libata-link: linkify EH action helpers
[linux-2.6-block.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
1da177e4
LT
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/mm.h>
41#include <linux/highmem.h>
42#include <linux/spinlock.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/completion.h>
48#include <linux/suspend.h>
49#include <linux/workqueue.h>
67846b30 50#include <linux/jiffies.h>
378f058c 51#include <linux/scatterlist.h>
1da177e4 52#include <scsi/scsi.h>
193515d5 53#include <scsi/scsi_cmnd.h>
1da177e4
LT
54#include <scsi/scsi_host.h>
55#include <linux/libata.h>
56#include <asm/io.h>
57#include <asm/semaphore.h>
58#include <asm/byteorder.h>
59
60#include "libata.h"
61
8bc3fc47 62#define DRV_VERSION "2.21" /* must be exactly four chars */
fda0efc5
JG
63
64
d7bb4cc7 65/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
66const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 69
3373efd8
TH
70static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 74static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 75
f3187195 76unsigned int ata_print_id = 1;
1da177e4
LT
77static struct workqueue_struct *ata_wq;
78
453b07ac
TH
79struct workqueue_struct *ata_aux_wq;
80
418dc1f5 81int atapi_enabled = 1;
1623c81e
JG
82module_param(atapi_enabled, int, 0444);
83MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
84
95de719a
AL
85int atapi_dmadir = 0;
86module_param(atapi_dmadir, int, 0444);
87MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
88
c3c013a2
JG
89int libata_fua = 0;
90module_param_named(fua, libata_fua, int, 0444);
91MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
92
1e999736
AC
93static int ata_ignore_hpa = 0;
94module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
95MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
96
a8601e5f
AM
97static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
98module_param(ata_probe_timeout, int, 0444);
99MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
100
d7d0dad6
JG
101int libata_noacpi = 1;
102module_param_named(noacpi, libata_noacpi, int, 0444);
11ef697b
KCA
103MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
104
1da177e4
LT
105MODULE_AUTHOR("Jeff Garzik");
106MODULE_DESCRIPTION("Library module for ATA devices");
107MODULE_LICENSE("GPL");
108MODULE_VERSION(DRV_VERSION);
109
0baab86b 110
1da177e4
LT
111/**
112 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
113 * @tf: Taskfile to convert
1da177e4 114 * @pmp: Port multiplier port
9977126c
TH
115 * @is_cmd: This FIS is for command
116 * @fis: Buffer into which data will output
1da177e4
LT
117 *
118 * Converts a standard ATA taskfile to a Serial ATA
119 * FIS structure (Register - Host to Device).
120 *
121 * LOCKING:
122 * Inherited from caller.
123 */
9977126c 124void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 125{
9977126c
TH
126 fis[0] = 0x27; /* Register - Host to Device FIS */
127 fis[1] = pmp & 0xf; /* Port multiplier number*/
128 if (is_cmd)
129 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
130
1da177e4
LT
131 fis[2] = tf->command;
132 fis[3] = tf->feature;
133
134 fis[4] = tf->lbal;
135 fis[5] = tf->lbam;
136 fis[6] = tf->lbah;
137 fis[7] = tf->device;
138
139 fis[8] = tf->hob_lbal;
140 fis[9] = tf->hob_lbam;
141 fis[10] = tf->hob_lbah;
142 fis[11] = tf->hob_feature;
143
144 fis[12] = tf->nsect;
145 fis[13] = tf->hob_nsect;
146 fis[14] = 0;
147 fis[15] = tf->ctl;
148
149 fis[16] = 0;
150 fis[17] = 0;
151 fis[18] = 0;
152 fis[19] = 0;
153}
154
155/**
156 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
157 * @fis: Buffer from which data will be input
158 * @tf: Taskfile to output
159 *
e12a1be6 160 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
161 *
162 * LOCKING:
163 * Inherited from caller.
164 */
165
057ace5e 166void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
167{
168 tf->command = fis[2]; /* status */
169 tf->feature = fis[3]; /* error */
170
171 tf->lbal = fis[4];
172 tf->lbam = fis[5];
173 tf->lbah = fis[6];
174 tf->device = fis[7];
175
176 tf->hob_lbal = fis[8];
177 tf->hob_lbam = fis[9];
178 tf->hob_lbah = fis[10];
179
180 tf->nsect = fis[12];
181 tf->hob_nsect = fis[13];
182}
183
8cbd6df1
AL
184static const u8 ata_rw_cmds[] = {
185 /* pio multi */
186 ATA_CMD_READ_MULTI,
187 ATA_CMD_WRITE_MULTI,
188 ATA_CMD_READ_MULTI_EXT,
189 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
190 0,
191 0,
192 0,
193 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
194 /* pio */
195 ATA_CMD_PIO_READ,
196 ATA_CMD_PIO_WRITE,
197 ATA_CMD_PIO_READ_EXT,
198 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
199 0,
200 0,
201 0,
202 0,
8cbd6df1
AL
203 /* dma */
204 ATA_CMD_READ,
205 ATA_CMD_WRITE,
206 ATA_CMD_READ_EXT,
9a3dccc4
TH
207 ATA_CMD_WRITE_EXT,
208 0,
209 0,
210 0,
211 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 212};
1da177e4
LT
213
214/**
8cbd6df1 215 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
216 * @tf: command to examine and configure
217 * @dev: device tf belongs to
1da177e4 218 *
2e9edbf8 219 * Examine the device configuration and tf->flags to calculate
8cbd6df1 220 * the proper read/write commands and protocol to use.
1da177e4
LT
221 *
222 * LOCKING:
223 * caller.
224 */
bd056d7e 225static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 226{
9a3dccc4 227 u8 cmd;
1da177e4 228
9a3dccc4 229 int index, fua, lba48, write;
2e9edbf8 230
9a3dccc4 231 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
232 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
233 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 234
8cbd6df1
AL
235 if (dev->flags & ATA_DFLAG_PIO) {
236 tf->protocol = ATA_PROT_PIO;
9a3dccc4 237 index = dev->multi_count ? 0 : 8;
9af5c9c9 238 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
239 /* Unable to use DMA due to host limitation */
240 tf->protocol = ATA_PROT_PIO;
0565c26d 241 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
242 } else {
243 tf->protocol = ATA_PROT_DMA;
9a3dccc4 244 index = 16;
8cbd6df1 245 }
1da177e4 246
9a3dccc4
TH
247 cmd = ata_rw_cmds[index + fua + lba48 + write];
248 if (cmd) {
249 tf->command = cmd;
250 return 0;
251 }
252 return -1;
1da177e4
LT
253}
254
35b649fe
TH
255/**
256 * ata_tf_read_block - Read block address from ATA taskfile
257 * @tf: ATA taskfile of interest
258 * @dev: ATA device @tf belongs to
259 *
260 * LOCKING:
261 * None.
262 *
263 * Read block address from @tf. This function can handle all
264 * three address formats - LBA, LBA48 and CHS. tf->protocol and
265 * flags select the address format to use.
266 *
267 * RETURNS:
268 * Block address read from @tf.
269 */
270u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
271{
272 u64 block = 0;
273
274 if (tf->flags & ATA_TFLAG_LBA) {
275 if (tf->flags & ATA_TFLAG_LBA48) {
276 block |= (u64)tf->hob_lbah << 40;
277 block |= (u64)tf->hob_lbam << 32;
278 block |= tf->hob_lbal << 24;
279 } else
280 block |= (tf->device & 0xf) << 24;
281
282 block |= tf->lbah << 16;
283 block |= tf->lbam << 8;
284 block |= tf->lbal;
285 } else {
286 u32 cyl, head, sect;
287
288 cyl = tf->lbam | (tf->lbah << 8);
289 head = tf->device & 0xf;
290 sect = tf->lbal;
291
292 block = (cyl * dev->heads + head) * dev->sectors + sect;
293 }
294
295 return block;
296}
297
bd056d7e
TH
298/**
299 * ata_build_rw_tf - Build ATA taskfile for given read/write request
300 * @tf: Target ATA taskfile
301 * @dev: ATA device @tf belongs to
302 * @block: Block address
303 * @n_block: Number of blocks
304 * @tf_flags: RW/FUA etc...
305 * @tag: tag
306 *
307 * LOCKING:
308 * None.
309 *
310 * Build ATA taskfile @tf for read/write request described by
311 * @block, @n_block, @tf_flags and @tag on @dev.
312 *
313 * RETURNS:
314 *
315 * 0 on success, -ERANGE if the request is too large for @dev,
316 * -EINVAL if the request is invalid.
317 */
318int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
319 u64 block, u32 n_block, unsigned int tf_flags,
320 unsigned int tag)
321{
322 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
323 tf->flags |= tf_flags;
324
6d1245bf 325 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
326 /* yay, NCQ */
327 if (!lba_48_ok(block, n_block))
328 return -ERANGE;
329
330 tf->protocol = ATA_PROT_NCQ;
331 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
332
333 if (tf->flags & ATA_TFLAG_WRITE)
334 tf->command = ATA_CMD_FPDMA_WRITE;
335 else
336 tf->command = ATA_CMD_FPDMA_READ;
337
338 tf->nsect = tag << 3;
339 tf->hob_feature = (n_block >> 8) & 0xff;
340 tf->feature = n_block & 0xff;
341
342 tf->hob_lbah = (block >> 40) & 0xff;
343 tf->hob_lbam = (block >> 32) & 0xff;
344 tf->hob_lbal = (block >> 24) & 0xff;
345 tf->lbah = (block >> 16) & 0xff;
346 tf->lbam = (block >> 8) & 0xff;
347 tf->lbal = block & 0xff;
348
349 tf->device = 1 << 6;
350 if (tf->flags & ATA_TFLAG_FUA)
351 tf->device |= 1 << 7;
352 } else if (dev->flags & ATA_DFLAG_LBA) {
353 tf->flags |= ATA_TFLAG_LBA;
354
355 if (lba_28_ok(block, n_block)) {
356 /* use LBA28 */
357 tf->device |= (block >> 24) & 0xf;
358 } else if (lba_48_ok(block, n_block)) {
359 if (!(dev->flags & ATA_DFLAG_LBA48))
360 return -ERANGE;
361
362 /* use LBA48 */
363 tf->flags |= ATA_TFLAG_LBA48;
364
365 tf->hob_nsect = (n_block >> 8) & 0xff;
366
367 tf->hob_lbah = (block >> 40) & 0xff;
368 tf->hob_lbam = (block >> 32) & 0xff;
369 tf->hob_lbal = (block >> 24) & 0xff;
370 } else
371 /* request too large even for LBA48 */
372 return -ERANGE;
373
374 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
375 return -EINVAL;
376
377 tf->nsect = n_block & 0xff;
378
379 tf->lbah = (block >> 16) & 0xff;
380 tf->lbam = (block >> 8) & 0xff;
381 tf->lbal = block & 0xff;
382
383 tf->device |= ATA_LBA;
384 } else {
385 /* CHS */
386 u32 sect, head, cyl, track;
387
388 /* The request -may- be too large for CHS addressing. */
389 if (!lba_28_ok(block, n_block))
390 return -ERANGE;
391
392 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
393 return -EINVAL;
394
395 /* Convert LBA to CHS */
396 track = (u32)block / dev->sectors;
397 cyl = track / dev->heads;
398 head = track % dev->heads;
399 sect = (u32)block % dev->sectors + 1;
400
401 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
402 (u32)block, track, cyl, head, sect);
403
404 /* Check whether the converted CHS can fit.
405 Cylinder: 0-65535
406 Head: 0-15
407 Sector: 1-255*/
408 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
409 return -ERANGE;
410
411 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
412 tf->lbal = sect;
413 tf->lbam = cyl;
414 tf->lbah = cyl >> 8;
415 tf->device |= head;
416 }
417
418 return 0;
419}
420
cb95d562
TH
421/**
422 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
423 * @pio_mask: pio_mask
424 * @mwdma_mask: mwdma_mask
425 * @udma_mask: udma_mask
426 *
427 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
428 * unsigned int xfer_mask.
429 *
430 * LOCKING:
431 * None.
432 *
433 * RETURNS:
434 * Packed xfer_mask.
435 */
436static unsigned int ata_pack_xfermask(unsigned int pio_mask,
437 unsigned int mwdma_mask,
438 unsigned int udma_mask)
439{
440 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
441 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
442 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
443}
444
c0489e4e
TH
445/**
446 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
447 * @xfer_mask: xfer_mask to unpack
448 * @pio_mask: resulting pio_mask
449 * @mwdma_mask: resulting mwdma_mask
450 * @udma_mask: resulting udma_mask
451 *
452 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
453 * Any NULL distination masks will be ignored.
454 */
455static void ata_unpack_xfermask(unsigned int xfer_mask,
456 unsigned int *pio_mask,
457 unsigned int *mwdma_mask,
458 unsigned int *udma_mask)
459{
460 if (pio_mask)
461 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
462 if (mwdma_mask)
463 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
464 if (udma_mask)
465 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
466}
467
cb95d562 468static const struct ata_xfer_ent {
be9a50c8 469 int shift, bits;
cb95d562
TH
470 u8 base;
471} ata_xfer_tbl[] = {
472 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
473 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
474 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
475 { -1, },
476};
477
478/**
479 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
480 * @xfer_mask: xfer_mask of interest
481 *
482 * Return matching XFER_* value for @xfer_mask. Only the highest
483 * bit of @xfer_mask is considered.
484 *
485 * LOCKING:
486 * None.
487 *
488 * RETURNS:
489 * Matching XFER_* value, 0 if no match found.
490 */
491static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
492{
493 int highbit = fls(xfer_mask) - 1;
494 const struct ata_xfer_ent *ent;
495
496 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
497 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
498 return ent->base + highbit - ent->shift;
499 return 0;
500}
501
502/**
503 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
504 * @xfer_mode: XFER_* of interest
505 *
506 * Return matching xfer_mask for @xfer_mode.
507 *
508 * LOCKING:
509 * None.
510 *
511 * RETURNS:
512 * Matching xfer_mask, 0 if no match found.
513 */
514static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
515{
516 const struct ata_xfer_ent *ent;
517
518 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
519 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
520 return 1 << (ent->shift + xfer_mode - ent->base);
521 return 0;
522}
523
524/**
525 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
526 * @xfer_mode: XFER_* of interest
527 *
528 * Return matching xfer_shift for @xfer_mode.
529 *
530 * LOCKING:
531 * None.
532 *
533 * RETURNS:
534 * Matching xfer_shift, -1 if no match found.
535 */
536static int ata_xfer_mode2shift(unsigned int xfer_mode)
537{
538 const struct ata_xfer_ent *ent;
539
540 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
541 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
542 return ent->shift;
543 return -1;
544}
545
1da177e4 546/**
1da7b0d0
TH
547 * ata_mode_string - convert xfer_mask to string
548 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
549 *
550 * Determine string which represents the highest speed
1da7b0d0 551 * (highest bit in @modemask).
1da177e4
LT
552 *
553 * LOCKING:
554 * None.
555 *
556 * RETURNS:
557 * Constant C string representing highest speed listed in
1da7b0d0 558 * @mode_mask, or the constant C string "<n/a>".
1da177e4 559 */
1da7b0d0 560static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 561{
75f554bc
TH
562 static const char * const xfer_mode_str[] = {
563 "PIO0",
564 "PIO1",
565 "PIO2",
566 "PIO3",
567 "PIO4",
b352e57d
AC
568 "PIO5",
569 "PIO6",
75f554bc
TH
570 "MWDMA0",
571 "MWDMA1",
572 "MWDMA2",
b352e57d
AC
573 "MWDMA3",
574 "MWDMA4",
75f554bc
TH
575 "UDMA/16",
576 "UDMA/25",
577 "UDMA/33",
578 "UDMA/44",
579 "UDMA/66",
580 "UDMA/100",
581 "UDMA/133",
582 "UDMA7",
583 };
1da7b0d0 584 int highbit;
1da177e4 585
1da7b0d0
TH
586 highbit = fls(xfer_mask) - 1;
587 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
588 return xfer_mode_str[highbit];
1da177e4 589 return "<n/a>";
1da177e4
LT
590}
591
4c360c81
TH
592static const char *sata_spd_string(unsigned int spd)
593{
594 static const char * const spd_str[] = {
595 "1.5 Gbps",
596 "3.0 Gbps",
597 };
598
599 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
600 return "<unknown>";
601 return spd_str[spd - 1];
602}
603
3373efd8 604void ata_dev_disable(struct ata_device *dev)
0b8efb0a 605{
09d7f9b0 606 if (ata_dev_enabled(dev)) {
9af5c9c9 607 if (ata_msg_drv(dev->link->ap))
09d7f9b0 608 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
4ae72a1e
TH
609 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
610 ATA_DNXFER_QUIET);
0b8efb0a
TH
611 dev->class++;
612 }
613}
614
1da177e4 615/**
0d5ff566 616 * ata_devchk - PATA device presence detection
1da177e4
LT
617 * @ap: ATA channel to examine
618 * @device: Device to examine (starting at zero)
619 *
620 * This technique was originally described in
621 * Hale Landis's ATADRVR (www.ata-atapi.com), and
622 * later found its way into the ATA/ATAPI spec.
623 *
624 * Write a pattern to the ATA shadow registers,
625 * and if a device is present, it will respond by
626 * correctly storing and echoing back the
627 * ATA shadow register contents.
628 *
629 * LOCKING:
630 * caller.
631 */
632
0d5ff566 633static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1da177e4
LT
634{
635 struct ata_ioports *ioaddr = &ap->ioaddr;
636 u8 nsect, lbal;
637
638 ap->ops->dev_select(ap, device);
639
0d5ff566
TH
640 iowrite8(0x55, ioaddr->nsect_addr);
641 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 642
0d5ff566
TH
643 iowrite8(0xaa, ioaddr->nsect_addr);
644 iowrite8(0x55, ioaddr->lbal_addr);
1da177e4 645
0d5ff566
TH
646 iowrite8(0x55, ioaddr->nsect_addr);
647 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 648
0d5ff566
TH
649 nsect = ioread8(ioaddr->nsect_addr);
650 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
651
652 if ((nsect == 0x55) && (lbal == 0xaa))
653 return 1; /* we found a device */
654
655 return 0; /* nothing found */
656}
657
1da177e4
LT
658/**
659 * ata_dev_classify - determine device type based on ATA-spec signature
660 * @tf: ATA taskfile register set for device to be identified
661 *
662 * Determine from taskfile register contents whether a device is
663 * ATA or ATAPI, as per "Signature and persistence" section
664 * of ATA/PI spec (volume 1, sect 5.14).
665 *
666 * LOCKING:
667 * None.
668 *
669 * RETURNS:
670 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
671 * the event of failure.
672 */
673
057ace5e 674unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
675{
676 /* Apple's open source Darwin code hints that some devices only
677 * put a proper signature into the LBA mid/high registers,
678 * So, we only check those. It's sufficient for uniqueness.
679 */
680
681 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
682 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
683 DPRINTK("found ATA device by sig\n");
684 return ATA_DEV_ATA;
685 }
686
687 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
688 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
689 DPRINTK("found ATAPI device by sig\n");
690 return ATA_DEV_ATAPI;
691 }
692
693 DPRINTK("unknown device\n");
694 return ATA_DEV_UNKNOWN;
695}
696
697/**
698 * ata_dev_try_classify - Parse returned ATA device signature
699 * @ap: ATA channel to examine
700 * @device: Device to examine (starting at zero)
b4dc7623 701 * @r_err: Value of error register on completion
1da177e4
LT
702 *
703 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
704 * an ATA/ATAPI-defined set of values is placed in the ATA
705 * shadow registers, indicating the results of device detection
706 * and diagnostics.
707 *
708 * Select the ATA device, and read the values from the ATA shadow
709 * registers. Then parse according to the Error register value,
710 * and the spec-defined values examined by ata_dev_classify().
711 *
712 * LOCKING:
713 * caller.
b4dc7623
TH
714 *
715 * RETURNS:
716 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
717 */
718
a619f981 719unsigned int
b4dc7623 720ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 721{
1da177e4
LT
722 struct ata_taskfile tf;
723 unsigned int class;
724 u8 err;
725
726 ap->ops->dev_select(ap, device);
727
728 memset(&tf, 0, sizeof(tf));
729
1da177e4 730 ap->ops->tf_read(ap, &tf);
0169e284 731 err = tf.feature;
b4dc7623
TH
732 if (r_err)
733 *r_err = err;
1da177e4 734
93590859
AC
735 /* see if device passed diags: if master then continue and warn later */
736 if (err == 0 && device == 0)
737 /* diagnostic fail : do nothing _YET_ */
9af5c9c9 738 ap->link.device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
93590859 739 else if (err == 1)
1da177e4
LT
740 /* do nothing */ ;
741 else if ((device == 0) && (err == 0x81))
742 /* do nothing */ ;
743 else
b4dc7623 744 return ATA_DEV_NONE;
1da177e4 745
b4dc7623 746 /* determine if device is ATA or ATAPI */
1da177e4 747 class = ata_dev_classify(&tf);
b4dc7623 748
1da177e4 749 if (class == ATA_DEV_UNKNOWN)
b4dc7623 750 return ATA_DEV_NONE;
1da177e4 751 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
752 return ATA_DEV_NONE;
753 return class;
1da177e4
LT
754}
755
756/**
6a62a04d 757 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
758 * @id: IDENTIFY DEVICE results we will examine
759 * @s: string into which data is output
760 * @ofs: offset into identify device page
761 * @len: length of string to return. must be an even number.
762 *
763 * The strings in the IDENTIFY DEVICE page are broken up into
764 * 16-bit chunks. Run through the string, and output each
765 * 8-bit chunk linearly, regardless of platform.
766 *
767 * LOCKING:
768 * caller.
769 */
770
6a62a04d
TH
771void ata_id_string(const u16 *id, unsigned char *s,
772 unsigned int ofs, unsigned int len)
1da177e4
LT
773{
774 unsigned int c;
775
776 while (len > 0) {
777 c = id[ofs] >> 8;
778 *s = c;
779 s++;
780
781 c = id[ofs] & 0xff;
782 *s = c;
783 s++;
784
785 ofs++;
786 len -= 2;
787 }
788}
789
0e949ff3 790/**
6a62a04d 791 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
792 * @id: IDENTIFY DEVICE results we will examine
793 * @s: string into which data is output
794 * @ofs: offset into identify device page
795 * @len: length of string to return. must be an odd number.
796 *
6a62a04d 797 * This function is identical to ata_id_string except that it
0e949ff3
TH
798 * trims trailing spaces and terminates the resulting string with
799 * null. @len must be actual maximum length (even number) + 1.
800 *
801 * LOCKING:
802 * caller.
803 */
6a62a04d
TH
804void ata_id_c_string(const u16 *id, unsigned char *s,
805 unsigned int ofs, unsigned int len)
0e949ff3
TH
806{
807 unsigned char *p;
808
809 WARN_ON(!(len & 1));
810
6a62a04d 811 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
812
813 p = s + strnlen(s, len - 1);
814 while (p > s && p[-1] == ' ')
815 p--;
816 *p = '\0';
817}
0baab86b 818
1e999736
AC
819static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
820{
821 u64 sectors = 0;
822
823 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
824 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
825 sectors |= (tf->hob_lbal & 0xff) << 24;
826 sectors |= (tf->lbah & 0xff) << 16;
827 sectors |= (tf->lbam & 0xff) << 8;
828 sectors |= (tf->lbal & 0xff);
829
830 return ++sectors;
831}
832
833static u64 ata_tf_to_lba(struct ata_taskfile *tf)
834{
835 u64 sectors = 0;
836
837 sectors |= (tf->device & 0x0f) << 24;
838 sectors |= (tf->lbah & 0xff) << 16;
839 sectors |= (tf->lbam & 0xff) << 8;
840 sectors |= (tf->lbal & 0xff);
841
842 return ++sectors;
843}
844
845/**
846 * ata_read_native_max_address_ext - LBA48 native max query
847 * @dev: Device to query
848 *
849 * Perform an LBA48 size query upon the device in question. Return the
850 * actual LBA48 size or zero if the command fails.
851 */
852
853static u64 ata_read_native_max_address_ext(struct ata_device *dev)
854{
855 unsigned int err;
856 struct ata_taskfile tf;
857
858 ata_tf_init(dev, &tf);
859
860 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
861 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
862 tf.protocol |= ATA_PROT_NODATA;
863 tf.device |= 0x40;
864
865 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
866 if (err)
867 return 0;
868
869 return ata_tf_to_lba48(&tf);
870}
871
872/**
873 * ata_read_native_max_address - LBA28 native max query
874 * @dev: Device to query
875 *
876 * Performa an LBA28 size query upon the device in question. Return the
877 * actual LBA28 size or zero if the command fails.
878 */
879
880static u64 ata_read_native_max_address(struct ata_device *dev)
881{
882 unsigned int err;
883 struct ata_taskfile tf;
884
885 ata_tf_init(dev, &tf);
886
887 tf.command = ATA_CMD_READ_NATIVE_MAX;
888 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
889 tf.protocol |= ATA_PROT_NODATA;
890 tf.device |= 0x40;
891
892 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
893 if (err)
894 return 0;
895
896 return ata_tf_to_lba(&tf);
897}
898
899/**
900 * ata_set_native_max_address_ext - LBA48 native max set
901 * @dev: Device to query
6b38d1d1 902 * @new_sectors: new max sectors value to set for the device
1e999736
AC
903 *
904 * Perform an LBA48 size set max upon the device in question. Return the
905 * actual LBA48 size or zero if the command fails.
