Merge branch 'tracing-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-block.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
92c52c52
AC
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
1da177e4
LT
41 */
42
1da177e4
LT
43#include <linux/kernel.h>
44#include <linux/module.h>
45#include <linux/pci.h>
46#include <linux/init.h>
47#include <linux/list.h>
48#include <linux/mm.h>
1da177e4
LT
49#include <linux/spinlock.h>
50#include <linux/blkdev.h>
51#include <linux/delay.h>
52#include <linux/timer.h>
53#include <linux/interrupt.h>
54#include <linux/completion.h>
55#include <linux/suspend.h>
56#include <linux/workqueue.h>
378f058c 57#include <linux/scatterlist.h>
2dcb407e 58#include <linux/io.h>
79318057 59#include <linux/async.h>
1da177e4 60#include <scsi/scsi.h>
193515d5 61#include <scsi/scsi_cmnd.h>
1da177e4
LT
62#include <scsi/scsi_host.h>
63#include <linux/libata.h>
1da177e4 64#include <asm/byteorder.h>
140b5e59 65#include <linux/cdrom.h>
1da177e4
LT
66
67#include "libata.h"
68
fda0efc5 69
d7bb4cc7 70/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
71const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
72const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
73const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 74
029cfd6b 75const struct ata_port_operations ata_base_port_ops = {
0aa1113d 76 .prereset = ata_std_prereset,
203c75b8 77 .postreset = ata_std_postreset,
a1efdaba 78 .error_handler = ata_std_error_handler,
029cfd6b
TH
79};
80
81const struct ata_port_operations sata_port_ops = {
82 .inherits = &ata_base_port_ops,
83
84 .qc_defer = ata_std_qc_defer,
57c9efdf 85 .hardreset = sata_std_hardreset,
029cfd6b
TH
86};
87
3373efd8
TH
88static unsigned int ata_dev_init_params(struct ata_device *dev,
89 u16 heads, u16 sectors);
90static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
218f3d30
JG
91static unsigned int ata_dev_set_feature(struct ata_device *dev,
92 u8 enable, u8 feature);
3373efd8 93static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 94static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 95
f3187195 96unsigned int ata_print_id = 1;
1da177e4
LT
97static struct workqueue_struct *ata_wq;
98
453b07ac
TH
99struct workqueue_struct *ata_aux_wq;
100
33267325
TH
101struct ata_force_param {
102 const char *name;
103 unsigned int cbl;
104 int spd_limit;
105 unsigned long xfer_mask;
106 unsigned int horkage_on;
107 unsigned int horkage_off;
05944bdf 108 unsigned int lflags;
33267325
TH
109};
110
111struct ata_force_ent {
112 int port;
113 int device;
114 struct ata_force_param param;
115};
116
117static struct ata_force_ent *ata_force_tbl;
118static int ata_force_tbl_size;
119
120static char ata_force_param_buf[PAGE_SIZE] __initdata;
7afb4222
TH
121/* param_buf is thrown away after initialization, disallow read */
122module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
33267325
TH
123MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
124
2486fa56 125static int atapi_enabled = 1;
1623c81e
JG
126module_param(atapi_enabled, int, 0444);
127MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
128
c5c61bda 129static int atapi_dmadir = 0;
95de719a
AL
130module_param(atapi_dmadir, int, 0444);
131MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
132
baf4fdfa
ML
133int atapi_passthru16 = 1;
134module_param(atapi_passthru16, int, 0444);
135MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
136
c3c013a2
JG
137int libata_fua = 0;
138module_param_named(fua, libata_fua, int, 0444);
139MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
140
2dcb407e 141static int ata_ignore_hpa;
1e999736
AC
142module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
143MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
144
b3a70601
AC
145static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
146module_param_named(dma, libata_dma_mask, int, 0444);
147MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
148
87fbc5a0 149static int ata_probe_timeout;
a8601e5f
AM
150module_param(ata_probe_timeout, int, 0444);
151MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
152
6ebe9d86 153int libata_noacpi = 0;
d7d0dad6 154module_param_named(noacpi, libata_noacpi, int, 0444);
6ebe9d86 155MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
11ef697b 156
ae8d4ee7
AC
157int libata_allow_tpm = 0;
158module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
159MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands");
160
1da177e4
LT
161MODULE_AUTHOR("Jeff Garzik");
162MODULE_DESCRIPTION("Library module for ATA devices");
163MODULE_LICENSE("GPL");
164MODULE_VERSION(DRV_VERSION);
165
0baab86b 166
9913ff8a
TH
167static bool ata_sstatus_online(u32 sstatus)
168{
169 return (sstatus & 0xf) == 0x3;
170}
171
1eca4365
TH
172/**
173 * ata_link_next - link iteration helper
174 * @link: the previous link, NULL to start
175 * @ap: ATA port containing links to iterate
176 * @mode: iteration mode, one of ATA_LITER_*
177 *
178 * LOCKING:
179 * Host lock or EH context.
aadffb68 180 *
1eca4365
TH
181 * RETURNS:
182 * Pointer to the next link.
aadffb68 183 */
1eca4365
TH
184struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
185 enum ata_link_iter_mode mode)
aadffb68 186{
1eca4365
TH
187 BUG_ON(mode != ATA_LITER_EDGE &&
188 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
189
aadffb68 190 /* NULL link indicates start of iteration */
1eca4365
TH
191 if (!link)
192 switch (mode) {
193 case ATA_LITER_EDGE:
194 case ATA_LITER_PMP_FIRST:
195 if (sata_pmp_attached(ap))
196 return ap->pmp_link;
197 /* fall through */
198 case ATA_LITER_HOST_FIRST:
199 return &ap->link;
200 }
aadffb68 201
1eca4365
TH
202 /* we just iterated over the host link, what's next? */
203 if (link == &ap->link)
204 switch (mode) {
205 case ATA_LITER_HOST_FIRST:
206 if (sata_pmp_attached(ap))
207 return ap->pmp_link;
208 /* fall through */
209 case ATA_LITER_PMP_FIRST:
210 if (unlikely(ap->slave_link))
b1c72916 211 return ap->slave_link;
1eca4365
TH
212 /* fall through */
213 case ATA_LITER_EDGE:
aadffb68 214 return NULL;
b1c72916 215 }
aadffb68 216
b1c72916
TH
217 /* slave_link excludes PMP */
218 if (unlikely(link == ap->slave_link))
219 return NULL;
220
1eca4365 221 /* we were over a PMP link */
aadffb68
TH
222 if (++link < ap->pmp_link + ap->nr_pmp_links)
223 return link;
1eca4365
TH
224
225 if (mode == ATA_LITER_PMP_FIRST)
226 return &ap->link;
227
aadffb68
TH
228 return NULL;
229}
230
1eca4365
TH
231/**
232 * ata_dev_next - device iteration helper
233 * @dev: the previous device, NULL to start
234 * @link: ATA link containing devices to iterate
235 * @mode: iteration mode, one of ATA_DITER_*
236 *
237 * LOCKING:
238 * Host lock or EH context.
239 *
240 * RETURNS:
241 * Pointer to the next device.
242 */
243struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
244 enum ata_dev_iter_mode mode)
245{
246 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
247 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
248
249 /* NULL dev indicates start of iteration */
250 if (!dev)
251 switch (mode) {
252 case ATA_DITER_ENABLED:
253 case ATA_DITER_ALL:
254 dev = link->device;
255 goto check;
256 case ATA_DITER_ENABLED_REVERSE:
257 case ATA_DITER_ALL_REVERSE:
258 dev = link->device + ata_link_max_devices(link) - 1;
259 goto check;
260 }
261
262 next:
263 /* move to the next one */
264 switch (mode) {
265 case ATA_DITER_ENABLED:
266 case ATA_DITER_ALL:
267 if (++dev < link->device + ata_link_max_devices(link))
268 goto check;
269 return NULL;
270 case ATA_DITER_ENABLED_REVERSE:
271 case ATA_DITER_ALL_REVERSE:
272 if (--dev >= link->device)
273 goto check;
274 return NULL;
275 }
276
277 check:
278 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
279 !ata_dev_enabled(dev))
280 goto next;
281 return dev;
282}
283
b1c72916
TH
284/**
285 * ata_dev_phys_link - find physical link for a device
286 * @dev: ATA device to look up physical link for
287 *
288 * Look up physical link which @dev is attached to. Note that
289 * this is different from @dev->link only when @dev is on slave
290 * link. For all other cases, it's the same as @dev->link.
291 *
292 * LOCKING:
293 * Don't care.
294 *
295 * RETURNS:
296 * Pointer to the found physical link.
297 */
298struct ata_link *ata_dev_phys_link(struct ata_device *dev)
299{
300 struct ata_port *ap = dev->link->ap;
301
302 if (!ap->slave_link)
303 return dev->link;
304 if (!dev->devno)
305 return &ap->link;
306 return ap->slave_link;
307}
308
33267325
TH
309/**
310 * ata_force_cbl - force cable type according to libata.force
4cdfa1b3 311 * @ap: ATA port of interest
33267325
TH
312 *
313 * Force cable type according to libata.force and whine about it.
314 * The last entry which has matching port number is used, so it
315 * can be specified as part of device force parameters. For
316 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
317 * same effect.
318 *
319 * LOCKING:
320 * EH context.
321 */
322void ata_force_cbl(struct ata_port *ap)
323{
324 int i;
325
326 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
327 const struct ata_force_ent *fe = &ata_force_tbl[i];
328
329 if (fe->port != -1 && fe->port != ap->print_id)
330 continue;
331
332 if (fe->param.cbl == ATA_CBL_NONE)
333 continue;
334
335 ap->cbl = fe->param.cbl;
336 ata_port_printk(ap, KERN_NOTICE,
337 "FORCE: cable set to %s\n", fe->param.name);
338 return;
339 }
340}
341
342/**
05944bdf 343 * ata_force_link_limits - force link limits according to libata.force
33267325
TH
344 * @link: ATA link of interest
345 *
05944bdf
TH
346 * Force link flags and SATA spd limit according to libata.force
347 * and whine about it. When only the port part is specified
348 * (e.g. 1:), the limit applies to all links connected to both
349 * the host link and all fan-out ports connected via PMP. If the
350 * device part is specified as 0 (e.g. 1.00:), it specifies the
351 * first fan-out link not the host link. Device number 15 always
b1c72916
TH
352 * points to the host link whether PMP is attached or not. If the
353 * controller has slave link, device number 16 points to it.
33267325
TH
354 *
355 * LOCKING:
356 * EH context.
357 */
05944bdf 358static void ata_force_link_limits(struct ata_link *link)
33267325 359{
05944bdf 360 bool did_spd = false;
b1c72916
TH
361 int linkno = link->pmp;
362 int i;
33267325
TH
363
364 if (ata_is_host_link(link))
b1c72916 365 linkno += 15;
33267325
TH
366
367 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
368 const struct ata_force_ent *fe = &ata_force_tbl[i];
369
370 if (fe->port != -1 && fe->port != link->ap->print_id)
371 continue;
372
373 if (fe->device != -1 && fe->device != linkno)
374 continue;
375
05944bdf
TH
376 /* only honor the first spd limit */
377 if (!did_spd && fe->param.spd_limit) {
378 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
379 ata_link_printk(link, KERN_NOTICE,
380 "FORCE: PHY spd limit set to %s\n",
381 fe->param.name);
382 did_spd = true;
383 }
33267325 384
05944bdf
TH
385 /* let lflags stack */
386 if (fe->param.lflags) {
387 link->flags |= fe->param.lflags;
388 ata_link_printk(link, KERN_NOTICE,
389 "FORCE: link flag 0x%x forced -> 0x%x\n",
390 fe->param.lflags, link->flags);
391 }
33267325
TH
392 }
393}
394
395/**
396 * ata_force_xfermask - force xfermask according to libata.force
397 * @dev: ATA device of interest
398 *
399 * Force xfer_mask according to libata.force and whine about it.
400 * For consistency with link selection, device number 15 selects
401 * the first device connected to the host link.
402 *
403 * LOCKING:
404 * EH context.
405 */
406static void ata_force_xfermask(struct ata_device *dev)
407{
408 int devno = dev->link->pmp + dev->devno;
409 int alt_devno = devno;
410 int i;
411
b1c72916
TH
412 /* allow n.15/16 for devices attached to host port */
413 if (ata_is_host_link(dev->link))
414 alt_devno += 15;
33267325
TH
415
416 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
417 const struct ata_force_ent *fe = &ata_force_tbl[i];
418 unsigned long pio_mask, mwdma_mask, udma_mask;
419
420 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
421 continue;
422
423 if (fe->device != -1 && fe->device != devno &&
424 fe->device != alt_devno)
425 continue;
426
427 if (!fe->param.xfer_mask)
428 continue;
429
430 ata_unpack_xfermask(fe->param.xfer_mask,
431 &pio_mask, &mwdma_mask, &udma_mask);
432 if (udma_mask)
433 dev->udma_mask = udma_mask;
434 else if (mwdma_mask) {
435 dev->udma_mask = 0;
436 dev->mwdma_mask = mwdma_mask;
437 } else {
438 dev->udma_mask = 0;
439 dev->mwdma_mask = 0;
440 dev->pio_mask = pio_mask;
441 }
442
443 ata_dev_printk(dev, KERN_NOTICE,
444 "FORCE: xfer_mask set to %s\n", fe->param.name);
445 return;
446 }
447}
448
449/**
450 * ata_force_horkage - force horkage according to libata.force
451 * @dev: ATA device of interest
452 *
453 * Force horkage according to libata.force and whine about it.
454 * For consistency with link selection, device number 15 selects
455 * the first device connected to the host link.
456 *
457 * LOCKING:
458 * EH context.
459 */
460static void ata_force_horkage(struct ata_device *dev)
461{
462 int devno = dev->link->pmp + dev->devno;
463 int alt_devno = devno;
464 int i;
465
b1c72916
TH
466 /* allow n.15/16 for devices attached to host port */
467 if (ata_is_host_link(dev->link))
468 alt_devno += 15;
33267325
TH
469
470 for (i = 0; i < ata_force_tbl_size; i++) {
471 const struct ata_force_ent *fe = &ata_force_tbl[i];
472
473 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
474 continue;
475
476 if (fe->device != -1 && fe->device != devno &&
477 fe->device != alt_devno)
478 continue;
479
480 if (!(~dev->horkage & fe->param.horkage_on) &&
481 !(dev->horkage & fe->param.horkage_off))
482 continue;
483
484 dev->horkage |= fe->param.horkage_on;
485 dev->horkage &= ~fe->param.horkage_off;
486
487 ata_dev_printk(dev, KERN_NOTICE,
488 "FORCE: horkage modified (%s)\n", fe->param.name);
489 }
490}
491
436d34b3
TH
492/**
493 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
494 * @opcode: SCSI opcode
495 *
496 * Determine ATAPI command type from @opcode.
497 *
498 * LOCKING:
499 * None.
500 *
501 * RETURNS:
502 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
503 */
504int atapi_cmd_type(u8 opcode)
505{
506 switch (opcode) {
507 case GPCMD_READ_10:
508 case GPCMD_READ_12:
509 return ATAPI_READ;
510
511 case GPCMD_WRITE_10:
512 case GPCMD_WRITE_12:
513 case GPCMD_WRITE_AND_VERIFY_10:
514 return ATAPI_WRITE;
515
516 case GPCMD_READ_CD:
517 case GPCMD_READ_CD_MSF:
518 return ATAPI_READ_CD;
519
e52dcc48
TH
520 case ATA_16:
521 case ATA_12:
522 if (atapi_passthru16)
523 return ATAPI_PASS_THRU;
524 /* fall thru */
436d34b3
TH
525 default:
526 return ATAPI_MISC;
527 }
528}
529
1da177e4
LT
530/**
531 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
532 * @tf: Taskfile to convert
1da177e4 533 * @pmp: Port multiplier port
9977126c
TH
534 * @is_cmd: This FIS is for command
535 * @fis: Buffer into which data will output
1da177e4
LT
536 *
537 * Converts a standard ATA taskfile to a Serial ATA
538 * FIS structure (Register - Host to Device).
539 *
540 * LOCKING:
541 * Inherited from caller.
542 */
9977126c 543void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 544{
9977126c
TH
545 fis[0] = 0x27; /* Register - Host to Device FIS */
546 fis[1] = pmp & 0xf; /* Port multiplier number*/
547 if (is_cmd)
548 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
549
1da177e4
LT
550 fis[2] = tf->command;
551 fis[3] = tf->feature;
552
553 fis[4] = tf->lbal;
554 fis[5] = tf->lbam;
555 fis[6] = tf->lbah;
556 fis[7] = tf->device;
557
558 fis[8] = tf->hob_lbal;
559 fis[9] = tf->hob_lbam;
560 fis[10] = tf->hob_lbah;
561 fis[11] = tf->hob_feature;
562
563 fis[12] = tf->nsect;
564 fis[13] = tf->hob_nsect;
565 fis[14] = 0;
566 fis[15] = tf->ctl;
567
568 fis[16] = 0;
569 fis[17] = 0;
570 fis[18] = 0;
571 fis[19] = 0;
572}
573
574/**
575 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
576 * @fis: Buffer from which data will be input
577 * @tf: Taskfile to output
578 *
e12a1be6 579 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
580 *
581 * LOCKING:
582 * Inherited from caller.
583 */
584
057ace5e 585void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
586{
587 tf->command = fis[2]; /* status */
588 tf->feature = fis[3]; /* error */
589
590 tf->lbal = fis[4];
591 tf->lbam = fis[5];
592 tf->lbah = fis[6];
593 tf->device = fis[7];
594
595 tf->hob_lbal = fis[8];
596 tf->hob_lbam = fis[9];
597 tf->hob_lbah = fis[10];
598
599 tf->nsect = fis[12];
600 tf->hob_nsect = fis[13];
601}
602
8cbd6df1
AL
603static const u8 ata_rw_cmds[] = {
604 /* pio multi */
605 ATA_CMD_READ_MULTI,
606 ATA_CMD_WRITE_MULTI,
607 ATA_CMD_READ_MULTI_EXT,
608 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
609 0,
610 0,
611 0,
612 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
613 /* pio */
614 ATA_CMD_PIO_READ,
615 ATA_CMD_PIO_WRITE,
616 ATA_CMD_PIO_READ_EXT,
617 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
618 0,
619 0,
620 0,
621 0,
8cbd6df1
AL
622 /* dma */
623 ATA_CMD_READ,
624 ATA_CMD_WRITE,
625 ATA_CMD_READ_EXT,
9a3dccc4
TH
626 ATA_CMD_WRITE_EXT,
627 0,
628 0,
629 0,
630 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 631};
1da177e4
LT
632
633/**
8cbd6df1 634 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
635 * @tf: command to examine and configure
636 * @dev: device tf belongs to
1da177e4 637 *
2e9edbf8 638 * Examine the device configuration and tf->flags to calculate
8cbd6df1 639 * the proper read/write commands and protocol to use.
1da177e4
LT
640 *
641 * LOCKING:
642 * caller.
643 */
bd056d7e 644static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 645{
9a3dccc4 646 u8 cmd;
1da177e4 647
9a3dccc4 648 int index, fua, lba48, write;
2e9edbf8 649
9a3dccc4 650 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
651 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
652 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 653
8cbd6df1
AL
654 if (dev->flags & ATA_DFLAG_PIO) {
655 tf->protocol = ATA_PROT_PIO;
9a3dccc4 656 index = dev->multi_count ? 0 : 8;
9af5c9c9 657 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
658 /* Unable to use DMA due to host limitation */
659 tf->protocol = ATA_PROT_PIO;
0565c26d 660 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
661 } else {
662 tf->protocol = ATA_PROT_DMA;
9a3dccc4 663 index = 16;
8cbd6df1 664 }
1da177e4 665
9a3dccc4
TH
666 cmd = ata_rw_cmds[index + fua + lba48 + write];
667 if (cmd) {
668 tf->command = cmd;
669 return 0;
670 }
671 return -1;
1da177e4
LT
672}
673
35b649fe
TH
674/**
675 * ata_tf_read_block - Read block address from ATA taskfile
676 * @tf: ATA taskfile of interest
677 * @dev: ATA device @tf belongs to
678 *
679 * LOCKING:
680 * None.
681 *
682 * Read block address from @tf. This function can handle all
683 * three address formats - LBA, LBA48 and CHS. tf->protocol and
684 * flags select the address format to use.
685 *
686 * RETURNS:
687 * Block address read from @tf.
688 */
689u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
690{
691 u64 block = 0;
692
693 if (tf->flags & ATA_TFLAG_LBA) {
694 if (tf->flags & ATA_TFLAG_LBA48) {
695 block |= (u64)tf->hob_lbah << 40;
696 block |= (u64)tf->hob_lbam << 32;
44901a96 697 block |= (u64)tf->hob_lbal << 24;
35b649fe
TH
698 } else
699 block |= (tf->device & 0xf) << 24;
700
701 block |= tf->lbah << 16;
702 block |= tf->lbam << 8;
703 block |= tf->lbal;
704 } else {
705 u32 cyl, head, sect;
706
707 cyl = tf->lbam | (tf->lbah << 8);
708 head = tf->device & 0xf;
709 sect = tf->lbal;
710
711 block = (cyl * dev->heads + head) * dev->sectors + sect;
712 }
713
714 return block;
715}
716
bd056d7e
TH
717/**
718 * ata_build_rw_tf - Build ATA taskfile for given read/write request
719 * @tf: Target ATA taskfile
720 * @dev: ATA device @tf belongs to
721 * @block: Block address
722 * @n_block: Number of blocks
723 * @tf_flags: RW/FUA etc...
724 * @tag: tag
725 *
726 * LOCKING:
727 * None.
728 *
729 * Build ATA taskfile @tf for read/write request described by
730 * @block, @n_block, @tf_flags and @tag on @dev.
731 *
732 * RETURNS:
733 *
734 * 0 on success, -ERANGE if the request is too large for @dev,
735 * -EINVAL if the request is invalid.
736 */
737int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
738 u64 block, u32 n_block, unsigned int tf_flags,
739 unsigned int tag)
740{
741 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
742 tf->flags |= tf_flags;
743
6d1245bf 744 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
745 /* yay, NCQ */
746 if (!lba_48_ok(block, n_block))
747 return -ERANGE;
748
749 tf->protocol = ATA_PROT_NCQ;
750 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
751
752 if (tf->flags & ATA_TFLAG_WRITE)
753 tf->command = ATA_CMD_FPDMA_WRITE;
754 else
755 tf->command = ATA_CMD_FPDMA_READ;
756
757 tf->nsect = tag << 3;
758 tf->hob_feature = (n_block >> 8) & 0xff;
759 tf->feature = n_block & 0xff;
760
761 tf->hob_lbah = (block >> 40) & 0xff;
762 tf->hob_lbam = (block >> 32) & 0xff;
763 tf->hob_lbal = (block >> 24) & 0xff;
764 tf->lbah = (block >> 16) & 0xff;
765 tf->lbam = (block >> 8) & 0xff;
766 tf->lbal = block & 0xff;
767
768 tf->device = 1 << 6;
769 if (tf->flags & ATA_TFLAG_FUA)
770 tf->device |= 1 << 7;
771 } else if (dev->flags & ATA_DFLAG_LBA) {
772 tf->flags |= ATA_TFLAG_LBA;
773
774 if (lba_28_ok(block, n_block)) {
775 /* use LBA28 */
776 tf->device |= (block >> 24) & 0xf;
777 } else if (lba_48_ok(block, n_block)) {
778 if (!(dev->flags & ATA_DFLAG_LBA48))
779 return -ERANGE;
780
781 /* use LBA48 */
782 tf->flags |= ATA_TFLAG_LBA48;
783
784 tf->hob_nsect = (n_block >> 8) & 0xff;
785
786 tf->hob_lbah = (block >> 40) & 0xff;
787 tf->hob_lbam = (block >> 32) & 0xff;
788 tf->hob_lbal = (block >> 24) & 0xff;
789 } else
790 /* request too large even for LBA48 */
791 return -ERANGE;
792
793 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
794 return -EINVAL;
795
796 tf->nsect = n_block & 0xff;
797
798 tf->lbah = (block >> 16) & 0xff;
799 tf->lbam = (block >> 8) & 0xff;
800 tf->lbal = block & 0xff;
801
802 tf->device |= ATA_LBA;
803 } else {
804 /* CHS */
805 u32 sect, head, cyl, track;
806
807 /* The request -may- be too large for CHS addressing. */
808 if (!lba_28_ok(block, n_block))
809 return -ERANGE;
810
811 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
812 return -EINVAL;
813
814 /* Convert LBA to CHS */
815 track = (u32)block / dev->sectors;
816 cyl = track / dev->heads;
817 head = track % dev->heads;
818 sect = (u32)block % dev->sectors + 1;
819
820 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
821 (u32)block, track, cyl, head, sect);
822
823 /* Check whether the converted CHS can fit.
824 Cylinder: 0-65535
825 Head: 0-15
826 Sector: 1-255*/
827 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
828 return -ERANGE;
829
830 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
831 tf->lbal = sect;
832 tf->lbam = cyl;
833 tf->lbah = cyl >> 8;
834 tf->device |= head;
835 }
836
837 return 0;
838}
839
cb95d562
TH
840/**
841 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
842 * @pio_mask: pio_mask
843 * @mwdma_mask: mwdma_mask
844 * @udma_mask: udma_mask
845 *
846 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
847 * unsigned int xfer_mask.
848 *
849 * LOCKING:
850 * None.
851 *
852 * RETURNS:
853 * Packed xfer_mask.
854 */
7dc951ae
TH
855unsigned long ata_pack_xfermask(unsigned long pio_mask,
856 unsigned long mwdma_mask,
857 unsigned long udma_mask)
cb95d562
TH
858{
859 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
860 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
861 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
862}
863
c0489e4e
TH
864/**
865 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
866 * @xfer_mask: xfer_mask to unpack
867 * @pio_mask: resulting pio_mask
868 * @mwdma_mask: resulting mwdma_mask
869 * @udma_mask: resulting udma_mask
870 *
871 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
872 * Any NULL distination masks will be ignored.
873 */
7dc951ae
TH
874void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
875 unsigned long *mwdma_mask, unsigned long *udma_mask)
c0489e4e
TH
876{
877 if (pio_mask)
878 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
879 if (mwdma_mask)
880 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
881 if (udma_mask)
882 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
883}
884
cb95d562 885static const struct ata_xfer_ent {
be9a50c8 886 int shift, bits;
cb95d562
TH
887 u8 base;
888} ata_xfer_tbl[] = {
70cd071e
TH
889 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
890 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
891 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
cb95d562
TH
892 { -1, },
893};
894
895/**
896 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
897 * @xfer_mask: xfer_mask of interest
898 *
899 * Return matching XFER_* value for @xfer_mask. Only the highest
900 * bit of @xfer_mask is considered.
901 *
902 * LOCKING:
903 * None.
904 *
905 * RETURNS:
70cd071e 906 * Matching XFER_* value, 0xff if no match found.
cb95d562 907 */
7dc951ae 908u8 ata_xfer_mask2mode(unsigned long xfer_mask)
cb95d562
TH
909{
910 int highbit = fls(xfer_mask) - 1;
911 const struct ata_xfer_ent *ent;
912
913 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
914 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
915 return ent->base + highbit - ent->shift;
70cd071e 916 return 0xff;
cb95d562
TH
917}
918
919/**
920 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
921 * @xfer_mode: XFER_* of interest
922 *
923 * Return matching xfer_mask for @xfer_mode.
924 *
925 * LOCKING:
926 * None.
927 *
928 * RETURNS:
929 * Matching xfer_mask, 0 if no match found.
930 */
7dc951ae 931unsigned long ata_xfer_mode2mask(u8 xfer_mode)
cb95d562
TH
932{
933 const struct ata_xfer_ent *ent;
934
935 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
936 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
70cd071e
TH
937 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
938 & ~((1 << ent->shift) - 1);
cb95d562
TH
939 return 0;
940}
941
942/**
943 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
944 * @xfer_mode: XFER_* of interest
945 *
946 * Return matching xfer_shift for @xfer_mode.
947 *
948 * LOCKING:
949 * None.
950 *
951 * RETURNS:
952 * Matching xfer_shift, -1 if no match found.
953 */
7dc951ae 954int ata_xfer_mode2shift(unsigned long xfer_mode)
cb95d562
TH
955{
956 const struct ata_xfer_ent *ent;
957
958 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
959 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
960 return ent->shift;
961 return -1;
962}
963
1da177e4 964/**
1da7b0d0
TH
965 * ata_mode_string - convert xfer_mask to string
966 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
967 *
968 * Determine string which represents the highest speed
1da7b0d0 969 * (highest bit in @modemask).
