_packet_set(id) == TYPE_TAPE)) {
f8d8e579 2622 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
f442cd86
AL
2623 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2624 }
f8d8e579 2625
75683fe7 2626 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2627 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2628 dev->max_sectors);
18d6e9d5 2629
ca77329f
KCA
2630 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2631 dev->horkage |= ATA_HORKAGE_IPM;
2632
2633 /* reset link pm_policy for this port to no pm */
2634 ap->pm_policy = MAX_PERFORMANCE;
2635 }
2636
4b2f3ede 2637 if (ap->ops->dev_config)
cd0d3bbc 2638 ap->ops->dev_config(dev);
4b2f3ede 2639
c5038fc0
AC
2640 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2641 /* Let the user know. We don't want to disallow opens for
2642 rescue purposes, or in case the vendor is just a blithering
2643 idiot. Do this after the dev_config call as some controllers
2644 with buggy firmware may want to avoid reporting false device
2645 bugs */
2646
2647 if (print_info) {
2648 ata_dev_printk(dev, KERN_WARNING,
2649"Drive reports diagnostics failure. This may indicate a drive\n");
2650 ata_dev_printk(dev, KERN_WARNING,
2651"fault or invalid emulation. Contact drive vendor for information.\n");
2652 }
2653 }
2654
ac70a964
TH
2655 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2656 ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires "
2657 "firmware update to be fully functional.\n");
2658 ata_dev_printk(dev, KERN_WARNING, " contact the vendor "
2659 "or visit http://ata.wiki.kernel.org.\n");
2660 }
2661
ffeae418 2662 return 0;
1da177e4
LT
2663
2664err_out_nosup:
0dd4b21f 2665 if (ata_msg_probe(ap))
88574551 2666 ata_dev_printk(dev, KERN_DEBUG,
7f5e4e8d 2667 "%s: EXIT, err\n", __func__);
ffeae418 2668 return rc;
1da177e4
LT
2669}
2670
be0d18df 2671/**
2e41e8e6 2672 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2673 * @ap: port
2674 *
2e41e8e6 2675 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2676 * detection.
2677 */
2678
2679int ata_cable_40wire(struct ata_port *ap)
2680{
2681 return ATA_CBL_PATA40;
2682}
2683
2684/**
2e41e8e6 2685 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2686 * @ap: port
2687 *
2e41e8e6 2688 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2689 * detection.
2690 */
2691
2692int ata_cable_80wire(struct ata_port *ap)
2693{
2694 return ATA_CBL_PATA80;
2695}
2696
2697/**
2698 * ata_cable_unknown - return unknown PATA cable.
2699 * @ap: port
2700 *
2701 * Helper method for drivers which have no PATA cable detection.
2702 */
2703
2704int ata_cable_unknown(struct ata_port *ap)
2705{
2706 return ATA_CBL_PATA_UNK;
2707}
2708
c88f90c3
TH
2709/**
2710 * ata_cable_ignore - return ignored PATA cable.
2711 * @ap: port
2712 *
2713 * Helper method for drivers which don't use cable type to limit
2714 * transfer mode.
2715 */
2716int ata_cable_ignore(struct ata_port *ap)
2717{
2718 return ATA_CBL_PATA_IGN;
2719}
2720
be0d18df
AC
2721/**
2722 * ata_cable_sata - return SATA cable type
2723 * @ap: port
2724 *
2725 * Helper method for drivers which have SATA cables
2726 */
2727
2728int ata_cable_sata(struct ata_port *ap)
2729{
2730 return ATA_CBL_SATA;
2731}
2732
1da177e4
LT
2733/**
2734 * ata_bus_probe - Reset and probe ATA bus
2735 * @ap: Bus to probe
2736 *
0cba632b
JG
2737 * Master ATA bus probing function. Initiates a hardware-dependent
2738 * bus reset, then attempts to identify any devices found on
2739 * the bus.
2740 *
1da177e4 2741 * LOCKING:
0cba632b 2742 * PCI/etc. bus probe sem.
1da177e4
LT
2743 *
2744 * RETURNS:
96072e69 2745 * Zero on success, negative errno otherwise.
1da177e4
LT
2746 */
2747
80289167 2748int ata_bus_probe(struct ata_port *ap)
1da177e4 2749{
28ca5c57 2750 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2751 int tries[ATA_MAX_DEVICES];
f58229f8 2752 int rc;
e82cbdb9 2753 struct ata_device *dev;
1da177e4 2754
1eca4365 2755 ata_for_each_dev(dev, &ap->link, ALL)
f58229f8 2756 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
14d2bac1
TH
2757
2758 retry:
1eca4365 2759 ata_for_each_dev(dev, &ap->link, ALL) {
cdeab114
TH
2760 /* If we issue an SRST then an ATA drive (not ATAPI)
2761 * may change configuration and be in PIO0 timing. If
2762 * we do a hard reset (or are coming from power on)
2763 * this is true for ATA or ATAPI. Until we've set a
2764 * suitable controller mode we should not touch the
2765 * bus as we may be talking too fast.
2766 */
2767 dev->pio_mode = XFER_PIO_0;
2768
2769 /* If the controller has a pio mode setup function
2770 * then use it to set the chipset to rights. Don't
2771 * touch the DMA setup as that will be dealt with when
2772 * configuring devices.
2773 */
2774 if (ap->ops->set_piomode)
2775 ap->ops->set_piomode(ap, dev);
2776 }
2777
2044470c 2778 /* reset and determine device classes */
52783c5d 2779 ap->ops->phy_reset(ap);
2061a47a 2780
1eca4365 2781 ata_for_each_dev(dev, &ap->link, ALL) {
3e4ec344 2782 if (dev->class != ATA_DEV_UNKNOWN)
52783c5d
TH
2783 classes[dev->devno] = dev->class;
2784 else
2785 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2786
52783c5d 2787 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2788 }
1da177e4 2789
f31f0cc2
JG
2790 /* read IDENTIFY page and configure devices. We have to do the identify
2791 specific sequence bass-ackwards so that PDIAG- is released by
2792 the slave device */
2793
1eca4365 2794 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
f58229f8
TH
2795 if (tries[dev->devno])
2796 dev->class = classes[dev->devno];
ffeae418 2797
14d2bac1 2798 if (!ata_dev_enabled(dev))
ffeae418 2799 continue;
ffeae418 2800
bff04647
TH
2801 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2802 dev->id);
14d2bac1
TH
2803 if (rc)
2804 goto fail;
f31f0cc2
JG
2805 }
2806
be0d18df
AC
2807 /* Now ask for the cable type as PDIAG- should have been released */
2808 if (ap->ops->cable_detect)
2809 ap->cbl = ap->ops->cable_detect(ap);
2810
1eca4365
TH
2811 /* We may have SATA bridge glue hiding here irrespective of
2812 * the reported cable types and sensed types. When SATA
2813 * drives indicate we have a bridge, we don't know which end
2814 * of the link the bridge is which is a problem.
2815 */
2816 ata_for_each_dev(dev, &ap->link, ENABLED)
614fe29b
AC
2817 if (ata_id_is_sata(dev->id))
2818 ap->cbl = ATA_CBL_SATA;
614fe29b 2819
f31f0cc2
JG
2820 /* After the identify sequence we can now set up the devices. We do
2821 this in the normal order so that the user doesn't get confused */
2822
1eca4365 2823 ata_for_each_dev(dev, &ap->link, ENABLED) {
9af5c9c9 2824 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
efdaedc4 2825 rc = ata_dev_configure(dev);
9af5c9c9 2826 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2827 if (rc)
2828 goto fail;
1da177e4
LT
2829 }
2830
e82cbdb9 2831 /* configure transfer mode */
0260731f 2832 rc = ata_set_mode(&ap->link, &dev);
4ae72a1e 2833 if (rc)
51713d35 2834 goto fail;
1da177e4 2835
1eca4365
TH
2836 ata_for_each_dev(dev, &ap->link, ENABLED)
2837 return 0;
1da177e4 2838
96072e69 2839 return -ENODEV;
14d2bac1
TH
2840
2841 fail:
4ae72a1e
TH
2842 tries[dev->devno]--;
2843
14d2bac1
TH
2844 switch (rc) {
2845 case -EINVAL:
4ae72a1e 2846 /* eeek, something went very wrong, give up */
14d2bac1
TH
2847 tries[dev->devno] = 0;
2848 break;
4ae72a1e
TH
2849
2850 case -ENODEV:
2851 /* give it just one more chance */
2852 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2853 case -EIO:
4ae72a1e
TH
2854 if (tries[dev->devno] == 1) {
2855 /* This is the last chance, better to slow
2856 * down than lose it.
2857 */
a07d499b 2858 sata_down_spd_limit(&ap->link, 0);
4ae72a1e
TH
2859 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2860 }
14d2bac1
TH
2861 }
2862
4ae72a1e 2863 if (!tries[dev->devno])
3373efd8 2864 ata_dev_disable(dev);
ec573755 2865
14d2bac1 2866 goto retry;
1da177e4
LT
2867}
2868
3be680b7
TH
2869/**
2870 * sata_print_link_status - Print SATA link status
936fd732 2871 * @link: SATA link to printk link status about
3be680b7
TH
2872 *
2873 * This function prints link speed and status of a SATA link.
2874 *
2875 * LOCKING:
2876 * None.
2877 */
6bdb4fc9 2878static void sata_print_link_status(struct ata_link *link)
3be680b7 2879{
6d5f9732 2880 u32 sstatus, scontrol, tmp;
3be680b7 2881
936fd732 2882 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3be680b7 2883 return;
936fd732 2884 sata_scr_read(link, SCR_CONTROL, &scontrol);
3be680b7 2885
b1c72916 2886 if (ata_phys_link_online(link)) {
3be680b7 2887 tmp = (sstatus >> 4) & 0xf;
936fd732 2888 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2889 "SATA link up %s (SStatus %X SControl %X)\n",
2890 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2891 } else {
936fd732 2892 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2893 "SATA link down (SStatus %X SControl %X)\n",
2894 sstatus, scontrol);
3be680b7
TH
2895 }
2896}
2897
ebdfca6e
AC
2898/**
2899 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2900 * @adev: device
2901 *
2902 * Obtain the other device on the same cable, or if none is
2903 * present NULL is returned
2904 */
2e9edbf8 2905
3373efd8 2906struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2907{
9af5c9c9
TH
2908 struct ata_link *link = adev->link;
2909 struct ata_device *pair = &link->device[1 - adev->devno];
e1211e3f 2910 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2911 return NULL;
2912 return pair;
2913}
2914
1c3fae4d 2915/**
3c567b7d 2916 * sata_down_spd_limit - adjust SATA spd limit downward
936fd732 2917 * @link: Link to adjust SATA spd limit for
a07d499b 2918 * @spd_limit: Additional limit
1c3fae4d 2919 *
936fd732 2920 * Adjust SATA spd limit of @link downward. Note that this
1c3fae4d 2921 * function only adjusts the limit. The change must be applied
3c567b7d 2922 * using sata_set_spd().
1c3fae4d 2923 *
a07d499b
TH
2924 * If @spd_limit is non-zero, the speed is limited to equal to or
2925 * lower than @spd_limit if such speed is supported. If
2926 * @spd_limit is slower than any supported speed, only the lowest
2927 * supported speed is allowed.
2928 *
1c3fae4d
TH
2929 * LOCKING:
2930 * Inherited from caller.
2931 *
2932 * RETURNS:
2933 * 0 on success, negative errno on failure
2934 */
a07d499b 2935int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
1c3fae4d 2936{
81952c54 2937 u32 sstatus, spd, mask;
a07d499b 2938 int rc, bit;
1c3fae4d 2939
936fd732 2940 if (!sata_scr_valid(link))
008a7896
TH
2941 return -EOPNOTSUPP;
2942
2943 /* If SCR can be read, use it to determine the current SPD.
936fd732 2944 * If not, use cached value in link->sata_spd.
008a7896 2945 */
936fd732 2946 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
9913ff8a 2947 if (rc == 0 && ata_sstatus_online(sstatus))
008a7896
TH
2948 spd = (sstatus >> 4) & 0xf;
2949 else
936fd732 2950 spd = link->sata_spd;
1c3fae4d 2951
936fd732 2952 mask = link->sata_spd_limit;
1c3fae4d
TH
2953 if (mask <= 1)
2954 return -EINVAL;
008a7896
TH
2955
2956 /* unconditionally mask off the highest bit */
a07d499b
TH
2957 bit = fls(mask) - 1;
2958 mask &= ~(1 << bit);
1c3fae4d 2959
008a7896
TH
2960 /* Mask off all speeds higher than or equal to the current
2961 * one. Force 1.5Gbps if current SPD is not available.
2962 */
2963 if (spd > 1)
2964 mask &= (1 << (spd - 1)) - 1;
2965 else
2966 mask &= 1;
2967
2968 /* were we already at the bottom? */
1c3fae4d
TH
2969 if (!mask)
2970 return -EINVAL;
2971
a07d499b
TH
2972 if (spd_limit) {
2973 if (mask & ((1 << spd_limit) - 1))
2974 mask &= (1 << spd_limit) - 1;
2975 else {
2976 bit = ffs(mask) - 1;
2977 mask = 1 << bit;
2978 }
2979 }
2980
936fd732 2981 link->sata_spd_limit = mask;
1c3fae4d 2982
936fd732 2983 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
f15a1daf 2984 sata_spd_string(fls(mask)));
1c3fae4d
TH
2985
2986 return 0;
2987}
2988
936fd732 2989static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
1c3fae4d 2990{
5270222f
TH
2991 struct ata_link *host_link = &link->ap->link;
2992 u32 limit, target, spd;
1c3fae4d 2993
5270222f
TH
2994 limit = link->sata_spd_limit;
2995
2996 /* Don't configure downstream link faster than upstream link.
2997 * It doesn't speed up anything and some PMPs choke on such
2998 * configuration.
2999 */
3000 if (!ata_is_host_link(link) && host_link->sata_spd)
3001 limit &= (1 << host_link->sata_spd) - 1;
3002
3003 if (limit == UINT_MAX)
3004 target = 0;
1c3fae4d 3005 else
5270222f 3006 target = fls(limit);
1c3fae4d
TH
3007
3008 spd = (*scontrol >> 4) & 0xf;
5270222f 3009 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
1c3fae4d 3010
5270222f 3011 return spd != target;
1c3fae4d
TH
3012}
3013
3014/**
3c567b7d 3015 * sata_set_spd_needed - is SATA spd configuration needed
936fd732 3016 * @link: Link in question
1c3fae4d
TH
3017 *
3018 * Test whether the spd limit in SControl matches
936fd732 3019 * @link->sata_spd_limit. This function is used to determine
1c3fae4d
TH
3020 * whether hardreset is necessary to apply SATA spd
3021 * configuration.
3022 *
3023 * LOCKING:
3024 * Inherited from caller.
3025 *
3026 * RETURNS:
3027 * 1 if SATA spd configuration is needed, 0 otherwise.
3028 */
1dc55e87 3029static int sata_set_spd_needed(struct ata_link *link)
1c3fae4d
TH
3030{
3031 u32 scontrol;
3032
936fd732 3033 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
db64bcf3 3034 return 1;
1c3fae4d 3035
936fd732 3036 return __sata_set_spd_needed(link, &scontrol);
1c3fae4d
TH
3037}
3038
3039/**
3c567b7d 3040 * sata_set_spd - set SATA spd according to spd limit
936fd732 3041 * @link: Link to set SATA spd for
1c3fae4d 3042 *
936fd732 3043 * Set SATA spd of @link according to sata_spd_limit.
1c3fae4d
TH
3044 *
3045 * LOCKING:
3046 * Inherited from caller.
3047 *
3048 * RETURNS:
3049 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 3050 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 3051 */
936fd732 3052int sata_set_spd(struct ata_link *link)
1c3fae4d
TH
3053{
3054 u32 scontrol;
81952c54 3055 int rc;
1c3fae4d 3056
936fd732 3057 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3058 return rc;
1c3fae4d 3059
936fd732 3060 if (!__sata_set_spd_needed(link, &scontrol))
1c3fae4d
TH
3061 return 0;
3062
936fd732 3063 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54
TH
3064 return rc;
3065
1c3fae4d
TH
3066 return 1;
3067}
3068
452503f9
AC
3069/*
3070 * This mode timing computation functionality is ported over from
3071 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3072 */
3073/*
b352e57d 3074 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 3075 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
3076 * for UDMA6, which is currently supported only by Maxtor drives.
3077 *
3078 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
3079 */
3080
3081static const struct ata_timing ata_timing[] = {
3ada9c12
DD
3082/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
3083 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
3084 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
3085 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
3086 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
3087 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
3088 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
3089 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
3090
3091 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
3092 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
3093 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
3094
3095 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
3096 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
3097 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
3098 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
3099 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
3100
3101/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3102 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
3103 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
3104 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
3105 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
3106 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
3107 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
3108 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
452503f9
AC
3109
3110 { 0xFF }
3111};
3112
2dcb407e
JG
3113#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3114#define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
452503f9
AC
3115
3116static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3117{
3ada9c12
DD
3118 q->setup = EZ(t->setup * 1000, T);
3119 q->act8b = EZ(t->act8b * 1000, T);
3120 q->rec8b = EZ(t->rec8b * 1000, T);
3121 q->cyc8b = EZ(t->cyc8b * 1000, T);
3122 q->active = EZ(t->active * 1000, T);
3123 q->recover = EZ(t->recover * 1000, T);
3124 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
3125 q->cycle = EZ(t->cycle * 1000, T);
3126 q->udma = EZ(t->udma * 1000, UT);
452503f9
AC
3127}
3128
3129void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3130 struct ata_timing *m, unsigned int what)
3131{
3132 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3133 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3134 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3135 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3136 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3137 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3ada9c12 3138 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
452503f9
AC
3139 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3140 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3141}
3142
6357357c 3143const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
452503f9 3144{
70cd071e
TH
3145 const struct ata_timing *t = ata_timing;
3146
3147 while (xfer_mode > t->mode)
3148 t++;
452503f9 3149
70cd071e
TH
3150 if (xfer_mode == t->mode)
3151 return t;
3152 return NULL;
452503f9
AC
3153}
3154
3155int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3156 struct ata_timing *t, int T, int UT)
3157{
9e8808a9 3158 const u16 *id = adev->id;
452503f9
AC
3159 const struct ata_timing *s;
3160 struct ata_timing p;
3161
3162 /*
2e9edbf8 3163 * Find the mode.