906 */
907
908static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors)
909{
910 unsigned int err;
911 struct ata_taskfile tf;
912
913 new_sectors--;
914
915 ata_tf_init(dev, &tf);
916
917 tf.command = ATA_CMD_SET_MAX_EXT;
918 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
919 tf.protocol |= ATA_PROT_NODATA;
920 tf.device |= 0x40;
921
922 tf.lbal = (new_sectors >> 0) & 0xff;
923 tf.lbam = (new_sectors >> 8) & 0xff;
924 tf.lbah = (new_sectors >> 16) & 0xff;
925
926 tf.hob_lbal = (new_sectors >> 24) & 0xff;
927 tf.hob_lbam = (new_sectors >> 32) & 0xff;
928 tf.hob_lbah = (new_sectors >> 40) & 0xff;
929
930 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
931 if (err)
932 return 0;
933
934 return ata_tf_to_lba48(&tf);
935}
936
937/**
938 * ata_set_native_max_address - LBA28 native max set
939 * @dev: Device to query
6b38d1d1 940 * @new_sectors: new max sectors value to set for the device
1e999736
AC
941 *
942 * Perform an LBA28 size set max upon the device in question. Return the
943 * actual LBA28 size or zero if the command fails.
944 */
945
946static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors)
947{
948 unsigned int err;
949 struct ata_taskfile tf;
950
951 new_sectors--;
952
953 ata_tf_init(dev, &tf);
954
955 tf.command = ATA_CMD_SET_MAX;
956 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
957 tf.protocol |= ATA_PROT_NODATA;
958
959 tf.lbal = (new_sectors >> 0) & 0xff;
960 tf.lbam = (new_sectors >> 8) & 0xff;
961 tf.lbah = (new_sectors >> 16) & 0xff;
962 tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40;
963
964 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
965 if (err)
966 return 0;
967
968 return ata_tf_to_lba(&tf);
969}
970
971/**
972 * ata_hpa_resize - Resize a device with an HPA set
973 * @dev: Device to resize
974 *
975 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
976 * it if required to the full size of the media. The caller must check
977 * the drive has the HPA feature set enabled.
978 */
979
980static u64 ata_hpa_resize(struct ata_device *dev)
981{
982 u64 sectors = dev->n_sectors;
983 u64 hpa_sectors;
a617c09f 984
1e999736
AC
985 if (ata_id_has_lba48(dev->id))
986 hpa_sectors = ata_read_native_max_address_ext(dev);
987 else
988 hpa_sectors = ata_read_native_max_address(dev);
989
1e999736
AC
990 if (hpa_sectors > sectors) {
991 ata_dev_printk(dev, KERN_INFO,
992 "Host Protected Area detected:\n"
993 "\tcurrent size: %lld sectors\n"
994 "\tnative size: %lld sectors\n",
bd1d5ec6 995 (long long)sectors, (long long)hpa_sectors);
1e999736
AC
996
997 if (ata_ignore_hpa) {
998 if (ata_id_has_lba48(dev->id))
999 hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors);
1000 else
bd1d5ec6
AM
1001 hpa_sectors = ata_set_native_max_address(dev,
1002 hpa_sectors);
1e999736
AC
1003
1004 if (hpa_sectors) {
bd1d5ec6
AM
1005 ata_dev_printk(dev, KERN_INFO, "native size "
1006 "increased to %lld sectors\n",
1007 (long long)hpa_sectors);
1e999736
AC
1008 return hpa_sectors;
1009 }
1010 }
37301a55
TH
1011 } else if (hpa_sectors < sectors)
1012 ata_dev_printk(dev, KERN_WARNING, "%s 1: hpa sectors (%lld) "
1013 "is smaller than sectors (%lld)\n", __FUNCTION__,
1014 (long long)hpa_sectors, (long long)sectors);
1015
1e999736
AC
1016 return sectors;
1017}
1018
2940740b
TH
1019static u64 ata_id_n_sectors(const u16 *id)
1020{
1021 if (ata_id_has_lba(id)) {
1022 if (ata_id_has_lba48(id))
1023 return ata_id_u64(id, 100);
1024 else
1025 return ata_id_u32(id, 60);
1026 } else {
1027 if (ata_id_current_chs_valid(id))
1028 return ata_id_u32(id, 57);
1029 else
1030 return id[1] * id[3] * id[6];
1031 }
1032}
1033
10305f0f
A
1034/**
1035 * ata_id_to_dma_mode - Identify DMA mode from id block
1036 * @dev: device to identify
cc261267 1037 * @unknown: mode to assume if we cannot tell
10305f0f
A
1038 *
1039 * Set up the timing values for the device based upon the identify
1040 * reported values for the DMA mode. This function is used by drivers
1041 * which rely upon firmware configured modes, but wish to report the
1042 * mode correctly when possible.
1043 *
1044 * In addition we emit similarly formatted messages to the default
1045 * ata_dev_set_mode handler, in order to provide consistency of
1046 * presentation.
1047 */
1048
1049void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1050{
1051 unsigned int mask;
1052 u8 mode;
1053
1054 /* Pack the DMA modes */
1055 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1056 if (dev->id[53] & 0x04)
1057 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1058
1059 /* Select the mode in use */
1060 mode = ata_xfer_mask2mode(mask);
1061
1062 if (mode != 0) {
1063 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1064 ata_mode_string(mask));
1065 } else {
1066 /* SWDMA perhaps ? */
1067 mode = unknown;
1068 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1069 }
1070
1071 /* Configure the device reporting */
1072 dev->xfer_mode = mode;
1073 dev->xfer_shift = ata_xfer_mode2shift(mode);
1074}
1075
0baab86b
EF
1076/**
1077 * ata_noop_dev_select - Select device 0/1 on ATA bus
1078 * @ap: ATA channel to manipulate
1079 * @device: ATA device (numbered from zero) to select
1080 *
1081 * This function performs no actual function.
1082 *
1083 * May be used as the dev_select() entry in ata_port_operations.
1084 *
1085 * LOCKING:
1086 * caller.
1087 */
1da177e4
LT
1088void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1089{
1090}
1091
0baab86b 1092
1da177e4
LT
1093/**
1094 * ata_std_dev_select - Select device 0/1 on ATA bus
1095 * @ap: ATA channel to manipulate
1096 * @device: ATA device (numbered from zero) to select
1097 *
1098 * Use the method defined in the ATA specification to
1099 * make either device 0, or device 1, active on the
0baab86b
EF
1100 * ATA channel. Works with both PIO and MMIO.
1101 *
1102 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
1103 *
1104 * LOCKING:
1105 * caller.
1106 */
1107
1108void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1109{
1110 u8 tmp;
1111
1112 if (device == 0)
1113 tmp = ATA_DEVICE_OBS;
1114 else
1115 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1116
0d5ff566 1117 iowrite8(tmp, ap->ioaddr.device_addr);
1da177e4
LT
1118 ata_pause(ap); /* needed; also flushes, for mmio */
1119}
1120
1121/**
1122 * ata_dev_select - Select device 0/1 on ATA bus
1123 * @ap: ATA channel to manipulate
1124 * @device: ATA device (numbered from zero) to select
1125 * @wait: non-zero to wait for Status register BSY bit to clear
1126 * @can_sleep: non-zero if context allows sleeping
1127 *
1128 * Use the method defined in the ATA specification to
1129 * make either device 0, or device 1, active on the
1130 * ATA channel.
1131 *
1132 * This is a high-level version of ata_std_dev_select(),
1133 * which additionally provides the services of inserting
1134 * the proper pauses and status polling, where needed.
1135 *
1136 * LOCKING:
1137 * caller.
1138 */
1139
1140void ata_dev_select(struct ata_port *ap, unsigned int device,
1141 unsigned int wait, unsigned int can_sleep)
1142{
88574551 1143 if (ata_msg_probe(ap))
44877b4e
TH
1144 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1145 "device %u, wait %u\n", device, wait);
1da177e4
LT
1146
1147 if (wait)
1148 ata_wait_idle(ap);
1149
1150 ap->ops->dev_select(ap, device);
1151
1152 if (wait) {
9af5c9c9 1153 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
1da177e4
LT
1154 msleep(150);
1155 ata_wait_idle(ap);
1156 }
1157}
1158
1159/**
1160 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1161 * @id: IDENTIFY DEVICE page to dump
1da177e4 1162 *
0bd3300a
TH
1163 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1164 * page.
1da177e4
LT
1165 *
1166 * LOCKING:
1167 * caller.
1168 */
1169
0bd3300a 1170static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1171{
1172 DPRINTK("49==0x%04x "
1173 "53==0x%04x "
1174 "63==0x%04x "
1175 "64==0x%04x "
1176 "75==0x%04x \n",
0bd3300a
TH
1177 id[49],
1178 id[53],
1179 id[63],
1180 id[64],
1181 id[75]);
1da177e4
LT
1182 DPRINTK("80==0x%04x "
1183 "81==0x%04x "
1184 "82==0x%04x "
1185 "83==0x%04x "
1186 "84==0x%04x \n",
0bd3300a
TH
1187 id[80],
1188 id[81],
1189 id[82],
1190 id[83],
1191 id[84]);
1da177e4
LT
1192 DPRINTK("88==0x%04x "
1193 "93==0x%04x\n",
0bd3300a
TH
1194 id[88],
1195 id[93]);
1da177e4
LT
1196}
1197
cb95d562
TH
1198/**
1199 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1200 * @id: IDENTIFY data to compute xfer mask from
1201 *
1202 * Compute the xfermask for this device. This is not as trivial
1203 * as it seems if we must consider early devices correctly.
1204 *
1205 * FIXME: pre IDE drive timing (do we care ?).
1206 *
1207 * LOCKING:
1208 * None.
1209 *
1210 * RETURNS:
1211 * Computed xfermask
1212 */
1213static unsigned int ata_id_xfermask(const u16 *id)
1214{
1215 unsigned int pio_mask, mwdma_mask, udma_mask;
1216
1217 /* Usual case. Word 53 indicates word 64 is valid */
1218 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1219 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1220 pio_mask <<= 3;
1221 pio_mask |= 0x7;
1222 } else {
1223 /* If word 64 isn't valid then Word 51 high byte holds
1224 * the PIO timing number for the maximum. Turn it into
1225 * a mask.
1226 */
7a0f1c8a 1227 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb
AC
1228 if (mode < 5) /* Valid PIO range */
1229 pio_mask = (2 << mode) - 1;
1230 else
1231 pio_mask = 1;
cb95d562
TH
1232
1233 /* But wait.. there's more. Design your standards by
1234 * committee and you too can get a free iordy field to
1235 * process. However its the speeds not the modes that
1236 * are supported... Note drivers using the timing API
1237 * will get this right anyway
1238 */
1239 }
1240
1241 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1242
b352e57d
AC
1243 if (ata_id_is_cfa(id)) {
1244 /*
1245 * Process compact flash extended modes
1246 */
1247 int pio = id[163] & 0x7;
1248 int dma = (id[163] >> 3) & 7;
1249
1250 if (pio)
1251 pio_mask |= (1 << 5);
1252 if (pio > 1)
1253 pio_mask |= (1 << 6);
1254 if (dma)
1255 mwdma_mask |= (1 << 3);
1256 if (dma > 1)
1257 mwdma_mask |= (1 << 4);
1258 }
1259
fb21f0d0
TH
1260 udma_mask = 0;
1261 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1262 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1263
1264 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1265}
1266
86e45b6b
TH
1267/**
1268 * ata_port_queue_task - Queue port_task
1269 * @ap: The ata_port to queue port_task for
e2a7f77a 1270 * @fn: workqueue function to be scheduled
65f27f38 1271 * @data: data for @fn to use
e2a7f77a 1272 * @delay: delay time for workqueue function
86e45b6b
TH
1273 *
1274 * Schedule @fn(@data) for execution after @delay jiffies using
1275 * port_task. There is one port_task per port and it's the
1276 * user(low level driver)'s responsibility to make sure that only
1277 * one task is active at any given time.
1278 *
1279 * libata core layer takes care of synchronization between
1280 * port_task and EH. ata_port_queue_task() may be ignored for EH
1281 * synchronization.
1282 *
1283 * LOCKING:
1284 * Inherited from caller.
1285 */
65f27f38 1286void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
86e45b6b
TH
1287 unsigned long delay)
1288{
65f27f38
DH
1289 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1290 ap->port_task_data = data;
86e45b6b 1291
45a66c1c
ON
1292 /* may fail if ata_port_flush_task() in progress */
1293 queue_delayed_work(ata_wq, &ap->port_task, delay);
86e45b6b
TH
1294}
1295
1296/**
1297 * ata_port_flush_task - Flush port_task
1298 * @ap: The ata_port to flush port_task for
1299 *
1300 * After this function completes, port_task is guranteed not to
1301 * be running or scheduled.
1302 *
1303 * LOCKING:
1304 * Kernel thread context (may sleep)
1305 */
1306void ata_port_flush_task(struct ata_port *ap)
1307{
86e45b6b
TH
1308 DPRINTK("ENTER\n");
1309
45a66c1c 1310 cancel_rearming_delayed_work(&ap->port_task);
86e45b6b 1311
0dd4b21f
BP
1312 if (ata_msg_ctl(ap))
1313 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
1314}
1315
7102d230 1316static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1317{
77853bf2 1318 struct completion *waiting = qc->private_data;
a2a7a662 1319
a2a7a662 1320 complete(waiting);
a2a7a662
TH
1321}
1322
1323/**
2432697b 1324 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1325 * @dev: Device to which the command is sent
1326 * @tf: Taskfile registers for the command and the result
d69cf37d 1327 * @cdb: CDB for packet command
a2a7a662 1328 * @dma_dir: Data tranfer direction of the command
2432697b
TH
1329 * @sg: sg list for the data buffer of the command
1330 * @n_elem: Number of sg entries
a2a7a662
TH
1331 *
1332 * Executes libata internal command with timeout. @tf contains
1333 * command on entry and result on return. Timeout and error
1334 * conditions are reported via return value. No recovery action
1335 * is taken after a command times out. It's caller's duty to
1336 * clean up after timeout.
1337 *
1338 * LOCKING:
1339 * None. Should be called with kernel context, might sleep.
551e8889
TH
1340 *
1341 * RETURNS:
1342 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1343 */
2432697b
TH
1344unsigned ata_exec_internal_sg(struct ata_device *dev,
1345 struct ata_taskfile *tf, const u8 *cdb,
1346 int dma_dir, struct scatterlist *sg,
1347 unsigned int n_elem)
a2a7a662 1348{
9af5c9c9
TH
1349 struct ata_link *link = dev->link;
1350 struct ata_port *ap = link->ap;
a2a7a662
TH
1351 u8 command = tf->command;
1352 struct ata_queued_cmd *qc;
2ab7db1f 1353 unsigned int tag, preempted_tag;
dedaf2b0 1354 u32 preempted_sactive, preempted_qc_active;
60be6b9a 1355 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1356 unsigned long flags;
77853bf2 1357 unsigned int err_mask;
d95a717f 1358 int rc;
a2a7a662 1359
ba6a1308 1360 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1361
e3180499 1362 /* no internal command while frozen */
b51e9e5d 1363 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1364 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1365 return AC_ERR_SYSTEM;
1366 }
1367
2ab7db1f 1368 /* initialize internal qc */
a2a7a662 1369
2ab7db1f
TH
1370 /* XXX: Tag 0 is used for drivers with legacy EH as some
1371 * drivers choke if any other tag is given. This breaks
1372 * ata_tag_internal() test for those drivers. Don't use new
1373 * EH stuff without converting to it.
1374 */
1375 if (ap->ops->error_handler)
1376 tag = ATA_TAG_INTERNAL;
1377 else
1378 tag = 0;
1379
6cec4a39 1380 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1381 BUG();
f69499f4 1382 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1383
1384 qc->tag = tag;
1385 qc->scsicmd = NULL;
1386 qc->ap = ap;
1387 qc->dev = dev;
1388 ata_qc_reinit(qc);
1389
9af5c9c9
TH
1390 preempted_tag = link->active_tag;
1391 preempted_sactive = link->sactive;
dedaf2b0 1392 preempted_qc_active = ap->qc_active;
9af5c9c9
TH
1393 link->active_tag = ATA_TAG_POISON;
1394 link->sactive = 0;
dedaf2b0 1395 ap->qc_active = 0;
2ab7db1f
TH
1396
1397 /* prepare & issue qc */
a2a7a662 1398 qc->tf = *tf;
d69cf37d
TH
1399 if (cdb)
1400 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1401 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1402 qc->dma_dir = dma_dir;
1403 if (dma_dir != DMA_NONE) {
2432697b
TH
1404 unsigned int i, buflen = 0;
1405
1406 for (i = 0; i < n_elem; i++)
1407 buflen += sg[i].length;
1408
1409 ata_sg_init(qc, sg, n_elem);
49c80429 1410 qc->nbytes = buflen;
a2a7a662
TH
1411 }
1412
77853bf2 1413 qc->private_data = &wait;
a2a7a662
TH
1414 qc->complete_fn = ata_qc_complete_internal;
1415
8e0e694a 1416 ata_qc_issue(qc);
a2a7a662 1417
ba6a1308 1418 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1419
a8601e5f 1420 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
d95a717f
TH
1421
1422 ata_port_flush_task(ap);
41ade50c 1423
d95a717f 1424 if (!rc) {
ba6a1308 1425 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1426
1427 /* We're racing with irq here. If we lose, the
1428 * following test prevents us from completing the qc
d95a717f
TH
1429 * twice. If we win, the port is frozen and will be
1430 * cleaned up by ->post_internal_cmd().
a2a7a662 1431 */
77853bf2 1432 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1433 qc->err_mask |= AC_ERR_TIMEOUT;
1434
1435 if (ap->ops->error_handler)
1436 ata_port_freeze(ap);
1437 else
1438 ata_qc_complete(qc);
f15a1daf 1439
0dd4b21f
BP
1440 if (ata_msg_warn(ap))
1441 ata_dev_printk(dev, KERN_WARNING,
88574551 1442 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1443 }
1444
ba6a1308 1445 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1446 }
1447
d95a717f
TH
1448 /* do post_internal_cmd */
1449 if (ap->ops->post_internal_cmd)
1450 ap->ops->post_internal_cmd(qc);
1451
a51d644a
TH
1452 /* perform minimal error analysis */
1453 if (qc->flags & ATA_QCFLAG_FAILED) {
1454 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1455 qc->err_mask |= AC_ERR_DEV;
1456
1457 if (!qc->err_mask)
1458 qc->err_mask |= AC_ERR_OTHER;
1459
1460 if (qc->err_mask & ~AC_ERR_OTHER)
1461 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1462 }
1463
15869303 1464 /* finish up */
ba6a1308 1465 spin_lock_irqsave(ap->lock, flags);
15869303 1466
e61e0672 1467 *tf = qc->result_tf;
77853bf2
TH
1468 err_mask = qc->err_mask;
1469
1470 ata_qc_free(qc);
9af5c9c9
TH
1471 link->active_tag = preempted_tag;
1472 link->sactive = preempted_sactive;
dedaf2b0 1473 ap->qc_active = preempted_qc_active;
77853bf2 1474
1f7dd3e9
TH
1475 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1476 * Until those drivers are fixed, we detect the condition
1477 * here, fail the command with AC_ERR_SYSTEM and reenable the
1478 * port.
1479 *
1480 * Note that this doesn't change any behavior as internal
1481 * command failure results in disabling the device in the
1482 * higher layer for LLDDs without new reset/EH callbacks.
1483 *
1484 * Kill the following code as soon as those drivers are fixed.
1485 */
198e0fed 1486 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1487 err_mask |= AC_ERR_SYSTEM;
1488 ata_port_probe(ap);
1489 }
1490
ba6a1308 1491 spin_unlock_irqrestore(ap->lock, flags);
15869303 1492
77853bf2 1493 return err_mask;
a2a7a662
TH
1494}
1495
2432697b 1496/**
33480a0e 1497 * ata_exec_internal - execute libata internal command
2432697b
TH
1498 * @dev: Device to which the command is sent
1499 * @tf: Taskfile registers for the command and the result
1500 * @cdb: CDB for packet command
1501 * @dma_dir: Data tranfer direction of the command
1502 * @buf: Data buffer of the command
1503 * @buflen: Length of data buffer
1504 *
1505 * Wrapper around ata_exec_internal_sg() which takes simple
1506 * buffer instead of sg list.
1507 *
1508 * LOCKING:
1509 * None. Should be called with kernel context, might sleep.
1510 *
1511 * RETURNS:
1512 * Zero on success, AC_ERR_* mask on failure
1513 */
1514unsigned ata_exec_internal(struct ata_device *dev,
1515 struct ata_taskfile *tf, const u8 *cdb,
1516 int dma_dir, void *buf, unsigned int buflen)
1517{
33480a0e
TH
1518 struct scatterlist *psg = NULL, sg;
1519 unsigned int n_elem = 0;
2432697b 1520
33480a0e
TH
1521 if (dma_dir != DMA_NONE) {
1522 WARN_ON(!buf);
1523 sg_init_one(&sg, buf, buflen);
1524 psg = &sg;
1525 n_elem++;
1526 }
2432697b 1527
33480a0e 1528 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
2432697b
TH
1529}
1530
977e6b9f
TH
1531/**
1532 * ata_do_simple_cmd - execute simple internal command
1533 * @dev: Device to which the command is sent
1534 * @cmd: Opcode to execute
1535 *
1536 * Execute a 'simple' command, that only consists of the opcode
1537 * 'cmd' itself, without filling any other registers
1538 *
1539 * LOCKING:
1540 * Kernel thread context (may sleep).
1541 *
1542 * RETURNS:
1543 * Zero on success, AC_ERR_* mask on failure
e58eb583 1544 */
77b08fb5 1545unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1546{
1547 struct ata_taskfile tf;
e58eb583
TH
1548
1549 ata_tf_init(dev, &tf);
1550
1551 tf.command = cmd;
1552 tf.flags |= ATA_TFLAG_DEVICE;
1553 tf.protocol = ATA_PROT_NODATA;
1554
977e6b9f 1555 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
e58eb583
TH
1556}
1557
1bc4ccff
AC
1558/**
1559 * ata_pio_need_iordy - check if iordy needed
1560 * @adev: ATA device
1561 *
1562 * Check if the current speed of the device requires IORDY. Used
1563 * by various controllers for chip configuration.
1564 */
a617c09f 1565
1bc4ccff
AC
1566unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1567{
432729f0
AC
1568 /* Controller doesn't support IORDY. Probably a pointless check
1569 as the caller should know this */
9af5c9c9 1570 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1571 return 0;
432729f0
AC
1572 /* PIO3 and higher it is mandatory */
1573 if (adev->pio_mode > XFER_PIO_2)
1574 return 1;
1575 /* We turn it on when possible */
1576 if (ata_id_has_iordy(adev->id))
1bc4ccff 1577 return 1;
432729f0
AC
1578 return 0;
1579}
2e9edbf8 1580
432729f0
AC
1581/**
1582 * ata_pio_mask_no_iordy - Return the non IORDY mask
1583 * @adev: ATA device
1584 *
1585 * Compute the highest mode possible if we are not using iordy. Return
1586 * -1 if no iordy mode is available.
1587 */
a617c09f 1588
432729f0
AC
1589static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1590{
1bc4ccff 1591 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1592 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1593 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1594 /* Is the speed faster than the drive allows non IORDY ? */
1595 if (pio) {
1596 /* This is cycle times not frequency - watch the logic! */
1597 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1598 return 3 << ATA_SHIFT_PIO;
1599 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1600 }
1601 }
432729f0 1602 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1603}
1604
1da177e4 1605/**
49016aca 1606 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1607 * @dev: target device
1608 * @p_class: pointer to class of the target device (may be changed)
bff04647 1609 * @flags: ATA_READID_* flags
fe635c7e 1610 * @id: buffer to read IDENTIFY data into
1da177e4 1611 *
49016aca
TH
1612 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1613 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1614 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1615 * for pre-ATA4 drives.
1da177e4
LT
1616 *
1617 * LOCKING:
49016aca
TH
1618 * Kernel thread context (may sleep)
1619 *
1620 * RETURNS:
1621 * 0 on success, -errno otherwise.
1da177e4 1622 */
a9beec95 1623int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1624 unsigned int flags, u16 *id)
1da177e4 1625{
9af5c9c9 1626 struct ata_port *ap = dev->link->ap;
49016aca 1627 unsigned int class = *p_class;
a0123703 1628 struct ata_taskfile tf;
49016aca
TH
1629 unsigned int err_mask = 0;
1630 const char *reason;
54936f8b 1631 int may_fallback = 1, tried_spinup = 0;
49016aca 1632 int rc;
1da177e4 1633
0dd4b21f 1634 if (ata_msg_ctl(ap))
44877b4e 1635 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1636
49016aca 1637 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
49016aca 1638 retry:
3373efd8 1639 ata_tf_init(dev, &tf);
a0123703 1640
49016aca
TH
1641 switch (class) {
1642 case ATA_DEV_ATA:
a0123703 1643 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1644 break;
1645 case ATA_DEV_ATAPI:
a0123703 1646 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1647 break;
1648 default:
1649 rc = -ENODEV;
1650 reason = "unsupported class";
1651 goto err_out;
1da177e4
LT
1652 }
1653
a0123703 1654 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1655
1656 /* Some devices choke if TF registers contain garbage. Make
1657 * sure those are properly initialized.