1da177e4
LT
970 *
971 * LOCKING:
972 * None.
973 *
974 * RETURNS:
975 * Constant C string representing highest speed listed in
1da7b0d0 976 * @mode_mask, or the constant C string "<n/a>".
1da177e4 977 */
7dc951ae 978const char *ata_mode_string(unsigned long xfer_mask)
1da177e4 979{
75f554bc
TH
980 static const char * const xfer_mode_str[] = {
981 "PIO0",
982 "PIO1",
983 "PIO2",
984 "PIO3",
985 "PIO4",
b352e57d
AC
986 "PIO5",
987 "PIO6",
75f554bc
TH
988 "MWDMA0",
989 "MWDMA1",
990 "MWDMA2",
b352e57d
AC
991 "MWDMA3",
992 "MWDMA4",
75f554bc
TH
993 "UDMA/16",
994 "UDMA/25",
995 "UDMA/33",
996 "UDMA/44",
997 "UDMA/66",
998 "UDMA/100",
999 "UDMA/133",
1000 "UDMA7",
1001 };
1da7b0d0 1002 int highbit;
1da177e4 1003
1da7b0d0
TH
1004 highbit = fls(xfer_mask) - 1;
1005 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1006 return xfer_mode_str[highbit];
1da177e4 1007 return "<n/a>";
1da177e4
LT
1008}
1009
4c360c81
TH
1010static const char *sata_spd_string(unsigned int spd)
1011{
1012 static const char * const spd_str[] = {
1013 "1.5 Gbps",
1014 "3.0 Gbps",
8522ee25 1015 "6.0 Gbps",
4c360c81
TH
1016 };
1017
1018 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1019 return "<unknown>";
1020 return spd_str[spd - 1];
1021}
1022
ca77329f
KCA
1023static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
1024{
1025 struct ata_link *link = dev->link;
1026 struct ata_port *ap = link->ap;
1027 u32 scontrol;
1028 unsigned int err_mask;
1029 int rc;
1030
1031 /*
1032 * disallow DIPM for drivers which haven't set
1033 * ATA_FLAG_IPM. This is because when DIPM is enabled,
1034 * phy ready will be set in the interrupt status on
1035 * state changes, which will cause some drivers to
1036 * think there are errors - additionally drivers will
1037 * need to disable hot plug.
1038 */
1039 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
1040 ap->pm_policy = NOT_AVAILABLE;
1041 return -EINVAL;
1042 }
1043
1044 /*
1045 * For DIPM, we will only enable it for the
1046 * min_power setting.
1047 *
1048 * Why? Because Disks are too stupid to know that
1049 * If the host rejects a request to go to SLUMBER
1050 * they should retry at PARTIAL, and instead it
1051 * just would give up. So, for medium_power to
1052 * work at all, we need to only allow HIPM.
1053 */
1054 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
1055 if (rc)
1056 return rc;
1057
1058 switch (policy) {
1059 case MIN_POWER:
1060 /* no restrictions on IPM transitions */
1061 scontrol &= ~(0x3 << 8);
1062 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1063 if (rc)
1064 return rc;
1065
1066 /* enable DIPM */
1067 if (dev->flags & ATA_DFLAG_DIPM)
1068 err_mask = ata_dev_set_feature(dev,
1069 SETFEATURES_SATA_ENABLE, SATA_DIPM);
1070 break;
1071 case MEDIUM_POWER:
1072 /* allow IPM to PARTIAL */
1073 scontrol &= ~(0x1 << 8);
1074 scontrol |= (0x2 << 8);
1075 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1076 if (rc)
1077 return rc;
1078
f5456b63
KCA
1079 /*
1080 * we don't have to disable DIPM since IPM flags
1081 * disallow transitions to SLUMBER, which effectively
1082 * disable DIPM if it does not support PARTIAL
1083 */
ca77329f
KCA
1084 break;
1085 case NOT_AVAILABLE:
1086 case MAX_PERFORMANCE:
1087 /* disable all IPM transitions */
1088 scontrol |= (0x3 << 8);
1089 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1090 if (rc)
1091 return rc;
1092
f5456b63
KCA
1093 /*
1094 * we don't have to disable DIPM since IPM flags
1095 * disallow all transitions which effectively
1096 * disable DIPM anyway.
1097 */
ca77329f
KCA
1098 break;
1099 }
1100
1101 /* FIXME: handle SET FEATURES failure */
1102 (void) err_mask;
1103
1104 return 0;
1105}
1106
1107/**
1108 * ata_dev_enable_pm - enable SATA interface power management
48166fd9
SH
1109 * @dev: device to enable power management
1110 * @policy: the link power management policy
ca77329f
KCA
1111 *
1112 * Enable SATA Interface power management. This will enable
1113 * Device Interface Power Management (DIPM) for min_power
1114 * policy, and then call driver specific callbacks for
1115 * enabling Host Initiated Power management.
1116 *
1117 * Locking: Caller.
1118 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
1119 */
1120void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
1121{
1122 int rc = 0;
1123 struct ata_port *ap = dev->link->ap;
1124
1125 /* set HIPM first, then DIPM */
1126 if (ap->ops->enable_pm)
1127 rc = ap->ops->enable_pm(ap, policy);
1128 if (rc)
1129 goto enable_pm_out;
1130 rc = ata_dev_set_dipm(dev, policy);
1131
1132enable_pm_out:
1133 if (rc)
1134 ap->pm_policy = MAX_PERFORMANCE;
1135 else
1136 ap->pm_policy = policy;
1137 return /* rc */; /* hopefully we can use 'rc' eventually */
1138}
1139
1992a5ed 1140#ifdef CONFIG_PM
ca77329f
KCA
1141/**
1142 * ata_dev_disable_pm - disable SATA interface power management
48166fd9 1143 * @dev: device to disable power management
ca77329f
KCA
1144 *
1145 * Disable SATA Interface power management. This will disable
1146 * Device Interface Power Management (DIPM) without changing
1147 * policy, call driver specific callbacks for disabling Host
1148 * Initiated Power management.
1149 *
1150 * Locking: Caller.
1151 * Returns: void
1152 */
1153static void ata_dev_disable_pm(struct ata_device *dev)
1154{
1155 struct ata_port *ap = dev->link->ap;
1156
1157 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
1158 if (ap->ops->disable_pm)
1159 ap->ops->disable_pm(ap);
1160}
1992a5ed 1161#endif /* CONFIG_PM */
ca77329f
KCA
1162
1163void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
1164{
1165 ap->pm_policy = policy;
3ec25ebd 1166 ap->link.eh_info.action |= ATA_EH_LPM;
ca77329f
KCA
1167 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
1168 ata_port_schedule_eh(ap);
1169}
1170
1992a5ed 1171#ifdef CONFIG_PM
ca77329f
KCA
1172static void ata_lpm_enable(struct ata_host *host)
1173{
1174 struct ata_link *link;
1175 struct ata_port *ap;
1176 struct ata_device *dev;
1177 int i;
1178
1179 for (i = 0; i < host->n_ports; i++) {
1180 ap = host->ports[i];
1eca4365
TH
1181 ata_for_each_link(link, ap, EDGE) {
1182 ata_for_each_dev(dev, link, ALL)
ca77329f
KCA
1183 ata_dev_disable_pm(dev);
1184 }
1185 }
1186}
1187
1188static void ata_lpm_disable(struct ata_host *host)
1189{
1190 int i;
1191
1192 for (i = 0; i < host->n_ports; i++) {
1193 struct ata_port *ap = host->ports[i];
1194 ata_lpm_schedule(ap, ap->pm_policy);
1195 }
1196}
1992a5ed 1197#endif /* CONFIG_PM */
ca77329f 1198
1da177e4
LT
1199/**
1200 * ata_dev_classify - determine device type based on ATA-spec signature
1201 * @tf: ATA taskfile register set for device to be identified
1202 *
1203 * Determine from taskfile register contents whether a device is
1204 * ATA or ATAPI, as per "Signature and persistence" section
1205 * of ATA/PI spec (volume 1, sect 5.14).
1206 *
1207 * LOCKING:
1208 * None.
1209 *
1210 * RETURNS:
633273a3
TH
1211 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1212 * %ATA_DEV_UNKNOWN the event of failure.
1da177e4 1213 */
057ace5e 1214unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
1215{
1216 /* Apple's open source Darwin code hints that some devices only
1217 * put a proper signature into the LBA mid/high registers,
1218 * So, we only check those. It's sufficient for uniqueness.
633273a3
TH
1219 *
1220 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1221 * signatures for ATA and ATAPI devices attached on SerialATA,
1222 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1223 * spec has never mentioned about using different signatures
1224 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1225 * Multiplier specification began to use 0x69/0x96 to identify
1226 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1227 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1228 * 0x69/0x96 shortly and described them as reserved for
1229 * SerialATA.
1230 *
1231 * We follow the current spec and consider that 0x69/0x96
1232 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1da177e4 1233 */
633273a3 1234 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1da177e4
LT
1235 DPRINTK("found ATA device by sig\n");
1236 return ATA_DEV_ATA;
1237 }
1238
633273a3 1239 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1da177e4
LT
1240 DPRINTK("found ATAPI device by sig\n");
1241 return ATA_DEV_ATAPI;
1242 }
1243
633273a3
TH
1244 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1245 DPRINTK("found PMP device by sig\n");
1246 return ATA_DEV_PMP;
1247 }
1248
1249 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
2dcb407e 1250 printk(KERN_INFO "ata: SEMB device ignored\n");
633273a3
TH
1251 return ATA_DEV_SEMB_UNSUP; /* not yet */
1252 }
1253
1da177e4
LT
1254 DPRINTK("unknown device\n");
1255 return ATA_DEV_UNKNOWN;
1256}
1257
1da177e4 1258/**
6a62a04d 1259 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
1260 * @id: IDENTIFY DEVICE results we will examine
1261 * @s: string into which data is output
1262 * @ofs: offset into identify device page
1263 * @len: length of string to return. must be an even number.
1264 *
1265 * The strings in the IDENTIFY DEVICE page are broken up into
1266 * 16-bit chunks. Run through the string, and output each
1267 * 8-bit chunk linearly, regardless of platform.
1268 *
1269 * LOCKING:
1270 * caller.
1271 */
1272
6a62a04d
TH
1273void ata_id_string(const u16 *id, unsigned char *s,
1274 unsigned int ofs, unsigned int len)
1da177e4
LT
1275{
1276 unsigned int c;
1277
963e4975
AC
1278 BUG_ON(len & 1);
1279
1da177e4
LT
1280 while (len > 0) {
1281 c = id[ofs] >> 8;
1282 *s = c;
1283 s++;
1284
1285 c = id[ofs] & 0xff;
1286 *s = c;
1287 s++;
1288
1289 ofs++;
1290 len -= 2;
1291 }
1292}
1293
0e949ff3 1294/**
6a62a04d 1295 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
1296 * @id: IDENTIFY DEVICE results we will examine
1297 * @s: string into which data is output
1298 * @ofs: offset into identify device page
1299 * @len: length of string to return. must be an odd number.
1300 *
6a62a04d 1301 * This function is identical to ata_id_string except that it
0e949ff3
TH
1302 * trims trailing spaces and terminates the resulting string with
1303 * null. @len must be actual maximum length (even number) + 1.
1304 *
1305 * LOCKING:
1306 * caller.
1307 */
6a62a04d
TH
1308void ata_id_c_string(const u16 *id, unsigned char *s,
1309 unsigned int ofs, unsigned int len)
0e949ff3
TH
1310{
1311 unsigned char *p;
1312
6a62a04d 1313 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
1314
1315 p = s + strnlen(s, len - 1);
1316 while (p > s && p[-1] == ' ')
1317 p--;
1318 *p = '\0';
1319}
0baab86b 1320
db6f8759
TH
1321static u64 ata_id_n_sectors(const u16 *id)
1322{
1323 if (ata_id_has_lba(id)) {
1324 if (ata_id_has_lba48(id))
1325 return ata_id_u64(id, 100);
1326 else
1327 return ata_id_u32(id, 60);
1328 } else {
1329 if (ata_id_current_chs_valid(id))
1330 return ata_id_u32(id, 57);
1331 else
1332 return id[1] * id[3] * id[6];
1333 }
1334}
1335
a5987e0a 1336u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1e999736
AC
1337{
1338 u64 sectors = 0;
1339
1340 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1341 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
ba14a9c2 1342 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1e999736
AC
1343 sectors |= (tf->lbah & 0xff) << 16;
1344 sectors |= (tf->lbam & 0xff) << 8;
1345 sectors |= (tf->lbal & 0xff);
1346
a5987e0a 1347 return sectors;
1e999736
AC
1348}
1349
a5987e0a 1350u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1e999736
AC
1351{
1352 u64 sectors = 0;
1353
1354 sectors |= (tf->device & 0x0f) << 24;
1355 sectors |= (tf->lbah & 0xff) << 16;
1356 sectors |= (tf->lbam & 0xff) << 8;
1357 sectors |= (tf->lbal & 0xff);
1358
a5987e0a 1359 return sectors;
1e999736
AC
1360}
1361
1362/**
c728a914
TH
1363 * ata_read_native_max_address - Read native max address
1364 * @dev: target device
1365 * @max_sectors: out parameter for the result native max address
1e999736 1366 *
c728a914
TH
1367 * Perform an LBA48 or LBA28 native size query upon the device in
1368 * question.
1e999736 1369 *
c728a914
TH
1370 * RETURNS:
1371 * 0 on success, -EACCES if command is aborted by the drive.
1372 * -EIO on other errors.
1e999736 1373 */
c728a914 1374static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1e999736 1375{
c728a914 1376 unsigned int err_mask;
1e999736 1377 struct ata_taskfile tf;
c728a914 1378 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1379
1380 ata_tf_init(dev, &tf);
1381
c728a914 1382 /* always clear all address registers */
1e999736 1383 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1e999736 1384
c728a914
TH
1385 if (lba48) {
1386 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1387 tf.flags |= ATA_TFLAG_LBA48;
1388 } else
1389 tf.command = ATA_CMD_READ_NATIVE_MAX;
1e999736 1390
1e999736 1391 tf.protocol |= ATA_PROT_NODATA;
c728a914
TH
1392 tf.device |= ATA_LBA;
1393
2b789108 1394 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1395 if (err_mask) {
1396 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1397 "max address (err_mask=0x%x)\n", err_mask);
1398 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1399 return -EACCES;
1400 return -EIO;
1401 }
1e999736 1402
c728a914 1403 if (lba48)
a5987e0a 1404 *max_sectors = ata_tf_to_lba48(&tf) + 1;
c728a914 1405 else
a5987e0a 1406 *max_sectors = ata_tf_to_lba(&tf) + 1;
2dcb407e 1407 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
93328e11 1408 (*max_sectors)--;
c728a914 1409 return 0;
1e999736
AC
1410}
1411
1412/**
c728a914
TH
1413 * ata_set_max_sectors - Set max sectors
1414 * @dev: target device
6b38d1d1 1415 * @new_sectors: new max sectors value to set for the device
1e999736 1416 *
c728a914
TH
1417 * Set max sectors of @dev to @new_sectors.
1418 *
1419 * RETURNS:
1420 * 0 on success, -EACCES if command is aborted or denied (due to
1421 * previous non-volatile SET_MAX) by the drive. -EIO on other
1422 * errors.
1e999736 1423 */
05027adc 1424static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1e999736 1425{
c728a914 1426 unsigned int err_mask;
1e999736 1427 struct ata_taskfile tf;
c728a914 1428 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1429
1430 new_sectors--;
1431
1432 ata_tf_init(dev, &tf);
1433
1e999736 1434 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
c728a914
TH
1435
1436 if (lba48) {
1437 tf.command = ATA_CMD_SET_MAX_EXT;
1438 tf.flags |= ATA_TFLAG_LBA48;
1439
1440 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1441 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1442 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1e582ba4 1443 } else {
c728a914
TH
1444 tf.command = ATA_CMD_SET_MAX;
1445
1e582ba4
TH
1446 tf.device |= (new_sectors >> 24) & 0xf;
1447 }
1448
1e999736 1449 tf.protocol |= ATA_PROT_NODATA;
c728a914 1450 tf.device |= ATA_LBA;
1e999736
AC
1451
1452 tf.lbal = (new_sectors >> 0) & 0xff;
1453 tf.lbam = (new_sectors >> 8) & 0xff;
1454 tf.lbah = (new_sectors >> 16) & 0xff;
1e999736 1455
2b789108 1456 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1457 if (err_mask) {
1458 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1459 "max address (err_mask=0x%x)\n", err_mask);
1460 if (err_mask == AC_ERR_DEV &&
1461 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1462 return -EACCES;
1463 return -EIO;
1464 }
1465
c728a914 1466 return 0;
1e999736
AC
1467}
1468
1469/**
1470 * ata_hpa_resize - Resize a device with an HPA set
1471 * @dev: Device to resize
1472 *
1473 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1474 * it if required to the full size of the media. The caller must check
1475 * the drive has the HPA feature set enabled.
05027adc
TH
1476 *
1477 * RETURNS:
1478 * 0 on success, -errno on failure.
1e999736 1479 */
05027adc 1480static int ata_hpa_resize(struct ata_device *dev)
1e999736 1481{
05027adc
TH
1482 struct ata_eh_context *ehc = &dev->link->eh_context;
1483 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1484 u64 sectors = ata_id_n_sectors(dev->id);
1485 u64 native_sectors;
c728a914 1486 int rc;
a617c09f 1487
05027adc
TH
1488 /* do we need to do it? */
1489 if (dev->class != ATA_DEV_ATA ||
1490 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1491 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
c728a914 1492 return 0;
1e999736 1493
05027adc
TH
1494 /* read native max address */
1495 rc = ata_read_native_max_address(dev, &native_sectors);
1496 if (rc) {
dda7aba1
TH
1497 /* If device aborted the command or HPA isn't going to
1498 * be unlocked, skip HPA resizing.
05027adc 1499 */
dda7aba1 1500 if (rc == -EACCES || !ata_ignore_hpa) {
05027adc 1501 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
dda7aba1 1502 "broken, skipping HPA handling\n");
05027adc
TH
1503 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1504
1505 /* we can continue if device aborted the command */
1506 if (rc == -EACCES)
1507 rc = 0;
1e999736 1508 }
37301a55 1509
05027adc
TH
1510 return rc;
1511 }
1512
1513 /* nothing to do? */
1514 if (native_sectors <= sectors || !ata_ignore_hpa) {
1515 if (!print_info || native_sectors == sectors)
1516 return 0;
1517
1518 if (native_sectors > sectors)
1519 ata_dev_printk(dev, KERN_INFO,
1520 "HPA detected: current %llu, native %llu\n",
1521 (unsigned long long)sectors,
1522 (unsigned long long)native_sectors);
1523 else if (native_sectors < sectors)
1524 ata_dev_printk(dev, KERN_WARNING,
1525 "native sectors (%llu) is smaller than "
1526 "sectors (%llu)\n",
1527 (unsigned long long)native_sectors,
1528 (unsigned long long)sectors);
1529 return 0;
1530 }
1531
1532 /* let's unlock HPA */
1533 rc = ata_set_max_sectors(dev, native_sectors);
1534 if (rc == -EACCES) {
1535 /* if device aborted the command, skip HPA resizing */
1536 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1537 "(%llu -> %llu), skipping HPA handling\n",
1538 (unsigned long long)sectors,
1539 (unsigned long long)native_sectors);
1540 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1541 return 0;
1542 } else if (rc)
1543 return rc;
1544
1545 /* re-read IDENTIFY data */
1546 rc = ata_dev_reread_id(dev, 0);
1547 if (rc) {
1548 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1549 "data after HPA resizing\n");
1550 return rc;
1551 }
1552
1553 if (print_info) {
1554 u64 new_sectors = ata_id_n_sectors(dev->id);
1555 ata_dev_printk(dev, KERN_INFO,
1556 "HPA unlocked: %llu -> %llu, native %llu\n",
1557 (unsigned long long)sectors,
1558 (unsigned long long)new_sectors,
1559 (unsigned long long)native_sectors);
1560 }
1561
1562 return 0;
1e999736
AC
1563}
1564
1da177e4
LT
1565/**
1566 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1567 * @id: IDENTIFY DEVICE page to dump
1da177e4 1568 *
0bd3300a
TH
1569 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1570 * page.
1da177e4
LT
1571 *
1572 * LOCKING:
1573 * caller.
1574 */
1575
0bd3300a 1576static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1577{
1578 DPRINTK("49==0x%04x "
1579 "53==0x%04x "
1580 "63==0x%04x "
1581 "64==0x%04x "
1582 "75==0x%04x \n",
0bd3300a
TH
1583 id[49],
1584 id[53],
1585 id[63],
1586 id[64],
1587 id[75]);
1da177e4
LT
1588 DPRINTK("80==0x%04x "
1589 "81==0x%04x "
1590 "82==0x%04x "
1591 "83==0x%04x "
1592 "84==0x%04x \n",
0bd3300a
TH
1593 id[80],
1594 id[81],
1595 id[82],
1596 id[83],
1597 id[84]);
1da177e4
LT
1598 DPRINTK("88==0x%04x "
1599 "93==0x%04x\n",
0bd3300a
TH
1600 id[88],
1601 id[93]);
1da177e4
LT
1602}
1603
cb95d562
TH
1604/**
1605 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1606 * @id: IDENTIFY data to compute xfer mask from
1607 *
1608 * Compute the xfermask for this device. This is not as trivial
1609 * as it seems if we must consider early devices correctly.
1610 *
1611 * FIXME: pre IDE drive timing (do we care ?).
1612 *
1613 * LOCKING:
1614 * None.
1615 *
1616 * RETURNS:
1617 * Computed xfermask
1618 */
7dc951ae 1619unsigned long ata_id_xfermask(const u16 *id)
cb95d562 1620{
7dc951ae 1621 unsigned long pio_mask, mwdma_mask, udma_mask;
cb95d562
TH
1622
1623 /* Usual case. Word 53 indicates word 64 is valid */
1624 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1625 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1626 pio_mask <<= 3;
1627 pio_mask |= 0x7;
1628 } else {
1629 /* If word 64 isn't valid then Word 51 high byte holds
1630 * the PIO timing number for the maximum. Turn it into
1631 * a mask.
1632 */
7a0f1c8a 1633 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb 1634 if (mode < 5) /* Valid PIO range */
2dcb407e 1635 pio_mask = (2 << mode) - 1;
46767aeb
AC
1636 else
1637 pio_mask = 1;
cb95d562
TH
1638
1639 /* But wait.. there's more. Design your standards by
1640 * committee and you too can get a free iordy field to
1641 * process. However its the speeds not the modes that
1642 * are supported... Note drivers using the timing API
1643 * will get this right anyway
1644 */
1645 }
1646
1647 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1648
b352e57d
AC
1649 if (ata_id_is_cfa(id)) {
1650 /*
1651 * Process compact flash extended modes
1652 */
1653 int pio = id[163] & 0x7;
1654 int dma = (id[163] >> 3) & 7;
1655
1656 if (pio)
1657 pio_mask |= (1 << 5);
1658 if (pio > 1)
1659 pio_mask |= (1 << 6);
1660 if (dma)
1661 mwdma_mask |= (1 << 3);
1662 if (dma > 1)
1663 mwdma_mask |= (1 << 4);
1664 }
1665
fb21f0d0
TH
1666 udma_mask = 0;
1667 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1668 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1669
1670 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1671}
1672
86e45b6b 1673/**
442eacc3 1674 * ata_pio_queue_task - Queue port_task
86e45b6b 1675 * @ap: The ata_port to queue port_task for
65f27f38 1676 * @data: data for @fn to use
341c2c95 1677 * @delay: delay time in msecs for workqueue function
86e45b6b
TH
1678 *
1679 * Schedule @fn(@data) for execution after @delay jiffies using
1680 * port_task. There is one port_task per port and it's the
1681 * user(low level driver)'s responsibility to make sure that only
1682 * one task is active at any given time.
1683 *
1684 * libata core layer takes care of synchronization between
442eacc3 1685 * port_task and EH. ata_pio_queue_task() may be ignored for EH
86e45b6b
TH
1686 * synchronization.
1687 *
1688 * LOCKING:
1689 * Inherited from caller.
1690 */
624d5c51 1691void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay)
86e45b6b 1692{
65f27f38 1693 ap->port_task_data = data;
86e45b6b 1694
45a66c1c 1695 /* may fail if ata_port_flush_task() in progress */
341c2c95 1696 queue_delayed_work(ata_wq, &ap->port_task, msecs_to_jiffies(delay));
86e45b6b
TH
1697}
1698
1699/**
1700 * ata_port_flush_task - Flush port_task
1701 * @ap: The ata_port to flush port_task for
1702 *
1703 * After this function completes, port_task is guranteed not to
1704 * be running or scheduled.
1705 *
1706 * LOCKING:
1707 * Kernel thread context (may sleep)
1708 */
1709void ata_port_flush_task(struct ata_port *ap)
1710{
86e45b6b
TH
1711 DPRINTK("ENTER\n");
1712
45a66c1c 1713 cancel_rearming_delayed_work(&ap->port_task);
86e45b6b 1714
0dd4b21f 1715 if (ata_msg_ctl(ap))
7f5e4e8d 1716 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
86e45b6b
TH
1717}
1718
7102d230 1719static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1720{
77853bf2 1721 struct completion *waiting = qc->private_data;
a2a7a662 1722
a2a7a662 1723 complete(waiting);
a2a7a662
TH
1724}
1725
1726/**
2432697b 1727 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1728 * @dev: Device to which the command is sent
1729 * @tf: Taskfile registers for the command and the result
d69cf37d 1730 * @cdb: CDB for packet command
a2a7a662 1731 * @dma_dir: Data tranfer direction of the command
5c1ad8b3 1732 * @sgl: sg list for the data buffer of the command
2432697b 1733 * @n_elem: Number of sg entries
2b789108 1734 * @timeout: Timeout in msecs (0 for default)
a2a7a662
TH
1735 *
1736 * Executes libata internal command with timeout. @tf contains
1737 * command on entry and result on return. Timeout and error
1738 * conditions are reported via return value. No recovery action
1739 * is taken after a command times out. It's caller's duty to
1740 * clean up after timeout.
1741 *
1742 * LOCKING:
1743 * None. Should be called with kernel context, might sleep.
551e8889
TH
1744 *
1745 * RETURNS:
1746 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1747 */
2432697b
TH
1748unsigned ata_exec_internal_sg(struct ata_device *dev,
1749 struct ata_taskfile *tf, const u8 *cdb,
87260216 1750 int dma_dir, struct scatterlist *sgl,
2b789108 1751 unsigned int n_elem, unsigned long timeout)
a2a7a662 1752{
9af5c9c9
TH
1753 struct ata_link *link = dev->link;
1754 struct ata_port *ap = link->ap;
a2a7a662 1755 u8 command = tf->command;
87fbc5a0 1756 int auto_timeout = 0;
a2a7a662 1757 struct ata_queued_cmd *qc;
2ab7db1f 1758 unsigned int tag, preempted_tag;
dedaf2b0 1759 u32 preempted_sactive, preempted_qc_active;
da917d69 1760 int preempted_nr_active_links;
60be6b9a 1761 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1762 unsigned long flags;
77853bf2 1763 unsigned int err_mask;
d95a717f 1764 int rc;
a2a7a662 1765
ba6a1308 1766 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1767
e3180499 1768 /* no internal command while frozen */
b51e9e5d 1769 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1770 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1771 return AC_ERR_SYSTEM;
1772 }
1773
2ab7db1f 1774 /* initialize internal qc */
a2a7a662 1775
2ab7db1f
TH
1776 /* XXX: Tag 0 is used for drivers with legacy EH as some
1777 * drivers choke if any other tag is given. This breaks
1778 * ata_tag_internal() test for those drivers. Don't use new
1779 * EH stuff without converting to it.