75b1f2f8 3164 */
452503f9
AC
3165
3166 if (!(s = ata_timing_find_mode(speed)))
3167 return -EINVAL;
3168
75b1f2f8
AL
3169 memcpy(t, s, sizeof(*s));
3170
452503f9
AC
3171 /*
3172 * If the drive is an EIDE drive, it can tell us it needs extended
3173 * PIO/MW_DMA cycle timing.
3174 */
3175
9e8808a9 3176 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
452503f9 3177 memset(&p, 0, sizeof(p));
9e8808a9 3178
2dcb407e 3179 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
9e8808a9
BZ
3180 if (speed <= XFER_PIO_2)
3181 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3182 else if ((speed <= XFER_PIO_4) ||
3183 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3184 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3185 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3186 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3187
452503f9
AC
3188 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3189 }
3190
3191 /*
3192 * Convert the timing to bus clock counts.
3193 */
3194
75b1f2f8 3195 ata_timing_quantize(t, t, T, UT);
452503f9
AC
3196
3197 /*
c893a3ae
RD
3198 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3199 * S.M.A.R.T * and some other commands. We have to ensure that the
3200 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
3201 */
3202
fd3367af 3203 if (speed > XFER_PIO_6) {
452503f9
AC
3204 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3205 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3206 }
3207
3208 /*
c893a3ae 3209 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
3210 */
3211
3212 if (t->act8b + t->rec8b < t->cyc8b) {
3213 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3214 t->rec8b = t->cyc8b - t->act8b;
3215 }
3216
3217 if (t->active + t->recover < t->cycle) {
3218 t->active += (t->cycle - (t->active + t->recover)) / 2;
3219 t->recover = t->cycle - t->active;
3220 }
a617c09f 3221
4f701d1e
AC
3222 /* In a few cases quantisation may produce enough errors to
3223 leave t->cycle too low for the sum of active and recovery
3224 if so we must correct this */
3225 if (t->active + t->recover > t->cycle)
3226 t->cycle = t->active + t->recover;
452503f9
AC
3227
3228 return 0;
3229}
3230
a0f79b92
TH
3231/**
3232 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3233 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3234 * @cycle: cycle duration in ns
3235 *
3236 * Return matching xfer mode for @cycle. The returned mode is of
3237 * the transfer type specified by @xfer_shift. If @cycle is too
3238 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3239 * than the fastest known mode, the fasted mode is returned.
3240 *
3241 * LOCKING:
3242 * None.
3243 *
3244 * RETURNS:
3245 * Matching xfer_mode, 0xff if no match found.
3246 */
3247u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3248{
3249 u8 base_mode = 0xff, last_mode = 0xff;
3250 const struct ata_xfer_ent *ent;
3251 const struct ata_timing *t;
3252
3253 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3254 if (ent->shift == xfer_shift)
3255 base_mode = ent->base;
3256
3257 for (t = ata_timing_find_mode(base_mode);
3258 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3259 unsigned short this_cycle;
3260
3261 switch (xfer_shift) {
3262 case ATA_SHIFT_PIO:
3263 case ATA_SHIFT_MWDMA:
3264 this_cycle = t->cycle;
3265 break;
3266 case ATA_SHIFT_UDMA:
3267 this_cycle = t->udma;
3268 break;
3269 default:
3270 return 0xff;
3271 }
3272
3273 if (cycle > this_cycle)
3274 break;
3275
3276 last_mode = t->mode;
3277 }
3278
3279 return last_mode;
3280}
3281
cf176e1a
TH
3282/**
3283 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 3284 * @dev: Device to adjust xfer masks
458337db 3285 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
3286 *
3287 * Adjust xfer masks of @dev downward. Note that this function
3288 * does not apply the change. Invoking ata_set_mode() afterwards
3289 * will apply the limit.
3290 *
3291 * LOCKING:
3292 * Inherited from caller.
3293 *
3294 * RETURNS:
3295 * 0 on success, negative errno on failure
3296 */
458337db 3297int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 3298{
458337db 3299 char buf[32];
7dc951ae
TH
3300 unsigned long orig_mask, xfer_mask;
3301 unsigned long pio_mask, mwdma_mask, udma_mask;
458337db 3302 int quiet, highbit;
cf176e1a 3303
458337db
TH
3304 quiet = !!(sel & ATA_DNXFER_QUIET);
3305 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 3306
458337db
TH
3307 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3308 dev->mwdma_mask,
3309 dev->udma_mask);
3310 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 3311
458337db
TH
3312 switch (sel) {
3313 case ATA_DNXFER_PIO:
3314 highbit = fls(pio_mask) - 1;
3315 pio_mask &= ~(1 << highbit);
3316 break;
3317
3318 case ATA_DNXFER_DMA:
3319 if (udma_mask) {
3320 highbit = fls(udma_mask) - 1;
3321 udma_mask &= ~(1 << highbit);
3322 if (!udma_mask)
3323 return -ENOENT;
3324 } else if (mwdma_mask) {
3325 highbit = fls(mwdma_mask) - 1;
3326 mwdma_mask &= ~(1 << highbit);
3327 if (!mwdma_mask)
3328 return -ENOENT;
3329 }
3330 break;
3331
3332 case ATA_DNXFER_40C:
3333 udma_mask &= ATA_UDMA_MASK_40C;
3334 break;
3335
3336 case ATA_DNXFER_FORCE_PIO0:
3337 pio_mask &= 1;
3338 case ATA_DNXFER_FORCE_PIO:
3339 mwdma_mask = 0;
3340 udma_mask = 0;
3341 break;
3342
458337db
TH
3343 default:
3344 BUG();
3345 }
3346
3347 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3348
3349 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3350 return -ENOENT;
3351
3352 if (!quiet) {
3353 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3354 snprintf(buf, sizeof(buf), "%s:%s",
3355 ata_mode_string(xfer_mask),
3356 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3357 else
3358 snprintf(buf, sizeof(buf), "%s",
3359 ata_mode_string(xfer_mask));
3360
3361 ata_dev_printk(dev, KERN_WARNING,
3362 "limiting speed to %s\n", buf);
3363 }
cf176e1a
TH
3364
3365 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3366 &dev->udma_mask);
3367
cf176e1a 3368 return 0;
cf176e1a
TH
3369}
3370
3373efd8 3371static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 3372{
d0cb43b3 3373 struct ata_port *ap = dev->link->ap;
9af5c9c9 3374 struct ata_eh_context *ehc = &dev->link->eh_context;
d0cb43b3 3375 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
4055dee7
TH
3376 const char *dev_err_whine = "";
3377 int ign_dev_err = 0;
d0cb43b3 3378 unsigned int err_mask = 0;
83206a29 3379 int rc;
1da177e4 3380
e8384607 3381 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
3382 if (dev->xfer_shift == ATA_SHIFT_PIO)
3383 dev->flags |= ATA_DFLAG_PIO;
3384
d0cb43b3
TH
3385 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3386 dev_err_whine = " (SET_XFERMODE skipped)";
3387 else {
3388 if (nosetxfer)
3389 ata_dev_printk(dev, KERN_WARNING,
3390 "NOSETXFER but PATA detected - can't "
3391 "skip SETXFER, might malfunction\n");
3392 err_mask = ata_dev_set_xfermode(dev);
3393 }
2dcb407e 3394
4055dee7
TH
3395 if (err_mask & ~AC_ERR_DEV)
3396 goto fail;
3397
3398 /* revalidate */
3399 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3400 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3401 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3402 if (rc)
3403 return rc;
3404
b93fda12
AC
3405 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3406 /* Old CFA may refuse this command, which is just fine */
3407 if (ata_id_is_cfa(dev->id))
3408 ign_dev_err = 1;
3409 /* Catch several broken garbage emulations plus some pre
3410 ATA devices */
3411 if (ata_id_major_version(dev->id) == 0 &&
3412 dev->pio_mode <= XFER_PIO_2)
3413 ign_dev_err = 1;
3414 /* Some very old devices and some bad newer ones fail
3415 any kind of SET_XFERMODE request but support PIO0-2
3416 timings and no IORDY */
3417 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3418 ign_dev_err = 1;
3419 }
3acaf94b
AC
3420 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3421 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
c5038fc0 3422 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3acaf94b
AC
3423 dev->dma_mode == XFER_MW_DMA_0 &&
3424 (dev->id[63] >> 8) & 1)
4055dee7 3425 ign_dev_err = 1;
3acaf94b 3426
4055dee7
TH
3427 /* if the device is actually configured correctly, ignore dev err */
3428 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3429 ign_dev_err = 1;
1da177e4 3430
4055dee7
TH
3431 if (err_mask & AC_ERR_DEV) {
3432 if (!ign_dev_err)
3433 goto fail;
3434 else
3435 dev_err_whine = " (device error ignored)";
3436 }
48a8a14f 3437
23e71c3d
TH
3438 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3439 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 3440
4055dee7
TH
3441 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3442 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3443 dev_err_whine);
3444
83206a29 3445 return 0;
4055dee7
TH
3446
3447 fail:
3448 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3449 "(err_mask=0x%x)\n", err_mask);
3450 return -EIO;
1da177e4
LT
3451}
3452
1da177e4 3453/**
04351821 3454 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 3455 * @link: link on which timings will be programmed
1967b7ff 3456 * @r_failed_dev: out parameter for failed device
1da177e4 3457 *
04351821
A
3458 * Standard implementation of the function used to tune and set
3459 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3460 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 3461 * returned in @r_failed_dev.
780a87f7 3462 *
1da177e4 3463 * LOCKING:
0cba632b 3464 * PCI/etc. bus probe sem.
e82cbdb9
TH
3465 *
3466 * RETURNS:
3467 * 0 on success, negative errno otherwise
1da177e4 3468 */
04351821 3469
0260731f 3470int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
1da177e4 3471{
0260731f 3472 struct ata_port *ap = link->ap;
e8e0619f 3473 struct ata_device *dev;
f58229f8 3474 int rc = 0, used_dma = 0, found = 0;
3adcebb2 3475
a6d5a51c 3476 /* step 1: calculate xfer_mask */
1eca4365 3477 ata_for_each_dev(dev, link, ENABLED) {
7dc951ae 3478 unsigned long pio_mask, dma_mask;
b3a70601 3479 unsigned int mode_mask;
a6d5a51c 3480
b3a70601
AC
3481 mode_mask = ATA_DMA_MASK_ATA;
3482 if (dev->class == ATA_DEV_ATAPI)
3483 mode_mask = ATA_DMA_MASK_ATAPI;
3484 else if (ata_id_is_cfa(dev->id))
3485 mode_mask = ATA_DMA_MASK_CFA;
3486
3373efd8 3487 ata_dev_xfermask(dev);
33267325 3488 ata_force_xfermask(dev);
1da177e4 3489
acf356b1
TH
3490 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3491 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
b3a70601
AC
3492
3493 if (libata_dma_mask & mode_mask)
3494 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3495 else
3496 dma_mask = 0;
3497
acf356b1
TH
3498 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3499 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 3500
4f65977d 3501 found = 1;
b15b3eba 3502 if (ata_dma_enabled(dev))
5444a6f4 3503 used_dma = 1;
a6d5a51c 3504 }
4f65977d 3505 if (!found)
e82cbdb9 3506 goto out;
a6d5a51c
TH
3507
3508 /* step 2: always set host PIO timings */
1eca4365 3509 ata_for_each_dev(dev, link, ENABLED) {
70cd071e 3510 if (dev->pio_mode == 0xff) {
f15a1daf 3511 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 3512 rc = -EINVAL;
e82cbdb9 3513 goto out;
e8e0619f
TH
3514 }
3515
3516 dev->xfer_mode = dev->pio_mode;
3517 dev->xfer_shift = ATA_SHIFT_PIO;
3518 if (ap->ops->set_piomode)
3519 ap->ops->set_piomode(ap, dev);
3520 }
1da177e4 3521
a6d5a51c 3522 /* step 3: set host DMA timings */
1eca4365
TH
3523 ata_for_each_dev(dev, link, ENABLED) {
3524 if (!ata_dma_enabled(dev))
e8e0619f
TH
3525 continue;
3526
3527 dev->xfer_mode = dev->dma_mode;
3528 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3529 if (ap->ops->set_dmamode)
3530 ap->ops->set_dmamode(ap, dev);
3531 }
1da177e4
LT
3532
3533 /* step 4: update devices' xfer mode */
1eca4365 3534 ata_for_each_dev(dev, link, ENABLED) {
3373efd8 3535 rc = ata_dev_set_mode(dev);
5bbc53f4 3536 if (rc)
e82cbdb9 3537 goto out;
83206a29 3538 }
1da177e4 3539
e8e0619f
TH
3540 /* Record simplex status. If we selected DMA then the other
3541 * host channels are not permitted to do so.
5444a6f4 3542 */
cca3974e 3543 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 3544 ap->host->simplex_claimed = ap;
5444a6f4 3545
e82cbdb9
TH
3546 out:
3547 if (rc)
3548 *r_failed_dev = dev;
3549 return rc;
1da177e4
LT
3550}
3551
aa2731ad
TH
3552/**
3553 * ata_wait_ready - wait for link to become ready
3554 * @link: link to be waited on
3555 * @deadline: deadline jiffies for the operation
3556 * @check_ready: callback to check link readiness
3557 *
3558 * Wait for @link to become ready. @check_ready should return
3559 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3560 * link doesn't seem to be occupied, other errno for other error
3561 * conditions.
3562 *
3563 * Transient -ENODEV conditions are allowed for
3564 * ATA_TMOUT_FF_WAIT.
3565 *
3566 * LOCKING:
3567 * EH context.
3568 *
3569 * RETURNS:
3570 * 0 if @linke is ready before @deadline; otherwise, -errno.
3571 */
3572int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3573 int (*check_ready)(struct ata_link *link))
3574{
3575 unsigned long start = jiffies;
b48d58f5 3576 unsigned long nodev_deadline;
aa2731ad
TH
3577 int warned = 0;
3578
b48d58f5
TH
3579 /* choose which 0xff timeout to use, read comment in libata.h */
3580 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3581 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3582 else
3583 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3584
b1c72916
TH
3585 /* Slave readiness can't be tested separately from master. On
3586 * M/S emulation configuration, this function should be called
3587 * only on the master and it will handle both master and slave.
3588 */
3589 WARN_ON(link == link->ap->slave_link);
3590
aa2731ad
TH
3591 if (time_after(nodev_deadline, deadline))
3592 nodev_deadline = deadline;
3593
3594 while (1) {
3595 unsigned long now = jiffies;
3596 int ready, tmp;
3597
3598 ready = tmp = check_ready(link);
3599 if (ready > 0)
3600 return 0;
3601
b48d58f5
TH
3602 /*
3603 * -ENODEV could be transient. Ignore -ENODEV if link
aa2731ad 3604 * is online. Also, some SATA devices take a long
b48d58f5
TH
3605 * time to clear 0xff after reset. Wait for
3606 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3607 * offline.
aa2731ad
TH
3608 *
3609 * Note that some PATA controllers (pata_ali) explode
3610 * if status register is read more than once when
3611 * there's no device attached.
3612 */
3613 if (ready == -ENODEV) {
3614 if (ata_link_online(link))
3615 ready = 0;
3616 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3617 !ata_link_offline(link) &&
3618 time_before(now, nodev_deadline))
3619 ready = 0;
3620 }
3621
3622 if (ready)
3623 return ready;
3624 if (time_after(now, deadline))
3625 return -EBUSY;
3626
3627 if (!warned && time_after(now, start + 5 * HZ) &&
3628 (deadline - now > 3 * HZ)) {
3629 ata_link_printk(link, KERN_WARNING,
3630 "link is slow to respond, please be patient "
3631 "(ready=%d)\n", tmp);
3632 warned = 1;
3633 }
3634
3635 msleep(50);
3636 }
3637}
3638
3639/**
3640 * ata_wait_after_reset - wait for link to become ready after reset
3641 * @link: link to be waited on
3642 * @deadline: deadline jiffies for the operation
3643 * @check_ready: callback to check link readiness
3644 *
3645 * Wait for @link to become ready after reset.
3646 *
3647 * LOCKING:
3648 * EH context.
3649 *
3650 * RETURNS:
3651 * 0 if @linke is ready before @deadline; otherwise, -errno.
3652 */
2b4221bb 3653int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
aa2731ad
TH
3654 int (*check_ready)(struct ata_link *link))
3655{
341c2c95 3656 msleep(ATA_WAIT_AFTER_RESET);
aa2731ad
TH
3657
3658 return ata_wait_ready(link, deadline, check_ready);
3659}
3660
d7bb4cc7 3661/**
936fd732
TH
3662 * sata_link_debounce - debounce SATA phy status
3663 * @link: ATA link to debounce SATA phy status for
d7bb4cc7 3664 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3665 * @deadline: deadline jiffies for the operation
d7bb4cc7 3666 *
936fd732 3667* Make sure SStatus of @link reaches stable state, determined by
d7bb4cc7
TH
3668 * holding the same value where DET is not 1 for @duration polled
3669 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3670 * beginning of the stable state. Because DET gets stuck at 1 on
3671 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3672 * until timeout then returns 0 if DET is stable at 1.
3673 *
d4b2bab4
TH
3674 * @timeout is further limited by @deadline. The sooner of the
3675 * two is used.
3676 *
d7bb4cc7
TH
3677 * LOCKING:
3678 * Kernel thread context (may sleep)
3679 *
3680 * RETURNS:
3681 * 0 on success, -errno on failure.
3682 */
936fd732
TH
3683int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3684 unsigned long deadline)
7a7921e8 3685{
341c2c95
TH
3686 unsigned long interval = params[0];
3687 unsigned long duration = params[1];
d4b2bab4 3688 unsigned long last_jiffies, t;
d7bb4cc7
TH
3689 u32 last, cur;
3690 int rc;
3691
341c2c95 3692 t = ata_deadline(jiffies, params[2]);
d4b2bab4
TH
3693 if (time_before(t, deadline))
3694 deadline = t;
3695
936fd732 3696 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3697 return rc;
3698 cur &= 0xf;
3699
3700 last = cur;
3701 last_jiffies = jiffies;
3702
3703 while (1) {
341c2c95 3704 msleep(interval);
936fd732 3705 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3706 return rc;
3707 cur &= 0xf;
3708
3709 /* DET stable? */
3710 if (cur == last) {
d4b2bab4 3711 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7 3712 continue;
341c2c95
TH
3713 if (time_after(jiffies,
3714 ata_deadline(last_jiffies, duration)))
d7bb4cc7
TH
3715 return 0;
3716 continue;
3717 }
3718
3719 /* unstable, start over */
3720 last = cur;
3721 last_jiffies = jiffies;
3722
f1545154
TH
3723 /* Check deadline. If debouncing failed, return
3724 * -EPIPE to tell upper layer to lower link speed.