1658 */
1659 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1660
1661 /* Device presence detection is unreliable on some
1662 * controllers. Always poll IDENTIFY if available.
1663 */
1664 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1665
3373efd8 1666 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1667 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1668 if (err_mask) {
800b3996 1669 if (err_mask & AC_ERR_NODEV_HINT) {
55a8e2c8 1670 DPRINTK("ata%u.%d: NODEV after polling detection\n",
44877b4e 1671 ap->print_id, dev->devno);
55a8e2c8
TH
1672 return -ENOENT;
1673 }
1674
54936f8b
TH
1675 /* Device or controller might have reported the wrong
1676 * device class. Give a shot at the other IDENTIFY if
1677 * the current one is aborted by the device.
1678 */
1679 if (may_fallback &&
1680 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1681 may_fallback = 0;
1682
1683 if (class == ATA_DEV_ATA)
1684 class = ATA_DEV_ATAPI;
1685 else
1686 class = ATA_DEV_ATA;
1687 goto retry;
1688 }
1689
49016aca
TH
1690 rc = -EIO;
1691 reason = "I/O error";
1da177e4
LT
1692 goto err_out;
1693 }
1694
54936f8b
TH
1695 /* Falling back doesn't make sense if ID data was read
1696 * successfully at least once.
1697 */
1698 may_fallback = 0;
1699
49016aca 1700 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1701
49016aca 1702 /* sanity check */
a4f5749b 1703 rc = -EINVAL;
6070068b 1704 reason = "device reports invalid type";
a4f5749b
TH
1705
1706 if (class == ATA_DEV_ATA) {
1707 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1708 goto err_out;
1709 } else {
1710 if (ata_id_is_ata(id))
1711 goto err_out;
49016aca
TH
1712 }
1713
169439c2
ML
1714 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1715 tried_spinup = 1;
1716 /*
1717 * Drive powered-up in standby mode, and requires a specific
1718 * SET_FEATURES spin-up subcommand before it will accept
1719 * anything other than the original IDENTIFY command.
1720 */
1721 ata_tf_init(dev, &tf);
1722 tf.command = ATA_CMD_SET_FEATURES;
1723 tf.feature = SETFEATURES_SPINUP;
1724 tf.protocol = ATA_PROT_NODATA;
1725 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1726 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
fb0582f9 1727 if (err_mask && id[2] != 0x738c) {
169439c2
ML
1728 rc = -EIO;
1729 reason = "SPINUP failed";
1730 goto err_out;
1731 }
1732 /*
1733 * If the drive initially returned incomplete IDENTIFY info,
1734 * we now must reissue the IDENTIFY command.
1735 */
1736 if (id[2] == 0x37c8)
1737 goto retry;
1738 }
1739
bff04647 1740 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
1741 /*
1742 * The exact sequence expected by certain pre-ATA4 drives is:
1743 * SRST RESET
1744 * IDENTIFY
1745 * INITIALIZE DEVICE PARAMETERS
1746 * anything else..
1747 * Some drives were very specific about that exact sequence.
1748 */
1749 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1750 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1751 if (err_mask) {
1752 rc = -EIO;
1753 reason = "INIT_DEV_PARAMS failed";
1754 goto err_out;
1755 }
1756
1757 /* current CHS translation info (id[53-58]) might be
1758 * changed. reread the identify device info.
1759 */
bff04647 1760 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
1761 goto retry;
1762 }
1763 }
1764
1765 *p_class = class;
fe635c7e 1766
49016aca
TH
1767 return 0;
1768
1769 err_out:
88574551 1770 if (ata_msg_warn(ap))
0dd4b21f 1771 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 1772 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1773 return rc;
1774}
1775
3373efd8 1776static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1777{
9af5c9c9
TH
1778 struct ata_port *ap = dev->link->ap;
1779 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1780}
1781
a6e6ce8e
TH
1782static void ata_dev_config_ncq(struct ata_device *dev,
1783 char *desc, size_t desc_sz)
1784{
9af5c9c9 1785 struct ata_port *ap = dev->link->ap;
a6e6ce8e
TH
1786 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1787
1788 if (!ata_id_has_ncq(dev->id)) {
1789 desc[0] = '\0';
1790 return;
1791 }
75683fe7 1792 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6
AC
1793 snprintf(desc, desc_sz, "NCQ (not used)");
1794 return;
1795 }
a6e6ce8e 1796 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 1797 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
1798 dev->flags |= ATA_DFLAG_NCQ;
1799 }
1800
1801 if (hdepth >= ddepth)
1802 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1803 else
1804 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1805}
1806
49016aca 1807/**
ffeae418 1808 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
1809 * @dev: Target device to configure
1810 *
1811 * Configure @dev according to @dev->id. Generic and low-level
1812 * driver specific fixups are also applied.
49016aca
TH
1813 *
1814 * LOCKING:
ffeae418
TH
1815 * Kernel thread context (may sleep)
1816 *
1817 * RETURNS:
1818 * 0 on success, -errno otherwise
49016aca 1819 */
efdaedc4 1820int ata_dev_configure(struct ata_device *dev)
49016aca 1821{
9af5c9c9
TH
1822 struct ata_port *ap = dev->link->ap;
1823 struct ata_eh_context *ehc = &dev->link->eh_context;
6746544c 1824 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 1825 const u16 *id = dev->id;
ff8854b2 1826 unsigned int xfer_mask;
b352e57d 1827 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
1828 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1829 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 1830 int rc;
49016aca 1831
0dd4b21f 1832 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e
TH
1833 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1834 __FUNCTION__);
ffeae418 1835 return 0;
49016aca
TH
1836 }
1837
0dd4b21f 1838 if (ata_msg_probe(ap))
44877b4e 1839 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1840
75683fe7
TH
1841 /* set horkage */
1842 dev->horkage |= ata_dev_blacklisted(dev);
1843
6746544c
TH
1844 /* let ACPI work its magic */
1845 rc = ata_acpi_on_devcfg(dev);
1846 if (rc)
1847 return rc;
08573a86 1848
c39f5ebe 1849 /* print device capabilities */
0dd4b21f 1850 if (ata_msg_probe(ap))
88574551
TH
1851 ata_dev_printk(dev, KERN_DEBUG,
1852 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1853 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 1854 __FUNCTION__,
f15a1daf
TH
1855 id[49], id[82], id[83], id[84],
1856 id[85], id[86], id[87], id[88]);
c39f5ebe 1857
208a9933 1858 /* initialize to-be-configured parameters */
ea1dd4e1 1859 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1860 dev->max_sectors = 0;
1861 dev->cdb_len = 0;
1862 dev->n_sectors = 0;
1863 dev->cylinders = 0;
1864 dev->heads = 0;
1865 dev->sectors = 0;
1866
1da177e4
LT
1867 /*
1868 * common ATA, ATAPI feature tests
1869 */
1870
ff8854b2 1871 /* find max transfer mode; for printk only */
1148c3a7 1872 xfer_mask = ata_id_xfermask(id);
1da177e4 1873
0dd4b21f
BP
1874 if (ata_msg_probe(ap))
1875 ata_dump_id(id);
1da177e4 1876
ef143d57
AL
1877 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1878 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1879 sizeof(fwrevbuf));
1880
1881 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1882 sizeof(modelbuf));
1883
1da177e4
LT
1884 /* ATA-specific feature tests */
1885 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
1886 if (ata_id_is_cfa(id)) {
1887 if (id[162] & 1) /* CPRM may make this media unusable */
44877b4e
TH
1888 ata_dev_printk(dev, KERN_WARNING,
1889 "supports DRM functions and may "
1890 "not be fully accessable.\n");
b352e57d
AC
1891 snprintf(revbuf, 7, "CFA");
1892 }
1893 else
1894 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1895
1148c3a7 1896 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1897
3f64f565
EM
1898 if (dev->id[59] & 0x100)
1899 dev->multi_count = dev->id[59] & 0xff;
1900
1148c3a7 1901 if (ata_id_has_lba(id)) {
4c2d721a 1902 const char *lba_desc;
a6e6ce8e 1903 char ncq_desc[20];
8bf62ece 1904
4c2d721a
TH
1905 lba_desc = "LBA";
1906 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1907 if (ata_id_has_lba48(id)) {
8bf62ece 1908 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 1909 lba_desc = "LBA48";
6fc49adb
TH
1910
1911 if (dev->n_sectors >= (1UL << 28) &&
1912 ata_id_has_flush_ext(id))
1913 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 1914 }
8bf62ece 1915
16c55b03
TH
1916 if (!(dev->horkage & ATA_HORKAGE_BROKEN_HPA) &&
1917 ata_id_hpa_enabled(dev->id))
1918 dev->n_sectors = ata_hpa_resize(dev);
1e999736 1919
a6e6ce8e
TH
1920 /* config NCQ */
1921 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1922
8bf62ece 1923 /* print device info to dmesg */
3f64f565
EM
1924 if (ata_msg_drv(ap) && print_info) {
1925 ata_dev_printk(dev, KERN_INFO,
1926 "%s: %s, %s, max %s\n",
1927 revbuf, modelbuf, fwrevbuf,
1928 ata_mode_string(xfer_mask));
1929 ata_dev_printk(dev, KERN_INFO,
1930 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 1931 (unsigned long long)dev->n_sectors,
3f64f565
EM
1932 dev->multi_count, lba_desc, ncq_desc);
1933 }
ffeae418 1934 } else {
8bf62ece
AL
1935 /* CHS */
1936
1937 /* Default translation */
1148c3a7
TH
1938 dev->cylinders = id[1];
1939 dev->heads = id[3];
1940 dev->sectors = id[6];
8bf62ece 1941
1148c3a7 1942 if (ata_id_current_chs_valid(id)) {
8bf62ece 1943 /* Current CHS translation is valid. */
1148c3a7
TH
1944 dev->cylinders = id[54];
1945 dev->heads = id[55];
1946 dev->sectors = id[56];
8bf62ece
AL
1947 }
1948
1949 /* print device info to dmesg */
3f64f565 1950 if (ata_msg_drv(ap) && print_info) {
88574551 1951 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
1952 "%s: %s, %s, max %s\n",
1953 revbuf, modelbuf, fwrevbuf,
1954 ata_mode_string(xfer_mask));
a84471fe 1955 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
1956 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1957 (unsigned long long)dev->n_sectors,
1958 dev->multi_count, dev->cylinders,
1959 dev->heads, dev->sectors);
1960 }
07f6f7d0
AL
1961 }
1962
6e7846e9 1963 dev->cdb_len = 16;
1da177e4
LT
1964 }
1965
1966 /* ATAPI-specific feature tests */
2c13b7ce 1967 else if (dev->class == ATA_DEV_ATAPI) {
08a556db
AL
1968 char *cdb_intr_string = "";
1969
1148c3a7 1970 rc = atapi_cdb_len(id);
1da177e4 1971 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 1972 if (ata_msg_warn(ap))
88574551
TH
1973 ata_dev_printk(dev, KERN_WARNING,
1974 "unsupported CDB len\n");
ffeae418 1975 rc = -EINVAL;
1da177e4
LT
1976 goto err_out_nosup;
1977 }
6e7846e9 1978 dev->cdb_len = (unsigned int) rc;
1da177e4 1979
08a556db 1980 if (ata_id_cdb_intr(dev->id)) {
312f7da2 1981 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
1982 cdb_intr_string = ", CDB intr";
1983 }
312f7da2 1984
1da177e4 1985 /* print device info to dmesg */
5afc8142 1986 if (ata_msg_drv(ap) && print_info)
ef143d57
AL
1987 ata_dev_printk(dev, KERN_INFO,
1988 "ATAPI: %s, %s, max %s%s\n",
1989 modelbuf, fwrevbuf,
12436c30
TH
1990 ata_mode_string(xfer_mask),
1991 cdb_intr_string);
1da177e4
LT
1992 }
1993
914ed354
TH
1994 /* determine max_sectors */
1995 dev->max_sectors = ATA_MAX_SECTORS;
1996 if (dev->flags & ATA_DFLAG_LBA48)
1997 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1998
93590859
AC
1999 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2000 /* Let the user know. We don't want to disallow opens for
2001 rescue purposes, or in case the vendor is just a blithering
2002 idiot */
2003 if (print_info) {
2004 ata_dev_printk(dev, KERN_WARNING,
2005"Drive reports diagnostics failure. This may indicate a drive\n");
2006 ata_dev_printk(dev, KERN_WARNING,
2007"fault or invalid emulation. Contact drive vendor for information.\n");
2008 }
2009 }
2010
4b2f3ede 2011 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 2012 if (ata_dev_knobble(dev)) {
5afc8142 2013 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2014 ata_dev_printk(dev, KERN_INFO,
2015 "applying bridge limits\n");
5a529139 2016 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2017 dev->max_sectors = ATA_MAX_SECTORS;
2018 }
2019
75683fe7 2020 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2021 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2022 dev->max_sectors);
18d6e9d5 2023
4b2f3ede 2024 if (ap->ops->dev_config)
cd0d3bbc 2025 ap->ops->dev_config(dev);
4b2f3ede 2026
0dd4b21f
BP
2027 if (ata_msg_probe(ap))
2028 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2029 __FUNCTION__, ata_chk_status(ap));
ffeae418 2030 return 0;
1da177e4
LT
2031
2032err_out_nosup:
0dd4b21f 2033 if (ata_msg_probe(ap))
88574551
TH
2034 ata_dev_printk(dev, KERN_DEBUG,
2035 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 2036 return rc;
1da177e4
LT
2037}
2038
be0d18df 2039/**
2e41e8e6 2040 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2041 * @ap: port
2042 *
2e41e8e6 2043 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2044 * detection.
2045 */
2046
2047int ata_cable_40wire(struct ata_port *ap)
2048{
2049 return ATA_CBL_PATA40;
2050}
2051
2052/**
2e41e8e6 2053 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2054 * @ap: port
2055 *
2e41e8e6 2056 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2057 * detection.
2058 */
2059
2060int ata_cable_80wire(struct ata_port *ap)
2061{
2062 return ATA_CBL_PATA80;
2063}
2064
2065/**
2066 * ata_cable_unknown - return unknown PATA cable.
2067 * @ap: port
2068 *
2069 * Helper method for drivers which have no PATA cable detection.
2070 */
2071
2072int ata_cable_unknown(struct ata_port *ap)
2073{
2074 return ATA_CBL_PATA_UNK;
2075}
2076
2077/**
2078 * ata_cable_sata - return SATA cable type
2079 * @ap: port
2080 *
2081 * Helper method for drivers which have SATA cables
2082 */
2083
2084int ata_cable_sata(struct ata_port *ap)
2085{
2086 return ATA_CBL_SATA;
2087}
2088
1da177e4
LT
2089/**
2090 * ata_bus_probe - Reset and probe ATA bus
2091 * @ap: Bus to probe
2092 *
0cba632b
JG
2093 * Master ATA bus probing function. Initiates a hardware-dependent
2094 * bus reset, then attempts to identify any devices found on
2095 * the bus.
2096 *
1da177e4 2097 * LOCKING:
0cba632b 2098 * PCI/etc. bus probe sem.
1da177e4
LT
2099 *
2100 * RETURNS:
96072e69 2101 * Zero on success, negative errno otherwise.
1da177e4
LT
2102 */
2103
80289167 2104int ata_bus_probe(struct ata_port *ap)
1da177e4 2105{
28ca5c57 2106 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2107 int tries[ATA_MAX_DEVICES];
f58229f8 2108 int rc;
e82cbdb9 2109 struct ata_device *dev;
1da177e4 2110
28ca5c57 2111 ata_port_probe(ap);
c19ba8af 2112
f58229f8
TH
2113 ata_link_for_each_dev(dev, &ap->link)
2114 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
14d2bac1
TH
2115
2116 retry:
2044470c 2117 /* reset and determine device classes */
52783c5d 2118 ap->ops->phy_reset(ap);
2061a47a 2119
f58229f8 2120 ata_link_for_each_dev(dev, &ap->link) {
52783c5d
TH
2121 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2122 dev->class != ATA_DEV_UNKNOWN)
2123 classes[dev->devno] = dev->class;
2124 else
2125 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2126
52783c5d 2127 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2128 }
1da177e4 2129
52783c5d 2130 ata_port_probe(ap);
2044470c 2131
b6079ca4
AC
2132 /* after the reset the device state is PIO 0 and the controller
2133 state is undefined. Record the mode */
2134
f58229f8
TH
2135 ata_link_for_each_dev(dev, &ap->link)
2136 dev->pio_mode = XFER_PIO_0;
b6079ca4 2137
f31f0cc2
JG
2138 /* read IDENTIFY page and configure devices. We have to do the identify
2139 specific sequence bass-ackwards so that PDIAG- is released by
2140 the slave device */
2141
f58229f8
TH
2142 ata_link_for_each_dev(dev, &ap->link) {
2143 if (tries[dev->devno])
2144 dev->class = classes[dev->devno];
ffeae418 2145
14d2bac1 2146 if (!ata_dev_enabled(dev))
ffeae418 2147 continue;
ffeae418 2148
bff04647
TH
2149 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2150 dev->id);
14d2bac1
TH
2151 if (rc)
2152 goto fail;
f31f0cc2
JG
2153 }
2154
be0d18df
AC
2155 /* Now ask for the cable type as PDIAG- should have been released */
2156 if (ap->ops->cable_detect)
2157 ap->cbl = ap->ops->cable_detect(ap);
2158
f31f0cc2
JG
2159 /* After the identify sequence we can now set up the devices. We do
2160 this in the normal order so that the user doesn't get confused */
2161
f58229f8 2162 ata_link_for_each_dev(dev, &ap->link) {
f31f0cc2
JG
2163 if (!ata_dev_enabled(dev))
2164 continue;
14d2bac1 2165
9af5c9c9 2166 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
efdaedc4 2167 rc = ata_dev_configure(dev);
9af5c9c9 2168 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2169 if (rc)
2170 goto fail;
1da177e4
LT
2171 }
2172
e82cbdb9 2173 /* configure transfer mode */
3adcebb2 2174 rc = ata_set_mode(ap, &dev);
4ae72a1e 2175 if (rc)
51713d35 2176 goto fail;
1da177e4 2177
f58229f8
TH
2178 ata_link_for_each_dev(dev, &ap->link)
2179 if (ata_dev_enabled(dev))
e82cbdb9 2180 return 0;
1da177e4 2181
e82cbdb9
TH
2182 /* no device present, disable port */
2183 ata_port_disable(ap);
1da177e4 2184 ap->ops->port_disable(ap);
96072e69 2185 return -ENODEV;
14d2bac1
TH
2186
2187 fail:
4ae72a1e
TH
2188 tries[dev->devno]--;
2189
14d2bac1
TH
2190 switch (rc) {
2191 case -EINVAL:
4ae72a1e 2192 /* eeek, something went very wrong, give up */
14d2bac1
TH
2193 tries[dev->devno] = 0;
2194 break;
4ae72a1e
TH
2195
2196 case -ENODEV:
2197 /* give it just one more chance */
2198 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2199 case -EIO:
4ae72a1e
TH
2200 if (tries[dev->devno] == 1) {
2201 /* This is the last chance, better to slow
2202 * down than lose it.
2203 */
936fd732 2204 sata_down_spd_limit(&ap->link);
4ae72a1e
TH
2205 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2206 }
14d2bac1
TH
2207 }
2208
4ae72a1e 2209 if (!tries[dev->devno])
3373efd8 2210 ata_dev_disable(dev);
ec573755 2211
14d2bac1 2212 goto retry;
1da177e4
LT
2213}
2214
2215/**
0cba632b
JG
2216 * ata_port_probe - Mark port as enabled
2217 * @ap: Port for which we indicate enablement
1da177e4 2218 *
0cba632b
JG
2219 * Modify @ap data structure such that the system
2220 * thinks that the entire port is enabled.
2221 *
cca3974e 2222 * LOCKING: host lock, or some other form of
0cba632b 2223 * serialization.
1da177e4
LT
2224 */
2225
2226void ata_port_probe(struct ata_port *ap)
2227{
198e0fed 2228 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
2229}
2230
3be680b7
TH
2231/**
2232 * sata_print_link_status - Print SATA link status
936fd732 2233 * @link: SATA link to printk link status about
3be680b7
TH
2234 *
2235 * This function prints link speed and status of a SATA link.
2236 *
2237 * LOCKING:
2238 * None.
2239 */
936fd732 2240void sata_print_link_status(struct ata_link *link)
3be680b7 2241{
6d5f9732 2242 u32 sstatus, scontrol, tmp;
3be680b7 2243
936fd732 2244 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3be680b7 2245 return;
936fd732 2246 sata_scr_read(link, SCR_CONTROL, &scontrol);
3be680b7 2247
936fd732 2248 if (ata_link_online(link)) {
3be680b7 2249 tmp = (sstatus >> 4) & 0xf;
936fd732 2250 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2251 "SATA link up %s (SStatus %X SControl %X)\n",
2252 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2253 } else {
936fd732 2254 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2255 "SATA link down (SStatus %X SControl %X)\n",
2256 sstatus, scontrol);
3be680b7
TH
2257 }
2258}
2259
1da177e4 2260/**
780a87f7
JG
2261 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2262 * @ap: SATA port associated with target SATA PHY.
1da177e4 2263 *
780a87f7
JG
2264 * This function issues commands to standard SATA Sxxx
2265 * PHY registers, to wake up the phy (and device), and
2266 * clear any reset condition.
1da177e4
LT
2267 *
2268 * LOCKING:
0cba632b 2269 * PCI/etc. bus probe sem.
1da177e4
LT
2270 *
2271 */
2272void __sata_phy_reset(struct ata_port *ap)
2273{
936fd732 2274 struct ata_link *link = &ap->link;
1da177e4 2275 unsigned long timeout = jiffies + (HZ * 5);
936fd732 2276 u32 sstatus;
1da177e4
LT
2277
2278 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 2279 /* issue phy wake/reset */
936fd732 2280 sata_scr_write_flush(link, SCR_CONTROL, 0x301);
62ba2841
TH
2281 /* Couldn't find anything in SATA I/II specs, but
2282 * AHCI-1.1 10.4.2 says at least 1 ms. */
2283 mdelay(1);
1da177e4 2284 }
81952c54 2285 /* phy wake/clear reset */
936fd732 2286 sata_scr_write_flush(link, SCR_CONTROL, 0x300);
1da177e4
LT
2287
2288 /* wait for phy to become ready, if necessary */
2289 do {
2290 msleep(200);
936fd732 2291 sata_scr_read(link, SCR_STATUS, &sstatus);
1da177e4
LT
2292 if ((sstatus & 0xf) != 1)
2293 break;
2294 } while (time_before(jiffies, timeout));
2295
3be680b7 2296 /* print link status */
936fd732 2297 sata_print_link_status(link);
656563e3 2298
3be680b7 2299 /* TODO: phy layer with polling, timeouts, etc. */
936fd732 2300 if (!ata_link_offline(link))
1da177e4 2301 ata_port_probe(ap);
3be680b7 2302 else
1da177e4 2303 ata_port_disable(ap);
1da177e4 2304
198e0fed 2305 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2306 return;
2307
2308 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2309 ata_port_disable(ap);
2310 return;
2311 }
2312
2313 ap->cbl = ATA_CBL_SATA;
2314}
2315
2316/**
780a87f7
JG
2317 * sata_phy_reset - Reset SATA bus.
2318 * @ap: SATA port associated with target SATA PHY.
1da177e4 2319 *
780a87f7
JG
2320 * This function resets the SATA bus, and then probes
2321 * the bus for devices.
1da177e4
LT
2322 *
2323 * LOCKING:
0cba632b 2324 * PCI/etc. bus probe sem.
1da177e4
LT
2325 *
2326 */
2327void sata_phy_reset(struct ata_port *ap)
2328{
2329 __sata_phy_reset(ap);
198e0fed 2330 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2331 return;
2332 ata_bus_reset(ap);
2333}
2334
ebdfca6e
AC
2335/**
2336 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2337 * @adev: device
2338 *
2339 * Obtain the other device on the same cable, or if none is
2340 * present NULL is returned
2341 */
2e9edbf8 2342
3373efd8 2343struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2344{
9af5c9c9
TH
2345 struct ata_link *link = adev->link;
2346 struct ata_device *pair = &link->device[1 - adev->devno];
e1211e3f 2347 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2348 return NULL;
2349 return pair;
2350}
2351
1da177e4 2352/**
780a87f7
JG
2353 * ata_port_disable - Disable port.
2354 * @ap: Port to be disabled.
1da177e4 2355 *
780a87f7
JG
2356 * Modify @ap data structure such that the system
2357 * thinks that the entire port is disabled, and should
2358 * never attempt to probe or communicate with devices
2359 * on this port.
2360 *
cca3974e 2361 * LOCKING: host lock, or some other form of
780a87f7 2362 * serialization.