1780 */
1781 if (ap->ops->error_handler)
1782 tag = ATA_TAG_INTERNAL;
1783 else
1784 tag = 0;
1785
8a8bc223
TH
1786 if (test_and_set_bit(tag, &ap->qc_allocated))
1787 BUG();
f69499f4 1788 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1789
1790 qc->tag = tag;
1791 qc->scsicmd = NULL;
1792 qc->ap = ap;
1793 qc->dev = dev;
1794 ata_qc_reinit(qc);
1795
9af5c9c9
TH
1796 preempted_tag = link->active_tag;
1797 preempted_sactive = link->sactive;
dedaf2b0 1798 preempted_qc_active = ap->qc_active;
da917d69 1799 preempted_nr_active_links = ap->nr_active_links;
9af5c9c9
TH
1800 link->active_tag = ATA_TAG_POISON;
1801 link->sactive = 0;
dedaf2b0 1802 ap->qc_active = 0;
da917d69 1803 ap->nr_active_links = 0;
2ab7db1f
TH
1804
1805 /* prepare & issue qc */
a2a7a662 1806 qc->tf = *tf;
d69cf37d
TH
1807 if (cdb)
1808 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1809 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1810 qc->dma_dir = dma_dir;
1811 if (dma_dir != DMA_NONE) {
2432697b 1812 unsigned int i, buflen = 0;
87260216 1813 struct scatterlist *sg;
2432697b 1814
87260216
JA
1815 for_each_sg(sgl, sg, n_elem, i)
1816 buflen += sg->length;
2432697b 1817
87260216 1818 ata_sg_init(qc, sgl, n_elem);
49c80429 1819 qc->nbytes = buflen;
a2a7a662
TH
1820 }
1821
77853bf2 1822 qc->private_data = &wait;
a2a7a662
TH
1823 qc->complete_fn = ata_qc_complete_internal;
1824
8e0e694a 1825 ata_qc_issue(qc);
a2a7a662 1826
ba6a1308 1827 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1828
87fbc5a0
TH
1829 if (!timeout) {
1830 if (ata_probe_timeout)
1831 timeout = ata_probe_timeout * 1000;
1832 else {
1833 timeout = ata_internal_cmd_timeout(dev, command);
1834 auto_timeout = 1;
1835 }
1836 }
2b789108
TH
1837
1838 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
d95a717f
TH
1839
1840 ata_port_flush_task(ap);
41ade50c 1841
d95a717f 1842 if (!rc) {
ba6a1308 1843 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1844
1845 /* We're racing with irq here. If we lose, the
1846 * following test prevents us from completing the qc
d95a717f
TH
1847 * twice. If we win, the port is frozen and will be
1848 * cleaned up by ->post_internal_cmd().
a2a7a662 1849 */
77853bf2 1850 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1851 qc->err_mask |= AC_ERR_TIMEOUT;
1852
1853 if (ap->ops->error_handler)
1854 ata_port_freeze(ap);
1855 else
1856 ata_qc_complete(qc);
f15a1daf 1857
0dd4b21f
BP
1858 if (ata_msg_warn(ap))
1859 ata_dev_printk(dev, KERN_WARNING,
88574551 1860 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1861 }
1862
ba6a1308 1863 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1864 }
1865
d95a717f
TH
1866 /* do post_internal_cmd */
1867 if (ap->ops->post_internal_cmd)
1868 ap->ops->post_internal_cmd(qc);
1869
a51d644a
TH
1870 /* perform minimal error analysis */
1871 if (qc->flags & ATA_QCFLAG_FAILED) {
1872 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1873 qc->err_mask |= AC_ERR_DEV;
1874
1875 if (!qc->err_mask)
1876 qc->err_mask |= AC_ERR_OTHER;
1877
1878 if (qc->err_mask & ~AC_ERR_OTHER)
1879 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1880 }
1881
15869303 1882 /* finish up */
ba6a1308 1883 spin_lock_irqsave(ap->lock, flags);
15869303 1884
e61e0672 1885 *tf = qc->result_tf;
77853bf2
TH
1886 err_mask = qc->err_mask;
1887
1888 ata_qc_free(qc);
9af5c9c9
TH
1889 link->active_tag = preempted_tag;
1890 link->sactive = preempted_sactive;
dedaf2b0 1891 ap->qc_active = preempted_qc_active;
da917d69 1892 ap->nr_active_links = preempted_nr_active_links;
77853bf2 1893
1f7dd3e9
TH
1894 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1895 * Until those drivers are fixed, we detect the condition
1896 * here, fail the command with AC_ERR_SYSTEM and reenable the
1897 * port.
1898 *
1899 * Note that this doesn't change any behavior as internal
1900 * command failure results in disabling the device in the
1901 * higher layer for LLDDs without new reset/EH callbacks.
1902 *
1903 * Kill the following code as soon as those drivers are fixed.
1904 */
198e0fed 1905 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1906 err_mask |= AC_ERR_SYSTEM;
1907 ata_port_probe(ap);
1908 }
1909
ba6a1308 1910 spin_unlock_irqrestore(ap->lock, flags);
15869303 1911
87fbc5a0
TH
1912 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1913 ata_internal_cmd_timed_out(dev, command);
1914
77853bf2 1915 return err_mask;
a2a7a662
TH
1916}
1917
2432697b 1918/**
33480a0e 1919 * ata_exec_internal - execute libata internal command
2432697b
TH
1920 * @dev: Device to which the command is sent
1921 * @tf: Taskfile registers for the command and the result
1922 * @cdb: CDB for packet command
1923 * @dma_dir: Data tranfer direction of the command
1924 * @buf: Data buffer of the command
1925 * @buflen: Length of data buffer
2b789108 1926 * @timeout: Timeout in msecs (0 for default)
2432697b
TH
1927 *
1928 * Wrapper around ata_exec_internal_sg() which takes simple
1929 * buffer instead of sg list.
1930 *
1931 * LOCKING:
1932 * None. Should be called with kernel context, might sleep.
1933 *
1934 * RETURNS:
1935 * Zero on success, AC_ERR_* mask on failure
1936 */
1937unsigned ata_exec_internal(struct ata_device *dev,
1938 struct ata_taskfile *tf, const u8 *cdb,
2b789108
TH
1939 int dma_dir, void *buf, unsigned int buflen,
1940 unsigned long timeout)
2432697b 1941{
33480a0e
TH
1942 struct scatterlist *psg = NULL, sg;
1943 unsigned int n_elem = 0;
2432697b 1944
33480a0e
TH
1945 if (dma_dir != DMA_NONE) {
1946 WARN_ON(!buf);
1947 sg_init_one(&sg, buf, buflen);
1948 psg = &sg;
1949 n_elem++;
1950 }
2432697b 1951
2b789108
TH
1952 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1953 timeout);
2432697b
TH
1954}
1955
977e6b9f
TH
1956/**
1957 * ata_do_simple_cmd - execute simple internal command
1958 * @dev: Device to which the command is sent
1959 * @cmd: Opcode to execute
1960 *
1961 * Execute a 'simple' command, that only consists of the opcode
1962 * 'cmd' itself, without filling any other registers
1963 *
1964 * LOCKING:
1965 * Kernel thread context (may sleep).
1966 *
1967 * RETURNS:
1968 * Zero on success, AC_ERR_* mask on failure
e58eb583 1969 */
77b08fb5 1970unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1971{
1972 struct ata_taskfile tf;
e58eb583
TH
1973
1974 ata_tf_init(dev, &tf);
1975
1976 tf.command = cmd;
1977 tf.flags |= ATA_TFLAG_DEVICE;
1978 tf.protocol = ATA_PROT_NODATA;
1979
2b789108 1980 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
e58eb583
TH
1981}
1982
1bc4ccff
AC
1983/**
1984 * ata_pio_need_iordy - check if iordy needed
1985 * @adev: ATA device
1986 *
1987 * Check if the current speed of the device requires IORDY. Used
1988 * by various controllers for chip configuration.
1989 */
a617c09f 1990
1bc4ccff
AC
1991unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1992{
432729f0
AC
1993 /* Controller doesn't support IORDY. Probably a pointless check
1994 as the caller should know this */
9af5c9c9 1995 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1996 return 0;
5c18c4d2
DD
1997 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1998 if (ata_id_is_cfa(adev->id)
1999 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
2000 return 0;
432729f0
AC
2001 /* PIO3 and higher it is mandatory */
2002 if (adev->pio_mode > XFER_PIO_2)
2003 return 1;
2004 /* We turn it on when possible */
2005 if (ata_id_has_iordy(adev->id))
1bc4ccff 2006 return 1;
432729f0
AC
2007 return 0;
2008}
2e9edbf8 2009
432729f0
AC
2010/**
2011 * ata_pio_mask_no_iordy - Return the non IORDY mask
2012 * @adev: ATA device
2013 *
2014 * Compute the highest mode possible if we are not using iordy. Return
2015 * -1 if no iordy mode is available.
2016 */
a617c09f 2017
432729f0
AC
2018static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
2019{
1bc4ccff 2020 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 2021 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 2022 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
2023 /* Is the speed faster than the drive allows non IORDY ? */
2024 if (pio) {
2025 /* This is cycle times not frequency - watch the logic! */
2026 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
2027 return 3 << ATA_SHIFT_PIO;
2028 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
2029 }
2030 }
432729f0 2031 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
2032}
2033
963e4975
AC
2034/**
2035 * ata_do_dev_read_id - default ID read method
2036 * @dev: device
2037 * @tf: proposed taskfile
2038 * @id: data buffer
2039 *
2040 * Issue the identify taskfile and hand back the buffer containing
2041 * identify data. For some RAID controllers and for pre ATA devices
2042 * this function is wrapped or replaced by the driver
2043 */
2044unsigned int ata_do_dev_read_id(struct ata_device *dev,
2045 struct ata_taskfile *tf, u16 *id)
2046{
2047 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
2048 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
2049}
2050
1da177e4 2051/**
49016aca 2052 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
2053 * @dev: target device
2054 * @p_class: pointer to class of the target device (may be changed)
bff04647 2055 * @flags: ATA_READID_* flags
fe635c7e 2056 * @id: buffer to read IDENTIFY data into
1da177e4 2057 *
49016aca
TH
2058 * Read ID data from the specified device. ATA_CMD_ID_ATA is
2059 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
2060 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
2061 * for pre-ATA4 drives.
1da177e4 2062 *
50a99018 2063 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2dcb407e 2064 * now we abort if we hit that case.
50a99018 2065 *
1da177e4 2066 * LOCKING:
49016aca
TH
2067 * Kernel thread context (may sleep)
2068 *
2069 * RETURNS:
2070 * 0 on success, -errno otherwise.
1da177e4 2071 */
a9beec95 2072int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 2073 unsigned int flags, u16 *id)
1da177e4 2074{
9af5c9c9 2075 struct ata_port *ap = dev->link->ap;
49016aca 2076 unsigned int class = *p_class;
a0123703 2077 struct ata_taskfile tf;
49016aca
TH
2078 unsigned int err_mask = 0;
2079 const char *reason;
54936f8b 2080 int may_fallback = 1, tried_spinup = 0;
49016aca 2081 int rc;
1da177e4 2082
0dd4b21f 2083 if (ata_msg_ctl(ap))
7f5e4e8d 2084 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
1da177e4 2085
963e4975 2086retry:
3373efd8 2087 ata_tf_init(dev, &tf);
a0123703 2088
49016aca
TH
2089 switch (class) {
2090 case ATA_DEV_ATA:
a0123703 2091 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
2092 break;
2093 case ATA_DEV_ATAPI:
a0123703 2094 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
2095 break;
2096 default:
2097 rc = -ENODEV;
2098 reason = "unsupported class";
2099 goto err_out;
1da177e4
LT
2100 }
2101
a0123703 2102 tf.protocol = ATA_PROT_PIO;
81afe893
TH
2103
2104 /* Some devices choke if TF registers contain garbage. Make
2105 * sure those are properly initialized.
2106 */
2107 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2108
2109 /* Device presence detection is unreliable on some
2110 * controllers. Always poll IDENTIFY if available.
2111 */
2112 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 2113
963e4975
AC
2114 if (ap->ops->read_id)
2115 err_mask = ap->ops->read_id(dev, &tf, id);
2116 else
2117 err_mask = ata_do_dev_read_id(dev, &tf, id);
2118
a0123703 2119 if (err_mask) {
800b3996 2120 if (err_mask & AC_ERR_NODEV_HINT) {
1ffc151f
TH
2121 ata_dev_printk(dev, KERN_DEBUG,
2122 "NODEV after polling detection\n");
55a8e2c8
TH
2123 return -ENOENT;
2124 }
2125
1ffc151f
TH
2126 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
2127 /* Device or controller might have reported
2128 * the wrong device class. Give a shot at the
2129 * other IDENTIFY if the current one is
2130 * aborted by the device.
2131 */
2132 if (may_fallback) {
2133 may_fallback = 0;
2134
2135 if (class == ATA_DEV_ATA)
2136 class = ATA_DEV_ATAPI;
2137 else
2138 class = ATA_DEV_ATA;
2139 goto retry;
2140 }
2141
2142 /* Control reaches here iff the device aborted
2143 * both flavors of IDENTIFYs which happens
2144 * sometimes with phantom devices.
2145 */
2146 ata_dev_printk(dev, KERN_DEBUG,
2147 "both IDENTIFYs aborted, assuming NODEV\n");
2148 return -ENOENT;
54936f8b
TH
2149 }
2150
49016aca
TH
2151 rc = -EIO;
2152 reason = "I/O error";
1da177e4
LT
2153 goto err_out;
2154 }
2155
54936f8b
TH
2156 /* Falling back doesn't make sense if ID data was read
2157 * successfully at least once.
2158 */
2159 may_fallback = 0;
2160
49016aca 2161 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 2162
49016aca 2163 /* sanity check */
a4f5749b 2164 rc = -EINVAL;
6070068b 2165 reason = "device reports invalid type";
a4f5749b
TH
2166
2167 if (class == ATA_DEV_ATA) {
2168 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
2169 goto err_out;
2170 } else {
2171 if (ata_id_is_ata(id))
2172 goto err_out;
49016aca
TH
2173 }
2174
169439c2
ML
2175 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2176 tried_spinup = 1;
2177 /*
2178 * Drive powered-up in standby mode, and requires a specific
2179 * SET_FEATURES spin-up subcommand before it will accept
2180 * anything other than the original IDENTIFY command.
2181 */
218f3d30 2182 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
fb0582f9 2183 if (err_mask && id[2] != 0x738c) {
169439c2
ML
2184 rc = -EIO;
2185 reason = "SPINUP failed";
2186 goto err_out;
2187 }
2188 /*
2189 * If the drive initially returned incomplete IDENTIFY info,
2190 * we now must reissue the IDENTIFY command.
2191 */
2192 if (id[2] == 0x37c8)
2193 goto retry;
2194 }
2195
bff04647 2196 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
2197 /*
2198 * The exact sequence expected by certain pre-ATA4 drives is:
2199 * SRST RESET
50a99018
AC
2200 * IDENTIFY (optional in early ATA)
2201 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
49016aca
TH
2202 * anything else..
2203 * Some drives were very specific about that exact sequence.
50a99018
AC
2204 *
2205 * Note that ATA4 says lba is mandatory so the second check
2206 * shoud never trigger.
49016aca
TH
2207 */
2208 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 2209 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
2210 if (err_mask) {
2211 rc = -EIO;
2212 reason = "INIT_DEV_PARAMS failed";
2213 goto err_out;
2214 }
2215
2216 /* current CHS translation info (id[53-58]) might be
2217 * changed. reread the identify device info.
2218 */
bff04647 2219 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
2220 goto retry;
2221 }
2222 }
2223
2224 *p_class = class;
fe635c7e 2225
49016aca
TH
2226 return 0;
2227
2228 err_out:
88574551 2229 if (ata_msg_warn(ap))
0dd4b21f 2230 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 2231 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
2232 return rc;
2233}
2234
9062712f
TH
2235static int ata_do_link_spd_horkage(struct ata_device *dev)
2236{
2237 struct ata_link *plink = ata_dev_phys_link(dev);
2238 u32 target, target_limit;
2239
2240 if (!sata_scr_valid(plink))
2241 return 0;
2242
2243 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2244 target = 1;
2245 else
2246 return 0;
2247
2248 target_limit = (1 << target) - 1;
2249
2250 /* if already on stricter limit, no need to push further */
2251 if (plink->sata_spd_limit <= target_limit)
2252 return 0;
2253
2254 plink->sata_spd_limit = target_limit;
2255
2256 /* Request another EH round by returning -EAGAIN if link is
2257 * going faster than the target speed. Forward progress is
2258 * guaranteed by setting sata_spd_limit to target_limit above.
2259 */
2260 if (plink->sata_spd > target) {
2261 ata_dev_printk(dev, KERN_INFO,
2262 "applying link speed limit horkage to %s\n",
2263 sata_spd_string(target));
2264 return -EAGAIN;
2265 }
2266 return 0;
2267}
2268
3373efd8 2269static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 2270{
9af5c9c9 2271 struct ata_port *ap = dev->link->ap;
9ce8e307
JA
2272
2273 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2274 return 0;
2275
9af5c9c9 2276 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
2277}
2278
a6e6ce8e
TH
2279static void ata_dev_config_ncq(struct ata_device *dev,
2280 char *desc, size_t desc_sz)
2281{
9af5c9c9 2282 struct ata_port *ap = dev->link->ap;
a6e6ce8e
TH
2283 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2284
2285 if (!ata_id_has_ncq(dev->id)) {
2286 desc[0] = '\0';
2287 return;
2288 }
75683fe7 2289 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6
AC
2290 snprintf(desc, desc_sz, "NCQ (not used)");
2291 return;
2292 }
a6e6ce8e 2293 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 2294 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
2295 dev->flags |= ATA_DFLAG_NCQ;
2296 }
2297
2298 if (hdepth >= ddepth)
2299 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2300 else
2301 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2302}
2303
49016aca 2304/**
ffeae418 2305 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
2306 * @dev: Target device to configure
2307 *
2308 * Configure @dev according to @dev->id. Generic and low-level
2309 * driver specific fixups are also applied.
49016aca
TH
2310 *
2311 * LOCKING:
ffeae418
TH
2312 * Kernel thread context (may sleep)
2313 *
2314 * RETURNS:
2315 * 0 on success, -errno otherwise
49016aca 2316 */
efdaedc4 2317int ata_dev_configure(struct ata_device *dev)
49016aca 2318{
9af5c9c9
TH
2319 struct ata_port *ap = dev->link->ap;
2320 struct ata_eh_context *ehc = &dev->link->eh_context;
6746544c 2321 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 2322 const u16 *id = dev->id;
7dc951ae 2323 unsigned long xfer_mask;
b352e57d 2324 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
2325 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2326 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 2327 int rc;
49016aca 2328
0dd4b21f 2329 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e 2330 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
7f5e4e8d 2331 __func__);
ffeae418 2332 return 0;
49016aca
TH
2333 }
2334
0dd4b21f 2335 if (ata_msg_probe(ap))
7f5e4e8d 2336 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
1da177e4 2337
75683fe7
TH
2338 /* set horkage */
2339 dev->horkage |= ata_dev_blacklisted(dev);
33267325 2340 ata_force_horkage(dev);
75683fe7 2341
50af2fa1
TH
2342 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2343 ata_dev_printk(dev, KERN_INFO,
2344 "unsupported device, disabling\n");
2345 ata_dev_disable(dev);
2346 return 0;
2347 }
2348
2486fa56
TH
2349 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2350 dev->class == ATA_DEV_ATAPI) {
2351 ata_dev_printk(dev, KERN_WARNING,
2352 "WARNING: ATAPI is %s, device ignored.\n",
2353 atapi_enabled ? "not supported with this driver"
2354 : "disabled");
2355 ata_dev_disable(dev);
2356 return 0;
2357 }
2358
9062712f
TH
2359 rc = ata_do_link_spd_horkage(dev);
2360 if (rc)
2361 return rc;
2362
6746544c
TH
2363 /* let ACPI work its magic */
2364 rc = ata_acpi_on_devcfg(dev);
2365 if (rc)
2366 return rc;
08573a86 2367
05027adc
TH
2368 /* massage HPA, do it early as it might change IDENTIFY data */
2369 rc = ata_hpa_resize(dev);
2370 if (rc)
2371 return rc;
2372
c39f5ebe 2373 /* print device capabilities */
0dd4b21f 2374 if (ata_msg_probe(ap))
88574551
TH
2375 ata_dev_printk(dev, KERN_DEBUG,
2376 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2377 "85:%04x 86:%04x 87:%04x 88:%04x\n",
7f5e4e8d 2378 __func__,
f15a1daf
TH
2379 id[49], id[82], id[83], id[84],
2380 id[85], id[86], id[87], id[88]);
c39f5ebe 2381
208a9933 2382 /* initialize to-be-configured parameters */
ea1dd4e1 2383 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
2384 dev->max_sectors = 0;
2385 dev->cdb_len = 0;
2386 dev->n_sectors = 0;
2387 dev->cylinders = 0;
2388 dev->heads = 0;
2389 dev->sectors = 0;
2390
1da177e4
LT
2391 /*
2392 * common ATA, ATAPI feature tests
2393 */
2394
ff8854b2 2395 /* find max transfer mode; for printk only */
1148c3a7 2396 xfer_mask = ata_id_xfermask(id);
1da177e4 2397
0dd4b21f
BP
2398 if (ata_msg_probe(ap))
2399 ata_dump_id(id);
1da177e4 2400
ef143d57
AL
2401 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2402 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2403 sizeof(fwrevbuf));
2404
2405 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2406 sizeof(modelbuf));
2407
1da177e4
LT
2408 /* ATA-specific feature tests */
2409 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
2410 if (ata_id_is_cfa(id)) {
2411 if (id[162] & 1) /* CPRM may make this media unusable */
44877b4e
TH
2412 ata_dev_printk(dev, KERN_WARNING,
2413 "supports DRM functions and may "
2414 "not be fully accessable.\n");
b352e57d 2415 snprintf(revbuf, 7, "CFA");
ae8d4ee7 2416 } else {
2dcb407e 2417 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
ae8d4ee7
AC
2418 /* Warn the user if the device has TPM extensions */
2419 if (ata_id_has_tpm(id))
2420 ata_dev_printk(dev, KERN_WARNING,
2421 "supports DRM functions and may "
2422 "not be fully accessable.\n");
2423 }
b352e57d 2424
1148c3a7 2425 dev->n_sectors = ata_id_n_sectors(id);
2940740b 2426
3f64f565
EM
2427 if (dev->id[59] & 0x100)
2428 dev->multi_count = dev->id[59] & 0xff;
2429
1148c3a7 2430 if (ata_id_has_lba(id)) {
4c2d721a 2431 const char *lba_desc;
a6e6ce8e 2432 char ncq_desc[20];
8bf62ece 2433
4c2d721a
TH
2434 lba_desc = "LBA";
2435 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 2436 if (ata_id_has_lba48(id)) {
8bf62ece 2437 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 2438 lba_desc = "LBA48";
6fc49adb
TH
2439
2440 if (dev->n_sectors >= (1UL << 28) &&
2441 ata_id_has_flush_ext(id))
2442 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 2443 }
8bf62ece 2444
a6e6ce8e
TH
2445 /* config NCQ */
2446 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2447
8bf62ece 2448 /* print device info to dmesg */
3f64f565
EM
2449 if (ata_msg_drv(ap) && print_info) {
2450 ata_dev_printk(dev, KERN_INFO,
2451 "%s: %s, %s, max %s\n",
2452 revbuf, modelbuf, fwrevbuf,
2453 ata_mode_string(xfer_mask));
2454 ata_dev_printk(dev, KERN_INFO,
2455 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 2456 (unsigned long long)dev->n_sectors,
3f64f565
EM
2457 dev->multi_count, lba_desc, ncq_desc);
2458 }
ffeae418 2459 } else {
8bf62ece
AL
2460 /* CHS */
2461
2462 /* Default translation */
1148c3a7
TH
2463 dev->cylinders = id[1];
2464 dev->heads = id[3];
2465 dev->sectors = id[6];
8bf62ece 2466
1148c3a7 2467 if (ata_id_current_chs_valid(id)) {
8bf62ece 2468 /* Current CHS translation is valid. */
1148c3a7
TH
2469 dev->cylinders = id[54];
2470 dev->heads = id[55];
2471 dev->sectors = id[56];
8bf62ece
AL
2472 }
2473
2474 /* print device info to dmesg */
3f64f565 2475 if (ata_msg_drv(ap) && print_info) {
88574551 2476 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2477 "%s: %s, %s, max %s\n",
2478 revbuf, modelbuf, fwrevbuf,
2479 ata_mode_string(xfer_mask));
a84471fe 2480 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2481 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2482 (unsigned long long)dev->n_sectors,
2483 dev->multi_count, dev->cylinders,
2484 dev->heads, dev->sectors);
2485 }
07f6f7d0
AL
2486 }
2487
6e7846e9 2488 dev->cdb_len = 16;
1da177e4
LT
2489 }
2490
2491 /* ATAPI-specific feature tests */
2c13b7ce 2492 else if (dev->class == ATA_DEV_ATAPI) {
854c73a2
TH
2493 const char *cdb_intr_string = "";
2494 const char *atapi_an_string = "";
91163006 2495 const char *dma_dir_string = "";
7d77b247 2496 u32 sntf;
08a556db 2497
1148c3a7 2498 rc = atapi_cdb_len(id);
1da177e4 2499 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 2500 if (ata_msg_warn(ap))
88574551
TH
2501 ata_dev_printk(dev, KERN_WARNING,
2502 "unsupported CDB len\n");
ffeae418 2503 rc = -EINVAL;
1da177e4
LT
2504 goto err_out_nosup;
2505 }
6e7846e9 2506 dev->cdb_len = (unsigned int) rc;
1da177e4 2507
7d77b247
TH
2508 /* Enable ATAPI AN if both the host and device have
2509 * the support. If PMP is attached, SNTF is required
2510 * to enable ATAPI AN to discern between PHY status
2511 * changed notifications and ATAPI ANs.
9f45cbd3 2512 */
7d77b247 2513 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
071f44b1 2514 (!sata_pmp_attached(ap) ||
7d77b247 2515 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
854c73a2
TH
2516 unsigned int err_mask;
2517
9f45cbd3 2518 /* issue SET feature command to turn this on */
218f3d30
JG
2519 err_mask = ata_dev_set_feature(dev,
2520 SETFEATURES_SATA_ENABLE, SATA_AN);
854c73a2 2521 if (err_mask)
9f45cbd3 2522 ata_dev_printk(dev, KERN_ERR,
854c73a2
TH
2523 "failed to enable ATAPI AN "
2524 "(err_mask=0x%x)\n", err_mask);
2525 else {
9f45cbd3 2526 dev->flags |= ATA_DFLAG_AN;
854c73a2
TH
2527 atapi_an_string = ", ATAPI AN";
2528 }
9f45cbd3
KCA
2529 }
2530
08a556db 2531 if (ata_id_cdb_intr(dev->id)) {
312f7da2 2532 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
2533 cdb_intr_string = ", CDB intr";
2534 }
312f7da2 2535
91163006
TH
2536 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2537 dev->flags |= ATA_DFLAG_DMADIR;
2538 dma_dir_string = ", DMADIR";
2539 }
2540
1da177e4 2541 /* print device info to dmesg */
5afc8142 2542 if (ata_msg_drv(ap) && print_info)
ef143d57 2543 ata_dev_printk(dev, KERN_INFO,
91163006 2544 "ATAPI: %s, %s, max %s%s%s%s\n",
ef143d57 2545 modelbuf, fwrevbuf,
12436c30 2546 ata_mode_string(xfer_mask),
91163006
TH
2547 cdb_intr_string, atapi_an_string,
2548 dma_dir_string);
1da177e4
LT
2549 }
2550
914ed354
TH
2551 /* determine max_sectors */
2552 dev->max_sectors = ATA_MAX_SECTORS;
2553 if (dev->flags & ATA_DFLAG_LBA48)
2554 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2555
ca77329f
KCA
2556 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2557 if (ata_id_has_hipm(dev->id))
2558 dev->flags |= ATA_DFLAG_HIPM;
2559 if (ata_id_has_dipm(dev->id))
2560 dev->flags |= ATA_DFLAG_DIPM;
2561 }
2562
c5038fc0
AC
2563 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2564 200 sectors */
3373efd8 2565 if (ata_dev_knobble(dev)) {
5afc8142 2566 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2567 ata_dev_printk(dev, KERN_INFO,
2568 "applying bridge limits\n");
5a529139 2569 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2570 dev->max_sectors = ATA_MAX_SECTORS;
2571 }
2572
f8d8e579 2573 if ((dev->class == ATA_DEV_ATAPI) &&
f442cd86 2574 (atapi_command_packet_set(id) == TYPE_TAPE)) {
f8d8e579 2575 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
f442cd86
AL
2576 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2577 }
f8d8e579 2578
75683fe7 2579 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2580 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2581 dev->max_sectors);
18d6e9d5 2582
ca77329f
KCA
2583 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2584 dev->horkage |= ATA_HORKAGE_IPM;
2585
2586 /* reset link pm_policy for this port to no pm */
2587 ap->pm_policy = MAX_PERFORMANCE;
2588 }
2589
4b2f3ede 2590 if (ap->ops->dev_config)
cd0d3bbc 2591 ap->ops->dev_config(dev);
4b2f3ede 2592
c5038fc0
AC
2593 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2594 /* Let the user know. We don't want to disallow opens for
2595 rescue purposes, or in case the vendor is just a blithering
2596 idiot. Do this after the dev_config call as some controllers
2597 with buggy firmware may want to avoid reporting false device
2598 bugs */
2599
2600 if (print_info) {
2601 ata_dev_printk(dev, KERN_WARNING,
2602"Drive reports diagnostics failure. This may indicate a drive\n");
2603 ata_dev_printk(dev, KERN_WARNING,
2604"fault or invalid emulation. Contact drive vendor for information.\n");
2605 }
2606 }
2607
ac70a964
TH
2608 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2609 ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires "
2610 "firmware update to be fully functional.\n");
2611 ata_dev_printk(dev, KERN_WARNING, " contact the vendor "
2612 "or visit http://ata.wiki.kernel.org.\n");
2613 }
2614
ffeae418 2615 return 0;
1da177e4
LT
2616
2617err_out_nosup:
0dd4b21f 2618 if (ata_msg_probe(ap))
88574551 2619 ata_dev_printk(dev, KERN_DEBUG,
7f5e4e8d 2620 "%s: EXIT, err\n", __func__);
ffeae418 2621 return rc;
1da177e4
LT
2622}
2623
be0d18df 2624/**
2e41e8e6 2625 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2626 * @ap: port
2627 *
2e41e8e6 2628 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2629 * detection.