3725 */
d4b2bab4 3726 if (time_after(jiffies, deadline))
f1545154 3727 return -EPIPE;
d7bb4cc7
TH
3728 }
3729}
3730
3731/**
936fd732
TH
3732 * sata_link_resume - resume SATA link
3733 * @link: ATA link to resume SATA
d7bb4cc7 3734 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3735 * @deadline: deadline jiffies for the operation
d7bb4cc7 3736 *
936fd732 3737 * Resume SATA phy @link and debounce it.
d7bb4cc7
TH
3738 *
3739 * LOCKING:
3740 * Kernel thread context (may sleep)
3741 *
3742 * RETURNS:
3743 * 0 on success, -errno on failure.
3744 */
936fd732
TH
3745int sata_link_resume(struct ata_link *link, const unsigned long *params,
3746 unsigned long deadline)
d7bb4cc7 3747{
5040ab67 3748 int tries = ATA_LINK_RESUME_TRIES;
ac371987 3749 u32 scontrol, serror;
81952c54
TH
3750 int rc;
3751
936fd732 3752 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3753 return rc;
7a7921e8 3754
5040ab67
TH
3755 /*
3756 * Writes to SControl sometimes get ignored under certain
3757 * controllers (ata_piix SIDPR). Make sure DET actually is
3758 * cleared.
3759 */
3760 do {
3761 scontrol = (scontrol & 0x0f0) | 0x300;
3762 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3763 return rc;
3764 /*
3765 * Some PHYs react badly if SStatus is pounded
3766 * immediately after resuming. Delay 200ms before
3767 * debouncing.
3768 */
3769 msleep(200);
81952c54 3770
5040ab67
TH
3771 /* is SControl restored correctly? */
3772 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3773 return rc;
3774 } while ((scontrol & 0xf0f) != 0x300 && --tries);
7a7921e8 3775
5040ab67
TH
3776 if ((scontrol & 0xf0f) != 0x300) {
3777 ata_link_printk(link, KERN_ERR,
3778 "failed to resume link (SControl %X)\n",
3779 scontrol);
3780 return 0;
3781 }
3782
3783 if (tries < ATA_LINK_RESUME_TRIES)
3784 ata_link_printk(link, KERN_WARNING,
3785 "link resume succeeded after %d retries\n",
3786 ATA_LINK_RESUME_TRIES - tries);
7a7921e8 3787
ac371987
TH
3788 if ((rc = sata_link_debounce(link, params, deadline)))
3789 return rc;
3790
f046519f 3791 /* clear SError, some PHYs require this even for SRST to work */
ac371987
TH
3792 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3793 rc = sata_scr_write(link, SCR_ERROR, serror);
ac371987 3794
f046519f 3795 return rc != -EINVAL ? rc : 0;
7a7921e8
TH
3796}
3797
f5914a46 3798/**
0aa1113d 3799 * ata_std_prereset - prepare for reset
cc0680a5 3800 * @link: ATA link to be reset
d4b2bab4 3801 * @deadline: deadline jiffies for the operation
f5914a46 3802 *
cc0680a5 3803 * @link is about to be reset. Initialize it. Failure from
b8cffc6a
TH
3804 * prereset makes libata abort whole reset sequence and give up
3805 * that port, so prereset should be best-effort. It does its
3806 * best to prepare for reset sequence but if things go wrong, it
3807 * should just whine, not fail.
f5914a46
TH
3808 *
3809 * LOCKING:
3810 * Kernel thread context (may sleep)
3811 *
3812 * RETURNS:
3813 * 0 on success, -errno otherwise.
3814 */
0aa1113d 3815int ata_std_prereset(struct ata_link *link, unsigned long deadline)
f5914a46 3816{
cc0680a5 3817 struct ata_port *ap = link->ap;
936fd732 3818 struct ata_eh_context *ehc = &link->eh_context;
e9c83914 3819 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3820 int rc;
3821
f5914a46
TH
3822 /* if we're about to do hardreset, nothing more to do */
3823 if (ehc->i.action & ATA_EH_HARDRESET)
3824 return 0;
3825
936fd732 3826 /* if SATA, resume link */
a16abc0b 3827 if (ap->flags & ATA_FLAG_SATA) {
936fd732 3828 rc = sata_link_resume(link, timing, deadline);
b8cffc6a
TH
3829 /* whine about phy resume failure but proceed */
3830 if (rc && rc != -EOPNOTSUPP)
cc0680a5 3831 ata_link_printk(link, KERN_WARNING, "failed to resume "
f5914a46 3832 "link for reset (errno=%d)\n", rc);
f5914a46
TH
3833 }
3834
45db2f6c 3835 /* no point in trying softreset on offline link */
b1c72916 3836 if (ata_phys_link_offline(link))
45db2f6c
TH
3837 ehc->i.action &= ~ATA_EH_SOFTRESET;
3838
f5914a46
TH
3839 return 0;
3840}
3841
c2bd5804 3842/**
624d5c51
TH
3843 * sata_link_hardreset - reset link via SATA phy reset
3844 * @link: link to reset
3845 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3846 * @deadline: deadline jiffies for the operation
9dadd45b
TH
3847 * @online: optional out parameter indicating link onlineness
3848 * @check_ready: optional callback to check link readiness
c2bd5804 3849 *
624d5c51 3850 * SATA phy-reset @link using DET bits of SControl register.
9dadd45b
TH
3851 * After hardreset, link readiness is waited upon using
3852 * ata_wait_ready() if @check_ready is specified. LLDs are
3853 * allowed to not specify @check_ready and wait itself after this
3854 * function returns. Device classification is LLD's
3855 * responsibility.
3856 *
3857 * *@online is set to one iff reset succeeded and @link is online
3858 * after reset.
c2bd5804
TH
3859 *
3860 * LOCKING:
3861 * Kernel thread context (may sleep)
3862 *
3863 * RETURNS:
3864 * 0 on success, -errno otherwise.
3865 */
624d5c51 3866int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
9dadd45b
TH
3867 unsigned long deadline,
3868 bool *online, int (*check_ready)(struct ata_link *))
c2bd5804 3869{
624d5c51 3870 u32 scontrol;
81952c54 3871 int rc;
852ee16a 3872
c2bd5804
TH
3873 DPRINTK("ENTER\n");
3874
9dadd45b
TH
3875 if (online)
3876 *online = false;
3877
936fd732 3878 if (sata_set_spd_needed(link)) {
1c3fae4d
TH
3879 /* SATA spec says nothing about how to reconfigure
3880 * spd. To be on the safe side, turn off phy during
3881 * reconfiguration. This works for at least ICH7 AHCI
3882 * and Sil3124.
3883 */
936fd732 3884 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3885 goto out;
81952c54 3886
a34b6fc0 3887 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54 3888
936fd732 3889 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
b6103f6d 3890 goto out;
1c3fae4d 3891
936fd732 3892 sata_set_spd(link);
1c3fae4d
TH
3893 }
3894
3895 /* issue phy wake/reset */
936fd732 3896 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3897 goto out;
81952c54 3898
852ee16a 3899 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54 3900
936fd732 3901 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
b6103f6d 3902 goto out;
c2bd5804 3903
1c3fae4d 3904 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3905 * 10.4.2 says at least 1 ms.
3906 */
3907 msleep(1);
3908
936fd732
TH
3909 /* bring link back */
3910 rc = sata_link_resume(link, timing, deadline);
9dadd45b
TH
3911 if (rc)
3912 goto out;
3913 /* if link is offline nothing more to do */
b1c72916 3914 if (ata_phys_link_offline(link))
9dadd45b
TH
3915 goto out;
3916
3917 /* Link is online. From this point, -ENODEV too is an error. */
3918 if (online)
3919 *online = true;
3920
071f44b1 3921 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
9dadd45b
TH
3922 /* If PMP is supported, we have to do follow-up SRST.
3923 * Some PMPs don't send D2H Reg FIS after hardreset if
3924 * the first port is empty. Wait only for
3925 * ATA_TMOUT_PMP_SRST_WAIT.
3926 */
3927 if (check_ready) {
3928 unsigned long pmp_deadline;
3929
341c2c95
TH
3930 pmp_deadline = ata_deadline(jiffies,
3931 ATA_TMOUT_PMP_SRST_WAIT);
9dadd45b
TH
3932 if (time_after(pmp_deadline, deadline))
3933 pmp_deadline = deadline;
3934 ata_wait_ready(link, pmp_deadline, check_ready);
3935 }
3936 rc = -EAGAIN;
3937 goto out;
3938 }
3939
3940 rc = 0;
3941 if (check_ready)
3942 rc = ata_wait_ready(link, deadline, check_ready);
b6103f6d 3943 out:
0cbf0711
TH
3944 if (rc && rc != -EAGAIN) {
3945 /* online is set iff link is online && reset succeeded */
3946 if (online)
3947 *online = false;
9dadd45b
TH
3948 ata_link_printk(link, KERN_ERR,
3949 "COMRESET failed (errno=%d)\n", rc);
0cbf0711 3950 }
b6103f6d
TH
3951 DPRINTK("EXIT, rc=%d\n", rc);
3952 return rc;
3953}
3954
57c9efdf
TH
3955/**
3956 * sata_std_hardreset - COMRESET w/o waiting or classification
3957 * @link: link to reset
3958 * @class: resulting class of attached device
3959 * @deadline: deadline jiffies for the operation
3960 *
3961 * Standard SATA COMRESET w/o waiting or classification.
3962 *
3963 * LOCKING:
3964 * Kernel thread context (may sleep)
3965 *
3966 * RETURNS:
3967 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3968 */
3969int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3970 unsigned long deadline)
3971{
3972 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3973 bool online;
3974 int rc;
3975
3976 /* do hardreset */
3977 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
57c9efdf
TH
3978 return online ? -EAGAIN : rc;
3979}
3980
c2bd5804 3981/**
203c75b8 3982 * ata_std_postreset - standard postreset callback
cc0680a5 3983 * @link: the target ata_link
c2bd5804
TH
3984 * @classes: classes of attached devices
3985 *
3986 * This function is invoked after a successful reset. Note that
3987 * the device might have been reset more than once using
3988 * different reset methods before postreset is invoked.
c2bd5804 3989 *
c2bd5804
TH
3990 * LOCKING:
3991 * Kernel thread context (may sleep)
3992 */
203c75b8 3993void ata_std_postreset(struct ata_link *link, unsigned int *classes)
c2bd5804 3994{
f046519f
TH
3995 u32 serror;
3996
c2bd5804
TH
3997 DPRINTK("ENTER\n");
3998
f046519f
TH
3999 /* reset complete, clear SError */
4000 if (!sata_scr_read(link, SCR_ERROR, &serror))
4001 sata_scr_write(link, SCR_ERROR, serror);
4002
c2bd5804 4003 /* print link status */
936fd732 4004 sata_print_link_status(link);
c2bd5804 4005
c2bd5804
TH
4006 DPRINTK("EXIT\n");
4007}
4008
623a3128
TH
4009/**
4010 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
4011 * @dev: device to compare against
4012 * @new_class: class of the new device
4013 * @new_id: IDENTIFY page of the new device
4014 *
4015 * Compare @new_class and @new_id against @dev and determine
4016 * whether @dev is the device indicated by @new_class and
4017 * @new_id.
4018 *
4019 * LOCKING:
4020 * None.
4021 *
4022 * RETURNS:
4023 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4024 */
3373efd8
TH
4025static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4026 const u16 *new_id)
623a3128
TH
4027{
4028 const u16 *old_id = dev->id;
a0cf733b
TH
4029 unsigned char model[2][ATA_ID_PROD_LEN + 1];
4030 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
4031
4032 if (dev->class != new_class) {
f15a1daf
TH
4033 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
4034 dev->class, new_class);
623a3128
TH
4035 return 0;
4036 }
4037
a0cf733b
TH
4038 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4039 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4040 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4041 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
4042
4043 if (strcmp(model[0], model[1])) {
f15a1daf
TH
4044 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
4045 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
4046 return 0;
4047 }
4048
4049 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
4050 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
4051 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
4052 return 0;
4053 }
4054
623a3128
TH
4055 return 1;
4056}
4057
4058/**
fe30911b 4059 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 4060 * @dev: target ATA device
bff04647 4061 * @readid_flags: read ID flags
623a3128
TH
4062 *
4063 * Re-read IDENTIFY page and make sure @dev is still attached to
4064 * the port.
4065 *
4066 * LOCKING:
4067 * Kernel thread context (may sleep)
4068 *
4069 * RETURNS:
4070 * 0 on success, negative errno otherwise
4071 */
fe30911b 4072int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 4073{
5eb45c02 4074 unsigned int class = dev->class;
9af5c9c9 4075 u16 *id = (void *)dev->link->ap->sector_buf;
623a3128
TH
4076 int rc;
4077
fe635c7e 4078 /* read ID data */
bff04647 4079 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 4080 if (rc)
fe30911b 4081 return rc;
623a3128
TH
4082
4083 /* is the device still there? */
fe30911b
TH
4084 if (!ata_dev_same_device(dev, class, id))
4085 return -ENODEV;
623a3128 4086
fe635c7e 4087 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
4088 return 0;
4089}
4090
4091/**
4092 * ata_dev_revalidate - Revalidate ATA device
4093 * @dev: device to revalidate
422c9daa 4094 * @new_class: new class code
fe30911b
TH
4095 * @readid_flags: read ID flags
4096 *
4097 * Re-read IDENTIFY page, make sure @dev is still attached to the
4098 * port and reconfigure it according to the new IDENTIFY page.
4099 *
4100 * LOCKING:
4101 * Kernel thread context (may sleep)
4102 *
4103 * RETURNS:
4104 * 0 on success, negative errno otherwise
4105 */
422c9daa
TH
4106int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4107 unsigned int readid_flags)
fe30911b 4108{
6ddcd3b0 4109 u64 n_sectors = dev->n_sectors;
5920dadf 4110 u64 n_native_sectors = dev->n_native_sectors;
fe30911b
TH
4111 int rc;
4112
4113 if (!ata_dev_enabled(dev))
4114 return -ENODEV;
4115
422c9daa
TH
4116 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4117 if (ata_class_enabled(new_class) &&
f0d0613d
BP
4118 new_class != ATA_DEV_ATA &&
4119 new_class != ATA_DEV_ATAPI &&
4120 new_class != ATA_DEV_SEMB) {
422c9daa
TH
4121 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4122 dev->class, new_class);
4123 rc = -ENODEV;
4124 goto fail;
4125 }
4126
fe30911b
TH
4127 /* re-read ID */
4128 rc = ata_dev_reread_id(dev, readid_flags);
4129 if (rc)
4130 goto fail;
623a3128
TH
4131
4132 /* configure device according to the new ID */
efdaedc4 4133 rc = ata_dev_configure(dev);
6ddcd3b0
TH
4134 if (rc)
4135 goto fail;
4136
4137 /* verify n_sectors hasn't changed */
445d211b
TH
4138 if (dev->class != ATA_DEV_ATA || !n_sectors ||
4139 dev->n_sectors == n_sectors)
4140 return 0;
4141
4142 /* n_sectors has changed */
4143 ata_dev_printk(dev, KERN_WARNING, "n_sectors mismatch %llu != %llu\n",
4144 (unsigned long long)n_sectors,
4145 (unsigned long long)dev->n_sectors);
4146
4147 /*
4148 * Something could have caused HPA to be unlocked
4149 * involuntarily. If n_native_sectors hasn't changed and the
4150 * new size matches it, keep the device.
4151 */
4152 if (dev->n_native_sectors == n_native_sectors &&
4153 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4154 ata_dev_printk(dev, KERN_WARNING,
4155 "new n_sectors matches native, probably "
4156 "late HPA unlock, continuing\n");
4157 /* keep using the old n_sectors */
4158 dev->n_sectors = n_sectors;
4159 return 0;
6ddcd3b0
TH
4160 }
4161
445d211b
TH
4162 /*
4163 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4164 * unlocking HPA in those cases.