1da177e4
LT
2363 */
2364
2365void ata_port_disable(struct ata_port *ap)
2366{
9af5c9c9
TH
2367 ap->link.device[0].class = ATA_DEV_NONE;
2368 ap->link.device[1].class = ATA_DEV_NONE;
198e0fed 2369 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2370}
2371
1c3fae4d 2372/**
3c567b7d 2373 * sata_down_spd_limit - adjust SATA spd limit downward
936fd732 2374 * @link: Link to adjust SATA spd limit for
1c3fae4d 2375 *
936fd732 2376 * Adjust SATA spd limit of @link downward. Note that this
1c3fae4d 2377 * function only adjusts the limit. The change must be applied
3c567b7d 2378 * using sata_set_spd().
1c3fae4d
TH
2379 *
2380 * LOCKING:
2381 * Inherited from caller.
2382 *
2383 * RETURNS:
2384 * 0 on success, negative errno on failure
2385 */
936fd732 2386int sata_down_spd_limit(struct ata_link *link)
1c3fae4d 2387{
81952c54
TH
2388 u32 sstatus, spd, mask;
2389 int rc, highbit;
1c3fae4d 2390
936fd732 2391 if (!sata_scr_valid(link))
008a7896
TH
2392 return -EOPNOTSUPP;
2393
2394 /* If SCR can be read, use it to determine the current SPD.
936fd732 2395 * If not, use cached value in link->sata_spd.
008a7896 2396 */
936fd732 2397 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
008a7896
TH
2398 if (rc == 0)
2399 spd = (sstatus >> 4) & 0xf;
2400 else
936fd732 2401 spd = link->sata_spd;
1c3fae4d 2402
936fd732 2403 mask = link->sata_spd_limit;
1c3fae4d
TH
2404 if (mask <= 1)
2405 return -EINVAL;
008a7896
TH
2406
2407 /* unconditionally mask off the highest bit */
1c3fae4d
TH
2408 highbit = fls(mask) - 1;
2409 mask &= ~(1 << highbit);
2410
008a7896
TH
2411 /* Mask off all speeds higher than or equal to the current
2412 * one. Force 1.5Gbps if current SPD is not available.
2413 */
2414 if (spd > 1)
2415 mask &= (1 << (spd - 1)) - 1;
2416 else
2417 mask &= 1;
2418
2419 /* were we already at the bottom? */
1c3fae4d
TH
2420 if (!mask)
2421 return -EINVAL;
2422
936fd732 2423 link->sata_spd_limit = mask;
1c3fae4d 2424
936fd732 2425 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
f15a1daf 2426 sata_spd_string(fls(mask)));
1c3fae4d
TH
2427
2428 return 0;
2429}
2430
936fd732 2431static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
1c3fae4d
TH
2432{
2433 u32 spd, limit;
2434
936fd732 2435 if (link->sata_spd_limit == UINT_MAX)
1c3fae4d
TH
2436 limit = 0;
2437 else
936fd732 2438 limit = fls(link->sata_spd_limit);
1c3fae4d
TH
2439
2440 spd = (*scontrol >> 4) & 0xf;
2441 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2442
2443 return spd != limit;
2444}
2445
2446/**
3c567b7d 2447 * sata_set_spd_needed - is SATA spd configuration needed
936fd732 2448 * @link: Link in question
1c3fae4d
TH
2449 *
2450 * Test whether the spd limit in SControl matches
936fd732 2451 * @link->sata_spd_limit. This function is used to determine
1c3fae4d
TH
2452 * whether hardreset is necessary to apply SATA spd
2453 * configuration.
2454 *
2455 * LOCKING:
2456 * Inherited from caller.
2457 *
2458 * RETURNS:
2459 * 1 if SATA spd configuration is needed, 0 otherwise.
2460 */
936fd732 2461int sata_set_spd_needed(struct ata_link *link)
1c3fae4d
TH
2462{
2463 u32 scontrol;
2464
936fd732 2465 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
1c3fae4d
TH
2466 return 0;
2467
936fd732 2468 return __sata_set_spd_needed(link, &scontrol);
1c3fae4d
TH
2469}
2470
2471/**
3c567b7d 2472 * sata_set_spd - set SATA spd according to spd limit
936fd732 2473 * @link: Link to set SATA spd for
1c3fae4d 2474 *
936fd732 2475 * Set SATA spd of @link according to sata_spd_limit.
1c3fae4d
TH
2476 *
2477 * LOCKING:
2478 * Inherited from caller.
2479 *
2480 * RETURNS:
2481 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2482 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2483 */
936fd732 2484int sata_set_spd(struct ata_link *link)
1c3fae4d
TH
2485{
2486 u32 scontrol;
81952c54 2487 int rc;
1c3fae4d 2488
936fd732 2489 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 2490 return rc;
1c3fae4d 2491
936fd732 2492 if (!__sata_set_spd_needed(link, &scontrol))
1c3fae4d
TH
2493 return 0;
2494
936fd732 2495 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54
TH
2496 return rc;
2497
1c3fae4d
TH
2498 return 1;
2499}
2500
452503f9
AC
2501/*
2502 * This mode timing computation functionality is ported over from
2503 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2504 */
2505/*
b352e57d 2506 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2507 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2508 * for UDMA6, which is currently supported only by Maxtor drives.
2509 *
2510 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2511 */
2512
2513static const struct ata_timing ata_timing[] = {
2514
2515 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2516 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2517 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2518 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2519
b352e57d
AC
2520 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2521 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
452503f9
AC
2522 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2523 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2524 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2525
2526/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 2527
452503f9
AC
2528 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2529 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2530 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 2531
452503f9
AC
2532 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2533 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2534 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2535
b352e57d
AC
2536 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2537 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
452503f9
AC
2538 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2539 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2540
2541 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2542 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2543 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2544
2545/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2546
2547 { 0xFF }
2548};
2549
2550#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2551#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2552
2553static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2554{
2555 q->setup = EZ(t->setup * 1000, T);
2556 q->act8b = EZ(t->act8b * 1000, T);
2557 q->rec8b = EZ(t->rec8b * 1000, T);
2558 q->cyc8b = EZ(t->cyc8b * 1000, T);
2559 q->active = EZ(t->active * 1000, T);
2560 q->recover = EZ(t->recover * 1000, T);
2561 q->cycle = EZ(t->cycle * 1000, T);
2562 q->udma = EZ(t->udma * 1000, UT);
2563}
2564
2565void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2566 struct ata_timing *m, unsigned int what)
2567{
2568 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2569 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2570 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2571 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2572 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2573 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2574 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2575 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2576}
2577
2578static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2579{
2580 const struct ata_timing *t;
2581
2582 for (t = ata_timing; t->mode != speed; t++)
91190758 2583 if (t->mode == 0xFF)
452503f9 2584 return NULL;
2e9edbf8 2585 return t;
452503f9
AC
2586}
2587
2588int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2589 struct ata_timing *t, int T, int UT)
2590{
2591 const struct ata_timing *s;
2592 struct ata_timing p;
2593
2594 /*
2e9edbf8 2595 * Find the mode.
75b1f2f8 2596 */
452503f9
AC
2597
2598 if (!(s = ata_timing_find_mode(speed)))
2599 return -EINVAL;
2600
75b1f2f8
AL
2601 memcpy(t, s, sizeof(*s));
2602
452503f9
AC
2603 /*
2604 * If the drive is an EIDE drive, it can tell us it needs extended
2605 * PIO/MW_DMA cycle timing.
2606 */
2607
2608 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2609 memset(&p, 0, sizeof(p));
2610 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2611 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2612 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2613 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2614 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2615 }
2616 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2617 }
2618
2619 /*
2620 * Convert the timing to bus clock counts.
2621 */
2622
75b1f2f8 2623 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2624
2625 /*
c893a3ae
RD
2626 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2627 * S.M.A.R.T * and some other commands. We have to ensure that the
2628 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2629 */
2630
fd3367af 2631 if (speed > XFER_PIO_6) {
452503f9
AC
2632 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2633 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2634 }
2635
2636 /*
c893a3ae 2637 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2638 */
2639
2640 if (t->act8b + t->rec8b < t->cyc8b) {
2641 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2642 t->rec8b = t->cyc8b - t->act8b;
2643 }
2644
2645 if (t->active + t->recover < t->cycle) {
2646 t->active += (t->cycle - (t->active + t->recover)) / 2;
2647 t->recover = t->cycle - t->active;
2648 }
a617c09f 2649
4f701d1e
AC
2650 /* In a few cases quantisation may produce enough errors to
2651 leave t->cycle too low for the sum of active and recovery
2652 if so we must correct this */
2653 if (t->active + t->recover > t->cycle)
2654 t->cycle = t->active + t->recover;
452503f9
AC
2655
2656 return 0;
2657}
2658
cf176e1a
TH
2659/**
2660 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 2661 * @dev: Device to adjust xfer masks
458337db 2662 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
2663 *
2664 * Adjust xfer masks of @dev downward. Note that this function
2665 * does not apply the change. Invoking ata_set_mode() afterwards
2666 * will apply the limit.
2667 *
2668 * LOCKING:
2669 * Inherited from caller.
2670 *
2671 * RETURNS:
2672 * 0 on success, negative errno on failure
2673 */
458337db 2674int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 2675{
458337db
TH
2676 char buf[32];
2677 unsigned int orig_mask, xfer_mask;
2678 unsigned int pio_mask, mwdma_mask, udma_mask;
2679 int quiet, highbit;
cf176e1a 2680
458337db
TH
2681 quiet = !!(sel & ATA_DNXFER_QUIET);
2682 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 2683
458337db
TH
2684 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2685 dev->mwdma_mask,
2686 dev->udma_mask);
2687 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 2688
458337db
TH
2689 switch (sel) {
2690 case ATA_DNXFER_PIO:
2691 highbit = fls(pio_mask) - 1;
2692 pio_mask &= ~(1 << highbit);
2693 break;
2694
2695 case ATA_DNXFER_DMA:
2696 if (udma_mask) {
2697 highbit = fls(udma_mask) - 1;
2698 udma_mask &= ~(1 << highbit);
2699 if (!udma_mask)
2700 return -ENOENT;
2701 } else if (mwdma_mask) {
2702 highbit = fls(mwdma_mask) - 1;
2703 mwdma_mask &= ~(1 << highbit);
2704 if (!mwdma_mask)
2705 return -ENOENT;
2706 }
2707 break;
2708
2709 case ATA_DNXFER_40C:
2710 udma_mask &= ATA_UDMA_MASK_40C;
2711 break;
2712
2713 case ATA_DNXFER_FORCE_PIO0:
2714 pio_mask &= 1;
2715 case ATA_DNXFER_FORCE_PIO:
2716 mwdma_mask = 0;
2717 udma_mask = 0;
2718 break;
2719
458337db
TH
2720 default:
2721 BUG();
2722 }
2723
2724 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2725
2726 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2727 return -ENOENT;
2728
2729 if (!quiet) {
2730 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2731 snprintf(buf, sizeof(buf), "%s:%s",
2732 ata_mode_string(xfer_mask),
2733 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2734 else
2735 snprintf(buf, sizeof(buf), "%s",
2736 ata_mode_string(xfer_mask));
2737
2738 ata_dev_printk(dev, KERN_WARNING,
2739 "limiting speed to %s\n", buf);
2740 }
cf176e1a
TH
2741
2742 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2743 &dev->udma_mask);
2744
cf176e1a 2745 return 0;
cf176e1a
TH
2746}
2747
3373efd8 2748static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2749{
9af5c9c9 2750 struct ata_eh_context *ehc = &dev->link->eh_context;
83206a29
TH
2751 unsigned int err_mask;
2752 int rc;
1da177e4 2753
e8384607 2754 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2755 if (dev->xfer_shift == ATA_SHIFT_PIO)
2756 dev->flags |= ATA_DFLAG_PIO;
2757
3373efd8 2758 err_mask = ata_dev_set_xfermode(dev);
11750a40
A
2759 /* Old CFA may refuse this command, which is just fine */
2760 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2761 err_mask &= ~AC_ERR_DEV;
2762
83206a29 2763 if (err_mask) {
f15a1daf
TH
2764 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2765 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2766 return -EIO;
2767 }
1da177e4 2768
baa1e78a 2769 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3373efd8 2770 rc = ata_dev_revalidate(dev, 0);
baa1e78a 2771 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
5eb45c02 2772 if (rc)
83206a29 2773 return rc;
48a8a14f 2774
23e71c3d
TH
2775 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2776 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2777
f15a1daf
TH
2778 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2779 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2780 return 0;
1da177e4
LT
2781}
2782
1da177e4 2783/**
04351821 2784 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
1da177e4 2785 * @ap: port on which timings will be programmed
e82cbdb9 2786 * @r_failed_dev: out paramter for failed device
1da177e4 2787 *
04351821
A
2788 * Standard implementation of the function used to tune and set
2789 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2790 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 2791 * returned in @r_failed_dev.
780a87f7 2792 *
1da177e4 2793 * LOCKING:
0cba632b 2794 * PCI/etc. bus probe sem.
e82cbdb9
TH
2795 *
2796 * RETURNS:
2797 * 0 on success, negative errno otherwise
1da177e4 2798 */
04351821
A
2799
2800int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 2801{
f58229f8 2802 struct ata_link *link = &ap->link;
e8e0619f 2803 struct ata_device *dev;
f58229f8 2804 int rc = 0, used_dma = 0, found = 0;
3adcebb2 2805
a6d5a51c 2806 /* step 1: calculate xfer_mask */
f58229f8 2807 ata_link_for_each_dev(dev, link) {
acf356b1 2808 unsigned int pio_mask, dma_mask;
a6d5a51c 2809
e1211e3f 2810 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2811 continue;
2812
3373efd8 2813 ata_dev_xfermask(dev);
1da177e4 2814
acf356b1
TH
2815 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2816 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2817 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2818 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2819
4f65977d 2820 found = 1;
5444a6f4
AC
2821 if (dev->dma_mode)
2822 used_dma = 1;
a6d5a51c 2823 }
4f65977d 2824 if (!found)
e82cbdb9 2825 goto out;
a6d5a51c
TH
2826
2827 /* step 2: always set host PIO timings */
f58229f8 2828 ata_link_for_each_dev(dev, link) {
e8e0619f
TH
2829 if (!ata_dev_enabled(dev))
2830 continue;
2831
2832 if (!dev->pio_mode) {
f15a1daf 2833 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2834 rc = -EINVAL;
e82cbdb9 2835 goto out;
e8e0619f
TH
2836 }
2837
2838 dev->xfer_mode = dev->pio_mode;
2839 dev->xfer_shift = ATA_SHIFT_PIO;
2840 if (ap->ops->set_piomode)
2841 ap->ops->set_piomode(ap, dev);
2842 }
1da177e4 2843
a6d5a51c 2844 /* step 3: set host DMA timings */
f58229f8 2845 ata_link_for_each_dev(dev, link) {
e8e0619f
TH
2846 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2847 continue;
2848
2849 dev->xfer_mode = dev->dma_mode;
2850 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2851 if (ap->ops->set_dmamode)
2852 ap->ops->set_dmamode(ap, dev);
2853 }
1da177e4
LT
2854
2855 /* step 4: update devices' xfer mode */
f58229f8 2856 ata_link_for_each_dev(dev, link) {
18d90deb 2857 /* don't update suspended devices' xfer mode */
9666f400 2858 if (!ata_dev_enabled(dev))
83206a29
TH
2859 continue;
2860
3373efd8 2861 rc = ata_dev_set_mode(dev);
5bbc53f4 2862 if (rc)
e82cbdb9 2863 goto out;
83206a29 2864 }
1da177e4 2865
e8e0619f
TH
2866 /* Record simplex status. If we selected DMA then the other
2867 * host channels are not permitted to do so.
5444a6f4 2868 */
cca3974e 2869 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 2870 ap->host->simplex_claimed = ap;
5444a6f4 2871
e82cbdb9
TH
2872 out:
2873 if (rc)
2874 *r_failed_dev = dev;
2875 return rc;
1da177e4
LT
2876}
2877
04351821
A
2878/**
2879 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2880 * @ap: port on which timings will be programmed
2881 * @r_failed_dev: out paramter for failed device
2882 *
2883 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2884 * ata_set_mode() fails, pointer to the failing device is
2885 * returned in @r_failed_dev.
2886 *
2887 * LOCKING:
2888 * PCI/etc. bus probe sem.
2889 *
2890 * RETURNS:
2891 * 0 on success, negative errno otherwise
2892 */
2893int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2894{
2895 /* has private set_mode? */
2896 if (ap->ops->set_mode)
2897 return ap->ops->set_mode(ap, r_failed_dev);
2898 return ata_do_set_mode(ap, r_failed_dev);
2899}
2900
1fdffbce
JG
2901/**
2902 * ata_tf_to_host - issue ATA taskfile to host controller
2903 * @ap: port to which command is being issued
2904 * @tf: ATA taskfile register set
2905 *
2906 * Issues ATA taskfile register set to ATA host controller,
2907 * with proper synchronization with interrupt handler and
2908 * other threads.
2909 *
2910 * LOCKING:
cca3974e 2911 * spin_lock_irqsave(host lock)
1fdffbce
JG
2912 */
2913
2914static inline void ata_tf_to_host(struct ata_port *ap,
2915 const struct ata_taskfile *tf)
2916{
2917 ap->ops->tf_load(ap, tf);
2918 ap->ops->exec_command(ap, tf);
2919}
2920
1da177e4
LT
2921/**
2922 * ata_busy_sleep - sleep until BSY clears, or timeout
2923 * @ap: port containing status register to be polled
2924 * @tmout_pat: impatience timeout
2925 * @tmout: overall timeout
2926 *
780a87f7
JG
2927 * Sleep until ATA Status register bit BSY clears,
2928 * or a timeout occurs.
2929 *
d1adc1bb
TH
2930 * LOCKING:
2931 * Kernel thread context (may sleep).
2932 *
2933 * RETURNS:
2934 * 0 on success, -errno otherwise.
1da177e4 2935 */
d1adc1bb
TH
2936int ata_busy_sleep(struct ata_port *ap,
2937 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2938{
2939 unsigned long timer_start, timeout;
2940 u8 status;
2941
2942 status = ata_busy_wait(ap, ATA_BUSY, 300);
2943 timer_start = jiffies;
2944 timeout = timer_start + tmout_pat;
d1adc1bb
TH
2945 while (status != 0xff && (status & ATA_BUSY) &&
2946 time_before(jiffies, timeout)) {
1da177e4
LT
2947 msleep(50);
2948 status = ata_busy_wait(ap, ATA_BUSY, 3);
2949 }
2950
d1adc1bb 2951 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 2952 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
2953 "port is slow to respond, please be patient "
2954 "(Status 0x%x)\n", status);
1da177e4
LT
2955
2956 timeout = timer_start + tmout;
d1adc1bb
TH
2957 while (status != 0xff && (status & ATA_BUSY) &&
2958 time_before(jiffies, timeout)) {
1da177e4
LT
2959 msleep(50);
2960 status = ata_chk_status(ap);
2961 }
2962
d1adc1bb
TH
2963 if (status == 0xff)
2964 return -ENODEV;
2965
1da177e4 2966 if (status & ATA_BUSY) {
f15a1daf 2967 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
2968 "(%lu secs, Status 0x%x)\n",
2969 tmout / HZ, status);
d1adc1bb 2970 return -EBUSY;
1da177e4
LT
2971 }
2972
2973 return 0;
2974}
2975
d4b2bab4
TH
2976/**
2977 * ata_wait_ready - sleep until BSY clears, or timeout
2978 * @ap: port containing status register to be polled
2979 * @deadline: deadline jiffies for the operation
2980 *
2981 * Sleep until ATA Status register bit BSY clears, or timeout
2982 * occurs.
2983 *
2984 * LOCKING:
2985 * Kernel thread context (may sleep).
2986 *
2987 * RETURNS:
2988 * 0 on success, -errno otherwise.
2989 */
2990int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
2991{
2992 unsigned long start = jiffies;
2993 int warned = 0;
2994
2995 while (1) {
2996 u8 status = ata_chk_status(ap);
2997 unsigned long now = jiffies;
2998
2999 if (!(status & ATA_BUSY))
3000 return 0;
936fd732 3001 if (!ata_link_online(&ap->link) && status == 0xff)
d4b2bab4
TH
3002 return -ENODEV;
3003 if (time_after(now, deadline))
3004 return -EBUSY;
3005
3006 if (!warned && time_after(now, start + 5 * HZ) &&
3007 (deadline - now > 3 * HZ)) {
3008 ata_port_printk(ap, KERN_WARNING,
3009 "port is slow to respond, please be patient "
3010 "(Status 0x%x)\n", status);
3011 warned = 1;
3012 }
3013
3014 msleep(50);
3015 }
3016}
3017
3018static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3019 unsigned long deadline)
1da177e4
LT
3020{
3021 struct ata_ioports *ioaddr = &ap->ioaddr;
3022 unsigned int dev0 = devmask & (1 << 0);
3023 unsigned int dev1 = devmask & (1 << 1);
9b89391c 3024 int rc, ret = 0;
1da177e4
LT
3025
3026 /* if device 0 was found in ata_devchk, wait for its
3027 * BSY bit to clear
3028 */
d4b2bab4
TH
3029 if (dev0) {
3030 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3031 if (rc) {
3032 if (rc != -ENODEV)
3033 return rc;
3034 ret = rc;
3035 }
d4b2bab4 3036 }
1da177e4 3037
e141d999
TH
3038 /* if device 1 was found in ata_devchk, wait for register
3039 * access briefly, then wait for BSY to clear.
1da177e4 3040 */
e141d999
TH
3041 if (dev1) {
3042 int i;
1da177e4
LT
3043
3044 ap->ops->dev_select(ap, 1);
e141d999
TH
3045
3046 /* Wait for register access. Some ATAPI devices fail
3047 * to set nsect/lbal after reset, so don't waste too
3048 * much time on it. We're gonna wait for !BSY anyway.
3049 */
3050 for (i = 0; i < 2; i++) {
3051 u8 nsect, lbal;
3052
3053 nsect = ioread8(ioaddr->nsect_addr);
3054 lbal = ioread8(ioaddr->lbal_addr);
3055 if ((nsect == 1) && (lbal == 1))
3056 break;
3057 msleep(50); /* give drive a breather */
3058 }
3059
d4b2bab4 3060 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3061 if (rc) {
3062 if (rc != -ENODEV)
3063 return rc;
3064 ret = rc;
3065 }
d4b2bab4 3066 }
1da177e4
LT
3067
3068 /* is all this really necessary? */
3069 ap->ops->dev_select(ap, 0);
3070 if (dev1)
3071 ap->ops->dev_select(ap, 1);
3072 if (dev0)
3073 ap->ops->dev_select(ap, 0);
d4b2bab4 3074
9b89391c 3075 return ret;
1da177e4
LT
3076}
3077
d4b2bab4
TH
3078static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3079 unsigned long deadline)
1da177e4
LT
3080{
3081 struct ata_ioports *ioaddr = &ap->ioaddr;
3082
44877b4e 3083 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1da177e4
LT
3084
3085 /* software reset. causes dev0 to be selected */
0d5ff566
TH
3086 iowrite8(ap->ctl, ioaddr->ctl_addr);
3087 udelay(20); /* FIXME: flush */
3088 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3089 udelay(20); /* FIXME: flush */
3090 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3091
3092 /* spec mandates ">= 2ms" before checking status.
3093 * We wait 150ms, because that was the magic delay used for
3094 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3095 * between when the ATA command register is written, and then
3096 * status is checked. Because waiting for "a while" before
3097 * checking status is fine, post SRST, we perform this magic
3098 * delay here as well.
09c7ad79
AC
3099 *
3100 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
3101 */
3102 msleep(150);
3103
2e9edbf8 3104 /* Before we perform post reset processing we want to see if
298a41ca
TH
3105 * the bus shows 0xFF because the odd clown forgets the D7
3106 * pulldown resistor.
3107 */
d1adc1bb 3108 if (ata_check_status(ap) == 0xFF)
9b89391c 3109 return -ENODEV;
09c7ad79 3110
d4b2bab4 3111 return ata_bus_post_reset(ap, devmask, deadline);
1da177e4
LT
3112}
3113
3114/**
3115 * ata_bus_reset - reset host port and associated ATA channel
3116 * @ap: port to reset
3117 *
3118 * This is typically the first time we actually start issuing
3119 * commands to the ATA channel. We wait for BSY to clear, then
3120 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3121 * result. Determine what devices, if any, are on the channel
3122 * by looking at the device 0/1 error register. Look at the signature
3123 * stored in each device's taskfile registers, to determine if
3124 * the device is ATA or ATAPI.
3125 *
3126 * LOCKING:
0cba632b 3127 * PCI/etc. bus probe sem.
cca3974e 3128 * Obtains host lock.