2630 */
2631
2632int ata_cable_40wire(struct ata_port *ap)
2633{
2634 return ATA_CBL_PATA40;
2635}
2636
2637/**
2e41e8e6 2638 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2639 * @ap: port
2640 *
2e41e8e6 2641 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2642 * detection.
2643 */
2644
2645int ata_cable_80wire(struct ata_port *ap)
2646{
2647 return ATA_CBL_PATA80;
2648}
2649
2650/**
2651 * ata_cable_unknown - return unknown PATA cable.
2652 * @ap: port
2653 *
2654 * Helper method for drivers which have no PATA cable detection.
2655 */
2656
2657int ata_cable_unknown(struct ata_port *ap)
2658{
2659 return ATA_CBL_PATA_UNK;
2660}
2661
c88f90c3
TH
2662/**
2663 * ata_cable_ignore - return ignored PATA cable.
2664 * @ap: port
2665 *
2666 * Helper method for drivers which don't use cable type to limit
2667 * transfer mode.
2668 */
2669int ata_cable_ignore(struct ata_port *ap)
2670{
2671 return ATA_CBL_PATA_IGN;
2672}
2673
be0d18df
AC
2674/**
2675 * ata_cable_sata - return SATA cable type
2676 * @ap: port
2677 *
2678 * Helper method for drivers which have SATA cables
2679 */
2680
2681int ata_cable_sata(struct ata_port *ap)
2682{
2683 return ATA_CBL_SATA;
2684}
2685
1da177e4
LT
2686/**
2687 * ata_bus_probe - Reset and probe ATA bus
2688 * @ap: Bus to probe
2689 *
0cba632b
JG
2690 * Master ATA bus probing function. Initiates a hardware-dependent
2691 * bus reset, then attempts to identify any devices found on
2692 * the bus.
2693 *
1da177e4 2694 * LOCKING:
0cba632b 2695 * PCI/etc. bus probe sem.
1da177e4
LT
2696 *
2697 * RETURNS:
96072e69 2698 * Zero on success, negative errno otherwise.
1da177e4
LT
2699 */
2700
80289167 2701int ata_bus_probe(struct ata_port *ap)
1da177e4 2702{
28ca5c57 2703 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2704 int tries[ATA_MAX_DEVICES];
f58229f8 2705 int rc;
e82cbdb9 2706 struct ata_device *dev;
1da177e4 2707
28ca5c57 2708 ata_port_probe(ap);
c19ba8af 2709
1eca4365 2710 ata_for_each_dev(dev, &ap->link, ALL)
f58229f8 2711 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
14d2bac1
TH
2712
2713 retry:
1eca4365 2714 ata_for_each_dev(dev, &ap->link, ALL) {
cdeab114
TH
2715 /* If we issue an SRST then an ATA drive (not ATAPI)
2716 * may change configuration and be in PIO0 timing. If
2717 * we do a hard reset (or are coming from power on)
2718 * this is true for ATA or ATAPI. Until we've set a
2719 * suitable controller mode we should not touch the
2720 * bus as we may be talking too fast.
2721 */
2722 dev->pio_mode = XFER_PIO_0;
2723
2724 /* If the controller has a pio mode setup function
2725 * then use it to set the chipset to rights. Don't
2726 * touch the DMA setup as that will be dealt with when
2727 * configuring devices.
2728 */
2729 if (ap->ops->set_piomode)
2730 ap->ops->set_piomode(ap, dev);
2731 }
2732
2044470c 2733 /* reset and determine device classes */
52783c5d 2734 ap->ops->phy_reset(ap);
2061a47a 2735
1eca4365 2736 ata_for_each_dev(dev, &ap->link, ALL) {
52783c5d
TH
2737 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2738 dev->class != ATA_DEV_UNKNOWN)
2739 classes[dev->devno] = dev->class;
2740 else
2741 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2742
52783c5d 2743 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2744 }
1da177e4 2745
52783c5d 2746 ata_port_probe(ap);
2044470c 2747
f31f0cc2
JG
2748 /* read IDENTIFY page and configure devices. We have to do the identify
2749 specific sequence bass-ackwards so that PDIAG- is released by
2750 the slave device */
2751
1eca4365 2752 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
f58229f8
TH
2753 if (tries[dev->devno])
2754 dev->class = classes[dev->devno];
ffeae418 2755
14d2bac1 2756 if (!ata_dev_enabled(dev))
ffeae418 2757 continue;
ffeae418 2758
bff04647
TH
2759 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2760 dev->id);
14d2bac1
TH
2761 if (rc)
2762 goto fail;
f31f0cc2
JG
2763 }
2764
be0d18df
AC
2765 /* Now ask for the cable type as PDIAG- should have been released */
2766 if (ap->ops->cable_detect)
2767 ap->cbl = ap->ops->cable_detect(ap);
2768
1eca4365
TH
2769 /* We may have SATA bridge glue hiding here irrespective of
2770 * the reported cable types and sensed types. When SATA
2771 * drives indicate we have a bridge, we don't know which end
2772 * of the link the bridge is which is a problem.
2773 */
2774 ata_for_each_dev(dev, &ap->link, ENABLED)
614fe29b
AC
2775 if (ata_id_is_sata(dev->id))
2776 ap->cbl = ATA_CBL_SATA;
614fe29b 2777
f31f0cc2
JG
2778 /* After the identify sequence we can now set up the devices. We do
2779 this in the normal order so that the user doesn't get confused */
2780
1eca4365 2781 ata_for_each_dev(dev, &ap->link, ENABLED) {
9af5c9c9 2782 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
efdaedc4 2783 rc = ata_dev_configure(dev);
9af5c9c9 2784 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2785 if (rc)
2786 goto fail;
1da177e4
LT
2787 }
2788
e82cbdb9 2789 /* configure transfer mode */
0260731f 2790 rc = ata_set_mode(&ap->link, &dev);
4ae72a1e 2791 if (rc)
51713d35 2792 goto fail;
1da177e4 2793
1eca4365
TH
2794 ata_for_each_dev(dev, &ap->link, ENABLED)
2795 return 0;
1da177e4 2796
e82cbdb9
TH
2797 /* no device present, disable port */
2798 ata_port_disable(ap);
96072e69 2799 return -ENODEV;
14d2bac1
TH
2800
2801 fail:
4ae72a1e
TH
2802 tries[dev->devno]--;
2803
14d2bac1
TH
2804 switch (rc) {
2805 case -EINVAL:
4ae72a1e 2806 /* eeek, something went very wrong, give up */
14d2bac1
TH
2807 tries[dev->devno] = 0;
2808 break;
4ae72a1e
TH
2809
2810 case -ENODEV:
2811 /* give it just one more chance */
2812 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2813 case -EIO:
4ae72a1e
TH
2814 if (tries[dev->devno] == 1) {
2815 /* This is the last chance, better to slow
2816 * down than lose it.
2817 */
a07d499b 2818 sata_down_spd_limit(&ap->link, 0);
4ae72a1e
TH
2819 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2820 }
14d2bac1
TH
2821 }
2822
4ae72a1e 2823 if (!tries[dev->devno])
3373efd8 2824 ata_dev_disable(dev);
ec573755 2825
14d2bac1 2826 goto retry;
1da177e4
LT
2827}
2828
2829/**
0cba632b
JG
2830 * ata_port_probe - Mark port as enabled
2831 * @ap: Port for which we indicate enablement
1da177e4 2832 *
0cba632b
JG
2833 * Modify @ap data structure such that the system
2834 * thinks that the entire port is enabled.
2835 *
cca3974e 2836 * LOCKING: host lock, or some other form of
0cba632b 2837 * serialization.
1da177e4
LT
2838 */
2839
2840void ata_port_probe(struct ata_port *ap)
2841{
198e0fed 2842 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
2843}
2844
3be680b7
TH
2845/**
2846 * sata_print_link_status - Print SATA link status
936fd732 2847 * @link: SATA link to printk link status about
3be680b7
TH
2848 *
2849 * This function prints link speed and status of a SATA link.
2850 *
2851 * LOCKING:
2852 * None.
2853 */
6bdb4fc9 2854static void sata_print_link_status(struct ata_link *link)
3be680b7 2855{
6d5f9732 2856 u32 sstatus, scontrol, tmp;
3be680b7 2857
936fd732 2858 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3be680b7 2859 return;
936fd732 2860 sata_scr_read(link, SCR_CONTROL, &scontrol);
3be680b7 2861
b1c72916 2862 if (ata_phys_link_online(link)) {
3be680b7 2863 tmp = (sstatus >> 4) & 0xf;
936fd732 2864 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2865 "SATA link up %s (SStatus %X SControl %X)\n",
2866 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2867 } else {
936fd732 2868 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2869 "SATA link down (SStatus %X SControl %X)\n",
2870 sstatus, scontrol);
3be680b7
TH
2871 }
2872}
2873
ebdfca6e
AC
2874/**
2875 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2876 * @adev: device
2877 *
2878 * Obtain the other device on the same cable, or if none is
2879 * present NULL is returned
2880 */
2e9edbf8 2881
3373efd8 2882struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2883{
9af5c9c9
TH
2884 struct ata_link *link = adev->link;
2885 struct ata_device *pair = &link->device[1 - adev->devno];
e1211e3f 2886 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2887 return NULL;
2888 return pair;
2889}
2890
1da177e4 2891/**
780a87f7
JG
2892 * ata_port_disable - Disable port.
2893 * @ap: Port to be disabled.
1da177e4 2894 *
780a87f7
JG
2895 * Modify @ap data structure such that the system
2896 * thinks that the entire port is disabled, and should
2897 * never attempt to probe or communicate with devices
2898 * on this port.
2899 *
cca3974e 2900 * LOCKING: host lock, or some other form of
780a87f7 2901 * serialization.
1da177e4
LT
2902 */
2903
2904void ata_port_disable(struct ata_port *ap)
2905{
9af5c9c9
TH
2906 ap->link.device[0].class = ATA_DEV_NONE;
2907 ap->link.device[1].class = ATA_DEV_NONE;
198e0fed 2908 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2909}
2910
1c3fae4d 2911/**
3c567b7d 2912 * sata_down_spd_limit - adjust SATA spd limit downward
936fd732 2913 * @link: Link to adjust SATA spd limit for
a07d499b 2914 * @spd_limit: Additional limit
1c3fae4d 2915 *
936fd732 2916 * Adjust SATA spd limit of @link downward. Note that this
1c3fae4d 2917 * function only adjusts the limit. The change must be applied
3c567b7d 2918 * using sata_set_spd().
1c3fae4d 2919 *
a07d499b
TH
2920 * If @spd_limit is non-zero, the speed is limited to equal to or
2921 * lower than @spd_limit if such speed is supported. If
2922 * @spd_limit is slower than any supported speed, only the lowest
2923 * supported speed is allowed.
2924 *
1c3fae4d
TH
2925 * LOCKING:
2926 * Inherited from caller.
2927 *
2928 * RETURNS:
2929 * 0 on success, negative errno on failure
2930 */
a07d499b 2931int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
1c3fae4d 2932{
81952c54 2933 u32 sstatus, spd, mask;
a07d499b 2934 int rc, bit;
1c3fae4d 2935
936fd732 2936 if (!sata_scr_valid(link))
008a7896
TH
2937 return -EOPNOTSUPP;
2938
2939 /* If SCR can be read, use it to determine the current SPD.
936fd732 2940 * If not, use cached value in link->sata_spd.
008a7896 2941 */
936fd732 2942 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
9913ff8a 2943 if (rc == 0 && ata_sstatus_online(sstatus))
008a7896
TH
2944 spd = (sstatus >> 4) & 0xf;
2945 else
936fd732 2946 spd = link->sata_spd;
1c3fae4d 2947
936fd732 2948 mask = link->sata_spd_limit;
1c3fae4d
TH
2949 if (mask <= 1)
2950 return -EINVAL;
008a7896
TH
2951
2952 /* unconditionally mask off the highest bit */
a07d499b
TH
2953 bit = fls(mask) - 1;
2954 mask &= ~(1 << bit);
1c3fae4d 2955
008a7896
TH
2956 /* Mask off all speeds higher than or equal to the current
2957 * one. Force 1.5Gbps if current SPD is not available.
2958 */
2959 if (spd > 1)
2960 mask &= (1 << (spd - 1)) - 1;
2961 else
2962 mask &= 1;
2963
2964 /* were we already at the bottom? */
1c3fae4d
TH
2965 if (!mask)
2966 return -EINVAL;
2967
a07d499b
TH
2968 if (spd_limit) {
2969 if (mask & ((1 << spd_limit) - 1))
2970 mask &= (1 << spd_limit) - 1;
2971 else {
2972 bit = ffs(mask) - 1;
2973 mask = 1 << bit;
2974 }
2975 }
2976
936fd732 2977 link->sata_spd_limit = mask;
1c3fae4d 2978
936fd732 2979 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
f15a1daf 2980 sata_spd_string(fls(mask)));
1c3fae4d
TH
2981
2982 return 0;
2983}
2984
936fd732 2985static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
1c3fae4d 2986{
5270222f
TH
2987 struct ata_link *host_link = &link->ap->link;
2988 u32 limit, target, spd;
1c3fae4d 2989
5270222f
TH
2990 limit = link->sata_spd_limit;
2991
2992 /* Don't configure downstream link faster than upstream link.
2993 * It doesn't speed up anything and some PMPs choke on such
2994 * configuration.
2995 */
2996 if (!ata_is_host_link(link) && host_link->sata_spd)
2997 limit &= (1 << host_link->sata_spd) - 1;
2998
2999 if (limit == UINT_MAX)
3000 target = 0;
1c3fae4d 3001 else
5270222f 3002 target = fls(limit);
1c3fae4d
TH
3003
3004 spd = (*scontrol >> 4) & 0xf;
5270222f 3005 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
1c3fae4d 3006
5270222f 3007 return spd != target;
1c3fae4d
TH
3008}
3009
3010/**
3c567b7d 3011 * sata_set_spd_needed - is SATA spd configuration needed
936fd732 3012 * @link: Link in question
1c3fae4d
TH
3013 *
3014 * Test whether the spd limit in SControl matches
936fd732 3015 * @link->sata_spd_limit. This function is used to determine
1c3fae4d
TH
3016 * whether hardreset is necessary to apply SATA spd
3017 * configuration.
3018 *
3019 * LOCKING:
3020 * Inherited from caller.
3021 *
3022 * RETURNS:
3023 * 1 if SATA spd configuration is needed, 0 otherwise.
3024 */
1dc55e87 3025static int sata_set_spd_needed(struct ata_link *link)
1c3fae4d
TH
3026{
3027 u32 scontrol;
3028
936fd732 3029 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
db64bcf3 3030 return 1;
1c3fae4d 3031
936fd732 3032 return __sata_set_spd_needed(link, &scontrol);
1c3fae4d
TH
3033}
3034
3035/**
3c567b7d 3036 * sata_set_spd - set SATA spd according to spd limit
936fd732 3037 * @link: Link to set SATA spd for
1c3fae4d 3038 *
936fd732 3039 * Set SATA spd of @link according to sata_spd_limit.
1c3fae4d
TH
3040 *
3041 * LOCKING:
3042 * Inherited from caller.
3043 *
3044 * RETURNS:
3045 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 3046 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 3047 */
936fd732 3048int sata_set_spd(struct ata_link *link)
1c3fae4d
TH
3049{
3050 u32 scontrol;
81952c54 3051 int rc;
1c3fae4d 3052
936fd732 3053 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3054 return rc;
1c3fae4d 3055
936fd732 3056 if (!__sata_set_spd_needed(link, &scontrol))
1c3fae4d
TH
3057 return 0;
3058
936fd732 3059 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54
TH
3060 return rc;
3061
1c3fae4d
TH
3062 return 1;
3063}
3064
452503f9
AC
3065/*
3066 * This mode timing computation functionality is ported over from
3067 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3068 */
3069/*
b352e57d 3070 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 3071 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
3072 * for UDMA6, which is currently supported only by Maxtor drives.
3073 *
3074 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
3075 */
3076
3077static const struct ata_timing ata_timing[] = {
3ada9c12
DD
3078/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
3079 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
3080 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
3081 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
3082 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
3083 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
3084 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
3085 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
3086
3087 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
3088 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
3089 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
3090
3091 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
3092 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
3093 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
3094 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
3095 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
3096
3097/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3098 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
3099 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
3100 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
3101 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
3102 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
3103 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
3104 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
452503f9
AC
3105
3106 { 0xFF }
3107};
3108
2dcb407e
JG
3109#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3110#define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
452503f9
AC
3111
3112static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3113{
3ada9c12
DD
3114 q->setup = EZ(t->setup * 1000, T);
3115 q->act8b = EZ(t->act8b * 1000, T);
3116 q->rec8b = EZ(t->rec8b * 1000, T);
3117 q->cyc8b = EZ(t->cyc8b * 1000, T);
3118 q->active = EZ(t->active * 1000, T);
3119 q->recover = EZ(t->recover * 1000, T);
3120 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
3121 q->cycle = EZ(t->cycle * 1000, T);
3122 q->udma = EZ(t->udma * 1000, UT);
452503f9
AC
3123}
3124
3125void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3126 struct ata_timing *m, unsigned int what)
3127{
3128 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3129 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3130 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3131 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3132 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3133 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3ada9c12 3134 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
452503f9
AC
3135 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3136 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3137}
3138
6357357c 3139const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
452503f9 3140{
70cd071e
TH
3141 const struct ata_timing *t = ata_timing;
3142
3143 while (xfer_mode > t->mode)
3144 t++;
452503f9 3145
70cd071e
TH
3146 if (xfer_mode == t->mode)
3147 return t;
3148 return NULL;
452503f9
AC
3149}
3150
3151int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3152 struct ata_timing *t, int T, int UT)
3153{
3154 const struct ata_timing *s;
3155 struct ata_timing p;
3156
3157 /*
2e9edbf8 3158 * Find the mode.
75b1f2f8 3159 */
452503f9
AC
3160
3161 if (!(s = ata_timing_find_mode(speed)))
3162 return -EINVAL;
3163
75b1f2f8
AL
3164 memcpy(t, s, sizeof(*s));
3165
452503f9
AC
3166 /*
3167 * If the drive is an EIDE drive, it can tell us it needs extended
3168 * PIO/MW_DMA cycle timing.
3169 */
3170
3171 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3172 memset(&p, 0, sizeof(p));
2dcb407e 3173 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
452503f9
AC
3174 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
3175 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2dcb407e 3176 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
452503f9
AC
3177 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
3178 }
3179 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3180 }
3181
3182 /*
3183 * Convert the timing to bus clock counts.
3184 */
3185
75b1f2f8 3186 ata_timing_quantize(t, t, T, UT);
452503f9
AC
3187
3188 /*
c893a3ae
RD
3189 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3190 * S.M.A.R.T * and some other commands. We have to ensure that the
3191 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
3192 */
3193
fd3367af 3194 if (speed > XFER_PIO_6) {
452503f9
AC
3195 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3196 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3197 }
3198
3199 /*
c893a3ae 3200 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
3201 */
3202
3203 if (t->act8b + t->rec8b < t->cyc8b) {
3204 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3205 t->rec8b = t->cyc8b - t->act8b;
3206 }
3207
3208 if (t->active + t->recover < t->cycle) {
3209 t->active += (t->cycle - (t->active + t->recover)) / 2;
3210 t->recover = t->cycle - t->active;
3211 }
a617c09f 3212
4f701d1e
AC
3213 /* In a few cases quantisation may produce enough errors to
3214 leave t->cycle too low for the sum of active and recovery
3215 if so we must correct this */
3216 if (t->active + t->recover > t->cycle)
3217 t->cycle = t->active + t->recover;
452503f9
AC
3218
3219 return 0;
3220}
3221
a0f79b92
TH
3222/**
3223 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3224 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3225 * @cycle: cycle duration in ns
3226 *
3227 * Return matching xfer mode for @cycle. The returned mode is of
3228 * the transfer type specified by @xfer_shift. If @cycle is too
3229 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3230 * than the fastest known mode, the fasted mode is returned.
3231 *
3232 * LOCKING:
3233 * None.
3234 *
3235 * RETURNS:
3236 * Matching xfer_mode, 0xff if no match found.
3237 */
3238u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3239{
3240 u8 base_mode = 0xff, last_mode = 0xff;
3241 const struct ata_xfer_ent *ent;
3242 const struct ata_timing *t;
3243
3244 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3245 if (ent->shift == xfer_shift)
3246 base_mode = ent->base;
3247
3248 for (t = ata_timing_find_mode(base_mode);
3249 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3250 unsigned short this_cycle;
3251
3252 switch (xfer_shift) {
3253 case ATA_SHIFT_PIO:
3254 case ATA_SHIFT_MWDMA:
3255 this_cycle = t->cycle;
3256 break;
3257 case ATA_SHIFT_UDMA:
3258 this_cycle = t->udma;
3259 break;
3260 default:
3261 return 0xff;
3262 }
3263
3264 if (cycle > this_cycle)
3265 break;
3266
3267 last_mode = t->mode;
3268 }
3269
3270 return last_mode;
3271}
3272
cf176e1a
TH
3273/**
3274 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 3275 * @dev: Device to adjust xfer masks
458337db 3276 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
3277 *
3278 * Adjust xfer masks of @dev downward. Note that this function
3279 * does not apply the change. Invoking ata_set_mode() afterwards
3280 * will apply the limit.
3281 *
3282 * LOCKING:
3283 * Inherited from caller.
3284 *
3285 * RETURNS:
3286 * 0 on success, negative errno on failure
3287 */
458337db 3288int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 3289{
458337db 3290 char buf[32];
7dc951ae
TH
3291 unsigned long orig_mask, xfer_mask;
3292 unsigned long pio_mask, mwdma_mask, udma_mask;
458337db 3293 int quiet, highbit;
cf176e1a 3294
458337db
TH
3295 quiet = !!(sel & ATA_DNXFER_QUIET);
3296 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 3297
458337db
TH
3298 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3299 dev->mwdma_mask,
3300 dev->udma_mask);
3301 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 3302
458337db
TH
3303 switch (sel) {
3304 case ATA_DNXFER_PIO:
3305 highbit = fls(pio_mask) - 1;
3306 pio_mask &= ~(1 << highbit);
3307 break;
3308
3309 case ATA_DNXFER_DMA:
3310 if (udma_mask) {
3311 highbit = fls(udma_mask) - 1;
3312 udma_mask &= ~(1 << highbit);
3313 if (!udma_mask)
3314 return -ENOENT;
3315 } else if (mwdma_mask) {
3316 highbit = fls(mwdma_mask) - 1;
3317 mwdma_mask &= ~(1 << highbit);
3318 if (!mwdma_mask)
3319 return -ENOENT;
3320 }
3321 break;
3322
3323 case ATA_DNXFER_40C:
3324 udma_mask &= ATA_UDMA_MASK_40C;
3325 break;
3326
3327 case ATA_DNXFER_FORCE_PIO0:
3328 pio_mask &= 1;
3329 case ATA_DNXFER_FORCE_PIO:
3330 mwdma_mask = 0;
3331 udma_mask = 0;
3332 break;
3333
458337db
TH
3334 default:
3335 BUG();
3336 }
3337
3338 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3339
3340 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3341 return -ENOENT;
3342
3343 if (!quiet) {
3344 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3345 snprintf(buf, sizeof(buf), "%s:%s",
3346 ata_mode_string(xfer_mask),
3347 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3348 else
3349 snprintf(buf, sizeof(buf), "%s",
3350 ata_mode_string(xfer_mask));
3351
3352 ata_dev_printk(dev, KERN_WARNING,
3353 "limiting speed to %s\n", buf);
3354 }
cf176e1a
TH
3355
3356 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3357 &dev->udma_mask);
3358
cf176e1a 3359 return 0;
cf176e1a
TH
3360}
3361
3373efd8 3362static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 3363{
9af5c9c9 3364 struct ata_eh_context *ehc = &dev->link->eh_context;
4055dee7
TH
3365 const char *dev_err_whine = "";
3366 int ign_dev_err = 0;
83206a29
TH
3367 unsigned int err_mask;
3368 int rc;
1da177e4 3369
e8384607 3370 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
3371 if (dev->xfer_shift == ATA_SHIFT_PIO)
3372 dev->flags |= ATA_DFLAG_PIO;
3373
3373efd8 3374 err_mask = ata_dev_set_xfermode(dev);
2dcb407e 3375
4055dee7
TH
3376 if (err_mask & ~AC_ERR_DEV)
3377 goto fail;
3378
3379 /* revalidate */
3380 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3381 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3382 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3383 if (rc)
3384 return rc;
3385
b93fda12
AC
3386 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3387 /* Old CFA may refuse this command, which is just fine */
3388 if (ata_id_is_cfa(dev->id))
3389 ign_dev_err = 1;
3390 /* Catch several broken garbage emulations plus some pre
3391 ATA devices */
3392 if (ata_id_major_version(dev->id) == 0 &&
3393 dev->pio_mode <= XFER_PIO_2)
3394 ign_dev_err = 1;
3395 /* Some very old devices and some bad newer ones fail
3396 any kind of SET_XFERMODE request but support PIO0-2
3397 timings and no IORDY */
3398 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3399 ign_dev_err = 1;
3400 }
3acaf94b
AC
3401 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3402 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
c5038fc0 3403 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3acaf94b
AC
3404 dev->dma_mode == XFER_MW_DMA_0 &&
3405 (dev->id[63] >> 8) & 1)
4055dee7 3406 ign_dev_err = 1;
3acaf94b 3407
4055dee7
TH
3408 /* if the device is actually configured correctly, ignore dev err */
3409 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3410 ign_dev_err = 1;
1da177e4 3411
4055dee7
TH
3412 if (err_mask & AC_ERR_DEV) {
3413 if (!ign_dev_err)
3414 goto fail;
3415 else
3416 dev_err_whine = " (device error ignored)";
3417 }
48a8a14f 3418
23e71c3d
TH
3419 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3420 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 3421
4055dee7
TH
3422 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3423 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3424 dev_err_whine);
3425
83206a29 3426 return 0;
4055dee7
TH
3427
3428 fail:
3429 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3430 "(err_mask=0x%x)\n", err_mask);
3431 return -EIO;
1da177e4
LT
3432}
3433
1da177e4 3434/**
04351821 3435 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 3436 * @link: link on which timings will be programmed
1967b7ff 3437 * @r_failed_dev: out parameter for failed device
1da177e4 3438 *
04351821
A
3439 * Standard implementation of the function used to tune and set
3440 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3441 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 3442 * returned in @r_failed_dev.