4165 *
4166 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4167 */
4168 if (dev->n_native_sectors == n_native_sectors &&
4169 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4170 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4171 ata_dev_printk(dev, KERN_WARNING,
4172 "old n_sectors matches native, probably "
4173 "late HPA lock, will try to unlock HPA\n");
4174 /* try unlocking HPA */
4175 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4176 rc = -EIO;
4177 } else
4178 rc = -ENODEV;
623a3128 4179
445d211b
TH
4180 /* restore original n_[native_]sectors and fail */
4181 dev->n_native_sectors = n_native_sectors;
4182 dev->n_sectors = n_sectors;
623a3128 4183 fail:
f15a1daf 4184 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
4185 return rc;
4186}
4187
6919a0a6
AC
4188struct ata_blacklist_entry {
4189 const char *model_num;
4190 const char *model_rev;
4191 unsigned long horkage;
4192};
4193
4194static const struct ata_blacklist_entry ata_device_blacklist [] = {
4195 /* Devices with DMA related problems under Linux */
4196 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4197 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4198 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4199 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4200 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4201 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4202 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4203 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4204 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4205 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4206 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4207 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4208 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4209 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4210 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4211 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4212 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4213 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4214 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4215 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4216 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4217 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4218 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4219 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4220 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4221 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4222 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4223 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
2dcb407e 4224 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
39f19886 4225 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3af9a77a 4226 /* Odd clown on sil3726/4726 PMPs */
50af2fa1 4227 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
6919a0a6 4228
18d6e9d5 4229 /* Weird ATAPI devices */
40a1d531 4230 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
6a87e42e 4231 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
18d6e9d5 4232
6919a0a6
AC
4233 /* Devices we expect to fail diagnostics */
4234
4235 /* Devices where NCQ should be avoided */
4236 /* NCQ is slow */
2dcb407e 4237 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
459ad688 4238 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
09125ea6
TH
4239 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4240 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30 4241 /* NCQ is broken */
539cc7c7 4242 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
0e3dbc01 4243 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
da6f0ec2 4244 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
e41bd3e8 4245 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
5ccfca97 4246 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
539cc7c7 4247
ac70a964 4248 /* Seagate NCQ + FLUSH CACHE firmware bug */
d10d491f 4249 { "ST31500341AS", "SD15", ATA_HORKAGE_NONCQ |
ac70a964 4250 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f 4251 { "ST31500341AS", "SD16", ATA_HORKAGE_NONCQ |
ac70a964 4252 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f 4253 { "ST31500341AS", "SD17", ATA_HORKAGE_NONCQ |
ac70a964 4254 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f 4255 { "ST31500341AS", "SD18", ATA_HORKAGE_NONCQ |
ac70a964 4256 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f 4257 { "ST31500341AS", "SD19", ATA_HORKAGE_NONCQ |
ac70a964 4258 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f
TH
4259
4260 { "ST31000333AS", "SD15", ATA_HORKAGE_NONCQ |
4261 ATA_HORKAGE_FIRMWARE_WARN },
4262 { "ST31000333AS", "SD16", ATA_HORKAGE_NONCQ |
4263 ATA_HORKAGE_FIRMWARE_WARN },
4264 { "ST31000333AS", "SD17", ATA_HORKAGE_NONCQ |
4265 ATA_HORKAGE_FIRMWARE_WARN },
4266 { "ST31000333AS", "SD18", ATA_HORKAGE_NONCQ |
4267 ATA_HORKAGE_FIRMWARE_WARN },
4268 { "ST31000333AS", "SD19", ATA_HORKAGE_NONCQ |
4269 ATA_HORKAGE_FIRMWARE_WARN },
4270
4271 { "ST3640623AS", "SD15", ATA_HORKAGE_NONCQ |
4272 ATA_HORKAGE_FIRMWARE_WARN },
4273 { "ST3640623AS", "SD16", ATA_HORKAGE_NONCQ |
4274 ATA_HORKAGE_FIRMWARE_WARN },
4275 { "ST3640623AS", "SD17", ATA_HORKAGE_NONCQ |
4276 ATA_HORKAGE_FIRMWARE_WARN },
4277 { "ST3640623AS", "SD18", ATA_HORKAGE_NONCQ |
4278 ATA_HORKAGE_FIRMWARE_WARN },
4279 { "ST3640623AS", "SD19", ATA_HORKAGE_NONCQ |
4280 ATA_HORKAGE_FIRMWARE_WARN },
4281
4282 { "ST3640323AS", "SD15", ATA_HORKAGE_NONCQ |
4283 ATA_HORKAGE_FIRMWARE_WARN },
4284 { "ST3640323AS", "SD16", ATA_HORKAGE_NONCQ |
4285 ATA_HORKAGE_FIRMWARE_WARN },
4286 { "ST3640323AS", "SD17", ATA_HORKAGE_NONCQ |
4287 ATA_HORKAGE_FIRMWARE_WARN },
4288 { "ST3640323AS", "SD18", ATA_HORKAGE_NONCQ |
4289 ATA_HORKAGE_FIRMWARE_WARN },
4290 { "ST3640323AS", "SD19", ATA_HORKAGE_NONCQ |
4291 ATA_HORKAGE_FIRMWARE_WARN },
4292
4293 { "ST3320813AS", "SD15", ATA_HORKAGE_NONCQ |
4294 ATA_HORKAGE_FIRMWARE_WARN },
4295 { "ST3320813AS", "SD16", ATA_HORKAGE_NONCQ |
4296 ATA_HORKAGE_FIRMWARE_WARN },
4297 { "ST3320813AS", "SD17", ATA_HORKAGE_NONCQ |
4298 ATA_HORKAGE_FIRMWARE_WARN },
4299 { "ST3320813AS", "SD18", ATA_HORKAGE_NONCQ |
4300 ATA_HORKAGE_FIRMWARE_WARN },
4301 { "ST3320813AS", "SD19", ATA_HORKAGE_NONCQ |
4302 ATA_HORKAGE_FIRMWARE_WARN },
4303
4304 { "ST3320613AS", "SD15", ATA_HORKAGE_NONCQ |
4305 ATA_HORKAGE_FIRMWARE_WARN },
4306 { "ST3320613AS", "SD16", ATA_HORKAGE_NONCQ |
4307 ATA_HORKAGE_FIRMWARE_WARN },
4308 { "ST3320613AS", "SD17", ATA_HORKAGE_NONCQ |
4309 ATA_HORKAGE_FIRMWARE_WARN },
4310 { "ST3320613AS", "SD18", ATA_HORKAGE_NONCQ |
4311 ATA_HORKAGE_FIRMWARE_WARN },
4312 { "ST3320613AS", "SD19", ATA_HORKAGE_NONCQ |
ac70a964
TH
4313 ATA_HORKAGE_FIRMWARE_WARN },
4314
36e337d0
RH
4315 /* Blacklist entries taken from Silicon Image 3124/3132
4316 Windows driver .inf file - also several Linux problem reports */
4317 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4318 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4319 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
6919a0a6 4320
68b0ddb2
TH
4321 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4322 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4323
16c55b03
TH
4324 /* devices which puke on READ_NATIVE_MAX */
4325 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4326 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4327 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4328 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
6919a0a6 4329
7831387b
TH
4330 /* this one allows HPA unlocking but fails IOs on the area */
4331 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4332
93328e11
AC
4333 /* Devices which report 1 sector over size HPA */
4334 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4335 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
b152fcd3 4336 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
93328e11 4337
6bbfd53d
AC
4338 /* Devices which get the IVB wrong */
4339 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
a79067e5
AC
4340 /* Maybe we should just blacklist TSSTcorp... */
4341 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB, },
4342 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB, },
6bbfd53d 4343 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
e9f33406
PM
4344 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
4345 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
4346 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
6bbfd53d 4347
9ce8e307
JA
4348 /* Devices that do not need bridging limits applied */
4349 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4350
9062712f
TH
4351 /* Devices which aren't very happy with higher link speeds */
4352 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4353
d0cb43b3
TH
4354 /*
4355 * Devices which choke on SETXFER. Applies only if both the
4356 * device and controller are SATA.
4357 */
4358 { "PIONEER DVD-RW DVRTD08", "1.00", ATA_HORKAGE_NOSETXFER },
4359
6919a0a6
AC
4360 /* End Marker */
4361 { }
1da177e4 4362};
2e9edbf8 4363
741b7763 4364static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
539cc7c7
JG
4365{
4366 const char *p;
4367 int len;
4368
4369 /*
4370 * check for trailing wildcard: *\0
4371 */
4372 p = strchr(patt, wildchar);
4373 if (p && ((*(p + 1)) == 0))
4374 len = p - patt;
317b50b8 4375 else {
539cc7c7 4376 len = strlen(name);
317b50b8
AP
4377 if (!len) {
4378 if (!*patt)
4379 return 0;
4380 return -1;
4381 }
4382 }
539cc7c7
JG
4383
4384 return strncmp(patt, name, len);
4385}
4386
75683fe7 4387static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 4388{
8bfa79fc
TH
4389 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4390 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 4391 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 4392
8bfa79fc
TH
4393 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4394 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 4395
6919a0a6 4396 while (ad->model_num) {
539cc7c7 4397 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
6919a0a6
AC
4398 if (ad->model_rev == NULL)
4399 return ad->horkage;
539cc7c7 4400 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
6919a0a6 4401 return ad->horkage;
f4b15fef 4402 }
6919a0a6 4403 ad++;
f4b15fef 4404 }
1da177e4
LT
4405 return 0;
4406}
4407
6919a0a6
AC
4408static int ata_dma_blacklisted(const struct ata_device *dev)
4409{
4410 /* We don't support polling DMA.
4411 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4412 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4413 */
9af5c9c9 4414 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
6919a0a6
AC
4415 (dev->flags & ATA_DFLAG_CDB_INTR))
4416 return 1;
75683fe7 4417 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
4418}
4419
6bbfd53d
AC
4420/**
4421 * ata_is_40wire - check drive side detection
4422 * @dev: device
4423 *
4424 * Perform drive side detection decoding, allowing for device vendors
4425 * who can't follow the documentation.
4426 */
4427
4428static int ata_is_40wire(struct ata_device *dev)
4429{
4430 if (dev->horkage & ATA_HORKAGE_IVB)
4431 return ata_drive_40wire_relaxed(dev->id);
4432 return ata_drive_40wire(dev->id);
4433}
4434
15a5551c
AC
4435/**
4436 * cable_is_40wire - 40/80/SATA decider
4437 * @ap: port to consider
4438 *
4439 * This function encapsulates the policy for speed management
4440 * in one place. At the moment we don't cache the result but
4441 * there is a good case for setting ap->cbl to the result when
4442 * we are called with unknown cables (and figuring out if it
4443 * impacts hotplug at all).
4444 *
4445 * Return 1 if the cable appears to be 40 wire.
4446 */
4447
4448static int cable_is_40wire(struct ata_port *ap)
4449{
4450 struct ata_link *link;
4451 struct ata_device *dev;
4452
4a9c7b33 4453 /* If the controller thinks we are 40 wire, we are. */
15a5551c
AC
4454 if (ap->cbl == ATA_CBL_PATA40)
4455 return 1;
4a9c7b33
TH
4456
4457 /* If the controller thinks we are 80 wire, we are. */
15a5551c
AC
4458 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4459 return 0;
4a9c7b33
TH
4460
4461 /* If the system is known to be 40 wire short cable (eg
4462 * laptop), then we allow 80 wire modes even if the drive
4463 * isn't sure.
4464 */
f792068e
AC
4465 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4466 return 0;
4a9c7b33
TH
4467
4468 /* If the controller doesn't know, we scan.
4469 *
4470 * Note: We look for all 40 wire detects at this point. Any
4471 * 80 wire detect is taken to be 80 wire cable because
4472 * - in many setups only the one drive (slave if present) will
4473 * give a valid detect
4474 * - if you have a non detect capable drive you don't want it
4475 * to colour the choice
4476 */
1eca4365
TH
4477 ata_for_each_link(link, ap, EDGE) {
4478 ata_for_each_dev(dev, link, ENABLED) {
4479 if (!ata_is_40wire(dev))
15a5551c
AC
4480 return 0;
4481 }
4482 }
4483 return 1;
4484}
4485
a6d5a51c
TH
4486/**
4487 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
4488 * @dev: Device to compute xfermask for
4489 *
acf356b1
TH
4490 * Compute supported xfermask of @dev and store it in
4491 * dev->*_mask. This function is responsible for applying all
4492 * known limits including host controller limits, device
4493 * blacklist, etc...
a6d5a51c
TH
4494 *
4495 * LOCKING:
4496 * None.
a6d5a51c 4497 */
3373efd8 4498static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 4499{
9af5c9c9
TH
4500 struct ata_link *link = dev->link;
4501 struct ata_port *ap = link->ap;
cca3974e 4502 struct ata_host *host = ap->host;
a6d5a51c 4503 unsigned long xfer_mask;
1da177e4 4504
37deecb5 4505 /* controller modes available */
565083e1
TH
4506 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4507 ap->mwdma_mask, ap->udma_mask);
4508
8343f889 4509 /* drive modes available */
37deecb5
TH
4510 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4511 dev->mwdma_mask, dev->udma_mask);
4512 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 4513
b352e57d
AC
4514 /*
4515 * CFA Advanced TrueIDE timings are not allowed on a shared
4516 * cable
4517 */
4518 if (ata_dev_pair(dev)) {
4519 /* No PIO5 or PIO6 */
4520 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4521 /* No MWDMA3 or MWDMA 4 */
4522 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4523 }
4524
37deecb5
TH
4525 if (ata_dma_blacklisted(dev)) {
4526 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
4527 ata_dev_printk(dev, KERN_WARNING,
4528 "device is on DMA blacklist, disabling DMA\n");
37deecb5 4529 }
a6d5a51c 4530
14d66ab7 4531 if ((host->flags & ATA_HOST_SIMPLEX) &&
2dcb407e 4532 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
4533 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4534 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4535 "other device, disabling DMA\n");
5444a6f4 4536 }
565083e1 4537
e424675f
JG
4538 if (ap->flags & ATA_FLAG_NO_IORDY)
4539 xfer_mask &= ata_pio_mask_no_iordy(dev);
4540
5444a6f4 4541 if (ap->ops->mode_filter)
a76b62ca 4542 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 4543
8343f889
RH
4544 /* Apply cable rule here. Don't apply it early because when
4545 * we handle hot plug the cable type can itself change.
4546 * Check this last so that we know if the transfer rate was
4547 * solely limited by the cable.
4548 * Unknown or 80 wire cables reported host side are checked
4549 * drive side as well. Cases where we know a 40wire cable
4550 * is used safely for 80 are not checked here.
4551 */
4552 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4553 /* UDMA/44 or higher would be available */
15a5551c 4554 if (cable_is_40wire(ap)) {
2dcb407e 4555 ata_dev_printk(dev, KERN_WARNING,
8343f889
RH
4556 "limited to UDMA/33 due to 40-wire cable\n");
4557 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4558 }
4559
565083e1
TH
4560 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4561 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
4562}
4563
1da177e4
LT
4564/**
4565 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
4566 * @dev: Device to which command will be sent
4567 *
780a87f7
JG
4568 * Issue SET FEATURES - XFER MODE command to device @dev
4569 * on port @ap.
4570 *
1da177e4 4571 * LOCKING:
0cba632b 4572 * PCI/etc. bus probe sem.
83206a29
TH
4573 *
4574 * RETURNS:
4575 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
4576 */
4577
3373efd8 4578static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 4579{
a0123703 4580 struct ata_taskfile tf;
83206a29 4581 unsigned int err_mask;
1da177e4
LT
4582
4583 /* set up set-features taskfile */
4584 DPRINTK("set features - xfer mode\n");
4585
464cf177
TH
4586 /* Some controllers and ATAPI devices show flaky interrupt
4587 * behavior after setting xfer mode. Use polling instead.
4588 */
3373efd8 4589 ata_tf_init(dev, &tf);
a0123703
TH
4590 tf.command = ATA_CMD_SET_FEATURES;
4591 tf.feature = SETFEATURES_XFER;
464cf177 4592 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703 4593 tf.protocol = ATA_PROT_NODATA;
b9f8ab2d 4594 /* If we are using IORDY we must send the mode setting command */
11b7becc
JG
4595 if (ata_pio_need_iordy(dev))
4596 tf.nsect = dev->xfer_mode;
b9f8ab2d
AC
4597 /* If the device has IORDY and the controller does not - turn it off */
4598 else if (ata_id_has_iordy(dev->id))
11b7becc 4599 tf.nsect = 0x01;
b9f8ab2d
AC
4600 else /* In the ancient relic department - skip all of this */
4601 return 0;
1da177e4 4602
2b789108 4603 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
9f45cbd3
KCA
4604
4605 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4606 return err_mask;
4607}
9f45cbd3 4608/**
218f3d30 4609 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
9f45cbd3
KCA
4610 * @dev: Device to which command will be sent
4611 * @enable: Whether to enable or disable the feature
218f3d30 4612 * @feature: The sector count represents the feature to set
9f45cbd3
KCA
4613 *
4614 * Issue SET FEATURES - SATA FEATURES command to device @dev
218f3d30 4615 * on port @ap with sector count
9f45cbd3
KCA
4616 *
4617 * LOCKING:
4618 * PCI/etc. bus probe sem.
4619 *
4620 * RETURNS:
4621 * 0 on success, AC_ERR_* mask otherwise.
4622 */
218f3d30
JG
4623static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4624 u8 feature)
9f45cbd3
KCA
4625{
4626 struct ata_taskfile tf;
4627 unsigned int err_mask;
4628
4629 /* set up set-features taskfile */
4630 DPRINTK("set features - SATA features\n");
4631
4632 ata_tf_init(dev, &tf);
4633 tf.command = ATA_CMD_SET_FEATURES;
4634 tf.feature = enable;
4635 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4636 tf.protocol = ATA_PROT_NODATA;
218f3d30 4637 tf.nsect = feature;
9f45cbd3 4638
2b789108 4639 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1da177e4 4640
83206a29
TH
4641 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4642 return err_mask;
1da177e4
LT
4643}
4644
8bf62ece
AL
4645/**
4646 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 4647 * @dev: Device to which command will be sent
e2a7f77a
RD
4648 * @heads: Number of heads (taskfile parameter)
4649 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
4650 *
4651 * LOCKING:
6aff8f1f
TH
4652 * Kernel thread context (may sleep)
4653 *
4654 * RETURNS:
4655 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 4656 */
3373efd8
TH
4657static unsigned int ata_dev_init_params(struct ata_device *dev,
4658 u16 heads, u16 sectors)
8bf62ece 4659{
a0123703 4660 struct ata_taskfile tf;
6aff8f1f 4661 unsigned int err_mask;
8bf62ece
AL
4662
4663 /* Number of sectors per track 1-255. Number of heads 1-16 */
4664 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 4665 return AC_ERR_INVALID;
8bf62ece
AL
4666
4667 /* set up init dev params taskfile */
4668 DPRINTK("init dev params \n");
4669
3373efd8 4670 ata_tf_init(dev, &tf);
a0123703
TH
4671 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4672 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4673 tf.protocol = ATA_PROT_NODATA;
4674 tf.nsect = sectors;
4675 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 4676
2b789108 4677 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
18b2466c
AC
4678 /* A clean abort indicates an original or just out of spec drive
4679 and we should continue as we issue the setup based on the
4680 drive reported working geometry */
4681 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4682 err_mask = 0;
8bf62ece 4683
6aff8f1f
TH
4684 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4685 return err_mask;
8bf62ece
AL
4686}
4687
1da177e4 4688/**
0cba632b
JG
4689 * ata_sg_clean - Unmap DMA memory associated with command
4690 * @qc: Command containing DMA memory to be released
4691 *
4692 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
4693 *
4694 * LOCKING:
cca3974e 4695 * spin_lock_irqsave(host lock)
1da177e4 4696 */
70e6ad0c 4697void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
4698{
4699 struct ata_port *ap = qc->ap;
ff2aeb1e 4700 struct scatterlist *sg = qc->sg;
1da177e4
LT
4701 int dir = qc->dma_dir;
4702
efcb3cf7 4703 WARN_ON_ONCE(sg == NULL);
1da177e4 4704
dde20207 4705 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 4706
dde20207 4707 if (qc->n_elem)
5825627c 4708 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
1da177e4
LT
4709
4710 qc->flags &= ~ATA_QCFLAG_DMAMAP;
ff2aeb1e 4711 qc->sg = NULL;
1da177e4
LT
4712}
4713
1da177e4 4714/**
5895ef9a 4715 * atapi_check_dma - Check whether ATAPI DMA can be supported
1da177e4
LT
4716 * @qc: Metadata associated with taskfile to check
4717 *
780a87f7
JG
4718 * Allow low-level driver to filter ATA PACKET commands, returning
4719 * a status indicating whether or not it is OK to use DMA for the
4720 * supplied PACKET command.