1da177e4
LT
3129 *
3130 * SIDE EFFECTS:
198e0fed 3131 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
3132 */
3133
3134void ata_bus_reset(struct ata_port *ap)
3135{
9af5c9c9 3136 struct ata_device *device = ap->link.device;
1da177e4
LT
3137 struct ata_ioports *ioaddr = &ap->ioaddr;
3138 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3139 u8 err;
aec5c3c1 3140 unsigned int dev0, dev1 = 0, devmask = 0;
9b89391c 3141 int rc;
1da177e4 3142
44877b4e 3143 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
1da177e4
LT
3144
3145 /* determine if device 0/1 are present */
3146 if (ap->flags & ATA_FLAG_SATA_RESET)
3147 dev0 = 1;
3148 else {
3149 dev0 = ata_devchk(ap, 0);
3150 if (slave_possible)
3151 dev1 = ata_devchk(ap, 1);
3152 }
3153
3154 if (dev0)
3155 devmask |= (1 << 0);
3156 if (dev1)
3157 devmask |= (1 << 1);
3158
3159 /* select device 0 again */
3160 ap->ops->dev_select(ap, 0);
3161
3162 /* issue bus reset */
9b89391c
TH
3163 if (ap->flags & ATA_FLAG_SRST) {
3164 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3165 if (rc && rc != -ENODEV)
aec5c3c1 3166 goto err_out;
9b89391c 3167 }
1da177e4
LT
3168
3169 /*
3170 * determine by signature whether we have ATA or ATAPI devices
3171 */
9af5c9c9 3172 device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 3173 if ((slave_possible) && (err != 0x81))
9af5c9c9 3174 device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4 3175
1da177e4 3176 /* is double-select really necessary? */
9af5c9c9 3177 if (device[1].class != ATA_DEV_NONE)
1da177e4 3178 ap->ops->dev_select(ap, 1);
9af5c9c9 3179 if (device[0].class != ATA_DEV_NONE)
1da177e4
LT
3180 ap->ops->dev_select(ap, 0);
3181
3182 /* if no devices were detected, disable this port */
9af5c9c9
TH
3183 if ((device[0].class == ATA_DEV_NONE) &&
3184 (device[1].class == ATA_DEV_NONE))
1da177e4
LT
3185 goto err_out;
3186
3187 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3188 /* set up device control for ATA_FLAG_SATA_RESET */
0d5ff566 3189 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3190 }
3191
3192 DPRINTK("EXIT\n");
3193 return;
3194
3195err_out:
f15a1daf 3196 ata_port_printk(ap, KERN_ERR, "disabling port\n");
1da177e4
LT
3197 ap->ops->port_disable(ap);
3198
3199 DPRINTK("EXIT\n");
3200}
3201
d7bb4cc7 3202/**
936fd732
TH
3203 * sata_link_debounce - debounce SATA phy status
3204 * @link: ATA link to debounce SATA phy status for
d7bb4cc7 3205 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3206 * @deadline: deadline jiffies for the operation
d7bb4cc7 3207 *
936fd732 3208* Make sure SStatus of @link reaches stable state, determined by
d7bb4cc7
TH
3209 * holding the same value where DET is not 1 for @duration polled
3210 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3211 * beginning of the stable state. Because DET gets stuck at 1 on
3212 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3213 * until timeout then returns 0 if DET is stable at 1.
3214 *
d4b2bab4
TH
3215 * @timeout is further limited by @deadline. The sooner of the
3216 * two is used.
3217 *
d7bb4cc7
TH
3218 * LOCKING:
3219 * Kernel thread context (may sleep)
3220 *
3221 * RETURNS:
3222 * 0 on success, -errno on failure.
3223 */
936fd732
TH
3224int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3225 unsigned long deadline)
7a7921e8 3226{
d7bb4cc7 3227 unsigned long interval_msec = params[0];
d4b2bab4
TH
3228 unsigned long duration = msecs_to_jiffies(params[1]);
3229 unsigned long last_jiffies, t;
d7bb4cc7
TH
3230 u32 last, cur;
3231 int rc;
3232
d4b2bab4
TH
3233 t = jiffies + msecs_to_jiffies(params[2]);
3234 if (time_before(t, deadline))
3235 deadline = t;
3236
936fd732 3237 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3238 return rc;
3239 cur &= 0xf;
3240
3241 last = cur;
3242 last_jiffies = jiffies;
3243
3244 while (1) {
3245 msleep(interval_msec);
936fd732 3246 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3247 return rc;
3248 cur &= 0xf;
3249
3250 /* DET stable? */
3251 if (cur == last) {
d4b2bab4 3252 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7
TH
3253 continue;
3254 if (time_after(jiffies, last_jiffies + duration))
3255 return 0;
3256 continue;
3257 }
3258
3259 /* unstable, start over */
3260 last = cur;
3261 last_jiffies = jiffies;
3262
f1545154
TH
3263 /* Check deadline. If debouncing failed, return
3264 * -EPIPE to tell upper layer to lower link speed.
3265 */
d4b2bab4 3266 if (time_after(jiffies, deadline))
f1545154 3267 return -EPIPE;
d7bb4cc7
TH
3268 }
3269}
3270
3271/**
936fd732
TH
3272 * sata_link_resume - resume SATA link
3273 * @link: ATA link to resume SATA
d7bb4cc7 3274 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3275 * @deadline: deadline jiffies for the operation
d7bb4cc7 3276 *
936fd732 3277 * Resume SATA phy @link and debounce it.
d7bb4cc7
TH
3278 *
3279 * LOCKING:
3280 * Kernel thread context (may sleep)
3281 *
3282 * RETURNS:
3283 * 0 on success, -errno on failure.
3284 */
936fd732
TH
3285int sata_link_resume(struct ata_link *link, const unsigned long *params,
3286 unsigned long deadline)
d7bb4cc7
TH
3287{
3288 u32 scontrol;
81952c54
TH
3289 int rc;
3290
936fd732 3291 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3292 return rc;
7a7921e8 3293
852ee16a 3294 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54 3295
936fd732 3296 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54 3297 return rc;
7a7921e8 3298
d7bb4cc7
TH
3299 /* Some PHYs react badly if SStatus is pounded immediately
3300 * after resuming. Delay 200ms before debouncing.
3301 */
3302 msleep(200);
7a7921e8 3303
936fd732 3304 return sata_link_debounce(link, params, deadline);
7a7921e8
TH
3305}
3306
f5914a46
TH
3307/**
3308 * ata_std_prereset - prepare for reset
3309 * @ap: ATA port to be reset
d4b2bab4 3310 * @deadline: deadline jiffies for the operation
f5914a46 3311 *
b8cffc6a
TH
3312 * @ap is about to be reset. Initialize it. Failure from
3313 * prereset makes libata abort whole reset sequence and give up
3314 * that port, so prereset should be best-effort. It does its
3315 * best to prepare for reset sequence but if things go wrong, it
3316 * should just whine, not fail.
f5914a46
TH
3317 *
3318 * LOCKING:
3319 * Kernel thread context (may sleep)
3320 *
3321 * RETURNS:
3322 * 0 on success, -errno otherwise.
3323 */
d4b2bab4 3324int ata_std_prereset(struct ata_port *ap, unsigned long deadline)
f5914a46 3325{
936fd732
TH
3326 struct ata_link *link = &ap->link;
3327 struct ata_eh_context *ehc = &link->eh_context;
e9c83914 3328 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3329 int rc;
3330
31daabda 3331 /* handle link resume */
28324304
TH
3332 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3333 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
3334 ehc->i.action |= ATA_EH_HARDRESET;
3335
f5914a46
TH
3336 /* if we're about to do hardreset, nothing more to do */
3337 if (ehc->i.action & ATA_EH_HARDRESET)
3338 return 0;
3339
936fd732 3340 /* if SATA, resume link */
a16abc0b 3341 if (ap->flags & ATA_FLAG_SATA) {
936fd732 3342 rc = sata_link_resume(link, timing, deadline);
b8cffc6a
TH
3343 /* whine about phy resume failure but proceed */
3344 if (rc && rc != -EOPNOTSUPP)
f5914a46
TH
3345 ata_port_printk(ap, KERN_WARNING, "failed to resume "
3346 "link for reset (errno=%d)\n", rc);
f5914a46
TH
3347 }
3348
3349 /* Wait for !BSY if the controller can wait for the first D2H
3350 * Reg FIS and we don't know that no device is attached.
3351 */
936fd732 3352 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_link_offline(link)) {
b8cffc6a 3353 rc = ata_wait_ready(ap, deadline);
6dffaf61 3354 if (rc && rc != -ENODEV) {
b8cffc6a
TH
3355 ata_port_printk(ap, KERN_WARNING, "device not ready "
3356 "(errno=%d), forcing hardreset\n", rc);
3357 ehc->i.action |= ATA_EH_HARDRESET;
3358 }
3359 }
f5914a46
TH
3360
3361 return 0;
3362}
3363
c2bd5804
TH
3364/**
3365 * ata_std_softreset - reset host port via ATA SRST
3366 * @ap: port to reset
c2bd5804 3367 * @classes: resulting classes of attached devices
d4b2bab4 3368 * @deadline: deadline jiffies for the operation
c2bd5804 3369 *
52783c5d 3370 * Reset host port using ATA SRST.
c2bd5804
TH
3371 *
3372 * LOCKING:
3373 * Kernel thread context (may sleep)
3374 *
3375 * RETURNS:
3376 * 0 on success, -errno otherwise.
3377 */
d4b2bab4
TH
3378int ata_std_softreset(struct ata_port *ap, unsigned int *classes,
3379 unsigned long deadline)
c2bd5804 3380{
936fd732 3381 struct ata_link *link = &ap->link;
c2bd5804 3382 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
d4b2bab4
TH
3383 unsigned int devmask = 0;
3384 int rc;
c2bd5804
TH
3385 u8 err;
3386
3387 DPRINTK("ENTER\n");
3388
936fd732 3389 if (ata_link_offline(link)) {
3a39746a
TH
3390 classes[0] = ATA_DEV_NONE;
3391 goto out;
3392 }
3393
c2bd5804
TH
3394 /* determine if device 0/1 are present */
3395 if (ata_devchk(ap, 0))
3396 devmask |= (1 << 0);
3397 if (slave_possible && ata_devchk(ap, 1))
3398 devmask |= (1 << 1);
3399
c2bd5804
TH
3400 /* select device 0 again */
3401 ap->ops->dev_select(ap, 0);
3402
3403 /* issue bus reset */
3404 DPRINTK("about to softreset, devmask=%x\n", devmask);
d4b2bab4 3405 rc = ata_bus_softreset(ap, devmask, deadline);
9b89391c 3406 /* if link is occupied, -ENODEV too is an error */
936fd732 3407 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
d4b2bab4
TH
3408 ata_port_printk(ap, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3409 return rc;
c2bd5804
TH
3410 }
3411
3412 /* determine by signature whether we have ATA or ATAPI devices */
3413 classes[0] = ata_dev_try_classify(ap, 0, &err);
3414 if (slave_possible && err != 0x81)
3415 classes[1] = ata_dev_try_classify(ap, 1, &err);
3416
3a39746a 3417 out:
c2bd5804
TH
3418 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3419 return 0;
3420}
3421
3422/**
b6103f6d 3423 * sata_port_hardreset - reset port via SATA phy reset
c2bd5804 3424 * @ap: port to reset
b6103f6d 3425 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3426 * @deadline: deadline jiffies for the operation
c2bd5804
TH
3427 *
3428 * SATA phy-reset host port using DET bits of SControl register.
c2bd5804
TH
3429 *
3430 * LOCKING:
3431 * Kernel thread context (may sleep)
3432 *
3433 * RETURNS:
3434 * 0 on success, -errno otherwise.
3435 */
d4b2bab4
TH
3436int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing,
3437 unsigned long deadline)
c2bd5804 3438{
936fd732 3439 struct ata_link *link = &ap->link;
852ee16a 3440 u32 scontrol;
81952c54 3441 int rc;
852ee16a 3442
c2bd5804
TH
3443 DPRINTK("ENTER\n");
3444
936fd732 3445 if (sata_set_spd_needed(link)) {
1c3fae4d
TH
3446 /* SATA spec says nothing about how to reconfigure
3447 * spd. To be on the safe side, turn off phy during
3448 * reconfiguration. This works for at least ICH7 AHCI
3449 * and Sil3124.
3450 */
936fd732 3451 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3452 goto out;
81952c54 3453
a34b6fc0 3454 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54 3455
936fd732 3456 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
b6103f6d 3457 goto out;
1c3fae4d 3458
936fd732 3459 sata_set_spd(link);
1c3fae4d
TH
3460 }
3461
3462 /* issue phy wake/reset */
936fd732 3463 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3464 goto out;
81952c54 3465
852ee16a 3466 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54 3467
936fd732 3468 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
b6103f6d 3469 goto out;
c2bd5804 3470
1c3fae4d 3471 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3472 * 10.4.2 says at least 1 ms.
3473 */
3474 msleep(1);
3475
936fd732
TH
3476 /* bring link back */
3477 rc = sata_link_resume(link, timing, deadline);
b6103f6d
TH
3478 out:
3479 DPRINTK("EXIT, rc=%d\n", rc);
3480 return rc;
3481}
3482
3483/**
3484 * sata_std_hardreset - reset host port via SATA phy reset
3485 * @ap: port to reset
3486 * @class: resulting class of attached device
d4b2bab4 3487 * @deadline: deadline jiffies for the operation
b6103f6d
TH
3488 *
3489 * SATA phy-reset host port using DET bits of SControl register,
3490 * wait for !BSY and classify the attached device.
3491 *
3492 * LOCKING:
3493 * Kernel thread context (may sleep)
3494 *
3495 * RETURNS:
3496 * 0 on success, -errno otherwise.
3497 */
d4b2bab4
TH
3498int sata_std_hardreset(struct ata_port *ap, unsigned int *class,
3499 unsigned long deadline)
b6103f6d 3500{
936fd732
TH
3501 struct ata_link *link = &ap->link;
3502 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
b6103f6d
TH
3503 int rc;
3504
3505 DPRINTK("ENTER\n");
3506
3507 /* do hardreset */
d4b2bab4 3508 rc = sata_port_hardreset(ap, timing, deadline);
b6103f6d
TH
3509 if (rc) {
3510 ata_port_printk(ap, KERN_ERR,
3511 "COMRESET failed (errno=%d)\n", rc);
3512 return rc;
3513 }
c2bd5804 3514
c2bd5804 3515 /* TODO: phy layer with polling, timeouts, etc. */
936fd732 3516 if (ata_link_offline(link)) {
c2bd5804
TH
3517 *class = ATA_DEV_NONE;
3518 DPRINTK("EXIT, link offline\n");
3519 return 0;
3520 }
3521
34fee227
TH
3522 /* wait a while before checking status, see SRST for more info */
3523 msleep(150);
3524
d4b2bab4 3525 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3526 /* link occupied, -ENODEV too is an error */
3527 if (rc) {
f15a1daf 3528 ata_port_printk(ap, KERN_ERR,
d4b2bab4
TH
3529 "COMRESET failed (errno=%d)\n", rc);
3530 return rc;
c2bd5804
TH
3531 }
3532
3a39746a
TH
3533 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3534
c2bd5804
TH
3535 *class = ata_dev_try_classify(ap, 0, NULL);
3536
3537 DPRINTK("EXIT, class=%u\n", *class);
3538 return 0;
3539}
3540
3541/**
3542 * ata_std_postreset - standard postreset callback
3543 * @ap: the target ata_port
3544 * @classes: classes of attached devices
3545 *
3546 * This function is invoked after a successful reset. Note that
3547 * the device might have been reset more than once using
3548 * different reset methods before postreset is invoked.
c2bd5804 3549 *
c2bd5804
TH
3550 * LOCKING:
3551 * Kernel thread context (may sleep)
3552 */
3553void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3554{
936fd732 3555 struct ata_link *link = &ap->link;
dc2b3515
TH
3556 u32 serror;
3557
c2bd5804
TH
3558 DPRINTK("ENTER\n");
3559
c2bd5804 3560 /* print link status */
936fd732 3561 sata_print_link_status(link);
c2bd5804 3562
dc2b3515 3563 /* clear SError */
936fd732
TH
3564 if (sata_scr_read(link, SCR_ERROR, &serror) == 0)
3565 sata_scr_write(link, SCR_ERROR, serror);
dc2b3515 3566
c2bd5804
TH
3567 /* is double-select really necessary? */
3568 if (classes[0] != ATA_DEV_NONE)
3569 ap->ops->dev_select(ap, 1);
3570 if (classes[1] != ATA_DEV_NONE)
3571 ap->ops->dev_select(ap, 0);
3572
3a39746a
TH
3573 /* bail out if no device is present */
3574 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3575 DPRINTK("EXIT, no device\n");
3576 return;
3577 }
3578
3579 /* set up device control */
0d5ff566
TH
3580 if (ap->ioaddr.ctl_addr)
3581 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
c2bd5804
TH
3582
3583 DPRINTK("EXIT\n");
3584}
3585
623a3128
TH
3586/**
3587 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3588 * @dev: device to compare against
3589 * @new_class: class of the new device
3590 * @new_id: IDENTIFY page of the new device
3591 *
3592 * Compare @new_class and @new_id against @dev and determine
3593 * whether @dev is the device indicated by @new_class and
3594 * @new_id.
3595 *
3596 * LOCKING:
3597 * None.
3598 *
3599 * RETURNS:
3600 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3601 */
3373efd8
TH
3602static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3603 const u16 *new_id)
623a3128
TH
3604{
3605 const u16 *old_id = dev->id;
a0cf733b
TH
3606 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3607 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3608
3609 if (dev->class != new_class) {
f15a1daf
TH
3610 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3611 dev->class, new_class);
623a3128
TH
3612 return 0;
3613 }
3614
a0cf733b
TH
3615 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3616 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3617 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3618 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3619
3620 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3621 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3622 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3623 return 0;
3624 }
3625
3626 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
3627 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3628 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3629 return 0;
3630 }
3631
623a3128
TH
3632 return 1;
3633}
3634
3635/**
fe30911b 3636 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 3637 * @dev: target ATA device
bff04647 3638 * @readid_flags: read ID flags
623a3128
TH
3639 *
3640 * Re-read IDENTIFY page and make sure @dev is still attached to
3641 * the port.
3642 *
3643 * LOCKING:
3644 * Kernel thread context (may sleep)
3645 *
3646 * RETURNS:
3647 * 0 on success, negative errno otherwise
3648 */
fe30911b 3649int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 3650{
5eb45c02 3651 unsigned int class = dev->class;
9af5c9c9 3652 u16 *id = (void *)dev->link->ap->sector_buf;
623a3128
TH
3653 int rc;
3654
fe635c7e 3655 /* read ID data */
bff04647 3656 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 3657 if (rc)
fe30911b 3658 return rc;
623a3128
TH
3659
3660 /* is the device still there? */
fe30911b
TH
3661 if (!ata_dev_same_device(dev, class, id))
3662 return -ENODEV;
623a3128 3663
fe635c7e 3664 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
3665 return 0;
3666}
3667
3668/**
3669 * ata_dev_revalidate - Revalidate ATA device
3670 * @dev: device to revalidate
3671 * @readid_flags: read ID flags
3672 *
3673 * Re-read IDENTIFY page, make sure @dev is still attached to the
3674 * port and reconfigure it according to the new IDENTIFY page.
3675 *
3676 * LOCKING:
3677 * Kernel thread context (may sleep)
3678 *
3679 * RETURNS:
3680 * 0 on success, negative errno otherwise
3681 */
3682int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3683{
6ddcd3b0 3684 u64 n_sectors = dev->n_sectors;
fe30911b
TH
3685 int rc;
3686
3687 if (!ata_dev_enabled(dev))
3688 return -ENODEV;
3689
3690 /* re-read ID */
3691 rc = ata_dev_reread_id(dev, readid_flags);
3692 if (rc)
3693 goto fail;
623a3128
TH
3694
3695 /* configure device according to the new ID */
efdaedc4 3696 rc = ata_dev_configure(dev);
6ddcd3b0
TH
3697 if (rc)
3698 goto fail;
3699
3700 /* verify n_sectors hasn't changed */
b54eebd6
TH
3701 if (dev->class == ATA_DEV_ATA && n_sectors &&
3702 dev->n_sectors != n_sectors) {
6ddcd3b0
TH
3703 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3704 "%llu != %llu\n",
3705 (unsigned long long)n_sectors,
3706 (unsigned long long)dev->n_sectors);
8270bec4
TH
3707
3708 /* restore original n_sectors */
3709 dev->n_sectors = n_sectors;
3710
6ddcd3b0
TH
3711 rc = -ENODEV;
3712 goto fail;
3713 }
3714
3715 return 0;
623a3128
TH
3716
3717 fail:
f15a1daf 3718 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
3719 return rc;
3720}
3721
6919a0a6
AC
3722struct ata_blacklist_entry {
3723 const char *model_num;
3724 const char *model_rev;
3725 unsigned long horkage;
3726};
3727
3728static const struct ata_blacklist_entry ata_device_blacklist [] = {
3729 /* Devices with DMA related problems under Linux */
3730 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3731 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3732 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3733 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3734 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3735 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3736 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3737 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3738 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3739 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3740 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3741 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3742 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3743 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3744 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3745 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3746 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3747 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3748 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3749 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3750 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3751 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3752 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3753 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3754 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3755 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
3756 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3757 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3758 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
39f19886 3759 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
5acd50f6 3760 { "IOMEGA ZIP 250 ATAPI", NULL, ATA_HORKAGE_NODMA }, /* temporary fix */
39ce7128
TH
3761 { "IOMEGA ZIP 250 ATAPI Floppy",
3762 NULL, ATA_HORKAGE_NODMA },
6919a0a6 3763
18d6e9d5 3764 /* Weird ATAPI devices */
40a1d531 3765 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
18d6e9d5 3766
6919a0a6
AC
3767 /* Devices we expect to fail diagnostics */
3768
3769 /* Devices where NCQ should be avoided */
3770 /* NCQ is slow */
3771 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
09125ea6
TH
3772 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3773 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30
PR
3774 /* NCQ is broken */
3775 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
e8361fc4 3776 { "Maxtor 6B200M0", "BANC1BM0", ATA_HORKAGE_NONCQ },
471e44b2 3777 { "Maxtor 6B200M0", "BANC1B10", ATA_HORKAGE_NONCQ },
0e3dbc01
AC
3778 { "Maxtor 7B250S0", "BANC1B70", ATA_HORKAGE_NONCQ, },
3779 { "Maxtor 7B300S0", "BANC1B70", ATA_HORKAGE_NONCQ },
3780 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
2f8d90ab
PB
3781 { "HITACHI HDS7250SASUN500G 0621KTAWSD", "K2AOAJ0AHITACHI",
3782 ATA_HORKAGE_NONCQ },
96442925
JA
3783 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3784 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
36e337d0
RH
3785 /* Blacklist entries taken from Silicon Image 3124/3132
3786 Windows driver .inf file - also several Linux problem reports */
3787 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3788 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3789 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
bd9c5a39
TH
3790 /* Drives which do spurious command completion */
3791 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
2f8fcebb 3792 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
e14cbfa6 3793 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
2f8fcebb 3794 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
a520f261 3795 { "FUJITSU MHV2080BH", "00840028", ATA_HORKAGE_NONCQ, },
3fb6589c 3796 { "ST9160821AS", "3.CLF", ATA_HORKAGE_NONCQ, },
0e3dbc01 3797 { "ST3160812AS", "3.AD", ATA_HORKAGE_NONCQ, },
5d6aca8d 3798 { "SAMSUNG HD401LJ", "ZZ100-15", ATA_HORKAGE_NONCQ, },
6919a0a6 3799
16c55b03
TH
3800 /* devices which puke on READ_NATIVE_MAX */
3801 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
3802 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
3803 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
3804 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
6919a0a6
AC
3805
3806 /* End Marker */
3807 { }
1da177e4 3808};
2e9edbf8 3809
75683fe7 3810static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 3811{
8bfa79fc
TH
3812 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3813 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 3814 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 3815
8bfa79fc
TH
3816 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3817 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 3818
6919a0a6 3819 while (ad->model_num) {
8bfa79fc 3820 if (!strcmp(ad->model_num, model_num)) {
6919a0a6
AC
3821 if (ad->model_rev == NULL)
3822 return ad->horkage;
8bfa79fc 3823 if (!strcmp(ad->model_rev, model_rev))
6919a0a6 3824 return ad->horkage;
f4b15fef 3825 }
6919a0a6 3826 ad++;
f4b15fef 3827 }
1da177e4
LT
3828 return 0;
3829}
3830
6919a0a6
AC
3831static int ata_dma_blacklisted(const struct ata_device *dev)
3832{
3833 /* We don't support polling DMA.
3834 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3835 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3836 */
9af5c9c9 3837 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
6919a0a6
AC
3838 (dev->flags & ATA_DFLAG_CDB_INTR))
3839 return 1;
75683fe7 3840 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
3841}
3842
a6d5a51c
TH
3843/**
3844 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
3845 * @dev: Device to compute xfermask for
3846 *
acf356b1
TH
3847 * Compute supported xfermask of @dev and store it in
3848 * dev->*_mask. This function is responsible for applying all
3849 * known limits including host controller limits, device
3850 * blacklist, etc...
a6d5a51c
TH
3851 *
3852 * LOCKING:
3853 * None.
a6d5a51c 3854 */
3373efd8 3855static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 3856{
9af5c9c9
TH
3857 struct ata_link *link = dev->link;
3858 struct ata_port *ap = link->ap;
cca3974e 3859 struct ata_host *host = ap->host;
a6d5a51c 3860 unsigned long xfer_mask;
1da177e4 3861
37deecb5 3862 /* controller modes available */
565083e1
TH
3863 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3864 ap->mwdma_mask, ap->udma_mask);
3865
8343f889 3866 /* drive modes available */
37deecb5
TH
3867 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3868 dev->mwdma_mask, dev->udma_mask);
3869 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 3870
b352e57d
AC
3871 /*
3872 * CFA Advanced TrueIDE timings are not allowed on a shared
3873 * cable
3874 */
3875 if (ata_dev_pair(dev)) {
3876 /* No PIO5 or PIO6 */
3877 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3878 /* No MWDMA3 or MWDMA 4 */
3879 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3880 }
3881
37deecb5
TH
3882 if (ata_dma_blacklisted(dev)) {
3883 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
3884 ata_dev_printk(dev, KERN_WARNING,
3885 "device is on DMA blacklist, disabling DMA\n");
37deecb5 3886 }
a6d5a51c 3887
14d66ab7
PV
3888 if ((host->flags & ATA_HOST_SIMPLEX) &&
3889 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
3890 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3891 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3892 "other device, disabling DMA\n");
5444a6f4 3893 }
565083e1 3894
e424675f
JG
3895 if (ap->flags & ATA_FLAG_NO_IORDY)
3896 xfer_mask &= ata_pio_mask_no_iordy(dev);
3897
5444a6f4 3898 if (ap->ops->mode_filter)
a76b62ca 3899 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 3900
8343f889
RH
3901 /* Apply cable rule here. Don't apply it early because when
3902 * we handle hot plug the cable type can itself change.