780a87f7 3443 *
1da177e4 3444 * LOCKING:
0cba632b 3445 * PCI/etc. bus probe sem.
e82cbdb9
TH
3446 *
3447 * RETURNS:
3448 * 0 on success, negative errno otherwise
1da177e4 3449 */
04351821 3450
0260731f 3451int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
1da177e4 3452{
0260731f 3453 struct ata_port *ap = link->ap;
e8e0619f 3454 struct ata_device *dev;
f58229f8 3455 int rc = 0, used_dma = 0, found = 0;
3adcebb2 3456
a6d5a51c 3457 /* step 1: calculate xfer_mask */
1eca4365 3458 ata_for_each_dev(dev, link, ENABLED) {
7dc951ae 3459 unsigned long pio_mask, dma_mask;
b3a70601 3460 unsigned int mode_mask;
a6d5a51c 3461
b3a70601
AC
3462 mode_mask = ATA_DMA_MASK_ATA;
3463 if (dev->class == ATA_DEV_ATAPI)
3464 mode_mask = ATA_DMA_MASK_ATAPI;
3465 else if (ata_id_is_cfa(dev->id))
3466 mode_mask = ATA_DMA_MASK_CFA;
3467
3373efd8 3468 ata_dev_xfermask(dev);
33267325 3469 ata_force_xfermask(dev);
1da177e4 3470
acf356b1
TH
3471 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3472 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
b3a70601
AC
3473
3474 if (libata_dma_mask & mode_mask)
3475 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3476 else
3477 dma_mask = 0;
3478
acf356b1
TH
3479 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3480 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 3481
4f65977d 3482 found = 1;
b15b3eba 3483 if (ata_dma_enabled(dev))
5444a6f4 3484 used_dma = 1;
a6d5a51c 3485 }
4f65977d 3486 if (!found)
e82cbdb9 3487 goto out;
a6d5a51c
TH
3488
3489 /* step 2: always set host PIO timings */
1eca4365 3490 ata_for_each_dev(dev, link, ENABLED) {
70cd071e 3491 if (dev->pio_mode == 0xff) {
f15a1daf 3492 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 3493 rc = -EINVAL;
e82cbdb9 3494 goto out;
e8e0619f
TH
3495 }
3496
3497 dev->xfer_mode = dev->pio_mode;
3498 dev->xfer_shift = ATA_SHIFT_PIO;
3499 if (ap->ops->set_piomode)
3500 ap->ops->set_piomode(ap, dev);
3501 }
1da177e4 3502
a6d5a51c 3503 /* step 3: set host DMA timings */
1eca4365
TH
3504 ata_for_each_dev(dev, link, ENABLED) {
3505 if (!ata_dma_enabled(dev))
e8e0619f
TH
3506 continue;
3507
3508 dev->xfer_mode = dev->dma_mode;
3509 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3510 if (ap->ops->set_dmamode)
3511 ap->ops->set_dmamode(ap, dev);
3512 }
1da177e4
LT
3513
3514 /* step 4: update devices' xfer mode */
1eca4365 3515 ata_for_each_dev(dev, link, ENABLED) {
3373efd8 3516 rc = ata_dev_set_mode(dev);
5bbc53f4 3517 if (rc)
e82cbdb9 3518 goto out;
83206a29 3519 }
1da177e4 3520
e8e0619f
TH
3521 /* Record simplex status. If we selected DMA then the other
3522 * host channels are not permitted to do so.
5444a6f4 3523 */
cca3974e 3524 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 3525 ap->host->simplex_claimed = ap;
5444a6f4 3526
e82cbdb9
TH
3527 out:
3528 if (rc)
3529 *r_failed_dev = dev;
3530 return rc;
1da177e4
LT
3531}
3532
aa2731ad
TH
3533/**
3534 * ata_wait_ready - wait for link to become ready
3535 * @link: link to be waited on
3536 * @deadline: deadline jiffies for the operation
3537 * @check_ready: callback to check link readiness
3538 *
3539 * Wait for @link to become ready. @check_ready should return
3540 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3541 * link doesn't seem to be occupied, other errno for other error
3542 * conditions.
3543 *
3544 * Transient -ENODEV conditions are allowed for
3545 * ATA_TMOUT_FF_WAIT.
3546 *
3547 * LOCKING:
3548 * EH context.
3549 *
3550 * RETURNS:
3551 * 0 if @linke is ready before @deadline; otherwise, -errno.
3552 */
3553int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3554 int (*check_ready)(struct ata_link *link))
3555{
3556 unsigned long start = jiffies;
341c2c95 3557 unsigned long nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
aa2731ad
TH
3558 int warned = 0;
3559
b1c72916
TH
3560 /* Slave readiness can't be tested separately from master. On
3561 * M/S emulation configuration, this function should be called
3562 * only on the master and it will handle both master and slave.
3563 */
3564 WARN_ON(link == link->ap->slave_link);
3565
aa2731ad
TH
3566 if (time_after(nodev_deadline, deadline))
3567 nodev_deadline = deadline;
3568
3569 while (1) {
3570 unsigned long now = jiffies;
3571 int ready, tmp;
3572
3573 ready = tmp = check_ready(link);
3574 if (ready > 0)
3575 return 0;
3576
3577 /* -ENODEV could be transient. Ignore -ENODEV if link
3578 * is online. Also, some SATA devices take a long
3579 * time to clear 0xff after reset. For example,
3580 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum
3581 * GoVault needs even more than that. Wait for
3582 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline.
3583 *
3584 * Note that some PATA controllers (pata_ali) explode
3585 * if status register is read more than once when
3586 * there's no device attached.
3587 */
3588 if (ready == -ENODEV) {
3589 if (ata_link_online(link))
3590 ready = 0;
3591 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3592 !ata_link_offline(link) &&
3593 time_before(now, nodev_deadline))
3594 ready = 0;
3595 }
3596
3597 if (ready)
3598 return ready;
3599 if (time_after(now, deadline))
3600 return -EBUSY;
3601
3602 if (!warned && time_after(now, start + 5 * HZ) &&
3603 (deadline - now > 3 * HZ)) {
3604 ata_link_printk(link, KERN_WARNING,
3605 "link is slow to respond, please be patient "
3606 "(ready=%d)\n", tmp);
3607 warned = 1;
3608 }
3609
3610 msleep(50);
3611 }
3612}
3613
3614/**
3615 * ata_wait_after_reset - wait for link to become ready after reset
3616 * @link: link to be waited on
3617 * @deadline: deadline jiffies for the operation
3618 * @check_ready: callback to check link readiness
3619 *
3620 * Wait for @link to become ready after reset.
3621 *
3622 * LOCKING:
3623 * EH context.
3624 *
3625 * RETURNS:
3626 * 0 if @linke is ready before @deadline; otherwise, -errno.
3627 */
2b4221bb 3628int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
aa2731ad
TH
3629 int (*check_ready)(struct ata_link *link))
3630{
341c2c95 3631 msleep(ATA_WAIT_AFTER_RESET);
aa2731ad
TH
3632
3633 return ata_wait_ready(link, deadline, check_ready);
3634}
3635
d7bb4cc7 3636/**
936fd732
TH
3637 * sata_link_debounce - debounce SATA phy status
3638 * @link: ATA link to debounce SATA phy status for
d7bb4cc7 3639 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3640 * @deadline: deadline jiffies for the operation
d7bb4cc7 3641 *
936fd732 3642* Make sure SStatus of @link reaches stable state, determined by
d7bb4cc7
TH
3643 * holding the same value where DET is not 1 for @duration polled
3644 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3645 * beginning of the stable state. Because DET gets stuck at 1 on
3646 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3647 * until timeout then returns 0 if DET is stable at 1.
3648 *
d4b2bab4
TH
3649 * @timeout is further limited by @deadline. The sooner of the
3650 * two is used.
3651 *
d7bb4cc7
TH
3652 * LOCKING:
3653 * Kernel thread context (may sleep)
3654 *
3655 * RETURNS:
3656 * 0 on success, -errno on failure.
3657 */
936fd732
TH
3658int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3659 unsigned long deadline)
7a7921e8 3660{
341c2c95
TH
3661 unsigned long interval = params[0];
3662 unsigned long duration = params[1];
d4b2bab4 3663 unsigned long last_jiffies, t;
d7bb4cc7
TH
3664 u32 last, cur;
3665 int rc;
3666
341c2c95 3667 t = ata_deadline(jiffies, params[2]);
d4b2bab4
TH
3668 if (time_before(t, deadline))
3669 deadline = t;
3670
936fd732 3671 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3672 return rc;
3673 cur &= 0xf;
3674
3675 last = cur;
3676 last_jiffies = jiffies;
3677
3678 while (1) {
341c2c95 3679 msleep(interval);
936fd732 3680 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3681 return rc;
3682 cur &= 0xf;
3683
3684 /* DET stable? */
3685 if (cur == last) {
d4b2bab4 3686 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7 3687 continue;
341c2c95
TH
3688 if (time_after(jiffies,
3689 ata_deadline(last_jiffies, duration)))
d7bb4cc7
TH
3690 return 0;
3691 continue;
3692 }
3693
3694 /* unstable, start over */
3695 last = cur;
3696 last_jiffies = jiffies;
3697
f1545154
TH
3698 /* Check deadline. If debouncing failed, return
3699 * -EPIPE to tell upper layer to lower link speed.
3700 */
d4b2bab4 3701 if (time_after(jiffies, deadline))
f1545154 3702 return -EPIPE;
d7bb4cc7
TH
3703 }
3704}
3705
3706/**
936fd732
TH
3707 * sata_link_resume - resume SATA link
3708 * @link: ATA link to resume SATA
d7bb4cc7 3709 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3710 * @deadline: deadline jiffies for the operation
d7bb4cc7 3711 *
936fd732 3712 * Resume SATA phy @link and debounce it.
d7bb4cc7
TH
3713 *
3714 * LOCKING:
3715 * Kernel thread context (may sleep)
3716 *
3717 * RETURNS:
3718 * 0 on success, -errno on failure.
3719 */
936fd732
TH
3720int sata_link_resume(struct ata_link *link, const unsigned long *params,
3721 unsigned long deadline)
d7bb4cc7 3722{
ac371987 3723 u32 scontrol, serror;
81952c54
TH
3724 int rc;
3725
936fd732 3726 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3727 return rc;
7a7921e8 3728
852ee16a 3729 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54 3730
936fd732 3731 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54 3732 return rc;
7a7921e8 3733
d7bb4cc7
TH
3734 /* Some PHYs react badly if SStatus is pounded immediately
3735 * after resuming. Delay 200ms before debouncing.
3736 */
3737 msleep(200);
7a7921e8 3738
ac371987
TH
3739 if ((rc = sata_link_debounce(link, params, deadline)))
3740 return rc;
3741
f046519f 3742 /* clear SError, some PHYs require this even for SRST to work */
ac371987
TH
3743 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3744 rc = sata_scr_write(link, SCR_ERROR, serror);
ac371987 3745
f046519f 3746 return rc != -EINVAL ? rc : 0;
7a7921e8
TH
3747}
3748
f5914a46 3749/**
0aa1113d 3750 * ata_std_prereset - prepare for reset
cc0680a5 3751 * @link: ATA link to be reset
d4b2bab4 3752 * @deadline: deadline jiffies for the operation
f5914a46 3753 *
cc0680a5 3754 * @link is about to be reset. Initialize it. Failure from
b8cffc6a
TH
3755 * prereset makes libata abort whole reset sequence and give up
3756 * that port, so prereset should be best-effort. It does its
3757 * best to prepare for reset sequence but if things go wrong, it
3758 * should just whine, not fail.
f5914a46
TH
3759 *
3760 * LOCKING:
3761 * Kernel thread context (may sleep)
3762 *
3763 * RETURNS:
3764 * 0 on success, -errno otherwise.
3765 */
0aa1113d 3766int ata_std_prereset(struct ata_link *link, unsigned long deadline)
f5914a46 3767{
cc0680a5 3768 struct ata_port *ap = link->ap;
936fd732 3769 struct ata_eh_context *ehc = &link->eh_context;
e9c83914 3770 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3771 int rc;
3772
f5914a46
TH
3773 /* if we're about to do hardreset, nothing more to do */
3774 if (ehc->i.action & ATA_EH_HARDRESET)
3775 return 0;
3776
936fd732 3777 /* if SATA, resume link */
a16abc0b 3778 if (ap->flags & ATA_FLAG_SATA) {
936fd732 3779 rc = sata_link_resume(link, timing, deadline);
b8cffc6a
TH
3780 /* whine about phy resume failure but proceed */
3781 if (rc && rc != -EOPNOTSUPP)
cc0680a5 3782 ata_link_printk(link, KERN_WARNING, "failed to resume "
f5914a46 3783 "link for reset (errno=%d)\n", rc);
f5914a46
TH
3784 }
3785
45db2f6c 3786 /* no point in trying softreset on offline link */
b1c72916 3787 if (ata_phys_link_offline(link))
45db2f6c
TH
3788 ehc->i.action &= ~ATA_EH_SOFTRESET;
3789
f5914a46
TH
3790 return 0;
3791}
3792
c2bd5804 3793/**
624d5c51
TH
3794 * sata_link_hardreset - reset link via SATA phy reset
3795 * @link: link to reset
3796 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3797 * @deadline: deadline jiffies for the operation
9dadd45b
TH
3798 * @online: optional out parameter indicating link onlineness
3799 * @check_ready: optional callback to check link readiness
c2bd5804 3800 *
624d5c51 3801 * SATA phy-reset @link using DET bits of SControl register.
9dadd45b
TH
3802 * After hardreset, link readiness is waited upon using
3803 * ata_wait_ready() if @check_ready is specified. LLDs are
3804 * allowed to not specify @check_ready and wait itself after this
3805 * function returns. Device classification is LLD's
3806 * responsibility.
3807 *
3808 * *@online is set to one iff reset succeeded and @link is online
3809 * after reset.
c2bd5804
TH
3810 *
3811 * LOCKING:
3812 * Kernel thread context (may sleep)
3813 *
3814 * RETURNS:
3815 * 0 on success, -errno otherwise.
3816 */
624d5c51 3817int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
9dadd45b
TH
3818 unsigned long deadline,
3819 bool *online, int (*check_ready)(struct ata_link *))
c2bd5804 3820{
624d5c51 3821 u32 scontrol;
81952c54 3822 int rc;
852ee16a 3823
c2bd5804
TH
3824 DPRINTK("ENTER\n");
3825
9dadd45b
TH
3826 if (online)
3827 *online = false;
3828
936fd732 3829 if (sata_set_spd_needed(link)) {
1c3fae4d
TH
3830 /* SATA spec says nothing about how to reconfigure
3831 * spd. To be on the safe side, turn off phy during
3832 * reconfiguration. This works for at least ICH7 AHCI
3833 * and Sil3124.
3834 */
936fd732 3835 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3836 goto out;
81952c54 3837
a34b6fc0 3838 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54 3839
936fd732 3840 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
b6103f6d 3841 goto out;
1c3fae4d 3842
936fd732 3843 sata_set_spd(link);
1c3fae4d
TH
3844 }
3845
3846 /* issue phy wake/reset */
936fd732 3847 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3848 goto out;
81952c54 3849
852ee16a 3850 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54 3851
936fd732 3852 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
b6103f6d 3853 goto out;
c2bd5804 3854
1c3fae4d 3855 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3856 * 10.4.2 says at least 1 ms.
3857 */
3858 msleep(1);
3859
936fd732
TH
3860 /* bring link back */
3861 rc = sata_link_resume(link, timing, deadline);
9dadd45b
TH
3862 if (rc)
3863 goto out;
3864 /* if link is offline nothing more to do */
b1c72916 3865 if (ata_phys_link_offline(link))
9dadd45b
TH
3866 goto out;
3867
3868 /* Link is online. From this point, -ENODEV too is an error. */
3869 if (online)
3870 *online = true;
3871
071f44b1 3872 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
9dadd45b
TH
3873 /* If PMP is supported, we have to do follow-up SRST.
3874 * Some PMPs don't send D2H Reg FIS after hardreset if
3875 * the first port is empty. Wait only for
3876 * ATA_TMOUT_PMP_SRST_WAIT.
3877 */
3878 if (check_ready) {
3879 unsigned long pmp_deadline;
3880
341c2c95
TH
3881 pmp_deadline = ata_deadline(jiffies,
3882 ATA_TMOUT_PMP_SRST_WAIT);
9dadd45b
TH
3883 if (time_after(pmp_deadline, deadline))
3884 pmp_deadline = deadline;
3885 ata_wait_ready(link, pmp_deadline, check_ready);
3886 }
3887 rc = -EAGAIN;
3888 goto out;
3889 }
3890
3891 rc = 0;
3892 if (check_ready)
3893 rc = ata_wait_ready(link, deadline, check_ready);
b6103f6d 3894 out:
0cbf0711
TH
3895 if (rc && rc != -EAGAIN) {
3896 /* online is set iff link is online && reset succeeded */
3897 if (online)
3898 *online = false;
9dadd45b
TH
3899 ata_link_printk(link, KERN_ERR,
3900 "COMRESET failed (errno=%d)\n", rc);
0cbf0711 3901 }
b6103f6d
TH
3902 DPRINTK("EXIT, rc=%d\n", rc);
3903 return rc;
3904}
3905
57c9efdf
TH
3906/**
3907 * sata_std_hardreset - COMRESET w/o waiting or classification
3908 * @link: link to reset
3909 * @class: resulting class of attached device
3910 * @deadline: deadline jiffies for the operation
3911 *
3912 * Standard SATA COMRESET w/o waiting or classification.
3913 *
3914 * LOCKING:
3915 * Kernel thread context (may sleep)
3916 *
3917 * RETURNS:
3918 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3919 */
3920int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3921 unsigned long deadline)
3922{
3923 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3924 bool online;
3925 int rc;
3926
3927 /* do hardreset */
3928 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
57c9efdf
TH
3929 return online ? -EAGAIN : rc;
3930}
3931
c2bd5804 3932/**
203c75b8 3933 * ata_std_postreset - standard postreset callback
cc0680a5 3934 * @link: the target ata_link
c2bd5804
TH
3935 * @classes: classes of attached devices
3936 *
3937 * This function is invoked after a successful reset. Note that
3938 * the device might have been reset more than once using
3939 * different reset methods before postreset is invoked.
c2bd5804 3940 *
c2bd5804
TH
3941 * LOCKING:
3942 * Kernel thread context (may sleep)
3943 */
203c75b8 3944void ata_std_postreset(struct ata_link *link, unsigned int *classes)
c2bd5804 3945{
f046519f
TH
3946 u32 serror;
3947
c2bd5804
TH
3948 DPRINTK("ENTER\n");
3949
f046519f
TH
3950 /* reset complete, clear SError */
3951 if (!sata_scr_read(link, SCR_ERROR, &serror))
3952 sata_scr_write(link, SCR_ERROR, serror);
3953
c2bd5804 3954 /* print link status */
936fd732 3955 sata_print_link_status(link);
c2bd5804 3956
c2bd5804
TH
3957 DPRINTK("EXIT\n");
3958}
3959
623a3128
TH
3960/**
3961 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3962 * @dev: device to compare against
3963 * @new_class: class of the new device
3964 * @new_id: IDENTIFY page of the new device
3965 *
3966 * Compare @new_class and @new_id against @dev and determine
3967 * whether @dev is the device indicated by @new_class and
3968 * @new_id.
3969 *
3970 * LOCKING:
3971 * None.
3972 *
3973 * RETURNS:
3974 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3975 */
3373efd8
TH
3976static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3977 const u16 *new_id)
623a3128
TH
3978{
3979 const u16 *old_id = dev->id;
a0cf733b
TH
3980 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3981 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3982
3983 if (dev->class != new_class) {
f15a1daf
TH
3984 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3985 dev->class, new_class);
623a3128
TH
3986 return 0;
3987 }
3988
a0cf733b
TH
3989 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3990 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3991 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3992 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3993
3994 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3995 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3996 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3997 return 0;
3998 }
3999
4000 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
4001 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
4002 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
4003 return 0;
4004 }
4005
623a3128
TH
4006 return 1;
4007}
4008
4009/**
fe30911b 4010 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 4011 * @dev: target ATA device
bff04647 4012 * @readid_flags: read ID flags
623a3128
TH
4013 *
4014 * Re-read IDENTIFY page and make sure @dev is still attached to
4015 * the port.
4016 *
4017 * LOCKING:
4018 * Kernel thread context (may sleep)
4019 *
4020 * RETURNS:
4021 * 0 on success, negative errno otherwise
4022 */
fe30911b 4023int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 4024{
5eb45c02 4025 unsigned int class = dev->class;
9af5c9c9 4026 u16 *id = (void *)dev->link->ap->sector_buf;
623a3128
TH
4027 int rc;
4028
fe635c7e 4029 /* read ID data */
bff04647 4030 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 4031 if (rc)
fe30911b 4032 return rc;
623a3128
TH
4033
4034 /* is the device still there? */
fe30911b
TH
4035 if (!ata_dev_same_device(dev, class, id))
4036 return -ENODEV;
623a3128 4037
fe635c7e 4038 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
4039 return 0;
4040}
4041
4042/**
4043 * ata_dev_revalidate - Revalidate ATA device
4044 * @dev: device to revalidate
422c9daa 4045 * @new_class: new class code
fe30911b
TH
4046 * @readid_flags: read ID flags
4047 *
4048 * Re-read IDENTIFY page, make sure @dev is still attached to the
4049 * port and reconfigure it according to the new IDENTIFY page.
4050 *
4051 * LOCKING:
4052 * Kernel thread context (may sleep)
4053 *
4054 * RETURNS:
4055 * 0 on success, negative errno otherwise
4056 */
422c9daa
TH
4057int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4058 unsigned int readid_flags)
fe30911b 4059{
6ddcd3b0 4060 u64 n_sectors = dev->n_sectors;
fe30911b
TH
4061 int rc;
4062
4063 if (!ata_dev_enabled(dev))
4064 return -ENODEV;
4065
422c9daa
TH
4066 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4067 if (ata_class_enabled(new_class) &&
4068 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
4069 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4070 dev->class, new_class);
4071 rc = -ENODEV;
4072 goto fail;
4073 }
4074
fe30911b
TH
4075 /* re-read ID */
4076 rc = ata_dev_reread_id(dev, readid_flags);
4077 if (rc)
4078 goto fail;
623a3128
TH
4079
4080 /* configure device according to the new ID */
efdaedc4 4081 rc = ata_dev_configure(dev);
6ddcd3b0
TH
4082 if (rc)
4083 goto fail;
4084
4085 /* verify n_sectors hasn't changed */
b54eebd6
TH
4086 if (dev->class == ATA_DEV_ATA && n_sectors &&
4087 dev->n_sectors != n_sectors) {
6ddcd3b0
TH
4088 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
4089 "%llu != %llu\n",
4090 (unsigned long long)n_sectors,
4091 (unsigned long long)dev->n_sectors);
8270bec4
TH
4092
4093 /* restore original n_sectors */
4094 dev->n_sectors = n_sectors;
4095
6ddcd3b0
TH
4096 rc = -ENODEV;
4097 goto fail;
4098 }
4099
4100 return 0;
623a3128
TH
4101
4102 fail:
f15a1daf 4103 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
4104 return rc;
4105}
4106
6919a0a6
AC
4107struct ata_blacklist_entry {
4108 const char *model_num;
4109 const char *model_rev;
4110 unsigned long horkage;
4111};
4112
4113static const struct ata_blacklist_entry ata_device_blacklist [] = {
4114 /* Devices with DMA related problems under Linux */
4115 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4116 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4117 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4118 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4119 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4120 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4121 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4122 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4123 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4124 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4125 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4126 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4127 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4128 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4129 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4130 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4131 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4132 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4133 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4134 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4135 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4136 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4137 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4138 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4139 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4140 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4141 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4142 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
2dcb407e 4143 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
39f19886 4144 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3af9a77a 4145 /* Odd clown on sil3726/4726 PMPs */
50af2fa1 4146 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
6919a0a6 4147
18d6e9d5 4148 /* Weird ATAPI devices */
40a1d531 4149 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
6a87e42e 4150 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
18d6e9d5 4151
6919a0a6
AC
4152 /* Devices we expect to fail diagnostics */
4153
4154 /* Devices where NCQ should be avoided */
4155 /* NCQ is slow */
2dcb407e 4156 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
459ad688 4157 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
09125ea6
TH
4158 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4159 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30 4160 /* NCQ is broken */
539cc7c7 4161 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
0e3dbc01 4162 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
da6f0ec2 4163 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
e41bd3e8 4164 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
5ccfca97 4165 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
539cc7c7 4166
ac70a964 4167 /* Seagate NCQ + FLUSH CACHE firmware bug */
d10d491f 4168 { "ST31500341AS", "SD15", ATA_HORKAGE_NONCQ |
ac70a964 4169 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f 4170 { "ST31500341AS", "SD16", ATA_HORKAGE_NONCQ |
ac70a964 4171 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f 4172 { "ST31500341AS", "SD17", ATA_HORKAGE_NONCQ |
ac70a964 4173 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f 4174 { "ST31500341AS", "SD18", ATA_HORKAGE_NONCQ |
ac70a964 4175 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f 4176 { "ST31500341AS", "SD19", ATA_HORKAGE_NONCQ |
ac70a964 4177 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f
TH
4178
4179 { "ST31000333AS", "SD15", ATA_HORKAGE_NONCQ |
4180 ATA_HORKAGE_FIRMWARE_WARN },
4181 { "ST31000333AS", "SD16", ATA_HORKAGE_NONCQ |
4182 ATA_HORKAGE_FIRMWARE_WARN },
4183 { "ST31000333AS", "SD17", ATA_HORKAGE_NONCQ |
4184 ATA_HORKAGE_FIRMWARE_WARN },
4185 { "ST31000333AS", "SD18", ATA_HORKAGE_NONCQ |
4186 ATA_HORKAGE_FIRMWARE_WARN },
4187 { "ST31000333AS", "SD19", ATA_HORKAGE_NONCQ |
4188 ATA_HORKAGE_FIRMWARE_WARN },
4189
4190 { "ST3640623AS", "SD15", ATA_HORKAGE_NONCQ |
4191 ATA_HORKAGE_FIRMWARE_WARN },
4192 { "ST3640623AS", "SD16", ATA_HORKAGE_NONCQ |
4193 ATA_HORKAGE_FIRMWARE_WARN },
4194 { "ST3640623AS", "SD17", ATA_HORKAGE_NONCQ |
4195 ATA_HORKAGE_FIRMWARE_WARN },
4196 { "ST3640623AS", "SD18", ATA_HORKAGE_NONCQ |
4197 ATA_HORKAGE_FIRMWARE_WARN },
4198 { "ST3640623AS", "SD19", ATA_HORKAGE_NONCQ |
4199 ATA_HORKAGE_FIRMWARE_WARN },
4200
4201 { "ST3640323AS", "SD15", ATA_HORKAGE_NONCQ |
4202 ATA_HORKAGE_FIRMWARE_WARN },
4203 { "ST3640323AS", "SD16", ATA_HORKAGE_NONCQ |
4204 ATA_HORKAGE_FIRMWARE_WARN },
4205 { "ST3640323AS", "SD17", ATA_HORKAGE_NONCQ |
4206 ATA_HORKAGE_FIRMWARE_WARN },
4207 { "ST3640323AS", "SD18", ATA_HORKAGE_NONCQ |
4208 ATA_HORKAGE_FIRMWARE_WARN },
4209 { "ST3640323AS", "SD19", ATA_HORKAGE_NONCQ |
4210 ATA_HORKAGE_FIRMWARE_WARN },
4211
4212 { "ST3320813AS", "SD15", ATA_HORKAGE_NONCQ |
4213 ATA_HORKAGE_FIRMWARE_WARN },
4214 { "ST3320813AS", "SD16", ATA_HORKAGE_NONCQ |
4215 ATA_HORKAGE_FIRMWARE_WARN },
4216 { "ST3320813AS", "SD17", ATA_HORKAGE_NONCQ |
4217 ATA_HORKAGE_FIRMWARE_WARN },
4218 { "ST3320813AS", "SD18", ATA_HORKAGE_NONCQ |
4219 ATA_HORKAGE_FIRMWARE_WARN },
4220 { "ST3320813AS", "SD19", ATA_HORKAGE_NONCQ |
4221 ATA_HORKAGE_FIRMWARE_WARN },
4222
4223 { "ST3320613AS", "SD15", ATA_HORKAGE_NONCQ |
4224 ATA_HORKAGE_FIRMWARE_WARN },
4225 { "ST3320613AS", "SD16", ATA_HORKAGE_NONCQ |
4226 ATA_HORKAGE_FIRMWARE_WARN },
4227 { "ST3320613AS", "SD17", ATA_HORKAGE_NONCQ |
4228 ATA_HORKAGE_FIRMWARE_WARN },
4229 { "ST3320613AS", "SD18", ATA_HORKAGE_NONCQ |
4230 ATA_HORKAGE_FIRMWARE_WARN },
4231 { "ST3320613AS", "SD19", ATA_HORKAGE_NONCQ |
ac70a964
TH
4232 ATA_HORKAGE_FIRMWARE_WARN },
4233
36e337d0
RH
4234 /* Blacklist entries taken from Silicon Image 3124/3132
4235 Windows driver .inf file - also several Linux problem reports */
4236 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4237 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4238 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
6919a0a6 4239
16c55b03
TH
4240 /* devices which puke on READ_NATIVE_MAX */
4241 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4242 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4243 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4244 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
6919a0a6 4245
93328e11
AC
4246 /* Devices which report 1 sector over size HPA */
4247 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4248 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
b152fcd3 4249 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
93328e11 4250
6bbfd53d
AC
4251 /* Devices which get the IVB wrong */
4252 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
a79067e5
AC
4253 /* Maybe we should just blacklist TSSTcorp... */
4254 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB, },
4255 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB, },
6bbfd53d 4256 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
e9f33406
PM
4257 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
4258 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
4259 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
6bbfd53d 4260
9ce8e307
JA
4261 /* Devices that do not need bridging limits applied */
4262 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4263
9062712f
TH
4264 /* Devices which aren't very happy with higher link speeds */
4265 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4266
6919a0a6
AC
4267 /* End Marker */
4268 { }
1da177e4 4269};
2e9edbf8 4270
741b7763 4271static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
539cc7c7
JG
4272{
4273 const char *p;
4274 int len;
4275
4276 /*
4277 * check for trailing wildcard: *\0
4278 */
4279 p = strchr(patt, wildchar);
4280 if (p && ((*(p + 1)) == 0))
4281 len = p - patt;
317b50b8 4282 else {
539cc7c7 4283 len = strlen(name);
317b50b8
AP
4284 if (!len) {
4285 if (!*patt)
4286 return 0;
4287 return -1;
4288 }
4289 }
539cc7c7
JG
4290
4291 return strncmp(patt, name, len);
4292}
4293
75683fe7 4294static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 4295{
8bfa79fc
TH
4296 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4297 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 4298 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 4299
8bfa79fc
TH
4300 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4301 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 4302
6919a0a6 4303 while (ad->model_num) {
539cc7c7 4304 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
6919a0a6
AC
4305 if (ad->model_rev == NULL)
4306 return ad->horkage;
539cc7c7 4307 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
6919a0a6 4308 return ad->horkage;
f4b15fef 4309 }
6919a0a6 4310 ad++;
f4b15fef 4311 }
1da177e4
LT
4312 return 0;
4313}
4314
6919a0a6
AC
4315static int ata_dma_blacklisted(const struct ata_device *dev)
4316{
4317 /* We don't support polling DMA.