4721 *
1da177e4 4722 * LOCKING:
624d5c51
TH
4723 * spin_lock_irqsave(host lock)
4724 *
4725 * RETURNS: 0 when ATAPI DMA can be used
4726 * nonzero otherwise
4727 */
5895ef9a 4728int atapi_check_dma(struct ata_queued_cmd *qc)
624d5c51
TH
4729{
4730 struct ata_port *ap = qc->ap;
71601958 4731
624d5c51
TH
4732 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4733 * few ATAPI devices choke on such DMA requests.
4734 */
6a87e42e
TH
4735 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4736 unlikely(qc->nbytes & 15))
624d5c51 4737 return 1;
e2cec771 4738
624d5c51
TH
4739 if (ap->ops->check_atapi_dma)
4740 return ap->ops->check_atapi_dma(qc);
e2cec771 4741
624d5c51
TH
4742 return 0;
4743}
1da177e4 4744
624d5c51
TH
4745/**
4746 * ata_std_qc_defer - Check whether a qc needs to be deferred
4747 * @qc: ATA command in question
4748 *
4749 * Non-NCQ commands cannot run with any other command, NCQ or
4750 * not. As upper layer only knows the queue depth, we are
4751 * responsible for maintaining exclusion. This function checks
4752 * whether a new command @qc can be issued.
4753 *
4754 * LOCKING:
4755 * spin_lock_irqsave(host lock)
4756 *
4757 * RETURNS:
4758 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4759 */
4760int ata_std_qc_defer(struct ata_queued_cmd *qc)
4761{
4762 struct ata_link *link = qc->dev->link;
e2cec771 4763
624d5c51
TH
4764 if (qc->tf.protocol == ATA_PROT_NCQ) {
4765 if (!ata_tag_valid(link->active_tag))
4766 return 0;
4767 } else {
4768 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4769 return 0;
4770 }
e2cec771 4771
624d5c51
TH
4772 return ATA_DEFER_LINK;
4773}
6912ccd5 4774
624d5c51 4775void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
1da177e4 4776
624d5c51
TH
4777/**
4778 * ata_sg_init - Associate command with scatter-gather table.
4779 * @qc: Command to be associated
4780 * @sg: Scatter-gather table.
4781 * @n_elem: Number of elements in s/g table.
4782 *
4783 * Initialize the data-related elements of queued_cmd @qc
4784 * to point to a scatter-gather table @sg, containing @n_elem
4785 * elements.
4786 *
4787 * LOCKING:
4788 * spin_lock_irqsave(host lock)
4789 */
4790void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4791 unsigned int n_elem)
4792{
4793 qc->sg = sg;
4794 qc->n_elem = n_elem;
4795 qc->cursg = qc->sg;
4796}
bb5cb290 4797
624d5c51
TH
4798/**
4799 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4800 * @qc: Command with scatter-gather table to be mapped.
4801 *
4802 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4803 *
4804 * LOCKING:
4805 * spin_lock_irqsave(host lock)
4806 *
4807 * RETURNS:
4808 * Zero on success, negative on error.
4809 *
4810 */
4811static int ata_sg_setup(struct ata_queued_cmd *qc)
4812{
4813 struct ata_port *ap = qc->ap;
4814 unsigned int n_elem;
1da177e4 4815
624d5c51 4816 VPRINTK("ENTER, ata%u\n", ap->print_id);
e2cec771 4817
624d5c51
TH
4818 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4819 if (n_elem < 1)
4820 return -1;
bb5cb290 4821
624d5c51 4822 DPRINTK("%d sg elements mapped\n", n_elem);
5825627c 4823 qc->orig_n_elem = qc->n_elem;
624d5c51
TH
4824 qc->n_elem = n_elem;
4825 qc->flags |= ATA_QCFLAG_DMAMAP;
1da177e4 4826
624d5c51 4827 return 0;
1da177e4
LT
4828}
4829
624d5c51
TH
4830/**
4831 * swap_buf_le16 - swap halves of 16-bit words in place
4832 * @buf: Buffer to swap
4833 * @buf_words: Number of 16-bit words in buffer.
4834 *
4835 * Swap halves of 16-bit words if needed to convert from
4836 * little-endian byte order to native cpu byte order, or
4837 * vice-versa.
4838 *
4839 * LOCKING:
4840 * Inherited from caller.
4841 */
4842void swap_buf_le16(u16 *buf, unsigned int buf_words)
8061f5f0 4843{
624d5c51
TH
4844#ifdef __BIG_ENDIAN
4845 unsigned int i;
8061f5f0 4846
624d5c51
TH
4847 for (i = 0; i < buf_words; i++)
4848 buf[i] = le16_to_cpu(buf[i]);
4849#endif /* __BIG_ENDIAN */
8061f5f0
TH
4850}
4851
8a8bc223
TH
4852/**
4853 * ata_qc_new - Request an available ATA command, for queueing
5eb66fe0 4854 * @ap: target port
8a8bc223
TH
4855 *
4856 * LOCKING:
4857 * None.
4858 */
4859
4860static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4861{
4862 struct ata_queued_cmd *qc = NULL;
4863 unsigned int i;
4864
4865 /* no command while frozen */
4866 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4867 return NULL;
4868
4869 /* the last tag is reserved for internal command. */
4870 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4871 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4872 qc = __ata_qc_from_tag(ap, i);
4873 break;
4874 }
4875
4876 if (qc)
4877 qc->tag = i;
4878
4879 return qc;
4880}
4881
1da177e4
LT
4882/**
4883 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
4884 * @dev: Device from whom we request an available command structure
4885 *
4886 * LOCKING:
0cba632b 4887 * None.
1da177e4
LT
4888 */
4889
8a8bc223 4890struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 4891{
9af5c9c9 4892 struct ata_port *ap = dev->link->ap;
1da177e4
LT
4893 struct ata_queued_cmd *qc;
4894
8a8bc223 4895 qc = ata_qc_new(ap);
1da177e4 4896 if (qc) {
1da177e4
LT
4897 qc->scsicmd = NULL;
4898 qc->ap = ap;
4899 qc->dev = dev;
1da177e4 4900
2c13b7ce 4901 ata_qc_reinit(qc);
1da177e4
LT
4902 }
4903
4904 return qc;
4905}
4906
8a8bc223
TH
4907/**
4908 * ata_qc_free - free unused ata_queued_cmd
4909 * @qc: Command to complete
4910 *
4911 * Designed to free unused ata_queued_cmd object
4912 * in case something prevents using it.
4913 *
4914 * LOCKING:
4915 * spin_lock_irqsave(host lock)
4916 */
4917void ata_qc_free(struct ata_queued_cmd *qc)
4918{
a1104016 4919 struct ata_port *ap;
8a8bc223
TH
4920 unsigned int tag;
4921
efcb3cf7 4922 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
a1104016 4923 ap = qc->ap;
8a8bc223
TH
4924
4925 qc->flags = 0;
4926 tag = qc->tag;
4927 if (likely(ata_tag_valid(tag))) {
4928 qc->tag = ATA_TAG_POISON;
4929 clear_bit(tag, &ap->qc_allocated);
4930 }
4931}
4932
76014427 4933void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4934{
a1104016
JL
4935 struct ata_port *ap;
4936 struct ata_link *link;
dedaf2b0 4937
efcb3cf7
TH
4938 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4939 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
a1104016
JL
4940 ap = qc->ap;
4941 link = qc->dev->link;
1da177e4
LT
4942
4943 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4944 ata_sg_clean(qc);
4945
7401abf2 4946 /* command should be marked inactive atomically with qc completion */
da917d69 4947 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 4948 link->sactive &= ~(1 << qc->tag);
da917d69
TH
4949 if (!link->sactive)
4950 ap->nr_active_links--;
4951 } else {
9af5c9c9 4952 link->active_tag = ATA_TAG_POISON;
da917d69
TH
4953 ap->nr_active_links--;
4954 }
4955
4956 /* clear exclusive status */
4957 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4958 ap->excl_link == link))
4959 ap->excl_link = NULL;
7401abf2 4960
3f3791d3
AL
4961 /* atapi: mark qc as inactive to prevent the interrupt handler
4962 * from completing the command twice later, before the error handler
4963 * is called. (when rc != 0 and atapi request sense is needed)
4964 */
4965 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 4966 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 4967
1da177e4 4968 /* call completion callback */
77853bf2 4969 qc->complete_fn(qc);
1da177e4
LT
4970}
4971
39599a53
TH
4972static void fill_result_tf(struct ata_queued_cmd *qc)
4973{
4974 struct ata_port *ap = qc->ap;
4975
39599a53 4976 qc->result_tf.flags = qc->tf.flags;
22183bf5 4977 ap->ops->qc_fill_rtf(qc);
39599a53
TH
4978}
4979
00115e0f
TH
4980static void ata_verify_xfer(struct ata_queued_cmd *qc)
4981{
4982 struct ata_device *dev = qc->dev;
4983
4984 if (ata_tag_internal(qc->tag))
4985 return;
4986
4987 if (ata_is_nodata(qc->tf.protocol))
4988 return;
4989
4990 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4991 return;
4992
4993 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4994}
4995
f686bcb8
TH
4996/**
4997 * ata_qc_complete - Complete an active ATA command
4998 * @qc: Command to complete
f686bcb8
TH
4999 *
5000 * Indicate to the mid and upper layers that an ATA
5001 * command has completed, with either an ok or not-ok status.
5002 *
5003 * LOCKING:
cca3974e 5004 * spin_lock_irqsave(host lock)
f686bcb8
TH
5005 */
5006void ata_qc_complete(struct ata_queued_cmd *qc)
5007{
5008 struct ata_port *ap = qc->ap;
5009
5010 /* XXX: New EH and old EH use different mechanisms to
5011 * synchronize EH with regular execution path.
5012 *
5013 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5014 * Normal execution path is responsible for not accessing a
5015 * failed qc. libata core enforces the rule by returning NULL
5016 * from ata_qc_from_tag() for failed qcs.
5017 *
5018 * Old EH depends on ata_qc_complete() nullifying completion
5019 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5020 * not synchronize with interrupt handler. Only PIO task is
5021 * taken care of.
5022 */
5023 if (ap->ops->error_handler) {
4dbfa39b
TH
5024 struct ata_device *dev = qc->dev;
5025 struct ata_eh_info *ehi = &dev->link->eh_info;
5026
f686bcb8
TH
5027 if (unlikely(qc->err_mask))
5028 qc->flags |= ATA_QCFLAG_FAILED;
5029
5030 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
f4b31db9
TH
5031 /* always fill result TF for failed qc */
5032 fill_result_tf(qc);
5033
5034 if (!ata_tag_internal(qc->tag))
f686bcb8 5035 ata_qc_schedule_eh(qc);
f4b31db9
TH
5036 else
5037 __ata_qc_complete(qc);
5038 return;
f686bcb8
TH
5039 }
5040
4dc738ed
TH
5041 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
5042
f686bcb8
TH
5043 /* read result TF if requested */
5044 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5045 fill_result_tf(qc);
f686bcb8 5046
4dbfa39b
TH
5047 /* Some commands need post-processing after successful
5048 * completion.
5049 */
5050 switch (qc->tf.command) {
5051 case ATA_CMD_SET_FEATURES:
5052 if (qc->tf.feature != SETFEATURES_WC_ON &&
5053 qc->tf.feature != SETFEATURES_WC_OFF)
5054 break;
5055 /* fall through */
5056 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5057 case ATA_CMD_SET_MULTI: /* multi_count changed */
5058 /* revalidate device */
5059 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5060 ata_port_schedule_eh(ap);
5061 break;
054a5fba
TH
5062
5063 case ATA_CMD_SLEEP:
5064 dev->flags |= ATA_DFLAG_SLEEPING;
5065 break;
4dbfa39b
TH
5066 }
5067
00115e0f
TH
5068 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5069 ata_verify_xfer(qc);
5070
f686bcb8
TH
5071 __ata_qc_complete(qc);
5072 } else {
5073 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5074 return;
5075
5076 /* read result TF if failed or requested */
5077 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5078 fill_result_tf(qc);
f686bcb8
TH
5079
5080 __ata_qc_complete(qc);
5081 }
5082}
5083
dedaf2b0
TH
5084/**
5085 * ata_qc_complete_multiple - Complete multiple qcs successfully
5086 * @ap: port in question
5087 * @qc_active: new qc_active mask
dedaf2b0
TH
5088 *
5089 * Complete in-flight commands. This functions is meant to be
5090 * called from low-level driver's interrupt routine to complete
5091 * requests normally. ap->qc_active and @qc_active is compared
5092 * and commands are completed accordingly.
5093 *
5094 * LOCKING:
cca3974e 5095 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5096 *
5097 * RETURNS:
5098 * Number of completed commands on success, -errno otherwise.
5099 */
79f97dad 5100int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
dedaf2b0
TH
5101{
5102 int nr_done = 0;
5103 u32 done_mask;
dedaf2b0
TH
5104
5105 done_mask = ap->qc_active ^ qc_active;
5106
5107 if (unlikely(done_mask & qc_active)) {
5108 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5109 "(%08x->%08x)\n", ap->qc_active, qc_active);
5110 return -EINVAL;
5111 }
5112
43768180 5113 while (done_mask) {
dedaf2b0 5114 struct ata_queued_cmd *qc;
43768180 5115 unsigned int tag = __ffs(done_mask);
dedaf2b0 5116
43768180
JA
5117 qc = ata_qc_from_tag(ap, tag);
5118 if (qc) {
dedaf2b0
TH
5119 ata_qc_complete(qc);
5120 nr_done++;
5121 }
43768180 5122 done_mask &= ~(1 << tag);
dedaf2b0
TH
5123 }
5124
5125 return nr_done;
5126}
5127
1da177e4
LT
5128/**
5129 * ata_qc_issue - issue taskfile to device
5130 * @qc: command to issue to device
5131 *
5132 * Prepare an ATA command to submission to device.
5133 * This includes mapping the data into a DMA-able
5134 * area, filling in the S/G table, and finally
5135 * writing the taskfile to hardware, starting the command.
5136 *
5137 * LOCKING:
cca3974e 5138 * spin_lock_irqsave(host lock)
1da177e4 5139 */
8e0e694a 5140void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5141{
5142 struct ata_port *ap = qc->ap;
9af5c9c9 5143 struct ata_link *link = qc->dev->link;
405e66b3 5144 u8 prot = qc->tf.protocol;
1da177e4 5145
dedaf2b0
TH
5146 /* Make sure only one non-NCQ command is outstanding. The
5147 * check is skipped for old EH because it reuses active qc to
5148 * request ATAPI sense.
5149 */
efcb3cf7 5150 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
dedaf2b0 5151
1973a023 5152 if (ata_is_ncq(prot)) {
efcb3cf7 5153 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
da917d69
TH
5154
5155 if (!link->sactive)
5156 ap->nr_active_links++;
9af5c9c9 5157 link->sactive |= 1 << qc->tag;
dedaf2b0 5158 } else {
efcb3cf7 5159 WARN_ON_ONCE(link->sactive);
da917d69
TH
5160
5161 ap->nr_active_links++;
9af5c9c9 5162 link->active_tag = qc->tag;
dedaf2b0
TH
5163 }
5164
e4a70e76 5165 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5166 ap->qc_active |= 1 << qc->tag;
e4a70e76 5167
f92a2636
TH
5168 /* We guarantee to LLDs that they will have at least one
5169 * non-zero sg if the command is a data command.
5170 */
ff2aeb1e 5171 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
f92a2636 5172
405e66b3 5173 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
f92a2636 5174 (ap->flags & ATA_FLAG_PIO_DMA)))
001102d7
TH
5175 if (ata_sg_setup(qc))
5176 goto sg_err;
1da177e4 5177
cf480626 5178 /* if device is sleeping, schedule reset and abort the link */
054a5fba 5179 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
cf480626 5180 link->eh_info.action |= ATA_EH_RESET;
054a5fba
TH
5181 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5182 ata_link_abort(link);
5183 return;
5184 }
5185
1da177e4
LT
5186 ap->ops->qc_prep(qc);
5187
8e0e694a
TH
5188 qc->err_mask |= ap->ops->qc_issue(qc);
5189 if (unlikely(qc->err_mask))
5190 goto err;
5191 return;
1da177e4 5192
8e436af9 5193sg_err:
8e0e694a
TH
5194 qc->err_mask |= AC_ERR_SYSTEM;
5195err:
5196 ata_qc_complete(qc);
1da177e4
LT
5197}
5198
34bf2170
TH
5199/**
5200 * sata_scr_valid - test whether SCRs are accessible
936fd732 5201 * @link: ATA link to test SCR accessibility for
34bf2170 5202 *
936fd732 5203 * Test whether SCRs are accessible for @link.
34bf2170
TH
5204 *
5205 * LOCKING:
5206 * None.
5207 *
5208 * RETURNS:
5209 * 1 if SCRs are accessible, 0 otherwise.
5210 */
936fd732 5211int sata_scr_valid(struct ata_link *link)
34bf2170 5212{
936fd732
TH
5213 struct ata_port *ap = link->ap;
5214
a16abc0b 5215 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
5216}
5217
5218/**
5219 * sata_scr_read - read SCR register of the specified port
936fd732 5220 * @link: ATA link to read SCR for
34bf2170
TH
5221 * @reg: SCR to read
5222 * @val: Place to store read value
5223 *
936fd732 5224 * Read SCR register @reg of @link into *@val. This function is
633273a3
TH
5225 * guaranteed to succeed if @link is ap->link, the cable type of
5226 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
5227 *
5228 * LOCKING:
633273a3 5229 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5230 *
5231 * RETURNS:
5232 * 0 on success, negative errno on failure.