3903 * Check this last so that we know if the transfer rate was
3904 * solely limited by the cable.
3905 * Unknown or 80 wire cables reported host side are checked
3906 * drive side as well. Cases where we know a 40wire cable
3907 * is used safely for 80 are not checked here.
3908 */
3909 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3910 /* UDMA/44 or higher would be available */
3911 if((ap->cbl == ATA_CBL_PATA40) ||
3912 (ata_drive_40wire(dev->id) &&
3913 (ap->cbl == ATA_CBL_PATA_UNK ||
3914 ap->cbl == ATA_CBL_PATA80))) {
3915 ata_dev_printk(dev, KERN_WARNING,
3916 "limited to UDMA/33 due to 40-wire cable\n");
3917 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3918 }
3919
565083e1
TH
3920 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3921 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
3922}
3923
1da177e4
LT
3924/**
3925 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
3926 * @dev: Device to which command will be sent
3927 *
780a87f7
JG
3928 * Issue SET FEATURES - XFER MODE command to device @dev
3929 * on port @ap.
3930 *
1da177e4 3931 * LOCKING:
0cba632b 3932 * PCI/etc. bus probe sem.
83206a29
TH
3933 *
3934 * RETURNS:
3935 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
3936 */
3937
3373efd8 3938static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 3939{
a0123703 3940 struct ata_taskfile tf;
83206a29 3941 unsigned int err_mask;
1da177e4
LT
3942
3943 /* set up set-features taskfile */
3944 DPRINTK("set features - xfer mode\n");
3945
464cf177
TH
3946 /* Some controllers and ATAPI devices show flaky interrupt
3947 * behavior after setting xfer mode. Use polling instead.
3948 */
3373efd8 3949 ata_tf_init(dev, &tf);
a0123703
TH
3950 tf.command = ATA_CMD_SET_FEATURES;
3951 tf.feature = SETFEATURES_XFER;
464cf177 3952 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703
TH
3953 tf.protocol = ATA_PROT_NODATA;
3954 tf.nsect = dev->xfer_mode;
1da177e4 3955
3373efd8 3956 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 3957
83206a29
TH
3958 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3959 return err_mask;
1da177e4
LT
3960}
3961
8bf62ece
AL
3962/**
3963 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 3964 * @dev: Device to which command will be sent
e2a7f77a
RD
3965 * @heads: Number of heads (taskfile parameter)
3966 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
3967 *
3968 * LOCKING:
6aff8f1f
TH
3969 * Kernel thread context (may sleep)
3970 *
3971 * RETURNS:
3972 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 3973 */
3373efd8
TH
3974static unsigned int ata_dev_init_params(struct ata_device *dev,
3975 u16 heads, u16 sectors)
8bf62ece 3976{
a0123703 3977 struct ata_taskfile tf;
6aff8f1f 3978 unsigned int err_mask;
8bf62ece
AL
3979
3980 /* Number of sectors per track 1-255. Number of heads 1-16 */
3981 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3982 return AC_ERR_INVALID;
8bf62ece
AL
3983
3984 /* set up init dev params taskfile */
3985 DPRINTK("init dev params \n");
3986
3373efd8 3987 ata_tf_init(dev, &tf);
a0123703
TH
3988 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3989 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3990 tf.protocol = ATA_PROT_NODATA;
3991 tf.nsect = sectors;
3992 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3993
3373efd8 3994 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
18b2466c
AC
3995 /* A clean abort indicates an original or just out of spec drive
3996 and we should continue as we issue the setup based on the
3997 drive reported working geometry */
3998 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
3999 err_mask = 0;
8bf62ece 4000
6aff8f1f
TH
4001 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4002 return err_mask;
8bf62ece
AL
4003}
4004
1da177e4 4005/**
0cba632b
JG
4006 * ata_sg_clean - Unmap DMA memory associated with command
4007 * @qc: Command containing DMA memory to be released
4008 *
4009 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
4010 *
4011 * LOCKING:
cca3974e 4012 * spin_lock_irqsave(host lock)
1da177e4 4013 */
70e6ad0c 4014void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
4015{
4016 struct ata_port *ap = qc->ap;
cedc9a47 4017 struct scatterlist *sg = qc->__sg;
1da177e4 4018 int dir = qc->dma_dir;
cedc9a47 4019 void *pad_buf = NULL;
1da177e4 4020
a4631474
TH
4021 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4022 WARN_ON(sg == NULL);
1da177e4
LT
4023
4024 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 4025 WARN_ON(qc->n_elem > 1);
1da177e4 4026
2c13b7ce 4027 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 4028
cedc9a47
JG
4029 /* if we padded the buffer out to 32-bit bound, and data
4030 * xfer direction is from-device, we must copy from the
4031 * pad buffer back into the supplied buffer
4032 */
4033 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4034 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4035
4036 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 4037 if (qc->n_elem)
2f1f610b 4038 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
4039 /* restore last sg */
4040 sg[qc->orig_n_elem - 1].length += qc->pad_len;
4041 if (pad_buf) {
4042 struct scatterlist *psg = &qc->pad_sgent;
4043 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4044 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 4045 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4046 }
4047 } else {
2e242fa9 4048 if (qc->n_elem)
2f1f610b 4049 dma_unmap_single(ap->dev,
e1410f2d
JG
4050 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4051 dir);
cedc9a47
JG
4052 /* restore sg */
4053 sg->length += qc->pad_len;
4054 if (pad_buf)
4055 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4056 pad_buf, qc->pad_len);
4057 }
1da177e4
LT
4058
4059 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 4060 qc->__sg = NULL;
1da177e4
LT
4061}
4062
4063/**
4064 * ata_fill_sg - Fill PCI IDE PRD table
4065 * @qc: Metadata associated with taskfile to be transferred
4066 *
780a87f7
JG
4067 * Fill PCI IDE PRD (scatter-gather) table with segments
4068 * associated with the current disk command.
4069 *
1da177e4 4070 * LOCKING:
cca3974e 4071 * spin_lock_irqsave(host lock)
1da177e4
LT
4072 *
4073 */
4074static void ata_fill_sg(struct ata_queued_cmd *qc)
4075{
1da177e4 4076 struct ata_port *ap = qc->ap;
cedc9a47
JG
4077 struct scatterlist *sg;
4078 unsigned int idx;
1da177e4 4079
a4631474 4080 WARN_ON(qc->__sg == NULL);
f131883e 4081 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
4082
4083 idx = 0;
cedc9a47 4084 ata_for_each_sg(sg, qc) {
1da177e4
LT
4085 u32 addr, offset;
4086 u32 sg_len, len;
4087
4088 /* determine if physical DMA addr spans 64K boundary.
4089 * Note h/w doesn't support 64-bit, so we unconditionally
4090 * truncate dma_addr_t to u32.
4091 */
4092 addr = (u32) sg_dma_address(sg);
4093 sg_len = sg_dma_len(sg);
4094
4095 while (sg_len) {
4096 offset = addr & 0xffff;
4097 len = sg_len;
4098 if ((offset + sg_len) > 0x10000)
4099 len = 0x10000 - offset;
4100
4101 ap->prd[idx].addr = cpu_to_le32(addr);
4102 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4103 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4104
4105 idx++;
4106 sg_len -= len;
4107 addr += len;
4108 }
4109 }
4110
4111 if (idx)
4112 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4113}
b9a4197e 4114
d26fc955
AC
4115/**
4116 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4117 * @qc: Metadata associated with taskfile to be transferred
4118 *
4119 * Fill PCI IDE PRD (scatter-gather) table with segments
4120 * associated with the current disk command. Perform the fill
4121 * so that we avoid writing any length 64K records for
4122 * controllers that don't follow the spec.
4123 *
4124 * LOCKING:
4125 * spin_lock_irqsave(host lock)
4126 *
4127 */
4128static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4129{
4130 struct ata_port *ap = qc->ap;
4131 struct scatterlist *sg;
4132 unsigned int idx;
4133
4134 WARN_ON(qc->__sg == NULL);
4135 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4136
4137 idx = 0;
4138 ata_for_each_sg(sg, qc) {
4139 u32 addr, offset;
4140 u32 sg_len, len, blen;
4141
4142 /* determine if physical DMA addr spans 64K boundary.
4143 * Note h/w doesn't support 64-bit, so we unconditionally
4144 * truncate dma_addr_t to u32.
4145 */
4146 addr = (u32) sg_dma_address(sg);
4147 sg_len = sg_dma_len(sg);
4148
4149 while (sg_len) {
4150 offset = addr & 0xffff;
4151 len = sg_len;
4152 if ((offset + sg_len) > 0x10000)
4153 len = 0x10000 - offset;
4154
4155 blen = len & 0xffff;
4156 ap->prd[idx].addr = cpu_to_le32(addr);
4157 if (blen == 0) {
4158 /* Some PATA chipsets like the CS5530 can't
4159 cope with 0x0000 meaning 64K as the spec says */
4160 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4161 blen = 0x8000;
4162 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4163 }
4164 ap->prd[idx].flags_len = cpu_to_le32(blen);
4165 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4166
4167 idx++;
4168 sg_len -= len;
4169 addr += len;
4170 }
4171 }
4172
4173 if (idx)
4174 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4175}
4176
1da177e4
LT
4177/**
4178 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4179 * @qc: Metadata associated with taskfile to check
4180 *
780a87f7
JG
4181 * Allow low-level driver to filter ATA PACKET commands, returning
4182 * a status indicating whether or not it is OK to use DMA for the
4183 * supplied PACKET command.
4184 *
1da177e4 4185 * LOCKING:
cca3974e 4186 * spin_lock_irqsave(host lock)
0cba632b 4187 *
1da177e4
LT
4188 * RETURNS: 0 when ATAPI DMA can be used
4189 * nonzero otherwise
4190 */
4191int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4192{
4193 struct ata_port *ap = qc->ap;
b9a4197e
TH
4194
4195 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4196 * few ATAPI devices choke on such DMA requests.
4197 */
4198 if (unlikely(qc->nbytes & 15))
4199 return 1;
6f23a31d 4200
1da177e4 4201 if (ap->ops->check_atapi_dma)
b9a4197e 4202 return ap->ops->check_atapi_dma(qc);
1da177e4 4203
b9a4197e 4204 return 0;
1da177e4 4205}
b9a4197e 4206
1da177e4
LT
4207/**
4208 * ata_qc_prep - Prepare taskfile for submission
4209 * @qc: Metadata associated with taskfile to be prepared
4210 *
780a87f7
JG
4211 * Prepare ATA taskfile for submission.
4212 *
1da177e4 4213 * LOCKING:
cca3974e 4214 * spin_lock_irqsave(host lock)
1da177e4
LT
4215 */
4216void ata_qc_prep(struct ata_queued_cmd *qc)
4217{
4218 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4219 return;
4220
4221 ata_fill_sg(qc);
4222}
4223
d26fc955
AC
4224/**
4225 * ata_dumb_qc_prep - Prepare taskfile for submission
4226 * @qc: Metadata associated with taskfile to be prepared
4227 *
4228 * Prepare ATA taskfile for submission.
4229 *
4230 * LOCKING:
4231 * spin_lock_irqsave(host lock)
4232 */
4233void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4234{
4235 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4236 return;
4237
4238 ata_fill_sg_dumb(qc);
4239}
4240
e46834cd
BK
4241void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4242
0cba632b
JG
4243/**
4244 * ata_sg_init_one - Associate command with memory buffer
4245 * @qc: Command to be associated
4246 * @buf: Memory buffer
4247 * @buflen: Length of memory buffer, in bytes.
4248 *
4249 * Initialize the data-related elements of queued_cmd @qc
4250 * to point to a single memory buffer, @buf of byte length @buflen.
4251 *
4252 * LOCKING:
cca3974e 4253 * spin_lock_irqsave(host lock)
0cba632b
JG
4254 */
4255
1da177e4
LT
4256void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4257{
1da177e4
LT
4258 qc->flags |= ATA_QCFLAG_SINGLE;
4259
cedc9a47 4260 qc->__sg = &qc->sgent;
1da177e4 4261 qc->n_elem = 1;
cedc9a47 4262 qc->orig_n_elem = 1;
1da177e4 4263 qc->buf_virt = buf;
233277ca 4264 qc->nbytes = buflen;
1da177e4 4265
61c0596c 4266 sg_init_one(&qc->sgent, buf, buflen);
1da177e4
LT
4267}
4268
0cba632b
JG
4269/**
4270 * ata_sg_init - Associate command with scatter-gather table.
4271 * @qc: Command to be associated
4272 * @sg: Scatter-gather table.
4273 * @n_elem: Number of elements in s/g table.
4274 *
4275 * Initialize the data-related elements of queued_cmd @qc
4276 * to point to a scatter-gather table @sg, containing @n_elem
4277 * elements.
4278 *
4279 * LOCKING:
cca3974e 4280 * spin_lock_irqsave(host lock)
0cba632b
JG
4281 */
4282
1da177e4
LT
4283void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4284 unsigned int n_elem)
4285{
4286 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 4287 qc->__sg = sg;
1da177e4 4288 qc->n_elem = n_elem;
cedc9a47 4289 qc->orig_n_elem = n_elem;
1da177e4
LT
4290}
4291
4292/**
0cba632b
JG
4293 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4294 * @qc: Command with memory buffer to be mapped.
4295 *
4296 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
4297 *
4298 * LOCKING:
cca3974e 4299 * spin_lock_irqsave(host lock)
1da177e4
LT
4300 *
4301 * RETURNS:
0cba632b 4302 * Zero on success, negative on error.
1da177e4
LT
4303 */
4304
4305static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4306{
4307 struct ata_port *ap = qc->ap;
4308 int dir = qc->dma_dir;
cedc9a47 4309 struct scatterlist *sg = qc->__sg;
1da177e4 4310 dma_addr_t dma_address;
2e242fa9 4311 int trim_sg = 0;
1da177e4 4312
cedc9a47
JG
4313 /* we must lengthen transfers to end on a 32-bit boundary */
4314 qc->pad_len = sg->length & 3;
4315 if (qc->pad_len) {
4316 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4317 struct scatterlist *psg = &qc->pad_sgent;
4318
a4631474 4319 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4320
4321 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4322
4323 if (qc->tf.flags & ATA_TFLAG_WRITE)
4324 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4325 qc->pad_len);
4326
4327 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4328 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4329 /* trim sg */
4330 sg->length -= qc->pad_len;
2e242fa9
TH
4331 if (sg->length == 0)
4332 trim_sg = 1;
cedc9a47
JG
4333
4334 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4335 sg->length, qc->pad_len);
4336 }
4337
2e242fa9
TH
4338 if (trim_sg) {
4339 qc->n_elem--;
e1410f2d
JG
4340 goto skip_map;
4341 }
4342
2f1f610b 4343 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 4344 sg->length, dir);
537a95d9
TH
4345 if (dma_mapping_error(dma_address)) {
4346 /* restore sg */
4347 sg->length += qc->pad_len;
1da177e4 4348 return -1;
537a95d9 4349 }
1da177e4
LT
4350
4351 sg_dma_address(sg) = dma_address;
32529e01 4352 sg_dma_len(sg) = sg->length;
1da177e4 4353
2e242fa9 4354skip_map:
1da177e4
LT
4355 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4356 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4357
4358 return 0;
4359}
4360
4361/**
0cba632b
JG
4362 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4363 * @qc: Command with scatter-gather table to be mapped.
4364 *
4365 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
4366 *
4367 * LOCKING:
cca3974e 4368 * spin_lock_irqsave(host lock)
1da177e4
LT
4369 *
4370 * RETURNS:
0cba632b 4371 * Zero on success, negative on error.
1da177e4
LT
4372 *
4373 */
4374
4375static int ata_sg_setup(struct ata_queued_cmd *qc)
4376{
4377 struct ata_port *ap = qc->ap;
cedc9a47
JG
4378 struct scatterlist *sg = qc->__sg;
4379 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 4380 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4 4381
44877b4e 4382 VPRINTK("ENTER, ata%u\n", ap->print_id);
a4631474 4383 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 4384
cedc9a47
JG
4385 /* we must lengthen transfers to end on a 32-bit boundary */
4386 qc->pad_len = lsg->length & 3;
4387 if (qc->pad_len) {
4388 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4389 struct scatterlist *psg = &qc->pad_sgent;
4390 unsigned int offset;
4391
a4631474 4392 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4393
4394 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4395
4396 /*
4397 * psg->page/offset are used to copy to-be-written
4398 * data in this function or read data in ata_sg_clean.
4399 */
4400 offset = lsg->offset + lsg->length - qc->pad_len;
4401 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4402 psg->offset = offset_in_page(offset);
4403
4404 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4405 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4406 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 4407 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4408 }
4409
4410 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4411 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4412 /* trim last sg */
4413 lsg->length -= qc->pad_len;
e1410f2d
JG
4414 if (lsg->length == 0)
4415 trim_sg = 1;
cedc9a47
JG
4416
4417 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4418 qc->n_elem - 1, lsg->length, qc->pad_len);
4419 }
4420
e1410f2d
JG
4421 pre_n_elem = qc->n_elem;
4422 if (trim_sg && pre_n_elem)
4423 pre_n_elem--;
4424
4425 if (!pre_n_elem) {
4426 n_elem = 0;
4427 goto skip_map;
4428 }
4429
1da177e4 4430 dir = qc->dma_dir;
2f1f610b 4431 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
4432 if (n_elem < 1) {
4433 /* restore last sg */
4434 lsg->length += qc->pad_len;
1da177e4 4435 return -1;
537a95d9 4436 }
1da177e4
LT
4437
4438 DPRINTK("%d sg elements mapped\n", n_elem);
4439
e1410f2d 4440skip_map:
1da177e4
LT
4441 qc->n_elem = n_elem;
4442
4443 return 0;
4444}
4445
0baab86b 4446/**
c893a3ae 4447 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
4448 * @buf: Buffer to swap
4449 * @buf_words: Number of 16-bit words in buffer.
4450 *
4451 * Swap halves of 16-bit words if needed to convert from
4452 * little-endian byte order to native cpu byte order, or
4453 * vice-versa.
4454 *
4455 * LOCKING:
6f0ef4fa 4456 * Inherited from caller.
0baab86b 4457 */
1da177e4
LT
4458void swap_buf_le16(u16 *buf, unsigned int buf_words)
4459{
4460#ifdef __BIG_ENDIAN
4461 unsigned int i;
4462
4463 for (i = 0; i < buf_words; i++)
4464 buf[i] = le16_to_cpu(buf[i]);
4465#endif /* __BIG_ENDIAN */
4466}
4467
6ae4cfb5 4468/**
0d5ff566 4469 * ata_data_xfer - Transfer data by PIO
a6b2c5d4 4470 * @adev: device to target
6ae4cfb5
AL
4471 * @buf: data buffer
4472 * @buflen: buffer length
344babaa 4473 * @write_data: read/write
6ae4cfb5
AL
4474 *
4475 * Transfer data from/to the device data register by PIO.
4476 *
4477 * LOCKING:
4478 * Inherited from caller.
6ae4cfb5 4479 */
0d5ff566
TH
4480void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4481 unsigned int buflen, int write_data)
1da177e4 4482{
9af5c9c9 4483 struct ata_port *ap = adev->link->ap;
6ae4cfb5 4484 unsigned int words = buflen >> 1;
1da177e4 4485
6ae4cfb5 4486 /* Transfer multiple of 2 bytes */
1da177e4 4487 if (write_data)
0d5ff566 4488 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
1da177e4 4489 else
0d5ff566 4490 ioread16_rep(ap->ioaddr.data_addr, buf, words);
6ae4cfb5
AL
4491
4492 /* Transfer trailing 1 byte, if any. */
4493 if (unlikely(buflen & 0x01)) {
4494 u16 align_buf[1] = { 0 };
4495 unsigned char *trailing_buf = buf + buflen - 1;
4496
4497 if (write_data) {
4498 memcpy(align_buf, trailing_buf, 1);
0d5ff566 4499 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
6ae4cfb5 4500 } else {
0d5ff566 4501 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
6ae4cfb5
AL
4502 memcpy(trailing_buf, align_buf, 1);
4503 }
4504 }
1da177e4
LT
4505}
4506
75e99585 4507/**
0d5ff566 4508 * ata_data_xfer_noirq - Transfer data by PIO
75e99585
AC
4509 * @adev: device to target
4510 * @buf: data buffer
4511 * @buflen: buffer length
4512 * @write_data: read/write
4513 *
88574551 4514 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
4515 * transfer with interrupts disabled.
4516 *
4517 * LOCKING:
4518 * Inherited from caller.
4519 */
0d5ff566
TH
4520void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4521 unsigned int buflen, int write_data)
75e99585
AC
4522{
4523 unsigned long flags;
4524 local_irq_save(flags);
0d5ff566 4525 ata_data_xfer(adev, buf, buflen, write_data);
75e99585
AC
4526 local_irq_restore(flags);
4527}
4528
4529
6ae4cfb5 4530/**
5a5dbd18 4531 * ata_pio_sector - Transfer a sector of data.
6ae4cfb5
AL
4532 * @qc: Command on going
4533 *
5a5dbd18 4534 * Transfer qc->sect_size bytes of data from/to the ATA device.
6ae4cfb5
AL
4535 *
4536 * LOCKING:
4537 * Inherited from caller.
4538 */
4539
1da177e4
LT
4540static void ata_pio_sector(struct ata_queued_cmd *qc)
4541{
4542 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4543 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4544 struct ata_port *ap = qc->ap;
4545 struct page *page;
4546 unsigned int offset;
4547 unsigned char *buf;
4548
5a5dbd18 4549 if (qc->curbytes == qc->nbytes - qc->sect_size)
14be71f4 4550 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4551
4552 page = sg[qc->cursg].page;
726f0785 4553 offset = sg[qc->cursg].offset + qc->cursg_ofs;
1da177e4
LT
4554
4555 /* get the current page and offset */
4556 page = nth_page(page, (offset >> PAGE_SHIFT));
4557 offset %= PAGE_SIZE;
4558
1da177e4
LT
4559 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4560
91b8b313
AL
4561 if (PageHighMem(page)) {
4562 unsigned long flags;
4563
a6b2c5d4 4564 /* FIXME: use a bounce buffer */
91b8b313
AL
4565 local_irq_save(flags);
4566 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4567
91b8b313 4568 /* do the actual data transfer */
5a5dbd18 4569 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
1da177e4 4570
91b8b313
AL
4571 kunmap_atomic(buf, KM_IRQ0);
4572 local_irq_restore(flags);
4573 } else {
4574 buf = page_address(page);
5a5dbd18 4575 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
91b8b313 4576 }
1da177e4 4577
5a5dbd18
ML
4578 qc->curbytes += qc->sect_size;
4579 qc->cursg_ofs += qc->sect_size;
1da177e4 4580
726f0785 4581 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
1da177e4
LT
4582 qc->cursg++;
4583 qc->cursg_ofs = 0;
4584 }
1da177e4 4585}
1da177e4 4586
07f6f7d0 4587/**
5a5dbd18 4588 * ata_pio_sectors - Transfer one or many sectors.
07f6f7d0
AL
4589 * @qc: Command on going
4590 *
5a5dbd18 4591 * Transfer one or many sectors of data from/to the
07f6f7d0
AL
4592 * ATA device for the DRQ request.
4593 *
4594 * LOCKING:
4595 * Inherited from caller.
4596 */
1da177e4 4597
07f6f7d0
AL
4598static void ata_pio_sectors(struct ata_queued_cmd *qc)
4599{
4600 if (is_multi_taskfile(&qc->tf)) {
4601 /* READ/WRITE MULTIPLE */
4602 unsigned int nsect;
4603
587005de 4604 WARN_ON(qc->dev->multi_count == 0);
1da177e4 4605
5a5dbd18 4606 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
726f0785 4607 qc->dev->multi_count);
07f6f7d0
AL
4608 while (nsect--)
4609 ata_pio_sector(qc);
4610 } else
4611 ata_pio_sector(qc);
4612}
4613
c71c1857
AL
4614/**
4615 * atapi_send_cdb - Write CDB bytes to hardware
4616 * @ap: Port to which ATAPI device is attached.