4318 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4319 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4320 */
9af5c9c9 4321 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
6919a0a6
AC
4322 (dev->flags & ATA_DFLAG_CDB_INTR))
4323 return 1;
75683fe7 4324 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
4325}
4326
6bbfd53d
AC
4327/**
4328 * ata_is_40wire - check drive side detection
4329 * @dev: device
4330 *
4331 * Perform drive side detection decoding, allowing for device vendors
4332 * who can't follow the documentation.
4333 */
4334
4335static int ata_is_40wire(struct ata_device *dev)
4336{
4337 if (dev->horkage & ATA_HORKAGE_IVB)
4338 return ata_drive_40wire_relaxed(dev->id);
4339 return ata_drive_40wire(dev->id);
4340}
4341
15a5551c
AC
4342/**
4343 * cable_is_40wire - 40/80/SATA decider
4344 * @ap: port to consider
4345 *
4346 * This function encapsulates the policy for speed management
4347 * in one place. At the moment we don't cache the result but
4348 * there is a good case for setting ap->cbl to the result when
4349 * we are called with unknown cables (and figuring out if it
4350 * impacts hotplug at all).
4351 *
4352 * Return 1 if the cable appears to be 40 wire.
4353 */
4354
4355static int cable_is_40wire(struct ata_port *ap)
4356{
4357 struct ata_link *link;
4358 struct ata_device *dev;
4359
4a9c7b33 4360 /* If the controller thinks we are 40 wire, we are. */
15a5551c
AC
4361 if (ap->cbl == ATA_CBL_PATA40)
4362 return 1;
4a9c7b33
TH
4363
4364 /* If the controller thinks we are 80 wire, we are. */
15a5551c
AC
4365 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4366 return 0;
4a9c7b33
TH
4367
4368 /* If the system is known to be 40 wire short cable (eg
4369 * laptop), then we allow 80 wire modes even if the drive
4370 * isn't sure.
4371 */
f792068e
AC
4372 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4373 return 0;
4a9c7b33
TH
4374
4375 /* If the controller doesn't know, we scan.
4376 *
4377 * Note: We look for all 40 wire detects at this point. Any
4378 * 80 wire detect is taken to be 80 wire cable because
4379 * - in many setups only the one drive (slave if present) will
4380 * give a valid detect
4381 * - if you have a non detect capable drive you don't want it
4382 * to colour the choice
4383 */
1eca4365
TH
4384 ata_for_each_link(link, ap, EDGE) {
4385 ata_for_each_dev(dev, link, ENABLED) {
4386 if (!ata_is_40wire(dev))
15a5551c
AC
4387 return 0;
4388 }
4389 }
4390 return 1;
4391}
4392
a6d5a51c
TH
4393/**
4394 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
4395 * @dev: Device to compute xfermask for
4396 *
acf356b1
TH
4397 * Compute supported xfermask of @dev and store it in
4398 * dev->*_mask. This function is responsible for applying all
4399 * known limits including host controller limits, device
4400 * blacklist, etc...
a6d5a51c
TH
4401 *
4402 * LOCKING:
4403 * None.
a6d5a51c 4404 */
3373efd8 4405static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 4406{
9af5c9c9
TH
4407 struct ata_link *link = dev->link;
4408 struct ata_port *ap = link->ap;
cca3974e 4409 struct ata_host *host = ap->host;
a6d5a51c 4410 unsigned long xfer_mask;
1da177e4 4411
37deecb5 4412 /* controller modes available */
565083e1
TH
4413 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4414 ap->mwdma_mask, ap->udma_mask);
4415
8343f889 4416 /* drive modes available */
37deecb5
TH
4417 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4418 dev->mwdma_mask, dev->udma_mask);
4419 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 4420
b352e57d
AC
4421 /*
4422 * CFA Advanced TrueIDE timings are not allowed on a shared
4423 * cable
4424 */
4425 if (ata_dev_pair(dev)) {
4426 /* No PIO5 or PIO6 */
4427 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4428 /* No MWDMA3 or MWDMA 4 */
4429 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4430 }
4431
37deecb5
TH
4432 if (ata_dma_blacklisted(dev)) {
4433 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
4434 ata_dev_printk(dev, KERN_WARNING,
4435 "device is on DMA blacklist, disabling DMA\n");
37deecb5 4436 }
a6d5a51c 4437
14d66ab7 4438 if ((host->flags & ATA_HOST_SIMPLEX) &&
2dcb407e 4439 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
4440 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4441 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4442 "other device, disabling DMA\n");
5444a6f4 4443 }
565083e1 4444
e424675f
JG
4445 if (ap->flags & ATA_FLAG_NO_IORDY)
4446 xfer_mask &= ata_pio_mask_no_iordy(dev);
4447
5444a6f4 4448 if (ap->ops->mode_filter)
a76b62ca 4449 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 4450
8343f889
RH
4451 /* Apply cable rule here. Don't apply it early because when
4452 * we handle hot plug the cable type can itself change.
4453 * Check this last so that we know if the transfer rate was
4454 * solely limited by the cable.
4455 * Unknown or 80 wire cables reported host side are checked
4456 * drive side as well. Cases where we know a 40wire cable
4457 * is used safely for 80 are not checked here.
4458 */
4459 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4460 /* UDMA/44 or higher would be available */
15a5551c 4461 if (cable_is_40wire(ap)) {
2dcb407e 4462 ata_dev_printk(dev, KERN_WARNING,
8343f889
RH
4463 "limited to UDMA/33 due to 40-wire cable\n");
4464 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4465 }
4466
565083e1
TH
4467 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4468 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
4469}
4470
1da177e4
LT
4471/**
4472 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
4473 * @dev: Device to which command will be sent
4474 *
780a87f7
JG
4475 * Issue SET FEATURES - XFER MODE command to device @dev
4476 * on port @ap.
4477 *
1da177e4 4478 * LOCKING:
0cba632b 4479 * PCI/etc. bus probe sem.
83206a29
TH
4480 *
4481 * RETURNS:
4482 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
4483 */
4484
3373efd8 4485static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 4486{
a0123703 4487 struct ata_taskfile tf;
83206a29 4488 unsigned int err_mask;
1da177e4
LT
4489
4490 /* set up set-features taskfile */
4491 DPRINTK("set features - xfer mode\n");
4492
464cf177
TH
4493 /* Some controllers and ATAPI devices show flaky interrupt
4494 * behavior after setting xfer mode. Use polling instead.
4495 */
3373efd8 4496 ata_tf_init(dev, &tf);
a0123703
TH
4497 tf.command = ATA_CMD_SET_FEATURES;
4498 tf.feature = SETFEATURES_XFER;
464cf177 4499 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703 4500 tf.protocol = ATA_PROT_NODATA;
b9f8ab2d 4501 /* If we are using IORDY we must send the mode setting command */
11b7becc
JG
4502 if (ata_pio_need_iordy(dev))
4503 tf.nsect = dev->xfer_mode;
b9f8ab2d
AC
4504 /* If the device has IORDY and the controller does not - turn it off */
4505 else if (ata_id_has_iordy(dev->id))
11b7becc 4506 tf.nsect = 0x01;
b9f8ab2d
AC
4507 else /* In the ancient relic department - skip all of this */
4508 return 0;
1da177e4 4509
2b789108 4510 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
9f45cbd3
KCA
4511
4512 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4513 return err_mask;
4514}
9f45cbd3 4515/**
218f3d30 4516 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
9f45cbd3
KCA
4517 * @dev: Device to which command will be sent
4518 * @enable: Whether to enable or disable the feature
218f3d30 4519 * @feature: The sector count represents the feature to set
9f45cbd3
KCA
4520 *
4521 * Issue SET FEATURES - SATA FEATURES command to device @dev
218f3d30 4522 * on port @ap with sector count
9f45cbd3
KCA
4523 *
4524 * LOCKING:
4525 * PCI/etc. bus probe sem.
4526 *
4527 * RETURNS:
4528 * 0 on success, AC_ERR_* mask otherwise.
4529 */
218f3d30
JG
4530static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4531 u8 feature)
9f45cbd3
KCA
4532{
4533 struct ata_taskfile tf;
4534 unsigned int err_mask;
4535
4536 /* set up set-features taskfile */
4537 DPRINTK("set features - SATA features\n");
4538
4539 ata_tf_init(dev, &tf);
4540 tf.command = ATA_CMD_SET_FEATURES;
4541 tf.feature = enable;
4542 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4543 tf.protocol = ATA_PROT_NODATA;
218f3d30 4544 tf.nsect = feature;
9f45cbd3 4545
2b789108 4546 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1da177e4 4547
83206a29
TH
4548 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4549 return err_mask;
1da177e4
LT
4550}
4551
8bf62ece
AL
4552/**
4553 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 4554 * @dev: Device to which command will be sent
e2a7f77a
RD
4555 * @heads: Number of heads (taskfile parameter)
4556 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
4557 *
4558 * LOCKING:
6aff8f1f
TH
4559 * Kernel thread context (may sleep)
4560 *
4561 * RETURNS:
4562 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 4563 */
3373efd8
TH
4564static unsigned int ata_dev_init_params(struct ata_device *dev,
4565 u16 heads, u16 sectors)
8bf62ece 4566{
a0123703 4567 struct ata_taskfile tf;
6aff8f1f 4568 unsigned int err_mask;
8bf62ece
AL
4569
4570 /* Number of sectors per track 1-255. Number of heads 1-16 */
4571 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 4572 return AC_ERR_INVALID;
8bf62ece
AL
4573
4574 /* set up init dev params taskfile */
4575 DPRINTK("init dev params \n");
4576
3373efd8 4577 ata_tf_init(dev, &tf);
a0123703
TH
4578 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4579 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4580 tf.protocol = ATA_PROT_NODATA;
4581 tf.nsect = sectors;
4582 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 4583
2b789108 4584 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
18b2466c
AC
4585 /* A clean abort indicates an original or just out of spec drive
4586 and we should continue as we issue the setup based on the
4587 drive reported working geometry */
4588 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4589 err_mask = 0;
8bf62ece 4590
6aff8f1f
TH
4591 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4592 return err_mask;
8bf62ece
AL
4593}
4594
1da177e4 4595/**
0cba632b
JG
4596 * ata_sg_clean - Unmap DMA memory associated with command
4597 * @qc: Command containing DMA memory to be released
4598 *
4599 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
4600 *
4601 * LOCKING:
cca3974e 4602 * spin_lock_irqsave(host lock)
1da177e4 4603 */
70e6ad0c 4604void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
4605{
4606 struct ata_port *ap = qc->ap;
ff2aeb1e 4607 struct scatterlist *sg = qc->sg;
1da177e4
LT
4608 int dir = qc->dma_dir;
4609
efcb3cf7 4610 WARN_ON_ONCE(sg == NULL);
1da177e4 4611
dde20207 4612 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 4613
dde20207
JB
4614 if (qc->n_elem)
4615 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
1da177e4
LT
4616
4617 qc->flags &= ~ATA_QCFLAG_DMAMAP;
ff2aeb1e 4618 qc->sg = NULL;
1da177e4
LT
4619}
4620
1da177e4 4621/**
5895ef9a 4622 * atapi_check_dma - Check whether ATAPI DMA can be supported
1da177e4
LT
4623 * @qc: Metadata associated with taskfile to check
4624 *
780a87f7
JG
4625 * Allow low-level driver to filter ATA PACKET commands, returning
4626 * a status indicating whether or not it is OK to use DMA for the
4627 * supplied PACKET command.
4628 *
1da177e4 4629 * LOCKING:
624d5c51
TH
4630 * spin_lock_irqsave(host lock)
4631 *
4632 * RETURNS: 0 when ATAPI DMA can be used
4633 * nonzero otherwise
4634 */
5895ef9a 4635int atapi_check_dma(struct ata_queued_cmd *qc)
624d5c51
TH
4636{
4637 struct ata_port *ap = qc->ap;
71601958 4638
624d5c51
TH
4639 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4640 * few ATAPI devices choke on such DMA requests.
4641 */
6a87e42e
TH
4642 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4643 unlikely(qc->nbytes & 15))
624d5c51 4644 return 1;
e2cec771 4645
624d5c51
TH
4646 if (ap->ops->check_atapi_dma)
4647 return ap->ops->check_atapi_dma(qc);
e2cec771 4648
624d5c51
TH
4649 return 0;
4650}
1da177e4 4651
624d5c51
TH
4652/**
4653 * ata_std_qc_defer - Check whether a qc needs to be deferred
4654 * @qc: ATA command in question
4655 *
4656 * Non-NCQ commands cannot run with any other command, NCQ or
4657 * not. As upper layer only knows the queue depth, we are
4658 * responsible for maintaining exclusion. This function checks
4659 * whether a new command @qc can be issued.
4660 *
4661 * LOCKING:
4662 * spin_lock_irqsave(host lock)
4663 *
4664 * RETURNS:
4665 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4666 */
4667int ata_std_qc_defer(struct ata_queued_cmd *qc)
4668{
4669 struct ata_link *link = qc->dev->link;
e2cec771 4670
624d5c51
TH
4671 if (qc->tf.protocol == ATA_PROT_NCQ) {
4672 if (!ata_tag_valid(link->active_tag))
4673 return 0;
4674 } else {
4675 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4676 return 0;
4677 }
e2cec771 4678
624d5c51
TH
4679 return ATA_DEFER_LINK;
4680}
6912ccd5 4681
624d5c51 4682void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
1da177e4 4683
624d5c51
TH
4684/**
4685 * ata_sg_init - Associate command with scatter-gather table.
4686 * @qc: Command to be associated
4687 * @sg: Scatter-gather table.
4688 * @n_elem: Number of elements in s/g table.
4689 *
4690 * Initialize the data-related elements of queued_cmd @qc
4691 * to point to a scatter-gather table @sg, containing @n_elem
4692 * elements.
4693 *
4694 * LOCKING:
4695 * spin_lock_irqsave(host lock)
4696 */
4697void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4698 unsigned int n_elem)
4699{
4700 qc->sg = sg;
4701 qc->n_elem = n_elem;
4702 qc->cursg = qc->sg;
4703}
bb5cb290 4704
624d5c51
TH
4705/**
4706 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4707 * @qc: Command with scatter-gather table to be mapped.
4708 *
4709 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4710 *
4711 * LOCKING:
4712 * spin_lock_irqsave(host lock)
4713 *
4714 * RETURNS:
4715 * Zero on success, negative on error.
4716 *
4717 */
4718static int ata_sg_setup(struct ata_queued_cmd *qc)
4719{
4720 struct ata_port *ap = qc->ap;
4721 unsigned int n_elem;
1da177e4 4722
624d5c51 4723 VPRINTK("ENTER, ata%u\n", ap->print_id);
e2cec771 4724
624d5c51
TH
4725 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4726 if (n_elem < 1)
4727 return -1;
bb5cb290 4728
624d5c51 4729 DPRINTK("%d sg elements mapped\n", n_elem);
bb5cb290 4730
624d5c51
TH
4731 qc->n_elem = n_elem;
4732 qc->flags |= ATA_QCFLAG_DMAMAP;
1da177e4 4733
624d5c51 4734 return 0;
1da177e4
LT
4735}
4736
624d5c51
TH
4737/**
4738 * swap_buf_le16 - swap halves of 16-bit words in place
4739 * @buf: Buffer to swap
4740 * @buf_words: Number of 16-bit words in buffer.
4741 *
4742 * Swap halves of 16-bit words if needed to convert from
4743 * little-endian byte order to native cpu byte order, or
4744 * vice-versa.
4745 *
4746 * LOCKING:
4747 * Inherited from caller.
4748 */
4749void swap_buf_le16(u16 *buf, unsigned int buf_words)
8061f5f0 4750{
624d5c51
TH
4751#ifdef __BIG_ENDIAN
4752 unsigned int i;
8061f5f0 4753
624d5c51
TH
4754 for (i = 0; i < buf_words; i++)
4755 buf[i] = le16_to_cpu(buf[i]);
4756#endif /* __BIG_ENDIAN */
8061f5f0
TH
4757}
4758
8a8bc223
TH
4759/**
4760 * ata_qc_new - Request an available ATA command, for queueing
5eb66fe0 4761 * @ap: target port
8a8bc223
TH
4762 *
4763 * LOCKING:
4764 * None.
4765 */
4766
4767static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4768{
4769 struct ata_queued_cmd *qc = NULL;
4770 unsigned int i;
4771
4772 /* no command while frozen */
4773 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4774 return NULL;
4775
4776 /* the last tag is reserved for internal command. */
4777 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4778 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4779 qc = __ata_qc_from_tag(ap, i);
4780 break;
4781 }
4782
4783 if (qc)
4784 qc->tag = i;
4785
4786 return qc;
4787}
4788
1da177e4
LT
4789/**
4790 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
4791 * @dev: Device from whom we request an available command structure
4792 *
4793 * LOCKING:
0cba632b 4794 * None.
1da177e4
LT
4795 */
4796
8a8bc223 4797struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 4798{
9af5c9c9 4799 struct ata_port *ap = dev->link->ap;
1da177e4
LT
4800 struct ata_queued_cmd *qc;
4801
8a8bc223 4802 qc = ata_qc_new(ap);
1da177e4 4803 if (qc) {
1da177e4
LT
4804 qc->scsicmd = NULL;
4805 qc->ap = ap;
4806 qc->dev = dev;
1da177e4 4807
2c13b7ce 4808 ata_qc_reinit(qc);
1da177e4
LT
4809 }
4810
4811 return qc;
4812}
4813
8a8bc223
TH
4814/**
4815 * ata_qc_free - free unused ata_queued_cmd
4816 * @qc: Command to complete
4817 *
4818 * Designed to free unused ata_queued_cmd object
4819 * in case something prevents using it.
4820 *
4821 * LOCKING:
4822 * spin_lock_irqsave(host lock)
4823 */
4824void ata_qc_free(struct ata_queued_cmd *qc)
4825{
4826 struct ata_port *ap = qc->ap;
4827 unsigned int tag;
4828
efcb3cf7 4829 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
8a8bc223
TH
4830
4831 qc->flags = 0;
4832 tag = qc->tag;
4833 if (likely(ata_tag_valid(tag))) {
4834 qc->tag = ATA_TAG_POISON;
4835 clear_bit(tag, &ap->qc_allocated);
4836 }
4837}
4838
76014427 4839void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4840{
dedaf2b0 4841 struct ata_port *ap = qc->ap;
9af5c9c9 4842 struct ata_link *link = qc->dev->link;
dedaf2b0 4843
efcb3cf7
TH
4844 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4845 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
4846
4847 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4848 ata_sg_clean(qc);
4849
7401abf2 4850 /* command should be marked inactive atomically with qc completion */
da917d69 4851 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 4852 link->sactive &= ~(1 << qc->tag);
da917d69
TH
4853 if (!link->sactive)
4854 ap->nr_active_links--;
4855 } else {
9af5c9c9 4856 link->active_tag = ATA_TAG_POISON;
da917d69
TH
4857 ap->nr_active_links--;
4858 }
4859
4860 /* clear exclusive status */
4861 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4862 ap->excl_link == link))
4863 ap->excl_link = NULL;
7401abf2 4864
3f3791d3
AL
4865 /* atapi: mark qc as inactive to prevent the interrupt handler
4866 * from completing the command twice later, before the error handler
4867 * is called. (when rc != 0 and atapi request sense is needed)
4868 */
4869 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 4870 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 4871
1da177e4 4872 /* call completion callback */
77853bf2 4873 qc->complete_fn(qc);
1da177e4
LT
4874}
4875
39599a53
TH
4876static void fill_result_tf(struct ata_queued_cmd *qc)
4877{
4878 struct ata_port *ap = qc->ap;
4879
39599a53 4880 qc->result_tf.flags = qc->tf.flags;
22183bf5 4881 ap->ops->qc_fill_rtf(qc);
39599a53
TH
4882}
4883
00115e0f
TH
4884static void ata_verify_xfer(struct ata_queued_cmd *qc)
4885{
4886 struct ata_device *dev = qc->dev;
4887
4888 if (ata_tag_internal(qc->tag))
4889 return;
4890
4891 if (ata_is_nodata(qc->tf.protocol))
4892 return;
4893
4894 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4895 return;
4896
4897 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4898}
4899
f686bcb8
TH
4900/**
4901 * ata_qc_complete - Complete an active ATA command
4902 * @qc: Command to complete
f686bcb8
TH
4903 *
4904 * Indicate to the mid and upper layers that an ATA
4905 * command has completed, with either an ok or not-ok status.
4906 *
4907 * LOCKING:
cca3974e 4908 * spin_lock_irqsave(host lock)
f686bcb8
TH
4909 */
4910void ata_qc_complete(struct ata_queued_cmd *qc)
4911{
4912 struct ata_port *ap = qc->ap;
4913
4914 /* XXX: New EH and old EH use different mechanisms to
4915 * synchronize EH with regular execution path.
4916 *
4917 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4918 * Normal execution path is responsible for not accessing a
4919 * failed qc. libata core enforces the rule by returning NULL
4920 * from ata_qc_from_tag() for failed qcs.
4921 *
4922 * Old EH depends on ata_qc_complete() nullifying completion
4923 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4924 * not synchronize with interrupt handler. Only PIO task is
4925 * taken care of.
4926 */
4927 if (ap->ops->error_handler) {
4dbfa39b
TH
4928 struct ata_device *dev = qc->dev;
4929 struct ata_eh_info *ehi = &dev->link->eh_info;
4930
efcb3cf7 4931 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
4932
4933 if (unlikely(qc->err_mask))
4934 qc->flags |= ATA_QCFLAG_FAILED;
4935
4936 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4937 if (!ata_tag_internal(qc->tag)) {
4938 /* always fill result TF for failed qc */
39599a53 4939 fill_result_tf(qc);
f686bcb8
TH
4940 ata_qc_schedule_eh(qc);
4941 return;
4942 }
4943 }
4944
4945 /* read result TF if requested */
4946 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 4947 fill_result_tf(qc);
f686bcb8 4948
4dbfa39b
TH
4949 /* Some commands need post-processing after successful
4950 * completion.
4951 */
4952 switch (qc->tf.command) {
4953 case ATA_CMD_SET_FEATURES:
4954 if (qc->tf.feature != SETFEATURES_WC_ON &&
4955 qc->tf.feature != SETFEATURES_WC_OFF)
4956 break;
4957 /* fall through */
4958 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4959 case ATA_CMD_SET_MULTI: /* multi_count changed */
4960 /* revalidate device */
4961 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4962 ata_port_schedule_eh(ap);
4963 break;
054a5fba
TH
4964
4965 case ATA_CMD_SLEEP:
4966 dev->flags |= ATA_DFLAG_SLEEPING;
4967 break;
4dbfa39b
TH
4968 }
4969
00115e0f
TH
4970 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4971 ata_verify_xfer(qc);
4972
f686bcb8
TH
4973 __ata_qc_complete(qc);
4974 } else {
4975 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4976 return;
4977
4978 /* read result TF if failed or requested */
4979 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 4980 fill_result_tf(qc);
f686bcb8
TH
4981
4982 __ata_qc_complete(qc);
4983 }
4984}
4985
dedaf2b0
TH
4986/**
4987 * ata_qc_complete_multiple - Complete multiple qcs successfully
4988 * @ap: port in question
4989 * @qc_active: new qc_active mask
dedaf2b0
TH
4990 *
4991 * Complete in-flight commands. This functions is meant to be
4992 * called from low-level driver's interrupt routine to complete
4993 * requests normally. ap->qc_active and @qc_active is compared
4994 * and commands are completed accordingly.
4995 *
4996 * LOCKING:
cca3974e 4997 * spin_lock_irqsave(host lock)
dedaf2b0
TH
4998 *
4999 * RETURNS:
5000 * Number of completed commands on success, -errno otherwise.
5001 */
79f97dad 5002int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
dedaf2b0
TH
5003{
5004 int nr_done = 0;
5005 u32 done_mask;
5006 int i;
5007
5008 done_mask = ap->qc_active ^ qc_active;
5009
5010 if (unlikely(done_mask & qc_active)) {
5011 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5012 "(%08x->%08x)\n", ap->qc_active, qc_active);
5013 return -EINVAL;
5014 }
5015
5016 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5017 struct ata_queued_cmd *qc;
5018
5019 if (!(done_mask & (1 << i)))
5020 continue;
5021
5022 if ((qc = ata_qc_from_tag(ap, i))) {
dedaf2b0
TH
5023 ata_qc_complete(qc);
5024 nr_done++;
5025 }
5026 }
5027
5028 return nr_done;
5029}
5030
1da177e4
LT
5031/**
5032 * ata_qc_issue - issue taskfile to device
5033 * @qc: command to issue to device
5034 *
5035 * Prepare an ATA command to submission to device.
5036 * This includes mapping the data into a DMA-able
5037 * area, filling in the S/G table, and finally
5038 * writing the taskfile to hardware, starting the command.
5039 *
5040 * LOCKING:
cca3974e 5041 * spin_lock_irqsave(host lock)
1da177e4 5042 */
8e0e694a 5043void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5044{
5045 struct ata_port *ap = qc->ap;
9af5c9c9 5046 struct ata_link *link = qc->dev->link;
405e66b3 5047 u8 prot = qc->tf.protocol;
1da177e4 5048
dedaf2b0
TH
5049 /* Make sure only one non-NCQ command is outstanding. The
5050 * check is skipped for old EH because it reuses active qc to
5051 * request ATAPI sense.
5052 */
efcb3cf7 5053 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
dedaf2b0 5054
1973a023 5055 if (ata_is_ncq(prot)) {
efcb3cf7 5056 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
da917d69
TH
5057
5058 if (!link->sactive)
5059 ap->nr_active_links++;
9af5c9c9 5060 link->sactive |= 1 << qc->tag;
dedaf2b0 5061 } else {
efcb3cf7 5062 WARN_ON_ONCE(link->sactive);
da917d69
TH
5063
5064 ap->nr_active_links++;
9af5c9c9 5065 link->active_tag = qc->tag;
dedaf2b0
TH
5066 }
5067
e4a70e76 5068 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5069 ap->qc_active |= 1 << qc->tag;
e4a70e76 5070
f92a2636
TH
5071 /* We guarantee to LLDs that they will have at least one
5072 * non-zero sg if the command is a data command.