5233 */
936fd732 5234int sata_scr_read(struct ata_link *link, int reg, u32 *val)
34bf2170 5235{
633273a3 5236 if (ata_is_host_link(link)) {
633273a3 5237 if (sata_scr_valid(link))
82ef04fb 5238 return link->ap->ops->scr_read(link, reg, val);
633273a3
TH
5239 return -EOPNOTSUPP;
5240 }
5241
5242 return sata_pmp_scr_read(link, reg, val);
34bf2170
TH
5243}
5244
5245/**
5246 * sata_scr_write - write SCR register of the specified port
936fd732 5247 * @link: ATA link to write SCR for
34bf2170
TH
5248 * @reg: SCR to write
5249 * @val: value to write
5250 *
936fd732 5251 * Write @val to SCR register @reg of @link. This function is
633273a3
TH
5252 * guaranteed to succeed if @link is ap->link, the cable type of
5253 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
5254 *
5255 * LOCKING:
633273a3 5256 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5257 *
5258 * RETURNS:
5259 * 0 on success, negative errno on failure.
5260 */
936fd732 5261int sata_scr_write(struct ata_link *link, int reg, u32 val)
34bf2170 5262{
633273a3 5263 if (ata_is_host_link(link)) {
633273a3 5264 if (sata_scr_valid(link))
82ef04fb 5265 return link->ap->ops->scr_write(link, reg, val);
633273a3
TH
5266 return -EOPNOTSUPP;
5267 }
936fd732 5268
633273a3 5269 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
5270}
5271
5272/**
5273 * sata_scr_write_flush - write SCR register of the specified port and flush
936fd732 5274 * @link: ATA link to write SCR for
34bf2170
TH
5275 * @reg: SCR to write
5276 * @val: value to write
5277 *
5278 * This function is identical to sata_scr_write() except that this
5279 * function performs flush after writing to the register.
5280 *
5281 * LOCKING:
633273a3 5282 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5283 *
5284 * RETURNS:
5285 * 0 on success, negative errno on failure.
5286 */
936fd732 5287int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
34bf2170 5288{
633273a3 5289 if (ata_is_host_link(link)) {
633273a3 5290 int rc;
da3dbb17 5291
633273a3 5292 if (sata_scr_valid(link)) {
82ef04fb 5293 rc = link->ap->ops->scr_write(link, reg, val);
633273a3 5294 if (rc == 0)
82ef04fb 5295 rc = link->ap->ops->scr_read(link, reg, &val);
633273a3
TH
5296 return rc;
5297 }
5298 return -EOPNOTSUPP;
34bf2170 5299 }
633273a3
TH
5300
5301 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
5302}
5303
5304/**
b1c72916 5305 * ata_phys_link_online - test whether the given link is online
936fd732 5306 * @link: ATA link to test
34bf2170 5307 *
936fd732
TH
5308 * Test whether @link is online. Note that this function returns
5309 * 0 if online status of @link cannot be obtained, so
5310 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5311 *
5312 * LOCKING:
5313 * None.
5314 *
5315 * RETURNS:
b5b3fa38 5316 * True if the port online status is available and online.
34bf2170 5317 */
b1c72916 5318bool ata_phys_link_online(struct ata_link *link)
34bf2170
TH
5319{
5320 u32 sstatus;
5321
936fd732 5322 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
9913ff8a 5323 ata_sstatus_online(sstatus))
b5b3fa38
TH
5324 return true;
5325 return false;
34bf2170
TH
5326}
5327
5328/**
b1c72916 5329 * ata_phys_link_offline - test whether the given link is offline
936fd732 5330 * @link: ATA link to test
34bf2170 5331 *
936fd732
TH
5332 * Test whether @link is offline. Note that this function
5333 * returns 0 if offline status of @link cannot be obtained, so
5334 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5335 *
5336 * LOCKING:
5337 * None.
5338 *
5339 * RETURNS:
b5b3fa38 5340 * True if the port offline status is available and offline.
34bf2170 5341 */
b1c72916 5342bool ata_phys_link_offline(struct ata_link *link)
34bf2170
TH
5343{
5344 u32 sstatus;
5345
936fd732 5346 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
9913ff8a 5347 !ata_sstatus_online(sstatus))
b5b3fa38
TH
5348 return true;
5349 return false;
34bf2170 5350}
0baab86b 5351
b1c72916
TH
5352/**
5353 * ata_link_online - test whether the given link is online
5354 * @link: ATA link to test
5355 *
5356 * Test whether @link is online. This is identical to
5357 * ata_phys_link_online() when there's no slave link. When
5358 * there's a slave link, this function should only be called on
5359 * the master link and will return true if any of M/S links is
5360 * online.
5361 *
5362 * LOCKING:
5363 * None.
5364 *
5365 * RETURNS:
5366 * True if the port online status is available and online.
5367 */
5368bool ata_link_online(struct ata_link *link)
5369{
5370 struct ata_link *slave = link->ap->slave_link;
5371
5372 WARN_ON(link == slave); /* shouldn't be called on slave link */
5373
5374 return ata_phys_link_online(link) ||
5375 (slave && ata_phys_link_online(slave));
5376}
5377
5378/**
5379 * ata_link_offline - test whether the given link is offline
5380 * @link: ATA link to test
5381 *
5382 * Test whether @link is offline. This is identical to
5383 * ata_phys_link_offline() when there's no slave link. When
5384 * there's a slave link, this function should only be called on
5385 * the master link and will return true if both M/S links are
5386 * offline.
5387 *
5388 * LOCKING:
5389 * None.
5390 *
5391 * RETURNS:
5392 * True if the port offline status is available and offline.
5393 */
5394bool ata_link_offline(struct ata_link *link)
5395{
5396 struct ata_link *slave = link->ap->slave_link;
5397
5398 WARN_ON(link == slave); /* shouldn't be called on slave link */
5399
5400 return ata_phys_link_offline(link) &&
5401 (!slave || ata_phys_link_offline(slave));
5402}
5403
6ffa01d8 5404#ifdef CONFIG_PM
cca3974e
JG
5405static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5406 unsigned int action, unsigned int ehi_flags,
5407 int wait)
500530f6
TH
5408{
5409 unsigned long flags;
5410 int i, rc;
5411
cca3974e
JG
5412 for (i = 0; i < host->n_ports; i++) {
5413 struct ata_port *ap = host->ports[i];
e3667ebf 5414 struct ata_link *link;
500530f6
TH
5415
5416 /* Previous resume operation might still be in
5417 * progress. Wait for PM_PENDING to clear.
5418 */
5419 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5420 ata_port_wait_eh(ap);
5421 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5422 }
5423
5424 /* request PM ops to EH */
5425 spin_lock_irqsave(ap->lock, flags);
5426
5427 ap->pm_mesg = mesg;
5428 if (wait) {
5429 rc = 0;
5430 ap->pm_result = &rc;
5431 }
5432
5433 ap->pflags |= ATA_PFLAG_PM_PENDING;
1eca4365 5434 ata_for_each_link(link, ap, HOST_FIRST) {
e3667ebf
TH
5435 link->eh_info.action |= action;
5436 link->eh_info.flags |= ehi_flags;
5437 }
500530f6
TH
5438
5439 ata_port_schedule_eh(ap);
5440
5441 spin_unlock_irqrestore(ap->lock, flags);
5442
5443 /* wait and check result */
5444 if (wait) {
5445 ata_port_wait_eh(ap);
5446 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5447 if (rc)
5448 return rc;
5449 }
5450 }
5451
5452 return 0;
5453}
5454
5455/**
cca3974e
JG
5456 * ata_host_suspend - suspend host
5457 * @host: host to suspend
500530f6
TH
5458 * @mesg: PM message
5459 *
cca3974e 5460 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
5461 * function requests EH to perform PM operations and waits for EH
5462 * to finish.
5463 *
5464 * LOCKING:
5465 * Kernel thread context (may sleep).
5466 *
5467 * RETURNS:
5468 * 0 on success, -errno on failure.
5469 */
cca3974e 5470int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 5471{
9666f400 5472 int rc;
500530f6 5473
ca77329f
KCA
5474 /*
5475 * disable link pm on all ports before requesting
5476 * any pm activity
5477 */
5478 ata_lpm_enable(host);
5479
cca3974e 5480 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
72ad6ec4
JG
5481 if (rc == 0)
5482 host->dev->power.power_state = mesg;
500530f6
TH
5483 return rc;
5484}
5485
5486/**
cca3974e
JG
5487 * ata_host_resume - resume host
5488 * @host: host to resume
500530f6 5489 *
cca3974e 5490 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
5491 * function requests EH to perform PM operations and returns.
5492 * Note that all resume operations are performed parallely.
5493 *
5494 * LOCKING:
5495 * Kernel thread context (may sleep).
5496 */
cca3974e 5497void ata_host_resume(struct ata_host *host)
500530f6 5498{
cf480626 5499 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
cca3974e 5500 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
72ad6ec4 5501 host->dev->power.power_state = PMSG_ON;
ca77329f
KCA
5502
5503 /* reenable link pm */
5504 ata_lpm_disable(host);
500530f6 5505}
6ffa01d8 5506#endif
500530f6 5507
3ef3b43d
TH
5508/**
5509 * ata_dev_init - Initialize an ata_device structure
5510 * @dev: Device structure to initialize
5511 *
5512 * Initialize @dev in preparation for probing.
5513 *
5514 * LOCKING:
5515 * Inherited from caller.
5516 */
5517void ata_dev_init(struct ata_device *dev)
5518{
b1c72916 5519 struct ata_link *link = ata_dev_phys_link(dev);
9af5c9c9 5520 struct ata_port *ap = link->ap;
72fa4b74
TH
5521 unsigned long flags;
5522
b1c72916 5523 /* SATA spd limit is bound to the attached device, reset together */
9af5c9c9
TH
5524 link->sata_spd_limit = link->hw_sata_spd_limit;
5525 link->sata_spd = 0;
5a04bf4b 5526
72fa4b74
TH
5527 /* High bits of dev->flags are used to record warm plug
5528 * requests which occur asynchronously. Synchronize using
cca3974e 5529 * host lock.
72fa4b74 5530 */
ba6a1308 5531 spin_lock_irqsave(ap->lock, flags);
72fa4b74 5532 dev->flags &= ~ATA_DFLAG_INIT_MASK;
3dcc323f 5533 dev->horkage = 0;
ba6a1308 5534 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 5535
99cf610a
TH
5536 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5537 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
3ef3b43d
TH
5538 dev->pio_mask = UINT_MAX;
5539 dev->mwdma_mask = UINT_MAX;
5540 dev->udma_mask = UINT_MAX;
5541}
5542
4fb37a25
TH
5543/**
5544 * ata_link_init - Initialize an ata_link structure
5545 * @ap: ATA port link is attached to
5546 * @link: Link structure to initialize
8989805d 5547 * @pmp: Port multiplier port number
4fb37a25
TH
5548 *
5549 * Initialize @link.
5550 *
5551 * LOCKING:
5552 * Kernel thread context (may sleep)
5553 */
fb7fd614 5554void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
4fb37a25
TH
5555{
5556 int i;
5557
5558 /* clear everything except for devices */
5559 memset(link, 0, offsetof(struct ata_link, device[0]));
5560
5561 link->ap = ap;
8989805d 5562 link->pmp = pmp;
4fb37a25
TH
5563 link->active_tag = ATA_TAG_POISON;
5564 link->hw_sata_spd_limit = UINT_MAX;
5565
5566 /* can't use iterator, ap isn't initialized yet */
5567 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5568 struct ata_device *dev = &link->device[i];
5569
5570 dev->link = link;
5571 dev->devno = dev - link->device;
110f66d2
TH
5572#ifdef CONFIG_ATA_ACPI
5573 dev->gtf_filter = ata_acpi_gtf_filter;
5574#endif
4fb37a25
TH
5575 ata_dev_init(dev);
5576 }
5577}
5578
5579/**
5580 * sata_link_init_spd - Initialize link->sata_spd_limit
5581 * @link: Link to configure sata_spd_limit for
5582 *
5583 * Initialize @link->[hw_]sata_spd_limit to the currently
5584 * configured value.
5585 *
5586 * LOCKING:
5587 * Kernel thread context (may sleep).
5588 *
5589 * RETURNS:
5590 * 0 on success, -errno on failure.
5591 */
fb7fd614 5592int sata_link_init_spd(struct ata_link *link)
4fb37a25 5593{
33267325 5594 u8 spd;
4fb37a25
TH
5595 int rc;
5596
d127ea7b 5597 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
4fb37a25
TH
5598 if (rc)
5599 return rc;
5600
d127ea7b 5601 spd = (link->saved_scontrol >> 4) & 0xf;
4fb37a25
TH
5602 if (spd)
5603 link->hw_sata_spd_limit &= (1 << spd) - 1;
5604
05944bdf 5605 ata_force_link_limits(link);
33267325 5606
4fb37a25
TH
5607 link->sata_spd_limit = link->hw_sata_spd_limit;
5608
5609 return 0;
5610}
5611
1da177e4 5612/**
f3187195
TH
5613 * ata_port_alloc - allocate and initialize basic ATA port resources
5614 * @host: ATA host this allocated port belongs to
1da177e4 5615 *
f3187195
TH
5616 * Allocate and initialize basic ATA port resources.
5617 *
5618 * RETURNS:
5619 * Allocate ATA port on success, NULL on failure.
0cba632b 5620 *
1da177e4 5621 * LOCKING:
f3187195 5622 * Inherited from calling layer (may sleep).
1da177e4 5623 */
f3187195 5624struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 5625{
f3187195 5626 struct ata_port *ap;
1da177e4 5627
f3187195
TH
5628 DPRINTK("ENTER\n");
5629
5630 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5631 if (!ap)
5632 return NULL;
5633
f4d6d004 5634 ap->pflags |= ATA_PFLAG_INITIALIZING;
cca3974e 5635 ap->lock = &host->lock;
f3187195 5636 ap->print_id = -1;
1da177e4 5637 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 5638 ap->host = host;
f3187195 5639 ap->dev = host->dev;
1da177e4 5640 ap->last_ctl = 0xFF;
bd5d825c
BP
5641
5642#if defined(ATA_VERBOSE_DEBUG)
5643 /* turn on all debugging levels */
5644 ap->msg_enable = 0x00FF;
5645#elif defined(ATA_DEBUG)
5646 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 5647#else
0dd4b21f 5648 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 5649#endif
1da177e4 5650
127102ae 5651#ifdef CONFIG_ATA_SFF
442eacc3 5652 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task);
f667fdbb
TH
5653#else
5654 INIT_DELAYED_WORK(&ap->port_task, NULL);
127102ae 5655#endif
65f27f38
DH
5656 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5657 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 5658 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 5659 init_waitqueue_head(&ap->eh_wait_q);
45fabbb7 5660 init_completion(&ap->park_req_pending);
5ddf24c5
TH
5661 init_timer_deferrable(&ap->fastdrain_timer);
5662 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5663 ap->fastdrain_timer.data = (unsigned long)ap;
1da177e4 5664
838df628 5665 ap->cbl = ATA_CBL_NONE;
838df628 5666
8989805d 5667 ata_link_init(ap, &ap->link, 0);
1da177e4
LT
5668
5669#ifdef ATA_IRQ_TRAP
5670 ap->stats.unhandled_irq = 1;
5671 ap->stats.idle_irq = 1;
5672#endif
1da177e4 5673 return ap;
1da177e4
LT
5674}
5675
f0d36efd
TH
5676static void ata_host_release(struct device *gendev, void *res)
5677{
5678 struct ata_host *host = dev_get_drvdata(gendev);
5679 int i;
5680
1aa506e4
TH
5681 for (i = 0; i < host->n_ports; i++) {
5682 struct ata_port *ap = host->ports[i];
5683
4911487a
TH
5684 if (!ap)
5685 continue;
5686
5687 if (ap->scsi_host)
1aa506e4
TH
5688 scsi_host_put(ap->scsi_host);
5689
633273a3 5690 kfree(ap->pmp_link);
b1c72916 5691 kfree(ap->slave_link);
4911487a 5692 kfree(ap);
1aa506e4
TH
5693 host->ports[i] = NULL;
5694 }
5695
1aa56cca 5696 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
5697}
5698
f3187195
TH
5699/**
5700 * ata_host_alloc - allocate and init basic ATA host resources
5701 * @dev: generic device this host is associated with
5702 * @max_ports: maximum number of ATA ports associated with this host
5703 *
5704 * Allocate and initialize basic ATA host resources. LLD calls
5705 * this function to allocate a host, initializes it fully and
5706 * attaches it using ata_host_register().
5707 *
5708 * @max_ports ports are allocated and host->n_ports is
5709 * initialized to @max_ports. The caller is allowed to decrease
5710 * host->n_ports before calling ata_host_register(). The unused
5711 * ports will be automatically freed on registration.
5712 *
5713 * RETURNS:
5714 * Allocate ATA host on success, NULL on failure.
5715 *
5716 * LOCKING:
5717 * Inherited from calling layer (may sleep).
5718 */
5719struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5720{
5721 struct ata_host *host;
5722 size_t sz;
5723 int i;
5724
5725 DPRINTK("ENTER\n");
5726
5727 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5728 return NULL;
5729
5730 /* alloc a container for our list of ATA ports (buses) */
5731 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5732 /* alloc a container for our list of ATA ports (buses) */
5733 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5734 if (!host)
5735 goto err_out;
5736
5737 devres_add(dev, host);
5738 dev_set_drvdata(dev, host);
5739
5740 spin_lock_init(&host->lock);
5741 host->dev = dev;
5742 host->n_ports = max_ports;
5743
5744 /* allocate ports bound to this host */
5745 for (i = 0; i < max_ports; i++) {
5746 struct ata_port *ap;
5747
5748 ap = ata_port_alloc(host);
5749 if (!ap)
5750 goto err_out;
5751
5752 ap->port_no = i;
5753 host->ports[i] = ap;
5754 }
5755
5756 devres_remove_group(dev, NULL);
5757 return host;
5758
5759 err_out:
5760 devres_release_group(dev, NULL);
5761 return NULL;
5762}
5763
f5cda257
TH
5764/**
5765 * ata_host_alloc_pinfo - alloc host and init with port_info array
5766 * @dev: generic device this host is associated with
5767 * @ppi: array of ATA port_info to initialize host with
5768 * @n_ports: number of ATA ports attached to this host
5769 *
5770 * Allocate ATA host and initialize with info from @ppi. If NULL
5771 * terminated, @ppi may contain fewer entries than @n_ports. The
5772 * last entry will be used for the remaining ports.