4617 * @qc: Taskfile currently active
4618 *
4619 * When device has indicated its readiness to accept
4620 * a CDB, this function is called. Send the CDB.
4621 *
4622 * LOCKING:
4623 * caller.
4624 */
4625
4626static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4627{
4628 /* send SCSI cdb */
4629 DPRINTK("send cdb\n");
db024d53 4630 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 4631
a6b2c5d4 4632 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
4633 ata_altstatus(ap); /* flush */
4634
4635 switch (qc->tf.protocol) {
4636 case ATA_PROT_ATAPI:
4637 ap->hsm_task_state = HSM_ST;
4638 break;
4639 case ATA_PROT_ATAPI_NODATA:
4640 ap->hsm_task_state = HSM_ST_LAST;
4641 break;
4642 case ATA_PROT_ATAPI_DMA:
4643 ap->hsm_task_state = HSM_ST_LAST;
4644 /* initiate bmdma */
4645 ap->ops->bmdma_start(qc);
4646 break;
4647 }
1da177e4
LT
4648}
4649
6ae4cfb5
AL
4650/**
4651 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4652 * @qc: Command on going
4653 * @bytes: number of bytes
4654 *
4655 * Transfer Transfer data from/to the ATAPI device.
4656 *
4657 * LOCKING:
4658 * Inherited from caller.
4659 *
4660 */
4661
1da177e4
LT
4662static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4663{
4664 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4665 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4666 struct ata_port *ap = qc->ap;
4667 struct page *page;
4668 unsigned char *buf;
4669 unsigned int offset, count;
4670
563a6e1f 4671 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 4672 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4673
4674next_sg:
563a6e1f 4675 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 4676 /*
563a6e1f
AL
4677 * The end of qc->sg is reached and the device expects
4678 * more data to transfer. In order not to overrun qc->sg
4679 * and fulfill length specified in the byte count register,
4680 * - for read case, discard trailing data from the device
4681 * - for write case, padding zero data to the device
4682 */
4683 u16 pad_buf[1] = { 0 };
4684 unsigned int words = bytes >> 1;
4685 unsigned int i;
4686
4687 if (words) /* warning if bytes > 1 */
f15a1daf
TH
4688 ata_dev_printk(qc->dev, KERN_WARNING,
4689 "%u bytes trailing data\n", bytes);
563a6e1f
AL
4690
4691 for (i = 0; i < words; i++)
a6b2c5d4 4692 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
563a6e1f 4693
14be71f4 4694 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
4695 return;
4696 }
4697
cedc9a47 4698 sg = &qc->__sg[qc->cursg];
1da177e4 4699
1da177e4
LT
4700 page = sg->page;
4701 offset = sg->offset + qc->cursg_ofs;
4702
4703 /* get the current page and offset */
4704 page = nth_page(page, (offset >> PAGE_SHIFT));
4705 offset %= PAGE_SIZE;
4706
6952df03 4707 /* don't overrun current sg */
32529e01 4708 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
4709
4710 /* don't cross page boundaries */
4711 count = min(count, (unsigned int)PAGE_SIZE - offset);
4712
7282aa4b
AL
4713 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4714
91b8b313
AL
4715 if (PageHighMem(page)) {
4716 unsigned long flags;
4717
a6b2c5d4 4718 /* FIXME: use bounce buffer */
91b8b313
AL
4719 local_irq_save(flags);
4720 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4721
91b8b313 4722 /* do the actual data transfer */
a6b2c5d4 4723 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 4724
91b8b313
AL
4725 kunmap_atomic(buf, KM_IRQ0);
4726 local_irq_restore(flags);
4727 } else {
4728 buf = page_address(page);
a6b2c5d4 4729 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 4730 }
1da177e4
LT
4731
4732 bytes -= count;
4733 qc->curbytes += count;
4734 qc->cursg_ofs += count;
4735
32529e01 4736 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
4737 qc->cursg++;
4738 qc->cursg_ofs = 0;
4739 }
4740
563a6e1f 4741 if (bytes)
1da177e4 4742 goto next_sg;
1da177e4
LT
4743}
4744
6ae4cfb5
AL
4745/**
4746 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4747 * @qc: Command on going
4748 *
4749 * Transfer Transfer data from/to the ATAPI device.
4750 *
4751 * LOCKING:
4752 * Inherited from caller.
6ae4cfb5
AL
4753 */
4754
1da177e4
LT
4755static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4756{
4757 struct ata_port *ap = qc->ap;
4758 struct ata_device *dev = qc->dev;
4759 unsigned int ireason, bc_lo, bc_hi, bytes;
4760 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4761
eec4c3f3
AL
4762 /* Abuse qc->result_tf for temp storage of intermediate TF
4763 * here to save some kernel stack usage.
4764 * For normal completion, qc->result_tf is not relevant. For
4765 * error, qc->result_tf is later overwritten by ata_qc_complete().
4766 * So, the correctness of qc->result_tf is not affected.
4767 */
4768 ap->ops->tf_read(ap, &qc->result_tf);
4769 ireason = qc->result_tf.nsect;
4770 bc_lo = qc->result_tf.lbam;
4771 bc_hi = qc->result_tf.lbah;
1da177e4
LT
4772 bytes = (bc_hi << 8) | bc_lo;
4773
4774 /* shall be cleared to zero, indicating xfer of data */
4775 if (ireason & (1 << 0))
4776 goto err_out;
4777
4778 /* make sure transfer direction matches expected */
4779 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4780 if (do_write != i_write)
4781 goto err_out;
4782
44877b4e 4783 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
312f7da2 4784
1da177e4
LT
4785 __atapi_pio_bytes(qc, bytes);
4786
4787 return;
4788
4789err_out:
f15a1daf 4790 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 4791 qc->err_mask |= AC_ERR_HSM;
14be71f4 4792 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
4793}
4794
4795/**
c234fb00
AL
4796 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4797 * @ap: the target ata_port
4798 * @qc: qc on going
1da177e4 4799 *
c234fb00
AL
4800 * RETURNS:
4801 * 1 if ok in workqueue, 0 otherwise.
1da177e4 4802 */
c234fb00
AL
4803
4804static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 4805{
c234fb00
AL
4806 if (qc->tf.flags & ATA_TFLAG_POLLING)
4807 return 1;
1da177e4 4808
c234fb00
AL
4809 if (ap->hsm_task_state == HSM_ST_FIRST) {
4810 if (qc->tf.protocol == ATA_PROT_PIO &&
4811 (qc->tf.flags & ATA_TFLAG_WRITE))
4812 return 1;
1da177e4 4813
c234fb00
AL
4814 if (is_atapi_taskfile(&qc->tf) &&
4815 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4816 return 1;
fe79e683
AL
4817 }
4818
c234fb00
AL
4819 return 0;
4820}
1da177e4 4821
c17ea20d
TH
4822/**
4823 * ata_hsm_qc_complete - finish a qc running on standard HSM
4824 * @qc: Command to complete
4825 * @in_wq: 1 if called from workqueue, 0 otherwise
4826 *
4827 * Finish @qc which is running on standard HSM.
4828 *
4829 * LOCKING:
cca3974e 4830 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
4831 * Otherwise, none on entry and grabs host lock.
4832 */
4833static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4834{
4835 struct ata_port *ap = qc->ap;
4836 unsigned long flags;
4837
4838 if (ap->ops->error_handler) {
4839 if (in_wq) {
ba6a1308 4840 spin_lock_irqsave(ap->lock, flags);
c17ea20d 4841
cca3974e
JG
4842 /* EH might have kicked in while host lock is
4843 * released.
c17ea20d
TH
4844 */
4845 qc = ata_qc_from_tag(ap, qc->tag);
4846 if (qc) {
4847 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
83625006 4848 ap->ops->irq_on(ap);
c17ea20d
TH
4849 ata_qc_complete(qc);
4850 } else
4851 ata_port_freeze(ap);
4852 }
4853
ba6a1308 4854 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4855 } else {
4856 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4857 ata_qc_complete(qc);
4858 else
4859 ata_port_freeze(ap);
4860 }
4861 } else {
4862 if (in_wq) {
ba6a1308 4863 spin_lock_irqsave(ap->lock, flags);
83625006 4864 ap->ops->irq_on(ap);
c17ea20d 4865 ata_qc_complete(qc);
ba6a1308 4866 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4867 } else
4868 ata_qc_complete(qc);
4869 }
4870}
4871
bb5cb290
AL
4872/**
4873 * ata_hsm_move - move the HSM to the next state.
4874 * @ap: the target ata_port
4875 * @qc: qc on going
4876 * @status: current device status
4877 * @in_wq: 1 if called from workqueue, 0 otherwise
4878 *
4879 * RETURNS:
4880 * 1 when poll next status needed, 0 otherwise.
4881 */
9a1004d0
TH
4882int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4883 u8 status, int in_wq)
e2cec771 4884{
bb5cb290
AL
4885 unsigned long flags = 0;
4886 int poll_next;
4887
6912ccd5
AL
4888 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4889
bb5cb290
AL
4890 /* Make sure ata_qc_issue_prot() does not throw things
4891 * like DMA polling into the workqueue. Notice that
4892 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4893 */
c234fb00 4894 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 4895
e2cec771 4896fsm_start:
999bb6f4 4897 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
44877b4e 4898 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
999bb6f4 4899
e2cec771
AL
4900 switch (ap->hsm_task_state) {
4901 case HSM_ST_FIRST:
bb5cb290
AL
4902 /* Send first data block or PACKET CDB */
4903
4904 /* If polling, we will stay in the work queue after
4905 * sending the data. Otherwise, interrupt handler
4906 * takes over after sending the data.
4907 */
4908 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4909
e2cec771 4910 /* check device status */
3655d1d3
AL
4911 if (unlikely((status & ATA_DRQ) == 0)) {
4912 /* handle BSY=0, DRQ=0 as error */
4913 if (likely(status & (ATA_ERR | ATA_DF)))
4914 /* device stops HSM for abort/error */
4915 qc->err_mask |= AC_ERR_DEV;
4916 else
4917 /* HSM violation. Let EH handle this */
4918 qc->err_mask |= AC_ERR_HSM;
4919
14be71f4 4920 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 4921 goto fsm_start;
1da177e4
LT
4922 }
4923
71601958
AL
4924 /* Device should not ask for data transfer (DRQ=1)
4925 * when it finds something wrong.
eee6c32f
AL
4926 * We ignore DRQ here and stop the HSM by
4927 * changing hsm_task_state to HSM_ST_ERR and
4928 * let the EH abort the command or reset the device.
71601958
AL
4929 */
4930 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
4931 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4932 "error, dev_stat 0x%X\n", status);
3655d1d3 4933 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4934 ap->hsm_task_state = HSM_ST_ERR;
4935 goto fsm_start;
71601958 4936 }
1da177e4 4937
bb5cb290
AL
4938 /* Send the CDB (atapi) or the first data block (ata pio out).
4939 * During the state transition, interrupt handler shouldn't
4940 * be invoked before the data transfer is complete and
4941 * hsm_task_state is changed. Hence, the following locking.
4942 */
4943 if (in_wq)
ba6a1308 4944 spin_lock_irqsave(ap->lock, flags);
1da177e4 4945
bb5cb290
AL
4946 if (qc->tf.protocol == ATA_PROT_PIO) {
4947 /* PIO data out protocol.
4948 * send first data block.
4949 */
0565c26d 4950
bb5cb290
AL
4951 /* ata_pio_sectors() might change the state
4952 * to HSM_ST_LAST. so, the state is changed here
4953 * before ata_pio_sectors().
4954 */
4955 ap->hsm_task_state = HSM_ST;
4956 ata_pio_sectors(qc);
4957 ata_altstatus(ap); /* flush */
4958 } else
4959 /* send CDB */
4960 atapi_send_cdb(ap, qc);
4961
4962 if (in_wq)
ba6a1308 4963 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
4964
4965 /* if polling, ata_pio_task() handles the rest.
4966 * otherwise, interrupt handler takes over from here.
4967 */
e2cec771 4968 break;
1c848984 4969
e2cec771
AL
4970 case HSM_ST:
4971 /* complete command or read/write the data register */
4972 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4973 /* ATAPI PIO protocol */
4974 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
4975 /* No more data to transfer or device error.
4976 * Device error will be tagged in HSM_ST_LAST.
4977 */
e2cec771
AL
4978 ap->hsm_task_state = HSM_ST_LAST;
4979 goto fsm_start;
4980 }
1da177e4 4981
71601958
AL
4982 /* Device should not ask for data transfer (DRQ=1)
4983 * when it finds something wrong.
eee6c32f
AL
4984 * We ignore DRQ here and stop the HSM by
4985 * changing hsm_task_state to HSM_ST_ERR and
4986 * let the EH abort the command or reset the device.
71601958
AL
4987 */
4988 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
4989 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4990 "device error, dev_stat 0x%X\n",
4991 status);
3655d1d3 4992 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4993 ap->hsm_task_state = HSM_ST_ERR;
4994 goto fsm_start;
71601958 4995 }
1da177e4 4996
e2cec771 4997 atapi_pio_bytes(qc);
7fb6ec28 4998
e2cec771
AL
4999 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5000 /* bad ireason reported by device */
5001 goto fsm_start;
1da177e4 5002
e2cec771
AL
5003 } else {
5004 /* ATA PIO protocol */
5005 if (unlikely((status & ATA_DRQ) == 0)) {
5006 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
5007 if (likely(status & (ATA_ERR | ATA_DF)))
5008 /* device stops HSM for abort/error */
5009 qc->err_mask |= AC_ERR_DEV;
5010 else
55a8e2c8
TH
5011 /* HSM violation. Let EH handle this.
5012 * Phantom devices also trigger this
5013 * condition. Mark hint.
5014 */
5015 qc->err_mask |= AC_ERR_HSM |
5016 AC_ERR_NODEV_HINT;
3655d1d3 5017
e2cec771
AL
5018 ap->hsm_task_state = HSM_ST_ERR;
5019 goto fsm_start;
5020 }
1da177e4 5021
eee6c32f
AL
5022 /* For PIO reads, some devices may ask for
5023 * data transfer (DRQ=1) alone with ERR=1.
5024 * We respect DRQ here and transfer one
5025 * block of junk data before changing the
5026 * hsm_task_state to HSM_ST_ERR.
5027 *
5028 * For PIO writes, ERR=1 DRQ=1 doesn't make
5029 * sense since the data block has been
5030 * transferred to the device.
71601958
AL
5031 */
5032 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
5033 /* data might be corrputed */
5034 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
5035
5036 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5037 ata_pio_sectors(qc);
5038 ata_altstatus(ap);
5039 status = ata_wait_idle(ap);
5040 }
5041
3655d1d3
AL
5042 if (status & (ATA_BUSY | ATA_DRQ))
5043 qc->err_mask |= AC_ERR_HSM;
5044
eee6c32f
AL
5045 /* ata_pio_sectors() might change the
5046 * state to HSM_ST_LAST. so, the state
5047 * is changed after ata_pio_sectors().
5048 */
5049 ap->hsm_task_state = HSM_ST_ERR;
5050 goto fsm_start;
71601958
AL
5051 }
5052
e2cec771
AL
5053 ata_pio_sectors(qc);
5054
5055 if (ap->hsm_task_state == HSM_ST_LAST &&
5056 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5057 /* all data read */
5058 ata_altstatus(ap);
52a32205 5059 status = ata_wait_idle(ap);
e2cec771
AL
5060 goto fsm_start;
5061 }
5062 }
5063
5064 ata_altstatus(ap); /* flush */
bb5cb290 5065 poll_next = 1;
1da177e4
LT
5066 break;
5067
14be71f4 5068 case HSM_ST_LAST:
6912ccd5
AL
5069 if (unlikely(!ata_ok(status))) {
5070 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
5071 ap->hsm_task_state = HSM_ST_ERR;
5072 goto fsm_start;
5073 }
5074
5075 /* no more data to transfer */
4332a771 5076 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
44877b4e 5077 ap->print_id, qc->dev->devno, status);
e2cec771 5078
6912ccd5
AL
5079 WARN_ON(qc->err_mask);
5080
e2cec771 5081 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 5082
e2cec771 5083 /* complete taskfile transaction */
c17ea20d 5084 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5085
5086 poll_next = 0;
1da177e4
LT
5087 break;
5088
14be71f4 5089 case HSM_ST_ERR:
e2cec771
AL
5090 /* make sure qc->err_mask is available to
5091 * know what's wrong and recover
5092 */
5093 WARN_ON(qc->err_mask == 0);
5094
5095 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 5096
999bb6f4 5097 /* complete taskfile transaction */
c17ea20d 5098 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5099
5100 poll_next = 0;
e2cec771
AL
5101 break;
5102 default:
bb5cb290 5103 poll_next = 0;
6912ccd5 5104 BUG();
1da177e4
LT
5105 }
5106
bb5cb290 5107 return poll_next;
1da177e4
LT
5108}
5109
65f27f38 5110static void ata_pio_task(struct work_struct *work)
8061f5f0 5111{
65f27f38
DH
5112 struct ata_port *ap =
5113 container_of(work, struct ata_port, port_task.work);
5114 struct ata_queued_cmd *qc = ap->port_task_data;
8061f5f0 5115 u8 status;
a1af3734 5116 int poll_next;
8061f5f0 5117
7fb6ec28 5118fsm_start:
a1af3734 5119 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 5120
a1af3734
AL
5121 /*
5122 * This is purely heuristic. This is a fast path.
5123 * Sometimes when we enter, BSY will be cleared in
5124 * a chk-status or two. If not, the drive is probably seeking
5125 * or something. Snooze for a couple msecs, then
5126 * chk-status again. If still busy, queue delayed work.
5127 */
5128 status = ata_busy_wait(ap, ATA_BUSY, 5);
5129 if (status & ATA_BUSY) {
5130 msleep(2);
5131 status = ata_busy_wait(ap, ATA_BUSY, 10);
5132 if (status & ATA_BUSY) {
31ce6dae 5133 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
5134 return;
5135 }
8061f5f0
TH
5136 }
5137
a1af3734
AL
5138 /* move the HSM */
5139 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 5140
a1af3734
AL
5141 /* another command or interrupt handler
5142 * may be running at this point.
5143 */
5144 if (poll_next)
7fb6ec28 5145 goto fsm_start;
8061f5f0
TH
5146}
5147
1da177e4
LT
5148/**
5149 * ata_qc_new - Request an available ATA command, for queueing
5150 * @ap: Port associated with device @dev
5151 * @dev: Device from whom we request an available command structure
5152 *
5153 * LOCKING:
0cba632b 5154 * None.
1da177e4
LT
5155 */
5156
5157static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5158{
5159 struct ata_queued_cmd *qc = NULL;
5160 unsigned int i;
5161
e3180499 5162 /* no command while frozen */
b51e9e5d 5163 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
5164 return NULL;
5165
2ab7db1f
TH
5166 /* the last tag is reserved for internal command. */
5167 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 5168 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 5169 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
5170 break;
5171 }
5172
5173 if (qc)
5174 qc->tag = i;
5175
5176 return qc;
5177}
5178
5179/**
5180 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
5181 * @dev: Device from whom we request an available command structure
5182 *
5183 * LOCKING:
0cba632b 5184 * None.
1da177e4
LT
5185 */
5186
3373efd8 5187struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 5188{
9af5c9c9 5189 struct ata_port *ap = dev->link->ap;
1da177e4
LT
5190 struct ata_queued_cmd *qc;
5191
5192 qc = ata_qc_new(ap);
5193 if (qc) {
1da177e4
LT
5194 qc->scsicmd = NULL;
5195 qc->ap = ap;
5196 qc->dev = dev;
1da177e4 5197
2c13b7ce 5198 ata_qc_reinit(qc);
1da177e4
LT
5199 }
5200
5201 return qc;
5202}
5203
1da177e4
LT
5204/**
5205 * ata_qc_free - free unused ata_queued_cmd
5206 * @qc: Command to complete
5207 *
5208 * Designed to free unused ata_queued_cmd object
5209 * in case something prevents using it.
5210 *
5211 * LOCKING:
cca3974e 5212 * spin_lock_irqsave(host lock)
1da177e4
LT
5213 */
5214void ata_qc_free(struct ata_queued_cmd *qc)
5215{
4ba946e9
TH
5216 struct ata_port *ap = qc->ap;
5217 unsigned int tag;
5218
a4631474 5219 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 5220
4ba946e9
TH
5221 qc->flags = 0;
5222 tag = qc->tag;
5223 if (likely(ata_tag_valid(tag))) {
4ba946e9 5224 qc->tag = ATA_TAG_POISON;
6cec4a39 5225 clear_bit(tag, &ap->qc_allocated);
4ba946e9 5226 }
1da177e4
LT
5227}
5228
76014427 5229void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 5230{
dedaf2b0 5231 struct ata_port *ap = qc->ap;
9af5c9c9 5232 struct ata_link *link = qc->dev->link;
dedaf2b0 5233
a4631474
TH
5234 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5235 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
5236
5237 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5238 ata_sg_clean(qc);
5239
7401abf2 5240 /* command should be marked inactive atomically with qc completion */
dedaf2b0 5241 if (qc->tf.protocol == ATA_PROT_NCQ)
9af5c9c9 5242 link->sactive &= ~(1 << qc->tag);
dedaf2b0 5243 else
9af5c9c9 5244 link->active_tag = ATA_TAG_POISON;
7401abf2 5245
3f3791d3
AL
5246 /* atapi: mark qc as inactive to prevent the interrupt handler
5247 * from completing the command twice later, before the error handler
5248 * is called. (when rc != 0 and atapi request sense is needed)
5249 */
5250 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 5251 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 5252
1da177e4 5253 /* call completion callback */
77853bf2 5254 qc->complete_fn(qc);
1da177e4
LT
5255}
5256
39599a53
TH
5257static void fill_result_tf(struct ata_queued_cmd *qc)
5258{
5259 struct ata_port *ap = qc->ap;
5260
39599a53 5261 qc->result_tf.flags = qc->tf.flags;
4742d54f 5262 ap->ops->tf_read(ap, &qc->result_tf);
39599a53
TH
5263}
5264
f686bcb8
TH
5265/**
5266 * ata_qc_complete - Complete an active ATA command
5267 * @qc: Command to complete
5268 * @err_mask: ATA Status register contents
5269 *
5270 * Indicate to the mid and upper layers that an ATA
5271 * command has completed, with either an ok or not-ok status.
5272 *
5273 * LOCKING:
cca3974e 5274 * spin_lock_irqsave(host lock)
f686bcb8
TH
5275 */
5276void ata_qc_complete(struct ata_queued_cmd *qc)
5277{
5278 struct ata_port *ap = qc->ap;
5279
5280 /* XXX: New EH and old EH use different mechanisms to
5281 * synchronize EH with regular execution path.
5282 *
5283 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5284 * Normal execution path is responsible for not accessing a
5285 * failed qc. libata core enforces the rule by returning NULL
5286 * from ata_qc_from_tag() for failed qcs.
5287 *
5288 * Old EH depends on ata_qc_complete() nullifying completion
5289 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5290 * not synchronize with interrupt handler. Only PIO task is
5291 * taken care of.
5292 */
5293 if (ap->ops->error_handler) {
b51e9e5d 5294 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
5295
5296 if (unlikely(qc->err_mask))
5297 qc->flags |= ATA_QCFLAG_FAILED;
5298
5299 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5300 if (!ata_tag_internal(qc->tag)) {
5301 /* always fill result TF for failed qc */
39599a53 5302 fill_result_tf(qc);
f686bcb8
TH
5303 ata_qc_schedule_eh(qc);
5304 return;
5305 }
5306 }
5307
5308 /* read result TF if requested */
5309 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5310 fill_result_tf(qc);
f686bcb8
TH
5311
5312 __ata_qc_complete(qc);
5313 } else {
5314 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5315 return;
5316
5317 /* read result TF if failed or requested */
5318 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5319 fill_result_tf(qc);
f686bcb8
TH
5320
5321 __ata_qc_complete(qc);
5322 }
5323}
5324
dedaf2b0
TH
5325/**
5326 * ata_qc_complete_multiple - Complete multiple qcs successfully
5327 * @ap: port in question
5328 * @qc_active: new qc_active mask
5329 * @finish_qc: LLDD callback invoked before completing a qc
5330 *
5331 * Complete in-flight commands. This functions is meant to be
5332 * called from low-level driver's interrupt routine to complete
5333 * requests normally. ap->qc_active and @qc_active is compared
5334 * and commands are completed accordingly.
5335 *
5336 * LOCKING:
cca3974e 5337 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5338 *
5339 * RETURNS:
5340 * Number of completed commands on success, -errno otherwise.