5073 */
ff2aeb1e 5074 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
f92a2636 5075
405e66b3 5076 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
f92a2636 5077 (ap->flags & ATA_FLAG_PIO_DMA)))
001102d7
TH
5078 if (ata_sg_setup(qc))
5079 goto sg_err;
1da177e4 5080
cf480626 5081 /* if device is sleeping, schedule reset and abort the link */
054a5fba 5082 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
cf480626 5083 link->eh_info.action |= ATA_EH_RESET;
054a5fba
TH
5084 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5085 ata_link_abort(link);
5086 return;
5087 }
5088
1da177e4
LT
5089 ap->ops->qc_prep(qc);
5090
8e0e694a
TH
5091 qc->err_mask |= ap->ops->qc_issue(qc);
5092 if (unlikely(qc->err_mask))
5093 goto err;
5094 return;
1da177e4 5095
8e436af9 5096sg_err:
8e0e694a
TH
5097 qc->err_mask |= AC_ERR_SYSTEM;
5098err:
5099 ata_qc_complete(qc);
1da177e4
LT
5100}
5101
34bf2170
TH
5102/**
5103 * sata_scr_valid - test whether SCRs are accessible
936fd732 5104 * @link: ATA link to test SCR accessibility for
34bf2170 5105 *
936fd732 5106 * Test whether SCRs are accessible for @link.
34bf2170
TH
5107 *
5108 * LOCKING:
5109 * None.
5110 *
5111 * RETURNS:
5112 * 1 if SCRs are accessible, 0 otherwise.
5113 */
936fd732 5114int sata_scr_valid(struct ata_link *link)
34bf2170 5115{
936fd732
TH
5116 struct ata_port *ap = link->ap;
5117
a16abc0b 5118 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
5119}
5120
5121/**
5122 * sata_scr_read - read SCR register of the specified port
936fd732 5123 * @link: ATA link to read SCR for
34bf2170
TH
5124 * @reg: SCR to read
5125 * @val: Place to store read value
5126 *
936fd732 5127 * Read SCR register @reg of @link into *@val. This function is
633273a3
TH
5128 * guaranteed to succeed if @link is ap->link, the cable type of
5129 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
5130 *
5131 * LOCKING:
633273a3 5132 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5133 *
5134 * RETURNS:
5135 * 0 on success, negative errno on failure.
5136 */
936fd732 5137int sata_scr_read(struct ata_link *link, int reg, u32 *val)
34bf2170 5138{
633273a3 5139 if (ata_is_host_link(link)) {
633273a3 5140 if (sata_scr_valid(link))
82ef04fb 5141 return link->ap->ops->scr_read(link, reg, val);
633273a3
TH
5142 return -EOPNOTSUPP;
5143 }
5144
5145 return sata_pmp_scr_read(link, reg, val);
34bf2170
TH
5146}
5147
5148/**
5149 * sata_scr_write - write SCR register of the specified port
936fd732 5150 * @link: ATA link to write SCR for
34bf2170
TH
5151 * @reg: SCR to write
5152 * @val: value to write
5153 *
936fd732 5154 * Write @val to SCR register @reg of @link. This function is
633273a3
TH
5155 * guaranteed to succeed if @link is ap->link, the cable type of
5156 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
5157 *
5158 * LOCKING:
633273a3 5159 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5160 *
5161 * RETURNS:
5162 * 0 on success, negative errno on failure.
5163 */
936fd732 5164int sata_scr_write(struct ata_link *link, int reg, u32 val)
34bf2170 5165{
633273a3 5166 if (ata_is_host_link(link)) {
633273a3 5167 if (sata_scr_valid(link))
82ef04fb 5168 return link->ap->ops->scr_write(link, reg, val);
633273a3
TH
5169 return -EOPNOTSUPP;
5170 }
936fd732 5171
633273a3 5172 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
5173}
5174
5175/**
5176 * sata_scr_write_flush - write SCR register of the specified port and flush
936fd732 5177 * @link: ATA link to write SCR for
34bf2170
TH
5178 * @reg: SCR to write
5179 * @val: value to write
5180 *
5181 * This function is identical to sata_scr_write() except that this
5182 * function performs flush after writing to the register.
5183 *
5184 * LOCKING:
633273a3 5185 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5186 *
5187 * RETURNS:
5188 * 0 on success, negative errno on failure.
5189 */
936fd732 5190int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
34bf2170 5191{
633273a3 5192 if (ata_is_host_link(link)) {
633273a3 5193 int rc;
da3dbb17 5194
633273a3 5195 if (sata_scr_valid(link)) {
82ef04fb 5196 rc = link->ap->ops->scr_write(link, reg, val);
633273a3 5197 if (rc == 0)
82ef04fb 5198 rc = link->ap->ops->scr_read(link, reg, &val);
633273a3
TH
5199 return rc;
5200 }
5201 return -EOPNOTSUPP;
34bf2170 5202 }
633273a3
TH
5203
5204 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
5205}
5206
5207/**
b1c72916 5208 * ata_phys_link_online - test whether the given link is online
936fd732 5209 * @link: ATA link to test
34bf2170 5210 *
936fd732
TH
5211 * Test whether @link is online. Note that this function returns
5212 * 0 if online status of @link cannot be obtained, so
5213 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5214 *
5215 * LOCKING:
5216 * None.
5217 *
5218 * RETURNS:
b5b3fa38 5219 * True if the port online status is available and online.
34bf2170 5220 */
b1c72916 5221bool ata_phys_link_online(struct ata_link *link)
34bf2170
TH
5222{
5223 u32 sstatus;
5224
936fd732 5225 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
9913ff8a 5226 ata_sstatus_online(sstatus))
b5b3fa38
TH
5227 return true;
5228 return false;
34bf2170
TH
5229}
5230
5231/**
b1c72916 5232 * ata_phys_link_offline - test whether the given link is offline
936fd732 5233 * @link: ATA link to test
34bf2170 5234 *
936fd732
TH
5235 * Test whether @link is offline. Note that this function
5236 * returns 0 if offline status of @link cannot be obtained, so
5237 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5238 *
5239 * LOCKING:
5240 * None.
5241 *
5242 * RETURNS:
b5b3fa38 5243 * True if the port offline status is available and offline.
34bf2170 5244 */
b1c72916 5245bool ata_phys_link_offline(struct ata_link *link)
34bf2170
TH
5246{
5247 u32 sstatus;
5248
936fd732 5249 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
9913ff8a 5250 !ata_sstatus_online(sstatus))
b5b3fa38
TH
5251 return true;
5252 return false;
34bf2170 5253}
0baab86b 5254
b1c72916
TH
5255/**
5256 * ata_link_online - test whether the given link is online
5257 * @link: ATA link to test
5258 *
5259 * Test whether @link is online. This is identical to
5260 * ata_phys_link_online() when there's no slave link. When
5261 * there's a slave link, this function should only be called on
5262 * the master link and will return true if any of M/S links is
5263 * online.
5264 *
5265 * LOCKING:
5266 * None.
5267 *
5268 * RETURNS:
5269 * True if the port online status is available and online.
5270 */
5271bool ata_link_online(struct ata_link *link)
5272{
5273 struct ata_link *slave = link->ap->slave_link;
5274
5275 WARN_ON(link == slave); /* shouldn't be called on slave link */
5276
5277 return ata_phys_link_online(link) ||
5278 (slave && ata_phys_link_online(slave));
5279}
5280
5281/**
5282 * ata_link_offline - test whether the given link is offline
5283 * @link: ATA link to test
5284 *
5285 * Test whether @link is offline. This is identical to
5286 * ata_phys_link_offline() when there's no slave link. When
5287 * there's a slave link, this function should only be called on
5288 * the master link and will return true if both M/S links are
5289 * offline.
5290 *
5291 * LOCKING:
5292 * None.
5293 *
5294 * RETURNS:
5295 * True if the port offline status is available and offline.
5296 */
5297bool ata_link_offline(struct ata_link *link)
5298{
5299 struct ata_link *slave = link->ap->slave_link;
5300
5301 WARN_ON(link == slave); /* shouldn't be called on slave link */
5302
5303 return ata_phys_link_offline(link) &&
5304 (!slave || ata_phys_link_offline(slave));
5305}
5306
6ffa01d8 5307#ifdef CONFIG_PM
cca3974e
JG
5308static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5309 unsigned int action, unsigned int ehi_flags,
5310 int wait)
500530f6
TH
5311{
5312 unsigned long flags;
5313 int i, rc;
5314
cca3974e
JG
5315 for (i = 0; i < host->n_ports; i++) {
5316 struct ata_port *ap = host->ports[i];
e3667ebf 5317 struct ata_link *link;
500530f6
TH
5318
5319 /* Previous resume operation might still be in
5320 * progress. Wait for PM_PENDING to clear.
5321 */
5322 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5323 ata_port_wait_eh(ap);
5324 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5325 }
5326
5327 /* request PM ops to EH */
5328 spin_lock_irqsave(ap->lock, flags);
5329
5330 ap->pm_mesg = mesg;
5331 if (wait) {
5332 rc = 0;
5333 ap->pm_result = &rc;
5334 }
5335
5336 ap->pflags |= ATA_PFLAG_PM_PENDING;
1eca4365 5337 ata_for_each_link(link, ap, HOST_FIRST) {
e3667ebf
TH
5338 link->eh_info.action |= action;
5339 link->eh_info.flags |= ehi_flags;
5340 }
500530f6
TH
5341
5342 ata_port_schedule_eh(ap);
5343
5344 spin_unlock_irqrestore(ap->lock, flags);
5345
5346 /* wait and check result */
5347 if (wait) {
5348 ata_port_wait_eh(ap);
5349 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5350 if (rc)
5351 return rc;
5352 }
5353 }
5354
5355 return 0;
5356}
5357
5358/**
cca3974e
JG
5359 * ata_host_suspend - suspend host
5360 * @host: host to suspend
500530f6
TH
5361 * @mesg: PM message
5362 *
cca3974e 5363 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
5364 * function requests EH to perform PM operations and waits for EH
5365 * to finish.
5366 *
5367 * LOCKING:
5368 * Kernel thread context (may sleep).
5369 *
5370 * RETURNS:
5371 * 0 on success, -errno on failure.
5372 */
cca3974e 5373int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 5374{
9666f400 5375 int rc;
500530f6 5376
ca77329f
KCA
5377 /*
5378 * disable link pm on all ports before requesting
5379 * any pm activity
5380 */
5381 ata_lpm_enable(host);
5382
cca3974e 5383 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
72ad6ec4
JG
5384 if (rc == 0)
5385 host->dev->power.power_state = mesg;
500530f6
TH
5386 return rc;
5387}
5388
5389/**
cca3974e
JG
5390 * ata_host_resume - resume host
5391 * @host: host to resume
500530f6 5392 *
cca3974e 5393 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
5394 * function requests EH to perform PM operations and returns.
5395 * Note that all resume operations are performed parallely.
5396 *
5397 * LOCKING:
5398 * Kernel thread context (may sleep).
5399 */
cca3974e 5400void ata_host_resume(struct ata_host *host)
500530f6 5401{
cf480626 5402 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
cca3974e 5403 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
72ad6ec4 5404 host->dev->power.power_state = PMSG_ON;
ca77329f
KCA
5405
5406 /* reenable link pm */
5407 ata_lpm_disable(host);
500530f6 5408}
6ffa01d8 5409#endif
500530f6 5410
c893a3ae
RD
5411/**
5412 * ata_port_start - Set port up for dma.
5413 * @ap: Port to initialize
5414 *
5415 * Called just after data structures for each port are
5416 * initialized. Allocates space for PRD table.
5417 *
5418 * May be used as the port_start() entry in ata_port_operations.
5419 *
5420 * LOCKING:
5421 * Inherited from caller.
5422 */
f0d36efd 5423int ata_port_start(struct ata_port *ap)
1da177e4 5424{
2f1f610b 5425 struct device *dev = ap->dev;
1da177e4 5426
f0d36efd
TH
5427 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5428 GFP_KERNEL);
1da177e4
LT
5429 if (!ap->prd)
5430 return -ENOMEM;
5431
1da177e4
LT
5432 return 0;
5433}
5434
3ef3b43d
TH
5435/**
5436 * ata_dev_init - Initialize an ata_device structure
5437 * @dev: Device structure to initialize
5438 *
5439 * Initialize @dev in preparation for probing.
5440 *
5441 * LOCKING:
5442 * Inherited from caller.
5443 */
5444void ata_dev_init(struct ata_device *dev)
5445{
b1c72916 5446 struct ata_link *link = ata_dev_phys_link(dev);
9af5c9c9 5447 struct ata_port *ap = link->ap;
72fa4b74
TH
5448 unsigned long flags;
5449
b1c72916 5450 /* SATA spd limit is bound to the attached device, reset together */
9af5c9c9
TH
5451 link->sata_spd_limit = link->hw_sata_spd_limit;
5452 link->sata_spd = 0;
5a04bf4b 5453
72fa4b74
TH
5454 /* High bits of dev->flags are used to record warm plug
5455 * requests which occur asynchronously. Synchronize using
cca3974e 5456 * host lock.
72fa4b74 5457 */
ba6a1308 5458 spin_lock_irqsave(ap->lock, flags);
72fa4b74 5459 dev->flags &= ~ATA_DFLAG_INIT_MASK;
3dcc323f 5460 dev->horkage = 0;
ba6a1308 5461 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 5462
99cf610a
TH
5463 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5464 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
3ef3b43d
TH
5465 dev->pio_mask = UINT_MAX;
5466 dev->mwdma_mask = UINT_MAX;
5467 dev->udma_mask = UINT_MAX;
5468}
5469
4fb37a25
TH
5470/**
5471 * ata_link_init - Initialize an ata_link structure
5472 * @ap: ATA port link is attached to
5473 * @link: Link structure to initialize
8989805d 5474 * @pmp: Port multiplier port number
4fb37a25
TH
5475 *
5476 * Initialize @link.
5477 *
5478 * LOCKING:
5479 * Kernel thread context (may sleep)
5480 */
fb7fd614 5481void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
4fb37a25
TH
5482{
5483 int i;
5484
5485 /* clear everything except for devices */
5486 memset(link, 0, offsetof(struct ata_link, device[0]));
5487
5488 link->ap = ap;
8989805d 5489 link->pmp = pmp;
4fb37a25
TH
5490 link->active_tag = ATA_TAG_POISON;
5491 link->hw_sata_spd_limit = UINT_MAX;
5492
5493 /* can't use iterator, ap isn't initialized yet */
5494 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5495 struct ata_device *dev = &link->device[i];
5496
5497 dev->link = link;
5498 dev->devno = dev - link->device;
5499 ata_dev_init(dev);
5500 }
5501}
5502
5503/**
5504 * sata_link_init_spd - Initialize link->sata_spd_limit
5505 * @link: Link to configure sata_spd_limit for
5506 *
5507 * Initialize @link->[hw_]sata_spd_limit to the currently
5508 * configured value.
5509 *
5510 * LOCKING:
5511 * Kernel thread context (may sleep).
5512 *
5513 * RETURNS:
5514 * 0 on success, -errno on failure.
5515 */
fb7fd614 5516int sata_link_init_spd(struct ata_link *link)
4fb37a25 5517{
33267325 5518 u8 spd;
4fb37a25
TH
5519 int rc;
5520
d127ea7b 5521 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
4fb37a25
TH
5522 if (rc)
5523 return rc;
5524
d127ea7b 5525 spd = (link->saved_scontrol >> 4) & 0xf;
4fb37a25
TH
5526 if (spd)
5527 link->hw_sata_spd_limit &= (1 << spd) - 1;
5528
05944bdf 5529 ata_force_link_limits(link);
33267325 5530
4fb37a25
TH
5531 link->sata_spd_limit = link->hw_sata_spd_limit;
5532
5533 return 0;
5534}
5535
1da177e4 5536/**
f3187195
TH
5537 * ata_port_alloc - allocate and initialize basic ATA port resources
5538 * @host: ATA host this allocated port belongs to
1da177e4 5539 *
f3187195
TH
5540 * Allocate and initialize basic ATA port resources.
5541 *
5542 * RETURNS:
5543 * Allocate ATA port on success, NULL on failure.
0cba632b 5544 *
1da177e4 5545 * LOCKING:
f3187195 5546 * Inherited from calling layer (may sleep).
1da177e4 5547 */
f3187195 5548struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 5549{
f3187195 5550 struct ata_port *ap;
1da177e4 5551
f3187195
TH
5552 DPRINTK("ENTER\n");
5553
5554 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5555 if (!ap)
5556 return NULL;
5557
f4d6d004 5558 ap->pflags |= ATA_PFLAG_INITIALIZING;
cca3974e 5559 ap->lock = &host->lock;
198e0fed 5560 ap->flags = ATA_FLAG_DISABLED;
f3187195 5561 ap->print_id = -1;
1da177e4 5562 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 5563 ap->host = host;
f3187195 5564 ap->dev = host->dev;
1da177e4 5565 ap->last_ctl = 0xFF;
bd5d825c
BP
5566
5567#if defined(ATA_VERBOSE_DEBUG)
5568 /* turn on all debugging levels */
5569 ap->msg_enable = 0x00FF;
5570#elif defined(ATA_DEBUG)
5571 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 5572#else
0dd4b21f 5573 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 5574#endif
1da177e4 5575
127102ae 5576#ifdef CONFIG_ATA_SFF
442eacc3 5577 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task);
f667fdbb
TH
5578#else
5579 INIT_DELAYED_WORK(&ap->port_task, NULL);
127102ae 5580#endif
65f27f38
DH
5581 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5582 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 5583 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 5584 init_waitqueue_head(&ap->eh_wait_q);
45fabbb7 5585 init_completion(&ap->park_req_pending);
5ddf24c5
TH
5586 init_timer_deferrable(&ap->fastdrain_timer);
5587 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5588 ap->fastdrain_timer.data = (unsigned long)ap;
1da177e4 5589
838df628 5590 ap->cbl = ATA_CBL_NONE;
838df628 5591
8989805d 5592 ata_link_init(ap, &ap->link, 0);
1da177e4
LT
5593
5594#ifdef ATA_IRQ_TRAP
5595 ap->stats.unhandled_irq = 1;
5596 ap->stats.idle_irq = 1;
5597#endif
1da177e4 5598 return ap;
1da177e4
LT
5599}
5600
f0d36efd
TH
5601static void ata_host_release(struct device *gendev, void *res)
5602{
5603 struct ata_host *host = dev_get_drvdata(gendev);
5604 int i;
5605
1aa506e4
TH
5606 for (i = 0; i < host->n_ports; i++) {
5607 struct ata_port *ap = host->ports[i];
5608
4911487a
TH
5609 if (!ap)
5610 continue;
5611
5612 if (ap->scsi_host)
1aa506e4
TH
5613 scsi_host_put(ap->scsi_host);
5614
633273a3 5615 kfree(ap->pmp_link);
b1c72916 5616 kfree(ap->slave_link);
4911487a 5617 kfree(ap);
1aa506e4
TH
5618 host->ports[i] = NULL;
5619 }
5620
1aa56cca 5621 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
5622}
5623
f3187195
TH
5624/**
5625 * ata_host_alloc - allocate and init basic ATA host resources
5626 * @dev: generic device this host is associated with
5627 * @max_ports: maximum number of ATA ports associated with this host
5628 *
5629 * Allocate and initialize basic ATA host resources. LLD calls
5630 * this function to allocate a host, initializes it fully and
5631 * attaches it using ata_host_register().
5632 *
5633 * @max_ports ports are allocated and host->n_ports is
5634 * initialized to @max_ports. The caller is allowed to decrease
5635 * host->n_ports before calling ata_host_register(). The unused
5636 * ports will be automatically freed on registration.
5637 *
5638 * RETURNS:
5639 * Allocate ATA host on success, NULL on failure.
5640 *
5641 * LOCKING:
5642 * Inherited from calling layer (may sleep).
5643 */
5644struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5645{
5646 struct ata_host *host;
5647 size_t sz;
5648 int i;
5649
5650 DPRINTK("ENTER\n");
5651
5652 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5653 return NULL;
5654
5655 /* alloc a container for our list of ATA ports (buses) */
5656 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5657 /* alloc a container for our list of ATA ports (buses) */
5658 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5659 if (!host)
5660 goto err_out;
5661
5662 devres_add(dev, host);
5663 dev_set_drvdata(dev, host);
5664
5665 spin_lock_init(&host->lock);
5666 host->dev = dev;
5667 host->n_ports = max_ports;
5668
5669 /* allocate ports bound to this host */
5670 for (i = 0; i < max_ports; i++) {
5671 struct ata_port *ap;
5672
5673 ap = ata_port_alloc(host);
5674 if (!ap)
5675 goto err_out;
5676
5677 ap->port_no = i;
5678 host->ports[i] = ap;
5679 }
5680
5681 devres_remove_group(dev, NULL);
5682 return host;
5683
5684 err_out:
5685 devres_release_group(dev, NULL);
5686 return NULL;
5687}
5688
f5cda257
TH
5689/**
5690 * ata_host_alloc_pinfo - alloc host and init with port_info array
5691 * @dev: generic device this host is associated with
5692 * @ppi: array of ATA port_info to initialize host with
5693 * @n_ports: number of ATA ports attached to this host
5694 *
5695 * Allocate ATA host and initialize with info from @ppi. If NULL
5696 * terminated, @ppi may contain fewer entries than @n_ports. The
5697 * last entry will be used for the remaining ports.
5698 *
5699 * RETURNS:
5700 * Allocate ATA host on success, NULL on failure.
5701 *
5702 * LOCKING:
5703 * Inherited from calling layer (may sleep).
5704 */
5705struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5706 const struct ata_port_info * const * ppi,
5707 int n_ports)
5708{
5709 const struct ata_port_info *pi;
5710 struct ata_host *host;
5711 int i, j;
5712
5713 host = ata_host_alloc(dev, n_ports);
5714 if (!host)
5715 return NULL;
5716
5717 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5718 struct ata_port *ap = host->ports[i];
5719
5720 if (ppi[j])
5721 pi = ppi[j++];
5722
5723 ap->pio_mask = pi->pio_mask;
5724 ap->mwdma_mask = pi->mwdma_mask;
5725 ap->udma_mask = pi->udma_mask;
5726 ap->flags |= pi->flags;
0c88758b 5727 ap->link.flags |= pi->link_flags;
f5cda257
TH
5728 ap->ops = pi->port_ops;
5729
5730 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5731 host->ops = pi->port_ops;
f5cda257
TH
5732 }
5733
5734 return host;
5735}
5736
b1c72916
TH
5737/**
5738 * ata_slave_link_init - initialize slave link
5739 * @ap: port to initialize slave link for
5740 *
5741 * Create and initialize slave link for @ap. This enables slave
5742 * link handling on the port.
5743 *
5744 * In libata, a port contains links and a link contains devices.
5745 * There is single host link but if a PMP is attached to it,
5746 * there can be multiple fan-out links. On SATA, there's usually
5747 * a single device connected to a link but PATA and SATA
5748 * controllers emulating TF based interface can have two - master
5749 * and slave.
5750 *
5751 * However, there are a few controllers which don't fit into this
5752 * abstraction too well - SATA controllers which emulate TF
5753 * interface with both master and slave devices but also have
5754 * separate SCR register sets for each device. These controllers
5755 * need separate links for physical link handling
5756 * (e.g. onlineness, link speed) but should be treated like a
5757 * traditional M/S controller for everything else (e.g. command
5758 * issue, softreset).
5759 *
5760 * slave_link is libata's way of handling this class of
5761 * controllers without impacting core layer too much. For
5762 * anything other than physical link handling, the default host
5763 * link is used for both master and slave. For physical link
5764 * handling, separate @ap->slave_link is used. All dirty details
5765 * are implemented inside libata core layer. From LLD's POV, the
5766 * only difference is that prereset, hardreset and postreset are
5767 * called once more for the slave link, so the reset sequence
5768 * looks like the following.
5769 *
5770 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5771 * softreset(M) -> postreset(M) -> postreset(S)
5772 *
5773 * Note that softreset is called only for the master. Softreset
5774 * resets both M/S by definition, so SRST on master should handle
5775 * both (the standard method will work just fine).
5776 *
5777 * LOCKING:
5778 * Should be called before host is registered.
5779 *
5780 * RETURNS:
5781 * 0 on success, -errno on failure.
5782 */
5783int ata_slave_link_init(struct ata_port *ap)
5784{
5785 struct ata_link *link;
5786
5787 WARN_ON(ap->slave_link);
5788 WARN_ON(ap->flags & ATA_FLAG_PMP);
5789
5790 link = kzalloc(sizeof(*link), GFP_KERNEL);
5791 if (!link)
5792 return -ENOMEM;
5793
5794 ata_link_init(ap, link, 1);
5795 ap->slave_link = link;
5796 return 0;
5797}
5798
32ebbc0c
TH
5799static void ata_host_stop(struct device *gendev, void *res)
5800{
5801 struct ata_host *host = dev_get_drvdata(gendev);
5802 int i;
5803
5804 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5805
5806 for (i = 0; i < host->n_ports; i++) {
5807 struct ata_port *ap = host->ports[i];
5808
5809 if (ap->ops->port_stop)
5810 ap->ops->port_stop(ap);
5811 }
5812
5813 if (host->ops->host_stop)
5814 host->ops->host_stop(host);
5815}
5816
029cfd6b
TH
5817/**
5818 * ata_finalize_port_ops - finalize ata_port_operations
5819 * @ops: ata_port_operations to finalize
5820 *
5821 * An ata_port_operations can inherit from another ops and that
5822 * ops can again inherit from another. This can go on as many
5823 * times as necessary as long as there is no loop in the
5824 * inheritance chain.
5825 *
5826 * Ops tables are finalized when the host is started. NULL or
5827 * unspecified entries are inherited from the closet ancestor
5828 * which has the method and the entry is populated with it.
5829 * After finalization, the ops table directly points to all the
5830 * methods and ->inherits is no longer necessary and cleared.
5831 *
5832 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5833 *
5834 * LOCKING:
5835 * None.
5836 */
5837static void ata_finalize_port_ops(struct ata_port_operations *ops)
5838{
2da67659 5839 static DEFINE_SPINLOCK(lock);
029cfd6b
TH
5840 const struct ata_port_operations *cur;
5841 void **begin = (void **)ops;
5842 void **end = (void **)&ops->inherits;
5843 void **pp;
5844
5845 if (!ops || !ops->inherits)
5846 return;
5847
5848 spin_lock(&lock);
5849
5850 for (cur = ops->inherits; cur; cur = cur->inherits) {
5851 void **inherit = (void **)cur;
5852
5853 for (pp = begin; pp < end; pp++, inherit++)
5854 if (!*pp)
5855 *pp = *inherit;
5856 }
5857
5858 for (pp = begin; pp < end; pp++)
5859 if (IS_ERR(*pp))
5860 *pp = NULL;
5861
5862 ops->inherits = NULL;
5863
5864 spin_unlock(&lock);
5865}
5866
ecef7253
TH
5867/**
5868 * ata_host_start - start and freeze ports of an ATA host
5869 * @host: ATA host to start ports for
5870 *
5871 * Start and then freeze ports of @host. Started status is
5872 * recorded in host->flags, so this function can be called
5873 * multiple times. Ports are guaranteed to get started only
f3187195
TH
5874 * once. If host->ops isn't initialized yet, its set to the
5875 * first non-dummy port ops.
ecef7253
TH
5876 *
5877 * LOCKING:
5878 * Inherited from calling layer (may sleep).
5879 *
5880 * RETURNS:
5881 * 0 if all ports are started successfully, -errno otherwise.