5773 *
5774 * RETURNS:
5775 * Allocate ATA host on success, NULL on failure.
5776 *
5777 * LOCKING:
5778 * Inherited from calling layer (may sleep).
5779 */
5780struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5781 const struct ata_port_info * const * ppi,
5782 int n_ports)
5783{
5784 const struct ata_port_info *pi;
5785 struct ata_host *host;
5786 int i, j;
5787
5788 host = ata_host_alloc(dev, n_ports);
5789 if (!host)
5790 return NULL;
5791
5792 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5793 struct ata_port *ap = host->ports[i];
5794
5795 if (ppi[j])
5796 pi = ppi[j++];
5797
5798 ap->pio_mask = pi->pio_mask;
5799 ap->mwdma_mask = pi->mwdma_mask;
5800 ap->udma_mask = pi->udma_mask;
5801 ap->flags |= pi->flags;
0c88758b 5802 ap->link.flags |= pi->link_flags;
f5cda257
TH
5803 ap->ops = pi->port_ops;
5804
5805 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5806 host->ops = pi->port_ops;
f5cda257
TH
5807 }
5808
5809 return host;
5810}
5811
b1c72916
TH
5812/**
5813 * ata_slave_link_init - initialize slave link
5814 * @ap: port to initialize slave link for
5815 *
5816 * Create and initialize slave link for @ap. This enables slave
5817 * link handling on the port.
5818 *
5819 * In libata, a port contains links and a link contains devices.
5820 * There is single host link but if a PMP is attached to it,
5821 * there can be multiple fan-out links. On SATA, there's usually
5822 * a single device connected to a link but PATA and SATA
5823 * controllers emulating TF based interface can have two - master
5824 * and slave.
5825 *
5826 * However, there are a few controllers which don't fit into this
5827 * abstraction too well - SATA controllers which emulate TF
5828 * interface with both master and slave devices but also have
5829 * separate SCR register sets for each device. These controllers
5830 * need separate links for physical link handling
5831 * (e.g. onlineness, link speed) but should be treated like a
5832 * traditional M/S controller for everything else (e.g. command
5833 * issue, softreset).
5834 *
5835 * slave_link is libata's way of handling this class of
5836 * controllers without impacting core layer too much. For
5837 * anything other than physical link handling, the default host
5838 * link is used for both master and slave. For physical link
5839 * handling, separate @ap->slave_link is used. All dirty details
5840 * are implemented inside libata core layer. From LLD's POV, the
5841 * only difference is that prereset, hardreset and postreset are
5842 * called once more for the slave link, so the reset sequence
5843 * looks like the following.
5844 *
5845 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5846 * softreset(M) -> postreset(M) -> postreset(S)
5847 *
5848 * Note that softreset is called only for the master. Softreset
5849 * resets both M/S by definition, so SRST on master should handle
5850 * both (the standard method will work just fine).
5851 *
5852 * LOCKING:
5853 * Should be called before host is registered.
5854 *
5855 * RETURNS:
5856 * 0 on success, -errno on failure.
5857 */
5858int ata_slave_link_init(struct ata_port *ap)
5859{
5860 struct ata_link *link;
5861
5862 WARN_ON(ap->slave_link);
5863 WARN_ON(ap->flags & ATA_FLAG_PMP);
5864
5865 link = kzalloc(sizeof(*link), GFP_KERNEL);
5866 if (!link)
5867 return -ENOMEM;
5868
5869 ata_link_init(ap, link, 1);
5870 ap->slave_link = link;
5871 return 0;
5872}
5873
32ebbc0c
TH
5874static void ata_host_stop(struct device *gendev, void *res)
5875{
5876 struct ata_host *host = dev_get_drvdata(gendev);
5877 int i;
5878
5879 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5880
5881 for (i = 0; i < host->n_ports; i++) {
5882 struct ata_port *ap = host->ports[i];
5883
5884 if (ap->ops->port_stop)
5885 ap->ops->port_stop(ap);
5886 }
5887
5888 if (host->ops->host_stop)
5889 host->ops->host_stop(host);
5890}
5891
029cfd6b
TH
5892/**
5893 * ata_finalize_port_ops - finalize ata_port_operations
5894 * @ops: ata_port_operations to finalize
5895 *
5896 * An ata_port_operations can inherit from another ops and that
5897 * ops can again inherit from another. This can go on as many
5898 * times as necessary as long as there is no loop in the
5899 * inheritance chain.
5900 *
5901 * Ops tables are finalized when the host is started. NULL or
5902 * unspecified entries are inherited from the closet ancestor
5903 * which has the method and the entry is populated with it.
5904 * After finalization, the ops table directly points to all the
5905 * methods and ->inherits is no longer necessary and cleared.
5906 *
5907 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5908 *
5909 * LOCKING:
5910 * None.
5911 */
5912static void ata_finalize_port_ops(struct ata_port_operations *ops)
5913{
2da67659 5914 static DEFINE_SPINLOCK(lock);
029cfd6b
TH
5915 const struct ata_port_operations *cur;
5916 void **begin = (void **)ops;
5917 void **end = (void **)&ops->inherits;
5918 void **pp;
5919
5920 if (!ops || !ops->inherits)
5921 return;
5922
5923 spin_lock(&lock);
5924
5925 for (cur = ops->inherits; cur; cur = cur->inherits) {
5926 void **inherit = (void **)cur;
5927
5928 for (pp = begin; pp < end; pp++, inherit++)
5929 if (!*pp)
5930 *pp = *inherit;
5931 }
5932
5933 for (pp = begin; pp < end; pp++)
5934 if (IS_ERR(*pp))
5935 *pp = NULL;
5936
5937 ops->inherits = NULL;
5938
5939 spin_unlock(&lock);
5940}
5941
ecef7253
TH
5942/**
5943 * ata_host_start - start and freeze ports of an ATA host
5944 * @host: ATA host to start ports for
5945 *
5946 * Start and then freeze ports of @host. Started status is
5947 * recorded in host->flags, so this function can be called
5948 * multiple times. Ports are guaranteed to get started only
f3187195
TH
5949 * once. If host->ops isn't initialized yet, its set to the
5950 * first non-dummy port ops.
ecef7253
TH
5951 *
5952 * LOCKING:
5953 * Inherited from calling layer (may sleep).
5954 *
5955 * RETURNS:
5956 * 0 if all ports are started successfully, -errno otherwise.
5957 */
5958int ata_host_start(struct ata_host *host)
5959{
32ebbc0c
TH
5960 int have_stop = 0;
5961 void *start_dr = NULL;
ecef7253
TH
5962 int i, rc;
5963
5964 if (host->flags & ATA_HOST_STARTED)
5965 return 0;
5966
029cfd6b
TH
5967 ata_finalize_port_ops(host->ops);
5968
ecef7253
TH
5969 for (i = 0; i < host->n_ports; i++) {
5970 struct ata_port *ap = host->ports[i];
5971
029cfd6b
TH
5972 ata_finalize_port_ops(ap->ops);
5973
f3187195
TH
5974 if (!host->ops && !ata_port_is_dummy(ap))
5975 host->ops = ap->ops;
5976
32ebbc0c
TH
5977 if (ap->ops->port_stop)
5978 have_stop = 1;
5979 }
5980
5981 if (host->ops->host_stop)
5982 have_stop = 1;
5983
5984 if (have_stop) {
5985 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5986 if (!start_dr)
5987 return -ENOMEM;
5988 }
5989
5990 for (i = 0; i < host->n_ports; i++) {
5991 struct ata_port *ap = host->ports[i];
5992
ecef7253
TH
5993 if (ap->ops->port_start) {
5994 rc = ap->ops->port_start(ap);
5995 if (rc) {
0f9fe9b7 5996 if (rc != -ENODEV)
0f757743
AM
5997 dev_printk(KERN_ERR, host->dev,
5998 "failed to start port %d "
5999 "(errno=%d)\n", i, rc);
ecef7253
TH
6000 goto err_out;
6001 }
6002 }
ecef7253
TH
6003 ata_eh_freeze_port(ap);
6004 }
6005
32ebbc0c
TH
6006 if (start_dr)
6007 devres_add(host->dev, start_dr);
ecef7253
TH
6008 host->flags |= ATA_HOST_STARTED;
6009 return 0;
6010
6011 err_out:
6012 while (--i >= 0) {
6013 struct ata_port *ap = host->ports[i];
6014
6015 if (ap->ops->port_stop)
6016 ap->ops->port_stop(ap);
6017 }
32ebbc0c 6018 devres_free(start_dr);
ecef7253
TH
6019 return rc;
6020}
6021
b03732f0 6022/**
cca3974e
JG
6023 * ata_sas_host_init - Initialize a host struct
6024 * @host: host to initialize
6025 * @dev: device host is attached to
6026 * @flags: host flags
6027 * @ops: port_ops
b03732f0
BK
6028 *
6029 * LOCKING:
6030 * PCI/etc. bus probe sem.
6031 *
6032 */
f3187195 6033/* KILLME - the only user left is ipr */
cca3974e 6034void ata_host_init(struct ata_host *host, struct device *dev,
029cfd6b 6035 unsigned long flags, struct ata_port_operations *ops)
b03732f0 6036{
cca3974e
JG
6037 spin_lock_init(&host->lock);
6038 host->dev = dev;
6039 host->flags = flags;
6040 host->ops = ops;
b03732f0
BK
6041}
6042
79318057
AV
6043
6044static void async_port_probe(void *data, async_cookie_t cookie)
6045{
6046 int rc;
6047 struct ata_port *ap = data;
886ad09f
AV
6048
6049 /*
6050 * If we're not allowed to scan this host in parallel,
6051 * we need to wait until all previous scans have completed
6052 * before going further.
fa853a48
AV
6053 * Jeff Garzik says this is only within a controller, so we
6054 * don't need to wait for port 0, only for later ports.
886ad09f 6055 */
fa853a48 6056 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
886ad09f
AV
6057 async_synchronize_cookie(cookie);
6058
79318057
AV
6059 /* probe */
6060 if (ap->ops->error_handler) {
6061 struct ata_eh_info *ehi = &ap->link.eh_info;
6062 unsigned long flags;
6063
79318057
AV
6064 /* kick EH for boot probing */
6065 spin_lock_irqsave(ap->lock, flags);
6066
6067 ehi->probe_mask |= ATA_ALL_DEVICES;
6068 ehi->action |= ATA_EH_RESET | ATA_EH_LPM;
6069 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6070
6071 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6072 ap->pflags |= ATA_PFLAG_LOADING;
6073 ata_port_schedule_eh(ap);
6074
6075 spin_unlock_irqrestore(ap->lock, flags);
6076
6077 /* wait for EH to finish */
6078 ata_port_wait_eh(ap);
6079 } else {
6080 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6081 rc = ata_bus_probe(ap);
6082 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6083
6084 if (rc) {
6085 /* FIXME: do something useful here?
6086 * Current libata behavior will
6087 * tear down everything when
6088 * the module is removed
6089 * or the h/w is unplugged.
6090 */
6091 }
6092 }
f29d3b23
AV
6093
6094 /* in order to keep device order, we need to synchronize at this point */
6095 async_synchronize_cookie(cookie);
6096
6097 ata_scsi_scan_host(ap, 1);
6098
79318057 6099}
f3187195
TH
6100/**
6101 * ata_host_register - register initialized ATA host
6102 * @host: ATA host to register
6103 * @sht: template for SCSI host
6104 *
6105 * Register initialized ATA host. @host is allocated using
6106 * ata_host_alloc() and fully initialized by LLD. This function
6107 * starts ports, registers @host with ATA and SCSI layers and
6108 * probe registered devices.
6109 *
6110 * LOCKING:
6111 * Inherited from calling layer (may sleep).
6112 *
6113 * RETURNS:
6114 * 0 on success, -errno otherwise.
6115 */
6116int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6117{
6118 int i, rc;
6119
6120 /* host must have been started */
6121 if (!(host->flags & ATA_HOST_STARTED)) {
6122 dev_printk(KERN_ERR, host->dev,
6123 "BUG: trying to register unstarted host\n");
6124 WARN_ON(1);
6125 return -EINVAL;
6126 }
6127
6128 /* Blow away unused ports. This happens when LLD can't
6129 * determine the exact number of ports to allocate at
6130 * allocation time.
6131 */
6132 for (i = host->n_ports; host->ports[i]; i++)
6133 kfree(host->ports[i]);
6134
6135 /* give ports names and add SCSI hosts */
6136 for (i = 0; i < host->n_ports; i++)
6137 host->ports[i]->print_id = ata_print_id++;
6138
6139 rc = ata_scsi_add_hosts(host, sht);
6140 if (rc)
6141 return rc;
6142
fafbae87
TH
6143 /* associate with ACPI nodes */
6144 ata_acpi_associate(host);
6145
f3187195
TH
6146 /* set cable, sata_spd_limit and report */
6147 for (i = 0; i < host->n_ports; i++) {
6148 struct ata_port *ap = host->ports[i];
f3187195
TH
6149 unsigned long xfer_mask;
6150
6151 /* set SATA cable type if still unset */
6152 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6153 ap->cbl = ATA_CBL_SATA;
6154
6155 /* init sata_spd_limit to the current value */
4fb37a25 6156 sata_link_init_spd(&ap->link);
b1c72916
TH
6157 if (ap->slave_link)
6158 sata_link_init_spd(ap->slave_link);
f3187195 6159
cbcdd875 6160 /* print per-port info to dmesg */
f3187195
TH
6161 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6162 ap->udma_mask);
6163
abf6e8ed 6164 if (!ata_port_is_dummy(ap)) {
cbcdd875
TH
6165 ata_port_printk(ap, KERN_INFO,
6166 "%cATA max %s %s\n",
a16abc0b 6167 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
f3187195 6168 ata_mode_string(xfer_mask),
cbcdd875 6169 ap->link.eh_info.desc);
abf6e8ed
TH
6170 ata_ehi_clear_desc(&ap->link.eh_info);
6171 } else
f3187195
TH
6172 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6173 }
6174
f6005354 6175 /* perform each probe asynchronously */
f3187195
TH
6176 for (i = 0; i < host->n_ports; i++) {
6177 struct ata_port *ap = host->ports[i];
79318057 6178 async_schedule(async_port_probe, ap);
f3187195 6179 }
f3187195
TH
6180
6181 return 0;
6182}
6183
f5cda257
TH
6184/**
6185 * ata_host_activate - start host, request IRQ and register it
6186 * @host: target ATA host
6187 * @irq: IRQ to request
6188 * @irq_handler: irq_handler used when requesting IRQ
6189 * @irq_flags: irq_flags used when requesting IRQ
6190 * @sht: scsi_host_template to use when registering the host
6191 *
6192 * After allocating an ATA host and initializing it, most libata
6193 * LLDs perform three steps to activate the host - start host,
6194 * request IRQ and register it. This helper takes necessasry
6195 * arguments and performs the three steps in one go.
6196 *
3d46b2e2
PM
6197 * An invalid IRQ skips the IRQ registration and expects the host to
6198 * have set polling mode on the port. In this case, @irq_handler
6199 * should be NULL.
6200 *
f5cda257
TH
6201 * LOCKING:
6202 * Inherited from calling layer (may sleep).
6203 *
6204 * RETURNS:
6205 * 0 on success, -errno otherwise.
6206 */
6207int ata_host_activate(struct ata_host *host, int irq,
6208 irq_handler_t irq_handler, unsigned long irq_flags,
6209 struct scsi_host_template *sht)
6210{
cbcdd875 6211 int i, rc;
f5cda257
TH
6212
6213 rc = ata_host_start(host);
6214 if (rc)
6215 return rc;
6216
3d46b2e2
PM
6217 /* Special case for polling mode */
6218 if (!irq) {
6219 WARN_ON(irq_handler);
6220 return ata_host_register(host, sht);
6221 }
6222
f5cda257
TH
6223 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6224 dev_driver_string(host->dev), host);
6225 if (rc)
6226 return rc;
6227
cbcdd875
TH
6228 for (i = 0; i < host->n_ports; i++)
6229 ata_port_desc(host->ports[i], "irq %d", irq);
4031826b 6230
f5cda257
TH
6231 rc = ata_host_register(host, sht);
6232 /* if failed, just free the IRQ and leave ports alone */
6233 if (rc)
6234 devm_free_irq(host->dev, irq, host);
6235
6236 return rc;
6237}
6238
720ba126
TH
6239/**
6240 * ata_port_detach - Detach ATA port in prepration of device removal
6241 * @ap: ATA port to be detached
6242 *
6243 * Detach all ATA devices and the associated SCSI devices of @ap;
6244 * then, remove the associated SCSI host. @ap is guaranteed to
6245 * be quiescent on return from this function.
6246 *
6247 * LOCKING:
6248 * Kernel thread context (may sleep).
6249 */
741b7763 6250static void ata_port_detach(struct ata_port *ap)
720ba126
TH
6251{
6252 unsigned long flags;
720ba126
TH
6253
6254 if (!ap->ops->error_handler)
c3cf30a9 6255 goto skip_eh;
720ba126
TH
6256
6257 /* tell EH we're leaving & flush EH */
ba6a1308 6258 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 6259 ap->pflags |= ATA_PFLAG_UNLOADING;
ece180d1 6260 ata_port_schedule_eh(ap);
ba6a1308 6261 spin_unlock_irqrestore(ap->lock, flags);
720ba126 6262
ece180d1 6263 /* wait till EH commits suicide */
720ba126
TH
6264 ata_port_wait_eh(ap);
6265
ece180d1
TH
6266 /* it better be dead now */
6267 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
720ba126 6268
45a66c1c 6269 cancel_rearming_delayed_work(&ap->hotplug_task);
720ba126 6270
c3cf30a9 6271 skip_eh:
720ba126 6272 /* remove the associated SCSI host */
cca3974e 6273 scsi_remove_host(ap->scsi_host);
720ba126
TH
6274}
6275
0529c159
TH
6276/**
6277 * ata_host_detach - Detach all ports of an ATA host
6278 * @host: Host to detach
6279 *
6280 * Detach all ports of @host.
6281 *
6282 * LOCKING:
6283 * Kernel thread context (may sleep).
6284 */
6285void ata_host_detach(struct ata_host *host)
6286{
6287 int i;
6288
6289 for (i = 0; i < host->n_ports; i++)
6290 ata_port_detach(host->ports[i]);
562f0c2d
TH
6291
6292 /* the host is dead now, dissociate ACPI */
6293 ata_acpi_dissociate(host);
0529c159
TH
6294}
6295
374b1873
JG
6296#ifdef CONFIG_PCI
6297
1da177e4
LT
6298/**
6299 * ata_pci_remove_one - PCI layer callback for device removal
6300 * @pdev: PCI device that was removed
6301 *
b878ca5d
TH
6302 * PCI layer indicates to libata via this hook that hot-unplug or
6303 * module unload event has occurred. Detach all ports. Resource
6304 * release is handled via devres.
1da177e4
LT
6305 *
6306 * LOCKING:
6307 * Inherited from PCI layer (may sleep).
6308 */
f0d36efd 6309void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4 6310{
2855568b 6311 struct device *dev = &pdev->dev;
cca3974e 6312 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 6313
b878ca5d 6314 ata_host_detach(host);
1da177e4
LT
6315}
6316
6317/* move to PCI subsystem */
057ace5e 6318int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6319{
6320 unsigned long tmp = 0;
6321
6322 switch (bits->width) {
6323 case 1: {
6324 u8 tmp8 = 0;
6325 pci_read_config_byte(pdev, bits->reg, &tmp8);
6326 tmp = tmp8;
6327 break;
6328 }
6329 case 2: {
6330 u16 tmp16 = 0;
6331 pci_read_config_word(pdev, bits->reg, &tmp16);
6332 tmp = tmp16;
6333 break;
6334 }
6335 case 4: {
6336 u32 tmp32 = 0;
6337 pci_read_config_dword(pdev, bits->reg, &tmp32);
6338 tmp = tmp32;
6339 break;
6340 }
6341
6342 default:
6343 return -EINVAL;
6344 }
6345
6346 tmp &= bits->mask;
6347
6348 return (tmp == bits->val) ? 1 : 0;
6349}
9b847548 6350
6ffa01d8 6351#ifdef CONFIG_PM
3c5100c1 6352void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6353{
6354 pci_save_state(pdev);
4c90d971 6355 pci_disable_device(pdev);
500530f6 6356
3a2d5b70 6357 if (mesg.event & PM_EVENT_SLEEP)
500530f6 6358 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
6359}
6360
553c4aa6 6361int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 6362{
553c4aa6
TH
6363 int rc;
6364
9b847548
JA
6365 pci_set_power_state(pdev, PCI_D0);
6366 pci_restore_state(pdev);
553c4aa6 6367
b878ca5d 6368 rc = pcim_enable_device(pdev);
553c4aa6
TH
6369 if (rc) {
6370 dev_printk(KERN_ERR, &pdev->dev,
6371 "failed to enable device after resume (%d)\n", rc);
6372 return rc;
6373 }
6374
9b847548 6375 pci_set_master(pdev);
553c4aa6 6376 return 0;
500530f6
TH
6377}
6378
3c5100c1 6379int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6380{
cca3974e 6381 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
6382 int rc = 0;
6383
cca3974e 6384 rc = ata_host_suspend(host, mesg);
500530f6
TH
6385 if (rc)
6386 return rc;
6387
3c5100c1 6388 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6389
6390 return 0;
6391}
6392
6393int ata_pci_device_resume(struct pci_dev *pdev)
6394{
cca3974e 6395 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 6396 int rc;
500530f6 6397
553c4aa6
TH
6398 rc = ata_pci_device_do_resume(pdev);
6399 if (rc == 0)
6400 ata_host_resume(host);
6401 return rc;
9b847548 6402}
6ffa01d8
TH
6403#endif /* CONFIG_PM */
6404
1da177e4
LT
6405#endif /* CONFIG_PCI */
6406
33267325
TH
6407static int __init ata_parse_force_one(char **cur,
6408 struct ata_force_ent *force_ent,
6409 const char **reason)
6410{
6411 /* FIXME: Currently, there's no way to tag init const data and
6412 * using __initdata causes build failure on some versions of
6413 * gcc. Once __initdataconst is implemented, add const to the
6414 * following structure.
6415 */
6416 static struct ata_force_param force_tbl[] __initdata = {
6417 { "40c", .cbl = ATA_CBL_PATA40 },
6418 { "80c", .cbl = ATA_CBL_PATA80 },
6419 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6420 { "unk", .cbl = ATA_CBL_PATA_UNK },
6421 { "ign", .cbl = ATA_CBL_PATA_IGN },
6422 { "sata", .cbl = ATA_CBL_SATA },
6423 { "1.5Gbps", .spd_limit = 1 },
6424 { "3.0Gbps", .spd_limit = 2 },
6425 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6426 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6427 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6428 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6429 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6430 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6431 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6432 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6433 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6434 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6435 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6436 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6437 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6438 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6439 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6440 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6441 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6442 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6443 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6444 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6445 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6446 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6447 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6448 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6449 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6450 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6451 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6452 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6453 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6454 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6455 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6456 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6457 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6458 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6459 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6460 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
05944bdf
TH
6461 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6462 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6463 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
33267325
TH
6464 };
6465 char *start = *cur, *p = *cur;
6466 char *id, *val, *endp;
6467 const struct ata_force_param *match_fp = NULL;
6468 int nr_matches = 0, i;
6469
6470 /* find where this param ends and update *cur */
6471 while (*p != '\0' && *p != ',')
6472 p++;
6473
6474 if (*p == '\0')
6475 *cur = p;
6476 else
6477 *cur = p + 1;
6478
6479 *p = '\0';
6480
6481 /* parse */
6482 p = strchr(start, ':');
6483 if (!p) {
6484 val = strstrip(start);
6485 goto parse_val;
6486 }
6487 *p = '\0';
6488
6489 id = strstrip(start);
6490 val = strstrip(p + 1);
6491
6492 /* parse id */
6493 p = strchr(id, '.');
6494 if (p) {
6495 *p++ = '\0';
6496 force_ent->device = simple_strtoul(p, &endp, 10);
6497 if (p == endp || *endp != '\0') {
6498 *reason = "invalid device";
6499 return -EINVAL;
6500 }
6501 }
6502
6503 force_ent->port = simple_strtoul(id, &endp, 10);
6504 if (p == endp || *endp != '\0') {
6505 *reason = "invalid port/link";
6506 return -EINVAL;
6507 }
6508
6509 parse_val:
6510 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6511 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6512 const struct ata_force_param *fp = &force_tbl[i];
6513
6514 if (strncasecmp(val, fp->name, strlen(val)))
6515 continue;
6516
6517 nr_matches++;
6518 match_fp = fp;
6519
6520 if (strcasecmp(val, fp->name) == 0) {
6521 nr_matches = 1;
6522 break;
6523 }
6524 }
6525
6526 if (!nr_matches) {
6527 *reason = "unknown value";
6528 return -EINVAL;
6529 }
6530 if (nr_matches > 1) {
6531 *reason = "ambigious value";
6532 return -EINVAL;
6533 }
6534
6535 force_ent->param = *match_fp;
6536
6537 return 0;
6538}
6539
6540static void __init ata_parse_force_param(void)
6541{
6542 int idx = 0, size = 1;
6543 int last_port = -1, last_device = -1;
6544 char *p, *cur, *next;
6545
6546 /* calculate maximum number of params and allocate force_tbl */
6547 for (p = ata_force_param_buf; *p; p++)
6548 if (*p == ',')
6549 size++;
6550
6551 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6552 if (!ata_force_tbl) {
6553 printk(KERN_WARNING "ata: failed to extend force table, "
6554 "libata.force ignored\n");
6555 return;
6556 }
6557
6558 /* parse and populate the table */
6559 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6560 const char *reason = "";
6561 struct ata_force_ent te = { .port = -1, .device = -1 };
6562
6563 next = cur;
6564 if (ata_parse_force_one(&next, &te, &reason)) {
6565 printk(KERN_WARNING "ata: failed to parse force "
6566 "parameter \"%s\" (%s)\n",
6567 cur, reason);
6568 continue;
6569 }
6570
6571 if (te.port == -1) {
6572 te.port = last_port;
6573 te.device = last_device;
6574 }
6575
6576 ata_force_tbl[idx++] = te;
6577
6578 last_port = te.port;
6579 last_device = te.device;
6580 }
6581
6582 ata_force_tbl_size = idx;
6583}
1da177e4 6584
1da177e4
LT
6585static int __init ata_init(void)
6586{
33267325
TH
6587 ata_parse_force_param();
6588
9cd13bdb
BZ
6589 /*
6590 * FIXME: In UP case, there is only one workqueue thread and if you
6591 * have more than one PIO device, latency is bloody awful, with
6592 * occasional multi-second "hiccups" as one PIO device waits for
6593 * another. It's an ugly wart that users DO occasionally complain
6594 * about; luckily most users have at most one PIO polled device.
6595 */
1da177e4
LT
6596 ata_wq = create_workqueue("ata");
6597 if (!ata_wq)
49ea3b04 6598 goto free_force_tbl;
1da177e4 6599
453b07ac 6600 ata_aux_wq = create_singlethread_workqueue("ata_aux");
49ea3b04
EO
6601 if (!ata_aux_wq)
6602 goto free_wq;
453b07ac 6603
1da177e4
LT
6604 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6605 return 0;
49ea3b04
EO
6606
6607free_wq:
6608 destroy_workqueue(ata_wq);
6609free_force_tbl:
6610 kfree(ata_force_tbl);
6611 return -ENOMEM;
1da177e4
LT
6612}
6613
6614static void __exit ata_exit(void)
6615{
33267325 6616 kfree(ata_force_tbl);
1da177e4 6617 destroy_workqueue(ata_wq);
453b07ac 6618 destroy_workqueue(ata_aux_wq);
1da177e4
LT
6619}
6620
a4625085 6621subsys_initcall(ata_init);
1da177e4
LT
6622module_exit(ata_exit);
6623
9990b6f3 6624static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
67846b30
JG
6625
6626int ata_ratelimit(void)
6627{
9990b6f3 6628 return __ratelimit(&ratelimit);
67846b30
JG
6629}
6630
c22daff4
TH
6631/**
6632 * ata_wait_register - wait until register value changes
6633 * @reg: IO-mapped register
6634 * @mask: Mask to apply to read register value
6635 * @val: Wait condition
341c2c95
TH
6636 * @interval: polling interval in milliseconds
6637 * @timeout: timeout in milliseconds
c22daff4
TH
6638 *
6639 * Waiting for some bits of register to change is a common
6640 * operation for ATA controllers. This function reads 32bit LE
6641 * IO-mapped register @reg and tests for the following condition.
6642 *
6643 * (*@reg & mask) != val
6644 *
6645 * If the condition is met, it returns; otherwise, the process is
6646 * repeated after @interval_msec until timeout.
6647 *
6648 * LOCKING:
6649 * Kernel thread context (may sleep)
6650 *
6651 * RETURNS:
6652 * The final register value.
6653 */
6654u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
341c2c95 6655 unsigned long interval, unsigned long timeout)
c22daff4 6656{
341c2c95 6657 unsigned long deadline;
c22daff4
TH
6658 u32 tmp;
6659
6660 tmp = ioread32(reg);
6661
6662 /* Calculate timeout _after_ the first read to make sure
6663 * preceding writes reach the controller before starting to
6664 * eat away the timeout.
6665 */
341c2c95 6666 deadline = ata_deadline(jiffies, timeout);
c22daff4 6667
341c2c95
TH
6668 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6669 msleep(interval);
c22daff4
TH
6670 tmp = ioread32(reg);
6671 }
6672
6673 return tmp;
6674}
6675
dd5b06c4
TH
6676/*
6677 * Dummy port_ops
6678 */
182d7bba 6679static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
dd5b06c4 6680{
182d7bba 6681 return AC_ERR_SYSTEM;
dd5b06c4
TH
6682}
6683
182d7bba 6684static void ata_dummy_error_handler(struct ata_port *ap)
dd5b06c4 6685{
182d7bba 6686 /* truly dummy */
dd5b06c4
TH
6687}
6688
029cfd6b 6689struct ata_port_operations ata_dummy_port_ops = {
dd5b06c4
TH
6690 .qc_prep = ata_noop_qc_prep,
6691 .qc_issue = ata_dummy_qc_issue,
182d7bba 6692 .error_handler = ata_dummy_error_handler,
dd5b06c4
TH
6693};
6694
21b0ad4f
TH
6695const struct ata_port_info ata_dummy_port_info = {
6696 .port_ops = &ata_dummy_port_ops,
6697};
6698
1da177e4
LT
6699/*
6700 * libata is essentially a library of internal helper functions for
6701 * low-level ATA host controller drivers. As such, the API/ABI is
6702 * likely to change as new drivers are added and updated.
6703 * Do not depend on ABI/API stability.
6704 */
e9c83914
TH
6705EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6706EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6707EXPORT_SYMBOL_GPL(sata_deb_timing_long);
029cfd6b
TH
6708EXPORT_SYMBOL_GPL(ata_base_port_ops);
6709EXPORT_SYMBOL_GPL(sata_port_ops);
dd5b06c4 6710EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 6711EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1eca4365
TH
6712EXPORT_SYMBOL_GPL(ata_link_next);
6713EXPORT_SYMBOL_GPL(ata_dev_next);
1da177e4 6714EXPORT_SYMBOL_GPL(ata_std_bios_param);
cca3974e 6715EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 6716EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 6717EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
b1c72916 6718EXPORT_SYMBOL_GPL(ata_slave_link_init);
ecef7253 6719EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 6720EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 6721EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 6722EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4 6723EXPORT_SYMBOL_GPL(ata_sg_init);
f686bcb8 6724EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 6725EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
436d34b3 6726EXPORT_SYMBOL_GPL(atapi_cmd_type);
1da177e4
LT
6727EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6728EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6357357c
TH
6729EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6730EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6731EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6732EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6733EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6734EXPORT_SYMBOL_GPL(ata_mode_string);
6735EXPORT_SYMBOL_GPL(ata_id_xfermask);
04351821 6736EXPORT_SYMBOL_GPL(ata_do_set_mode);
31cc23b3 6737EXPORT_SYMBOL_GPL(ata_std_qc_defer);
e46834cd 6738EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
10305f0f 6739EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 6740EXPORT_SYMBOL_GPL(sata_set_spd);
aa2731ad 6741EXPORT_SYMBOL_GPL(ata_wait_after_reset);
936fd732
TH
6742EXPORT_SYMBOL_GPL(sata_link_debounce);
6743EXPORT_SYMBOL_GPL(sata_link_resume);
0aa1113d 6744EXPORT_SYMBOL_GPL(ata_std_prereset);
cc0680a5 6745EXPORT_SYMBOL_GPL(sata_link_hardreset);
57c9efdf 6746EXPORT_SYMBOL_GPL(sata_std_hardreset);
203c75b8 6747EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
6748EXPORT_SYMBOL_GPL(ata_dev_classify);
6749EXPORT_SYMBOL_GPL(ata_dev_pair);
67846b30 6750EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 6751EXPORT_SYMBOL_GPL(ata_wait_register);
1da177e4 6752EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 6753EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 6754EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 6755EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
34bf2170
TH
6756EXPORT_SYMBOL_GPL(sata_scr_valid);
6757EXPORT_SYMBOL_GPL(sata_scr_read);
6758EXPORT_SYMBOL_GPL(sata_scr_write);
6759EXPORT_SYMBOL_GPL(sata_scr_write_flush);
936fd732
TH
6760EXPORT_SYMBOL_GPL(ata_link_online);
6761EXPORT_SYMBOL_GPL(ata_link_offline);
6ffa01d8 6762#ifdef CONFIG_PM
cca3974e
JG
6763EXPORT_SYMBOL_GPL(ata_host_suspend);
6764EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 6765#endif /* CONFIG_PM */
6a62a04d
TH
6766EXPORT_SYMBOL_GPL(ata_id_string);
6767EXPORT_SYMBOL_GPL(ata_id_c_string);
963e4975 6768EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1da177e4
LT
6769EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6770
1a660164 6771EXPORT_SYMBOL_GPL(ata_pio_queue_task);
1bc4ccff 6772EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6357357c 6773EXPORT_SYMBOL_GPL(ata_timing_find_mode);
452503f9
AC
6774EXPORT_SYMBOL_GPL(ata_timing_compute);
6775EXPORT_SYMBOL_GPL(ata_timing_merge);
a0f79b92 6776EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
452503f9 6777
1da177e4
LT
6778#ifdef CONFIG_PCI
6779EXPORT_SYMBOL_GPL(pci_test_config_bits);
1da177e4 6780EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 6781#ifdef CONFIG_PM
500530f6
TH
6782EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6783EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
6784EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6785EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 6786#endif /* CONFIG_PM */
1da177e4 6787#endif /* CONFIG_PCI */
9b847548 6788
b64bbc39
TH
6789EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6790EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6791EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
cbcdd875
TH
6792EXPORT_SYMBOL_GPL(ata_port_desc);
6793#ifdef CONFIG_PCI
6794EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6795#endif /* CONFIG_PCI */
7b70fc03 6796EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
dbd82616 6797EXPORT_SYMBOL_GPL(ata_link_abort);
7b70fc03 6798EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499 6799EXPORT_SYMBOL_GPL(ata_port_freeze);
7d77b247 6800EXPORT_SYMBOL_GPL(sata_async_notification);
e3180499
TH
6801EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6802EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
6803EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6804EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
10acf3b0 6805EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
022bdb07 6806EXPORT_SYMBOL_GPL(ata_do_eh);
a1efdaba 6807EXPORT_SYMBOL_GPL(ata_std_error_handler);
be0d18df
AC
6808
6809EXPORT_SYMBOL_GPL(ata_cable_40wire);
6810EXPORT_SYMBOL_GPL(ata_cable_80wire);
6811EXPORT_SYMBOL_GPL(ata_cable_unknown);
c88f90c3 6812EXPORT_SYMBOL_GPL(ata_cable_ignore);
be0d18df 6813EXPORT_SYMBOL_GPL(ata_cable_sata);