5882 */
5883int ata_host_start(struct ata_host *host)
5884{
32ebbc0c
TH
5885 int have_stop = 0;
5886 void *start_dr = NULL;
ecef7253
TH
5887 int i, rc;
5888
5889 if (host->flags & ATA_HOST_STARTED)
5890 return 0;
5891
029cfd6b
TH
5892 ata_finalize_port_ops(host->ops);
5893
ecef7253
TH
5894 for (i = 0; i < host->n_ports; i++) {
5895 struct ata_port *ap = host->ports[i];
5896
029cfd6b
TH
5897 ata_finalize_port_ops(ap->ops);
5898
f3187195
TH
5899 if (!host->ops && !ata_port_is_dummy(ap))
5900 host->ops = ap->ops;
5901
32ebbc0c
TH
5902 if (ap->ops->port_stop)
5903 have_stop = 1;
5904 }
5905
5906 if (host->ops->host_stop)
5907 have_stop = 1;
5908
5909 if (have_stop) {
5910 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5911 if (!start_dr)
5912 return -ENOMEM;
5913 }
5914
5915 for (i = 0; i < host->n_ports; i++) {
5916 struct ata_port *ap = host->ports[i];
5917
ecef7253
TH
5918 if (ap->ops->port_start) {
5919 rc = ap->ops->port_start(ap);
5920 if (rc) {
0f9fe9b7 5921 if (rc != -ENODEV)
0f757743
AM
5922 dev_printk(KERN_ERR, host->dev,
5923 "failed to start port %d "
5924 "(errno=%d)\n", i, rc);
ecef7253
TH
5925 goto err_out;
5926 }
5927 }
ecef7253
TH
5928 ata_eh_freeze_port(ap);
5929 }
5930
32ebbc0c
TH
5931 if (start_dr)
5932 devres_add(host->dev, start_dr);
ecef7253
TH
5933 host->flags |= ATA_HOST_STARTED;
5934 return 0;
5935
5936 err_out:
5937 while (--i >= 0) {
5938 struct ata_port *ap = host->ports[i];
5939
5940 if (ap->ops->port_stop)
5941 ap->ops->port_stop(ap);
5942 }
32ebbc0c 5943 devres_free(start_dr);
ecef7253
TH
5944 return rc;
5945}
5946
b03732f0 5947/**
cca3974e
JG
5948 * ata_sas_host_init - Initialize a host struct
5949 * @host: host to initialize
5950 * @dev: device host is attached to
5951 * @flags: host flags
5952 * @ops: port_ops
b03732f0
BK
5953 *
5954 * LOCKING:
5955 * PCI/etc. bus probe sem.
5956 *
5957 */
f3187195 5958/* KILLME - the only user left is ipr */
cca3974e 5959void ata_host_init(struct ata_host *host, struct device *dev,
029cfd6b 5960 unsigned long flags, struct ata_port_operations *ops)
b03732f0 5961{
cca3974e
JG
5962 spin_lock_init(&host->lock);
5963 host->dev = dev;
5964 host->flags = flags;
5965 host->ops = ops;
b03732f0
BK
5966}
5967
79318057
AV
5968
5969static void async_port_probe(void *data, async_cookie_t cookie)
5970{
5971 int rc;
5972 struct ata_port *ap = data;
886ad09f
AV
5973
5974 /*
5975 * If we're not allowed to scan this host in parallel,
5976 * we need to wait until all previous scans have completed
5977 * before going further.
fa853a48
AV
5978 * Jeff Garzik says this is only within a controller, so we
5979 * don't need to wait for port 0, only for later ports.
886ad09f 5980 */
fa853a48 5981 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
886ad09f
AV
5982 async_synchronize_cookie(cookie);
5983
79318057
AV
5984 /* probe */
5985 if (ap->ops->error_handler) {
5986 struct ata_eh_info *ehi = &ap->link.eh_info;
5987 unsigned long flags;
5988
5989 ata_port_probe(ap);
5990
5991 /* kick EH for boot probing */
5992 spin_lock_irqsave(ap->lock, flags);
5993
5994 ehi->probe_mask |= ATA_ALL_DEVICES;
5995 ehi->action |= ATA_EH_RESET | ATA_EH_LPM;
5996 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5997
5998 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5999 ap->pflags |= ATA_PFLAG_LOADING;
6000 ata_port_schedule_eh(ap);
6001
6002 spin_unlock_irqrestore(ap->lock, flags);
6003
6004 /* wait for EH to finish */
6005 ata_port_wait_eh(ap);
6006 } else {
6007 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6008 rc = ata_bus_probe(ap);
6009 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6010
6011 if (rc) {
6012 /* FIXME: do something useful here?
6013 * Current libata behavior will
6014 * tear down everything when
6015 * the module is removed
6016 * or the h/w is unplugged.
6017 */
6018 }
6019 }
f29d3b23
AV
6020
6021 /* in order to keep device order, we need to synchronize at this point */
6022 async_synchronize_cookie(cookie);
6023
6024 ata_scsi_scan_host(ap, 1);
6025
79318057 6026}
f3187195
TH
6027/**
6028 * ata_host_register - register initialized ATA host
6029 * @host: ATA host to register
6030 * @sht: template for SCSI host
6031 *
6032 * Register initialized ATA host. @host is allocated using
6033 * ata_host_alloc() and fully initialized by LLD. This function
6034 * starts ports, registers @host with ATA and SCSI layers and
6035 * probe registered devices.
6036 *
6037 * LOCKING:
6038 * Inherited from calling layer (may sleep).
6039 *
6040 * RETURNS:
6041 * 0 on success, -errno otherwise.
6042 */
6043int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6044{
6045 int i, rc;
6046
6047 /* host must have been started */
6048 if (!(host->flags & ATA_HOST_STARTED)) {
6049 dev_printk(KERN_ERR, host->dev,
6050 "BUG: trying to register unstarted host\n");
6051 WARN_ON(1);
6052 return -EINVAL;
6053 }
6054
6055 /* Blow away unused ports. This happens when LLD can't
6056 * determine the exact number of ports to allocate at
6057 * allocation time.
6058 */
6059 for (i = host->n_ports; host->ports[i]; i++)
6060 kfree(host->ports[i]);
6061
6062 /* give ports names and add SCSI hosts */
6063 for (i = 0; i < host->n_ports; i++)
6064 host->ports[i]->print_id = ata_print_id++;
6065
6066 rc = ata_scsi_add_hosts(host, sht);
6067 if (rc)
6068 return rc;
6069
fafbae87
TH
6070 /* associate with ACPI nodes */
6071 ata_acpi_associate(host);
6072
f3187195
TH
6073 /* set cable, sata_spd_limit and report */
6074 for (i = 0; i < host->n_ports; i++) {
6075 struct ata_port *ap = host->ports[i];
f3187195
TH
6076 unsigned long xfer_mask;
6077
6078 /* set SATA cable type if still unset */
6079 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6080 ap->cbl = ATA_CBL_SATA;
6081
6082 /* init sata_spd_limit to the current value */
4fb37a25 6083 sata_link_init_spd(&ap->link);
b1c72916
TH
6084 if (ap->slave_link)
6085 sata_link_init_spd(ap->slave_link);
f3187195 6086
cbcdd875 6087 /* print per-port info to dmesg */
f3187195
TH
6088 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6089 ap->udma_mask);
6090
abf6e8ed 6091 if (!ata_port_is_dummy(ap)) {
cbcdd875
TH
6092 ata_port_printk(ap, KERN_INFO,
6093 "%cATA max %s %s\n",
a16abc0b 6094 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
f3187195 6095 ata_mode_string(xfer_mask),
cbcdd875 6096 ap->link.eh_info.desc);
abf6e8ed
TH
6097 ata_ehi_clear_desc(&ap->link.eh_info);
6098 } else
f3187195
TH
6099 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6100 }
6101
6102 /* perform each probe synchronously */
6103 DPRINTK("probe begin\n");
6104 for (i = 0; i < host->n_ports; i++) {
6105 struct ata_port *ap = host->ports[i];
79318057 6106 async_schedule(async_port_probe, ap);
f3187195 6107 }
f29d3b23 6108 DPRINTK("probe end\n");
f3187195
TH
6109
6110 return 0;
6111}
6112
f5cda257
TH
6113/**
6114 * ata_host_activate - start host, request IRQ and register it
6115 * @host: target ATA host
6116 * @irq: IRQ to request
6117 * @irq_handler: irq_handler used when requesting IRQ
6118 * @irq_flags: irq_flags used when requesting IRQ
6119 * @sht: scsi_host_template to use when registering the host
6120 *
6121 * After allocating an ATA host and initializing it, most libata
6122 * LLDs perform three steps to activate the host - start host,
6123 * request IRQ and register it. This helper takes necessasry
6124 * arguments and performs the three steps in one go.
6125 *
3d46b2e2
PM
6126 * An invalid IRQ skips the IRQ registration and expects the host to
6127 * have set polling mode on the port. In this case, @irq_handler
6128 * should be NULL.
6129 *
f5cda257
TH
6130 * LOCKING:
6131 * Inherited from calling layer (may sleep).
6132 *
6133 * RETURNS:
6134 * 0 on success, -errno otherwise.
6135 */
6136int ata_host_activate(struct ata_host *host, int irq,
6137 irq_handler_t irq_handler, unsigned long irq_flags,
6138 struct scsi_host_template *sht)
6139{
cbcdd875 6140 int i, rc;
f5cda257
TH
6141
6142 rc = ata_host_start(host);
6143 if (rc)
6144 return rc;
6145
3d46b2e2
PM
6146 /* Special case for polling mode */
6147 if (!irq) {
6148 WARN_ON(irq_handler);
6149 return ata_host_register(host, sht);
6150 }
6151
f5cda257
TH
6152 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6153 dev_driver_string(host->dev), host);
6154 if (rc)
6155 return rc;
6156
cbcdd875
TH
6157 for (i = 0; i < host->n_ports; i++)
6158 ata_port_desc(host->ports[i], "irq %d", irq);
4031826b 6159
f5cda257
TH
6160 rc = ata_host_register(host, sht);
6161 /* if failed, just free the IRQ and leave ports alone */
6162 if (rc)
6163 devm_free_irq(host->dev, irq, host);
6164
6165 return rc;
6166}
6167
720ba126
TH
6168/**
6169 * ata_port_detach - Detach ATA port in prepration of device removal
6170 * @ap: ATA port to be detached
6171 *
6172 * Detach all ATA devices and the associated SCSI devices of @ap;
6173 * then, remove the associated SCSI host. @ap is guaranteed to
6174 * be quiescent on return from this function.
6175 *
6176 * LOCKING:
6177 * Kernel thread context (may sleep).
6178 */
741b7763 6179static void ata_port_detach(struct ata_port *ap)
720ba126
TH
6180{
6181 unsigned long flags;
720ba126
TH
6182
6183 if (!ap->ops->error_handler)
c3cf30a9 6184 goto skip_eh;
720ba126
TH
6185
6186 /* tell EH we're leaving & flush EH */
ba6a1308 6187 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 6188 ap->pflags |= ATA_PFLAG_UNLOADING;
ece180d1 6189 ata_port_schedule_eh(ap);
ba6a1308 6190 spin_unlock_irqrestore(ap->lock, flags);
720ba126 6191
ece180d1 6192 /* wait till EH commits suicide */
720ba126
TH
6193 ata_port_wait_eh(ap);
6194
ece180d1
TH
6195 /* it better be dead now */
6196 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
720ba126 6197
45a66c1c 6198 cancel_rearming_delayed_work(&ap->hotplug_task);
720ba126 6199
c3cf30a9 6200 skip_eh:
720ba126 6201 /* remove the associated SCSI host */
cca3974e 6202 scsi_remove_host(ap->scsi_host);
720ba126
TH
6203}
6204
0529c159
TH
6205/**
6206 * ata_host_detach - Detach all ports of an ATA host
6207 * @host: Host to detach
6208 *
6209 * Detach all ports of @host.
6210 *
6211 * LOCKING:
6212 * Kernel thread context (may sleep).
6213 */
6214void ata_host_detach(struct ata_host *host)
6215{
6216 int i;
6217
6218 for (i = 0; i < host->n_ports; i++)
6219 ata_port_detach(host->ports[i]);
562f0c2d
TH
6220
6221 /* the host is dead now, dissociate ACPI */
6222 ata_acpi_dissociate(host);
0529c159
TH
6223}
6224
374b1873
JG
6225#ifdef CONFIG_PCI
6226
1da177e4
LT
6227/**
6228 * ata_pci_remove_one - PCI layer callback for device removal
6229 * @pdev: PCI device that was removed
6230 *
b878ca5d
TH
6231 * PCI layer indicates to libata via this hook that hot-unplug or
6232 * module unload event has occurred. Detach all ports. Resource
6233 * release is handled via devres.
1da177e4
LT
6234 *
6235 * LOCKING:
6236 * Inherited from PCI layer (may sleep).
6237 */
f0d36efd 6238void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4 6239{
2855568b 6240 struct device *dev = &pdev->dev;
cca3974e 6241 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 6242
b878ca5d 6243 ata_host_detach(host);
1da177e4
LT
6244}
6245
6246/* move to PCI subsystem */
057ace5e 6247int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6248{
6249 unsigned long tmp = 0;
6250
6251 switch (bits->width) {
6252 case 1: {
6253 u8 tmp8 = 0;
6254 pci_read_config_byte(pdev, bits->reg, &tmp8);
6255 tmp = tmp8;
6256 break;
6257 }
6258 case 2: {
6259 u16 tmp16 = 0;
6260 pci_read_config_word(pdev, bits->reg, &tmp16);
6261 tmp = tmp16;
6262 break;
6263 }
6264 case 4: {
6265 u32 tmp32 = 0;
6266 pci_read_config_dword(pdev, bits->reg, &tmp32);
6267 tmp = tmp32;
6268 break;
6269 }
6270
6271 default:
6272 return -EINVAL;
6273 }
6274
6275 tmp &= bits->mask;
6276
6277 return (tmp == bits->val) ? 1 : 0;
6278}
9b847548 6279
6ffa01d8 6280#ifdef CONFIG_PM
3c5100c1 6281void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6282{
6283 pci_save_state(pdev);
4c90d971 6284 pci_disable_device(pdev);
500530f6 6285
3a2d5b70 6286 if (mesg.event & PM_EVENT_SLEEP)
500530f6 6287 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
6288}
6289
553c4aa6 6290int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 6291{
553c4aa6
TH
6292 int rc;
6293
9b847548
JA
6294 pci_set_power_state(pdev, PCI_D0);
6295 pci_restore_state(pdev);
553c4aa6 6296
b878ca5d 6297 rc = pcim_enable_device(pdev);
553c4aa6
TH
6298 if (rc) {
6299 dev_printk(KERN_ERR, &pdev->dev,
6300 "failed to enable device after resume (%d)\n", rc);
6301 return rc;
6302 }
6303
9b847548 6304 pci_set_master(pdev);
553c4aa6 6305 return 0;
500530f6
TH
6306}
6307
3c5100c1 6308int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6309{
cca3974e 6310 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
6311 int rc = 0;
6312
cca3974e 6313 rc = ata_host_suspend(host, mesg);
500530f6
TH
6314 if (rc)
6315 return rc;
6316
3c5100c1 6317 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6318
6319 return 0;
6320}
6321
6322int ata_pci_device_resume(struct pci_dev *pdev)
6323{
cca3974e 6324 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 6325 int rc;
500530f6 6326
553c4aa6
TH
6327 rc = ata_pci_device_do_resume(pdev);
6328 if (rc == 0)
6329 ata_host_resume(host);
6330 return rc;
9b847548 6331}
6ffa01d8
TH
6332#endif /* CONFIG_PM */
6333
1da177e4
LT
6334#endif /* CONFIG_PCI */
6335
33267325
TH
6336static int __init ata_parse_force_one(char **cur,
6337 struct ata_force_ent *force_ent,
6338 const char **reason)
6339{
6340 /* FIXME: Currently, there's no way to tag init const data and
6341 * using __initdata causes build failure on some versions of
6342 * gcc. Once __initdataconst is implemented, add const to the
6343 * following structure.
6344 */
6345 static struct ata_force_param force_tbl[] __initdata = {
6346 { "40c", .cbl = ATA_CBL_PATA40 },
6347 { "80c", .cbl = ATA_CBL_PATA80 },
6348 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6349 { "unk", .cbl = ATA_CBL_PATA_UNK },
6350 { "ign", .cbl = ATA_CBL_PATA_IGN },
6351 { "sata", .cbl = ATA_CBL_SATA },
6352 { "1.5Gbps", .spd_limit = 1 },
6353 { "3.0Gbps", .spd_limit = 2 },
6354 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6355 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6356 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6357 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6358 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6359 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6360 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6361 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6362 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6363 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6364 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6365 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6366 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6367 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6368 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6369 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6370 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6371 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6372 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6373 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6374 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6375 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6376 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6377 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6378 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6379 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6380 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6381 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6382 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6383 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6384 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6385 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6386 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6387 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6388 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6389 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
05944bdf
TH
6390 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6391 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6392 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
33267325
TH
6393 };
6394 char *start = *cur, *p = *cur;
6395 char *id, *val, *endp;
6396 const struct ata_force_param *match_fp = NULL;
6397 int nr_matches = 0, i;
6398
6399 /* find where this param ends and update *cur */
6400 while (*p != '\0' && *p != ',')
6401 p++;
6402
6403 if (*p == '\0')
6404 *cur = p;
6405 else
6406 *cur = p + 1;
6407
6408 *p = '\0';
6409
6410 /* parse */
6411 p = strchr(start, ':');
6412 if (!p) {
6413 val = strstrip(start);
6414 goto parse_val;
6415 }
6416 *p = '\0';
6417
6418 id = strstrip(start);
6419 val = strstrip(p + 1);
6420
6421 /* parse id */
6422 p = strchr(id, '.');
6423 if (p) {
6424 *p++ = '\0';
6425 force_ent->device = simple_strtoul(p, &endp, 10);
6426 if (p == endp || *endp != '\0') {
6427 *reason = "invalid device";
6428 return -EINVAL;
6429 }
6430 }
6431
6432 force_ent->port = simple_strtoul(id, &endp, 10);
6433 if (p == endp || *endp != '\0') {
6434 *reason = "invalid port/link";
6435 return -EINVAL;
6436 }
6437
6438 parse_val:
6439 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6440 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6441 const struct ata_force_param *fp = &force_tbl[i];
6442
6443 if (strncasecmp(val, fp->name, strlen(val)))
6444 continue;
6445
6446 nr_matches++;
6447 match_fp = fp;
6448
6449 if (strcasecmp(val, fp->name) == 0) {
6450 nr_matches = 1;
6451 break;
6452 }
6453 }
6454
6455 if (!nr_matches) {
6456 *reason = "unknown value";
6457 return -EINVAL;
6458 }
6459 if (nr_matches > 1) {
6460 *reason = "ambigious value";
6461 return -EINVAL;
6462 }
6463
6464 force_ent->param = *match_fp;
6465
6466 return 0;
6467}
6468
6469static void __init ata_parse_force_param(void)
6470{
6471 int idx = 0, size = 1;
6472 int last_port = -1, last_device = -1;
6473 char *p, *cur, *next;
6474
6475 /* calculate maximum number of params and allocate force_tbl */
6476 for (p = ata_force_param_buf; *p; p++)
6477 if (*p == ',')
6478 size++;
6479
6480 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6481 if (!ata_force_tbl) {
6482 printk(KERN_WARNING "ata: failed to extend force table, "
6483 "libata.force ignored\n");
6484 return;
6485 }
6486
6487 /* parse and populate the table */
6488 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6489 const char *reason = "";
6490 struct ata_force_ent te = { .port = -1, .device = -1 };
6491
6492 next = cur;
6493 if (ata_parse_force_one(&next, &te, &reason)) {
6494 printk(KERN_WARNING "ata: failed to parse force "
6495 "parameter \"%s\" (%s)\n",
6496 cur, reason);
6497 continue;
6498 }
6499
6500 if (te.port == -1) {
6501 te.port = last_port;
6502 te.device = last_device;
6503 }
6504
6505 ata_force_tbl[idx++] = te;
6506
6507 last_port = te.port;
6508 last_device = te.device;
6509 }
6510
6511 ata_force_tbl_size = idx;
6512}
1da177e4 6513
1da177e4
LT
6514static int __init ata_init(void)
6515{
33267325
TH
6516 ata_parse_force_param();
6517
1da177e4
LT
6518 ata_wq = create_workqueue("ata");
6519 if (!ata_wq)
49ea3b04 6520 goto free_force_tbl;
1da177e4 6521
453b07ac 6522 ata_aux_wq = create_singlethread_workqueue("ata_aux");
49ea3b04
EO
6523 if (!ata_aux_wq)
6524 goto free_wq;
453b07ac 6525
1da177e4
LT
6526 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6527 return 0;
49ea3b04
EO
6528
6529free_wq:
6530 destroy_workqueue(ata_wq);
6531free_force_tbl:
6532 kfree(ata_force_tbl);
6533 return -ENOMEM;
1da177e4
LT
6534}
6535
6536static void __exit ata_exit(void)
6537{
33267325 6538 kfree(ata_force_tbl);
1da177e4 6539 destroy_workqueue(ata_wq);
453b07ac 6540 destroy_workqueue(ata_aux_wq);
1da177e4
LT
6541}
6542
a4625085 6543subsys_initcall(ata_init);
1da177e4
LT
6544module_exit(ata_exit);
6545
67846b30 6546static unsigned long ratelimit_time;
34af946a 6547static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
6548
6549int ata_ratelimit(void)
6550{
6551 int rc;
6552 unsigned long flags;
6553
6554 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6555
6556 if (time_after(jiffies, ratelimit_time)) {
6557 rc = 1;
6558 ratelimit_time = jiffies + (HZ/5);
6559 } else
6560 rc = 0;
6561
6562 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6563
6564 return rc;
6565}
6566
c22daff4
TH
6567/**
6568 * ata_wait_register - wait until register value changes
6569 * @reg: IO-mapped register
6570 * @mask: Mask to apply to read register value
6571 * @val: Wait condition
341c2c95
TH
6572 * @interval: polling interval in milliseconds
6573 * @timeout: timeout in milliseconds
c22daff4
TH
6574 *
6575 * Waiting for some bits of register to change is a common
6576 * operation for ATA controllers. This function reads 32bit LE
6577 * IO-mapped register @reg and tests for the following condition.
6578 *
6579 * (*@reg & mask) != val
6580 *
6581 * If the condition is met, it returns; otherwise, the process is
6582 * repeated after @interval_msec until timeout.
6583 *
6584 * LOCKING:
6585 * Kernel thread context (may sleep)
6586 *
6587 * RETURNS:
6588 * The final register value.
6589 */
6590u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
341c2c95 6591 unsigned long interval, unsigned long timeout)
c22daff4 6592{
341c2c95 6593 unsigned long deadline;
c22daff4
TH
6594 u32 tmp;
6595
6596 tmp = ioread32(reg);
6597
6598 /* Calculate timeout _after_ the first read to make sure
6599 * preceding writes reach the controller before starting to
6600 * eat away the timeout.
6601 */
341c2c95 6602 deadline = ata_deadline(jiffies, timeout);
c22daff4 6603
341c2c95
TH
6604 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6605 msleep(interval);
c22daff4
TH
6606 tmp = ioread32(reg);
6607 }
6608
6609 return tmp;
6610}
6611
dd5b06c4
TH
6612/*
6613 * Dummy port_ops
6614 */
182d7bba 6615static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
dd5b06c4 6616{
182d7bba 6617 return AC_ERR_SYSTEM;
dd5b06c4
TH
6618}
6619
182d7bba 6620static void ata_dummy_error_handler(struct ata_port *ap)
dd5b06c4 6621{
182d7bba 6622 /* truly dummy */
dd5b06c4
TH
6623}
6624
029cfd6b 6625struct ata_port_operations ata_dummy_port_ops = {
dd5b06c4
TH
6626 .qc_prep = ata_noop_qc_prep,
6627 .qc_issue = ata_dummy_qc_issue,
182d7bba 6628 .error_handler = ata_dummy_error_handler,
dd5b06c4
TH
6629};
6630
21b0ad4f
TH
6631const struct ata_port_info ata_dummy_port_info = {
6632 .port_ops = &ata_dummy_port_ops,
6633};
6634
1da177e4
LT
6635/*
6636 * libata is essentially a library of internal helper functions for
6637 * low-level ATA host controller drivers. As such, the API/ABI is
6638 * likely to change as new drivers are added and updated.
6639 * Do not depend on ABI/API stability.
6640 */
e9c83914
TH
6641EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6642EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6643EXPORT_SYMBOL_GPL(sata_deb_timing_long);
029cfd6b
TH
6644EXPORT_SYMBOL_GPL(ata_base_port_ops);
6645EXPORT_SYMBOL_GPL(sata_port_ops);
dd5b06c4 6646EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 6647EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1eca4365
TH
6648EXPORT_SYMBOL_GPL(ata_link_next);
6649EXPORT_SYMBOL_GPL(ata_dev_next);
1da177e4 6650EXPORT_SYMBOL_GPL(ata_std_bios_param);
cca3974e 6651EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 6652EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 6653EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
b1c72916 6654EXPORT_SYMBOL_GPL(ata_slave_link_init);
ecef7253 6655EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 6656EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 6657EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 6658EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4 6659EXPORT_SYMBOL_GPL(ata_sg_init);
f686bcb8 6660EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 6661EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
436d34b3 6662EXPORT_SYMBOL_GPL(atapi_cmd_type);
1da177e4
LT
6663EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6664EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6357357c
TH
6665EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6666EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6667EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6668EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6669EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6670EXPORT_SYMBOL_GPL(ata_mode_string);
6671EXPORT_SYMBOL_GPL(ata_id_xfermask);
1da177e4 6672EXPORT_SYMBOL_GPL(ata_port_start);
04351821 6673EXPORT_SYMBOL_GPL(ata_do_set_mode);
31cc23b3 6674EXPORT_SYMBOL_GPL(ata_std_qc_defer);
e46834cd 6675EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4 6676EXPORT_SYMBOL_GPL(ata_port_probe);
10305f0f 6677EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 6678EXPORT_SYMBOL_GPL(sata_set_spd);
aa2731ad 6679EXPORT_SYMBOL_GPL(ata_wait_after_reset);
936fd732
TH
6680EXPORT_SYMBOL_GPL(sata_link_debounce);
6681EXPORT_SYMBOL_GPL(sata_link_resume);
0aa1113d 6682EXPORT_SYMBOL_GPL(ata_std_prereset);
cc0680a5 6683EXPORT_SYMBOL_GPL(sata_link_hardreset);
57c9efdf 6684EXPORT_SYMBOL_GPL(sata_std_hardreset);
203c75b8 6685EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
6686EXPORT_SYMBOL_GPL(ata_dev_classify);
6687EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 6688EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 6689EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 6690EXPORT_SYMBOL_GPL(ata_wait_register);
1da177e4 6691EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 6692EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 6693EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 6694EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
34bf2170
TH
6695EXPORT_SYMBOL_GPL(sata_scr_valid);
6696EXPORT_SYMBOL_GPL(sata_scr_read);
6697EXPORT_SYMBOL_GPL(sata_scr_write);
6698EXPORT_SYMBOL_GPL(sata_scr_write_flush);
936fd732
TH
6699EXPORT_SYMBOL_GPL(ata_link_online);
6700EXPORT_SYMBOL_GPL(ata_link_offline);
6ffa01d8 6701#ifdef CONFIG_PM
cca3974e
JG
6702EXPORT_SYMBOL_GPL(ata_host_suspend);
6703EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 6704#endif /* CONFIG_PM */
6a62a04d
TH
6705EXPORT_SYMBOL_GPL(ata_id_string);
6706EXPORT_SYMBOL_GPL(ata_id_c_string);
963e4975 6707EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1da177e4
LT
6708EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6709
1bc4ccff 6710EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6357357c 6711EXPORT_SYMBOL_GPL(ata_timing_find_mode);
452503f9
AC
6712EXPORT_SYMBOL_GPL(ata_timing_compute);
6713EXPORT_SYMBOL_GPL(ata_timing_merge);
a0f79b92 6714EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
452503f9 6715
1da177e4
LT
6716#ifdef CONFIG_PCI
6717EXPORT_SYMBOL_GPL(pci_test_config_bits);
1da177e4 6718EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 6719#ifdef CONFIG_PM
500530f6
TH
6720EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6721EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
6722EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6723EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 6724#endif /* CONFIG_PM */
1da177e4 6725#endif /* CONFIG_PCI */
9b847548 6726
b64bbc39
TH
6727EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6728EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6729EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
cbcdd875
TH
6730EXPORT_SYMBOL_GPL(ata_port_desc);
6731#ifdef CONFIG_PCI
6732EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6733#endif /* CONFIG_PCI */
7b70fc03 6734EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
dbd82616 6735EXPORT_SYMBOL_GPL(ata_link_abort);
7b70fc03 6736EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499 6737EXPORT_SYMBOL_GPL(ata_port_freeze);
7d77b247 6738EXPORT_SYMBOL_GPL(sata_async_notification);
e3180499
TH
6739EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6740EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
6741EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6742EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
10acf3b0 6743EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
022bdb07 6744EXPORT_SYMBOL_GPL(ata_do_eh);
a1efdaba 6745EXPORT_SYMBOL_GPL(ata_std_error_handler);
be0d18df
AC
6746
6747EXPORT_SYMBOL_GPL(ata_cable_40wire);
6748EXPORT_SYMBOL_GPL(ata_cable_80wire);
6749EXPORT_SYMBOL_GPL(ata_cable_unknown);
c88f90c3 6750EXPORT_SYMBOL_GPL(ata_cable_ignore);
be0d18df 6751EXPORT_SYMBOL_GPL(ata_cable_sata);