5341 */
5342int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5343 void (*finish_qc)(struct ata_queued_cmd *))
5344{
5345 int nr_done = 0;
5346 u32 done_mask;
5347 int i;
5348
5349 done_mask = ap->qc_active ^ qc_active;
5350
5351 if (unlikely(done_mask & qc_active)) {
5352 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5353 "(%08x->%08x)\n", ap->qc_active, qc_active);
5354 return -EINVAL;
5355 }
5356
5357 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5358 struct ata_queued_cmd *qc;
5359
5360 if (!(done_mask & (1 << i)))
5361 continue;
5362
5363 if ((qc = ata_qc_from_tag(ap, i))) {
5364 if (finish_qc)
5365 finish_qc(qc);
5366 ata_qc_complete(qc);
5367 nr_done++;
5368 }
5369 }
5370
5371 return nr_done;
5372}
5373
1da177e4
LT
5374static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5375{
5376 struct ata_port *ap = qc->ap;
5377
5378 switch (qc->tf.protocol) {
3dc1d881 5379 case ATA_PROT_NCQ:
1da177e4
LT
5380 case ATA_PROT_DMA:
5381 case ATA_PROT_ATAPI_DMA:
5382 return 1;
5383
5384 case ATA_PROT_ATAPI:
5385 case ATA_PROT_PIO:
1da177e4
LT
5386 if (ap->flags & ATA_FLAG_PIO_DMA)
5387 return 1;
5388
5389 /* fall through */
5390
5391 default:
5392 return 0;
5393 }
5394
5395 /* never reached */
5396}
5397
5398/**
5399 * ata_qc_issue - issue taskfile to device
5400 * @qc: command to issue to device
5401 *
5402 * Prepare an ATA command to submission to device.
5403 * This includes mapping the data into a DMA-able
5404 * area, filling in the S/G table, and finally
5405 * writing the taskfile to hardware, starting the command.
5406 *
5407 * LOCKING:
cca3974e 5408 * spin_lock_irqsave(host lock)
1da177e4 5409 */
8e0e694a 5410void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5411{
5412 struct ata_port *ap = qc->ap;
9af5c9c9 5413 struct ata_link *link = qc->dev->link;
1da177e4 5414
dedaf2b0
TH
5415 /* Make sure only one non-NCQ command is outstanding. The
5416 * check is skipped for old EH because it reuses active qc to
5417 * request ATAPI sense.
5418 */
9af5c9c9 5419 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
dedaf2b0
TH
5420
5421 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9
TH
5422 WARN_ON(link->sactive & (1 << qc->tag));
5423 link->sactive |= 1 << qc->tag;
dedaf2b0 5424 } else {
9af5c9c9
TH
5425 WARN_ON(link->sactive);
5426 link->active_tag = qc->tag;
dedaf2b0
TH
5427 }
5428
e4a70e76 5429 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5430 ap->qc_active |= 1 << qc->tag;
e4a70e76 5431
1da177e4
LT
5432 if (ata_should_dma_map(qc)) {
5433 if (qc->flags & ATA_QCFLAG_SG) {
5434 if (ata_sg_setup(qc))
8e436af9 5435 goto sg_err;
1da177e4
LT
5436 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5437 if (ata_sg_setup_one(qc))
8e436af9 5438 goto sg_err;
1da177e4
LT
5439 }
5440 } else {
5441 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5442 }
5443
5444 ap->ops->qc_prep(qc);
5445
8e0e694a
TH
5446 qc->err_mask |= ap->ops->qc_issue(qc);
5447 if (unlikely(qc->err_mask))
5448 goto err;
5449 return;
1da177e4 5450
8e436af9
TH
5451sg_err:
5452 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
5453 qc->err_mask |= AC_ERR_SYSTEM;
5454err:
5455 ata_qc_complete(qc);
1da177e4
LT
5456}
5457
5458/**
5459 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5460 * @qc: command to issue to device
5461 *
5462 * Using various libata functions and hooks, this function
5463 * starts an ATA command. ATA commands are grouped into
5464 * classes called "protocols", and issuing each type of protocol
5465 * is slightly different.
5466 *
0baab86b
EF
5467 * May be used as the qc_issue() entry in ata_port_operations.
5468 *
1da177e4 5469 * LOCKING:
cca3974e 5470 * spin_lock_irqsave(host lock)
1da177e4
LT
5471 *
5472 * RETURNS:
9a3d9eb0 5473 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
5474 */
5475
9a3d9eb0 5476unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
5477{
5478 struct ata_port *ap = qc->ap;
5479
e50362ec
AL
5480 /* Use polling pio if the LLD doesn't handle
5481 * interrupt driven pio and atapi CDB interrupt.
5482 */
5483 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5484 switch (qc->tf.protocol) {
5485 case ATA_PROT_PIO:
e3472cbe 5486 case ATA_PROT_NODATA:
e50362ec
AL
5487 case ATA_PROT_ATAPI:
5488 case ATA_PROT_ATAPI_NODATA:
5489 qc->tf.flags |= ATA_TFLAG_POLLING;
5490 break;
5491 case ATA_PROT_ATAPI_DMA:
5492 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 5493 /* see ata_dma_blacklisted() */
e50362ec
AL
5494 BUG();
5495 break;
5496 default:
5497 break;
5498 }
5499 }
5500
312f7da2 5501 /* select the device */
1da177e4
LT
5502 ata_dev_select(ap, qc->dev->devno, 1, 0);
5503
312f7da2 5504 /* start the command */
1da177e4
LT
5505 switch (qc->tf.protocol) {
5506 case ATA_PROT_NODATA:
312f7da2
AL
5507 if (qc->tf.flags & ATA_TFLAG_POLLING)
5508 ata_qc_set_polling(qc);
5509
e5338254 5510 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
5511 ap->hsm_task_state = HSM_ST_LAST;
5512
5513 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5514 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 5515
1da177e4
LT
5516 break;
5517
5518 case ATA_PROT_DMA:
587005de 5519 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5520
1da177e4
LT
5521 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5522 ap->ops->bmdma_setup(qc); /* set up bmdma */
5523 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 5524 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
5525 break;
5526
312f7da2
AL
5527 case ATA_PROT_PIO:
5528 if (qc->tf.flags & ATA_TFLAG_POLLING)
5529 ata_qc_set_polling(qc);
1da177e4 5530
e5338254 5531 ata_tf_to_host(ap, &qc->tf);
312f7da2 5532
54f00389
AL
5533 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5534 /* PIO data out protocol */
5535 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 5536 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5537
5538 /* always send first data block using
e27486db 5539 * the ata_pio_task() codepath.
54f00389 5540 */
312f7da2 5541 } else {
54f00389
AL
5542 /* PIO data in protocol */
5543 ap->hsm_task_state = HSM_ST;
5544
5545 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5546 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5547
5548 /* if polling, ata_pio_task() handles the rest.
5549 * otherwise, interrupt handler takes over from here.
5550 */
312f7da2
AL
5551 }
5552
1da177e4
LT
5553 break;
5554
1da177e4 5555 case ATA_PROT_ATAPI:
1da177e4 5556 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
5557 if (qc->tf.flags & ATA_TFLAG_POLLING)
5558 ata_qc_set_polling(qc);
5559
e5338254 5560 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 5561
312f7da2
AL
5562 ap->hsm_task_state = HSM_ST_FIRST;
5563
5564 /* send cdb by polling if no cdb interrupt */
5565 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5566 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 5567 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5568 break;
5569
5570 case ATA_PROT_ATAPI_DMA:
587005de 5571 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5572
1da177e4
LT
5573 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5574 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
5575 ap->hsm_task_state = HSM_ST_FIRST;
5576
5577 /* send cdb by polling if no cdb interrupt */
5578 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 5579 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5580 break;
5581
5582 default:
5583 WARN_ON(1);
9a3d9eb0 5584 return AC_ERR_SYSTEM;
1da177e4
LT
5585 }
5586
5587 return 0;
5588}
5589
1da177e4
LT
5590/**
5591 * ata_host_intr - Handle host interrupt for given (port, task)
5592 * @ap: Port on which interrupt arrived (possibly...)
5593 * @qc: Taskfile currently active in engine
5594 *
5595 * Handle host interrupt for given queued command. Currently,
5596 * only DMA interrupts are handled. All other commands are
5597 * handled via polling with interrupts disabled (nIEN bit).
5598 *
5599 * LOCKING:
cca3974e 5600 * spin_lock_irqsave(host lock)
1da177e4
LT
5601 *
5602 * RETURNS:
5603 * One if interrupt was handled, zero if not (shared irq).
5604 */
5605
5606inline unsigned int ata_host_intr (struct ata_port *ap,
5607 struct ata_queued_cmd *qc)
5608{
9af5c9c9 5609 struct ata_eh_info *ehi = &ap->link.eh_info;
312f7da2 5610 u8 status, host_stat = 0;
1da177e4 5611
312f7da2 5612 VPRINTK("ata%u: protocol %d task_state %d\n",
44877b4e 5613 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 5614
312f7da2
AL
5615 /* Check whether we are expecting interrupt in this state */
5616 switch (ap->hsm_task_state) {
5617 case HSM_ST_FIRST:
6912ccd5
AL
5618 /* Some pre-ATAPI-4 devices assert INTRQ
5619 * at this state when ready to receive CDB.
5620 */
1da177e4 5621
312f7da2
AL
5622 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5623 * The flag was turned on only for atapi devices.
5624 * No need to check is_atapi_taskfile(&qc->tf) again.
5625 */
5626 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 5627 goto idle_irq;
1da177e4 5628 break;
312f7da2
AL
5629 case HSM_ST_LAST:
5630 if (qc->tf.protocol == ATA_PROT_DMA ||
5631 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5632 /* check status of DMA engine */
5633 host_stat = ap->ops->bmdma_status(ap);
44877b4e
TH
5634 VPRINTK("ata%u: host_stat 0x%X\n",
5635 ap->print_id, host_stat);
312f7da2
AL
5636
5637 /* if it's not our irq... */
5638 if (!(host_stat & ATA_DMA_INTR))
5639 goto idle_irq;
5640
5641 /* before we do anything else, clear DMA-Start bit */
5642 ap->ops->bmdma_stop(qc);
a4f16610
AL
5643
5644 if (unlikely(host_stat & ATA_DMA_ERR)) {
5645 /* error when transfering data to/from memory */
5646 qc->err_mask |= AC_ERR_HOST_BUS;
5647 ap->hsm_task_state = HSM_ST_ERR;
5648 }
312f7da2
AL
5649 }
5650 break;
5651 case HSM_ST:
5652 break;
1da177e4
LT
5653 default:
5654 goto idle_irq;
5655 }
5656
312f7da2
AL
5657 /* check altstatus */
5658 status = ata_altstatus(ap);
5659 if (status & ATA_BUSY)
5660 goto idle_irq;
1da177e4 5661
312f7da2
AL
5662 /* check main status, clearing INTRQ */
5663 status = ata_chk_status(ap);
5664 if (unlikely(status & ATA_BUSY))
5665 goto idle_irq;
1da177e4 5666
312f7da2
AL
5667 /* ack bmdma irq events */
5668 ap->ops->irq_clear(ap);
1da177e4 5669
bb5cb290 5670 ata_hsm_move(ap, qc, status, 0);
ea54763f
TH
5671
5672 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5673 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5674 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5675
1da177e4
LT
5676 return 1; /* irq handled */
5677
5678idle_irq:
5679 ap->stats.idle_irq++;
5680
5681#ifdef ATA_IRQ_TRAP
5682 if ((ap->stats.idle_irq % 1000) == 0) {
83625006 5683 ap->ops->irq_ack(ap, 0); /* debug trap */
f15a1daf 5684 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 5685 return 1;
1da177e4
LT
5686 }
5687#endif
5688 return 0; /* irq not handled */
5689}
5690
5691/**
5692 * ata_interrupt - Default ATA host interrupt handler
0cba632b 5693 * @irq: irq line (unused)
cca3974e 5694 * @dev_instance: pointer to our ata_host information structure
1da177e4 5695 *
0cba632b
JG
5696 * Default interrupt handler for PCI IDE devices. Calls
5697 * ata_host_intr() for each port that is not disabled.
5698 *
1da177e4 5699 * LOCKING:
cca3974e 5700 * Obtains host lock during operation.
1da177e4
LT
5701 *
5702 * RETURNS:
0cba632b 5703 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
5704 */
5705
7d12e780 5706irqreturn_t ata_interrupt (int irq, void *dev_instance)
1da177e4 5707{
cca3974e 5708 struct ata_host *host = dev_instance;
1da177e4
LT
5709 unsigned int i;
5710 unsigned int handled = 0;
5711 unsigned long flags;
5712
5713 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 5714 spin_lock_irqsave(&host->lock, flags);
1da177e4 5715
cca3974e 5716 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
5717 struct ata_port *ap;
5718
cca3974e 5719 ap = host->ports[i];
c1389503 5720 if (ap &&
029f5468 5721 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
5722 struct ata_queued_cmd *qc;
5723
9af5c9c9 5724 qc = ata_qc_from_tag(ap, ap->link.active_tag);
312f7da2 5725 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 5726 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
5727 handled |= ata_host_intr(ap, qc);
5728 }
5729 }
5730
cca3974e 5731 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
5732
5733 return IRQ_RETVAL(handled);
5734}
5735
34bf2170
TH
5736/**
5737 * sata_scr_valid - test whether SCRs are accessible
936fd732 5738 * @link: ATA link to test SCR accessibility for
34bf2170 5739 *
936fd732 5740 * Test whether SCRs are accessible for @link.
34bf2170
TH
5741 *
5742 * LOCKING:
5743 * None.
5744 *
5745 * RETURNS:
5746 * 1 if SCRs are accessible, 0 otherwise.
5747 */
936fd732 5748int sata_scr_valid(struct ata_link *link)
34bf2170 5749{
936fd732
TH
5750 struct ata_port *ap = link->ap;
5751
a16abc0b 5752 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
5753}
5754
5755/**
5756 * sata_scr_read - read SCR register of the specified port
936fd732 5757 * @link: ATA link to read SCR for
34bf2170
TH
5758 * @reg: SCR to read
5759 * @val: Place to store read value
5760 *
936fd732 5761 * Read SCR register @reg of @link into *@val. This function is
34bf2170
TH
5762 * guaranteed to succeed if the cable type of the port is SATA
5763 * and the port implements ->scr_read.
5764 *
5765 * LOCKING:
5766 * None.
5767 *
5768 * RETURNS:
5769 * 0 on success, negative errno on failure.
5770 */
936fd732 5771int sata_scr_read(struct ata_link *link, int reg, u32 *val)
34bf2170 5772{
936fd732
TH
5773 struct ata_port *ap = link->ap;
5774
5775 if (sata_scr_valid(link))
da3dbb17 5776 return ap->ops->scr_read(ap, reg, val);
34bf2170
TH
5777 return -EOPNOTSUPP;
5778}
5779
5780/**
5781 * sata_scr_write - write SCR register of the specified port
936fd732 5782 * @link: ATA link to write SCR for
34bf2170
TH
5783 * @reg: SCR to write
5784 * @val: value to write
5785 *
936fd732 5786 * Write @val to SCR register @reg of @link. This function is
34bf2170
TH
5787 * guaranteed to succeed if the cable type of the port is SATA
5788 * and the port implements ->scr_read.
5789 *
5790 * LOCKING:
5791 * None.
5792 *
5793 * RETURNS:
5794 * 0 on success, negative errno on failure.
5795 */
936fd732 5796int sata_scr_write(struct ata_link *link, int reg, u32 val)
34bf2170 5797{
936fd732
TH
5798 struct ata_port *ap = link->ap;
5799
5800 if (sata_scr_valid(link))
da3dbb17 5801 return ap->ops->scr_write(ap, reg, val);
34bf2170
TH
5802 return -EOPNOTSUPP;
5803}
5804
5805/**
5806 * sata_scr_write_flush - write SCR register of the specified port and flush
936fd732 5807 * @link: ATA link to write SCR for
34bf2170
TH
5808 * @reg: SCR to write
5809 * @val: value to write
5810 *
5811 * This function is identical to sata_scr_write() except that this
5812 * function performs flush after writing to the register.
5813 *
5814 * LOCKING:
5815 * None.
5816 *
5817 * RETURNS:
5818 * 0 on success, negative errno on failure.
5819 */
936fd732 5820int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
34bf2170 5821{
936fd732 5822 struct ata_port *ap = link->ap;
da3dbb17
TH
5823 int rc;
5824
936fd732 5825 if (sata_scr_valid(link)) {
da3dbb17
TH
5826 rc = ap->ops->scr_write(ap, reg, val);
5827 if (rc == 0)
5828 rc = ap->ops->scr_read(ap, reg, &val);
5829 return rc;
34bf2170
TH
5830 }
5831 return -EOPNOTSUPP;
5832}
5833
5834/**
936fd732
TH
5835 * ata_link_online - test whether the given link is online
5836 * @link: ATA link to test
34bf2170 5837 *
936fd732
TH
5838 * Test whether @link is online. Note that this function returns
5839 * 0 if online status of @link cannot be obtained, so
5840 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5841 *
5842 * LOCKING:
5843 * None.
5844 *
5845 * RETURNS:
5846 * 1 if the port online status is available and online.
5847 */
936fd732 5848int ata_link_online(struct ata_link *link)
34bf2170
TH
5849{
5850 u32 sstatus;
5851
936fd732
TH
5852 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5853 (sstatus & 0xf) == 0x3)
34bf2170
TH
5854 return 1;
5855 return 0;
5856}
5857
5858/**
936fd732
TH
5859 * ata_link_offline - test whether the given link is offline
5860 * @link: ATA link to test
34bf2170 5861 *
936fd732
TH
5862 * Test whether @link is offline. Note that this function
5863 * returns 0 if offline status of @link cannot be obtained, so
5864 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5865 *
5866 * LOCKING:
5867 * None.
5868 *
5869 * RETURNS:
5870 * 1 if the port offline status is available and offline.
5871 */
936fd732 5872int ata_link_offline(struct ata_link *link)
34bf2170
TH
5873{
5874 u32 sstatus;
5875
936fd732
TH
5876 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5877 (sstatus & 0xf) != 0x3)
34bf2170
TH
5878 return 1;
5879 return 0;
5880}
0baab86b 5881
77b08fb5 5882int ata_flush_cache(struct ata_device *dev)
9b847548 5883{
977e6b9f 5884 unsigned int err_mask;
9b847548
JA
5885 u8 cmd;
5886
5887 if (!ata_try_flush_cache(dev))
5888 return 0;
5889
6fc49adb 5890 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
9b847548
JA
5891 cmd = ATA_CMD_FLUSH_EXT;
5892 else
5893 cmd = ATA_CMD_FLUSH;
5894
977e6b9f
TH
5895 err_mask = ata_do_simple_cmd(dev, cmd);
5896 if (err_mask) {
5897 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5898 return -EIO;
5899 }
5900
5901 return 0;
9b847548
JA
5902}
5903
6ffa01d8 5904#ifdef CONFIG_PM
cca3974e
JG
5905static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5906 unsigned int action, unsigned int ehi_flags,
5907 int wait)
500530f6
TH
5908{
5909 unsigned long flags;
5910 int i, rc;
5911
cca3974e
JG
5912 for (i = 0; i < host->n_ports; i++) {
5913 struct ata_port *ap = host->ports[i];
500530f6
TH
5914
5915 /* Previous resume operation might still be in
5916 * progress. Wait for PM_PENDING to clear.
5917 */
5918 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5919 ata_port_wait_eh(ap);
5920 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5921 }
5922
5923 /* request PM ops to EH */
5924 spin_lock_irqsave(ap->lock, flags);
5925
5926 ap->pm_mesg = mesg;
5927 if (wait) {
5928 rc = 0;
5929 ap->pm_result = &rc;
5930 }
5931
5932 ap->pflags |= ATA_PFLAG_PM_PENDING;
9af5c9c9
TH
5933 ap->link.eh_info.action |= action;
5934 ap->link.eh_info.flags |= ehi_flags;
500530f6
TH
5935
5936 ata_port_schedule_eh(ap);
5937
5938 spin_unlock_irqrestore(ap->lock, flags);
5939
5940 /* wait and check result */
5941 if (wait) {
5942 ata_port_wait_eh(ap);
5943 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5944 if (rc)
5945 return rc;
5946 }
5947 }
5948
5949 return 0;
5950}
5951
5952/**
cca3974e
JG
5953 * ata_host_suspend - suspend host
5954 * @host: host to suspend
500530f6
TH
5955 * @mesg: PM message
5956 *
cca3974e 5957 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
5958 * function requests EH to perform PM operations and waits for EH
5959 * to finish.
5960 *
5961 * LOCKING:
5962 * Kernel thread context (may sleep).
5963 *
5964 * RETURNS:
5965 * 0 on success, -errno on failure.
5966 */
cca3974e 5967int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 5968{
9666f400 5969 int rc;
500530f6 5970
cca3974e 5971 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
9666f400
TH
5972 if (rc == 0)
5973 host->dev->power.power_state = mesg;
500530f6
TH
5974 return rc;
5975}
5976
5977/**
cca3974e
JG
5978 * ata_host_resume - resume host
5979 * @host: host to resume
500530f6 5980 *
cca3974e 5981 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
5982 * function requests EH to perform PM operations and returns.
5983 * Note that all resume operations are performed parallely.
5984 *
5985 * LOCKING:
5986 * Kernel thread context (may sleep).
5987 */
cca3974e 5988void ata_host_resume(struct ata_host *host)
500530f6 5989{
cca3974e
JG
5990 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5991 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5992 host->dev->power.power_state = PMSG_ON;
500530f6 5993}
6ffa01d8 5994#endif
500530f6 5995
c893a3ae
RD
5996/**
5997 * ata_port_start - Set port up for dma.
5998 * @ap: Port to initialize
5999 *
6000 * Called just after data structures for each port are
6001 * initialized. Allocates space for PRD table.
6002 *
6003 * May be used as the port_start() entry in ata_port_operations.
6004 *
6005 * LOCKING:
6006 * Inherited from caller.
6007 */
f0d36efd 6008int ata_port_start(struct ata_port *ap)
1da177e4 6009{
2f1f610b 6010 struct device *dev = ap->dev;
6037d6bb 6011 int rc;
1da177e4 6012
f0d36efd
TH
6013 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6014 GFP_KERNEL);
1da177e4
LT
6015 if (!ap->prd)
6016 return -ENOMEM;
6017
6037d6bb 6018 rc = ata_pad_alloc(ap, dev);
f0d36efd 6019 if (rc)
6037d6bb 6020 return rc;
1da177e4 6021
f0d36efd
TH
6022 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6023 (unsigned long long)ap->prd_dma);
1da177e4
LT
6024 return 0;
6025}
6026
3ef3b43d
TH
6027/**
6028 * ata_dev_init - Initialize an ata_device structure
6029 * @dev: Device structure to initialize
6030 *
6031 * Initialize @dev in preparation for probing.
6032 *
6033 * LOCKING:
6034 * Inherited from caller.
6035 */
6036void ata_dev_init(struct ata_device *dev)
6037{
9af5c9c9
TH
6038 struct ata_link *link = dev->link;
6039 struct ata_port *ap = link->ap;
72fa4b74
TH
6040 unsigned long flags;
6041
5a04bf4b 6042 /* SATA spd limit is bound to the first device */
9af5c9c9
TH
6043 link->sata_spd_limit = link->hw_sata_spd_limit;
6044 link->sata_spd = 0;
5a04bf4b 6045
72fa4b74
TH
6046 /* High bits of dev->flags are used to record warm plug
6047 * requests which occur asynchronously. Synchronize using
cca3974e 6048 * host lock.
72fa4b74 6049 */
ba6a1308 6050 spin_lock_irqsave(ap->lock, flags);
72fa4b74 6051 dev->flags &= ~ATA_DFLAG_INIT_MASK;
3dcc323f 6052 dev->horkage = 0;
ba6a1308 6053 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 6054
72fa4b74
TH
6055 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6056 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
6057 dev->pio_mask = UINT_MAX;
6058 dev->mwdma_mask = UINT_MAX;
6059 dev->udma_mask = UINT_MAX;
6060}
6061
1da177e4 6062/**
f3187195
TH
6063 * ata_port_alloc - allocate and initialize basic ATA port resources
6064 * @host: ATA host this allocated port belongs to
1da177e4 6065 *
f3187195
TH
6066 * Allocate and initialize basic ATA port resources.
6067 *
6068 * RETURNS:
6069 * Allocate ATA port on success, NULL on failure.
0cba632b 6070 *
1da177e4 6071 * LOCKING:
f3187195 6072 * Inherited from calling layer (may sleep).
1da177e4 6073 */
f3187195 6074struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 6075{
f3187195 6076 struct ata_port *ap;
1da177e4
LT
6077 unsigned int i;
6078
f3187195
TH
6079 DPRINTK("ENTER\n");
6080
6081 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6082 if (!ap)
6083 return NULL;
6084
f4d6d004 6085 ap->pflags |= ATA_PFLAG_INITIALIZING;
cca3974e 6086 ap->lock = &host->lock;
198e0fed 6087 ap->flags = ATA_FLAG_DISABLED;
f3187195 6088 ap->print_id = -1;
1da177e4 6089 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 6090 ap->host = host;
f3187195
TH
6091 ap->dev = host->dev;
6092
9af5c9c9
TH
6093 ap->link.hw_sata_spd_limit = UINT_MAX;
6094 ap->link.active_tag = ATA_TAG_POISON;
1da177e4 6095 ap->last_ctl = 0xFF;
bd5d825c
BP
6096
6097#if defined(ATA_VERBOSE_DEBUG)
6098 /* turn on all debugging levels */
6099 ap->msg_enable = 0x00FF;
6100#elif defined(ATA_DEBUG)
6101 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 6102#else
0dd4b21f 6103 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 6104#endif
1da177e4 6105
65f27f38
DH
6106 INIT_DELAYED_WORK(&ap->port_task, NULL);
6107 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6108 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 6109 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 6110 init_waitqueue_head(&ap->eh_wait_q);
5ddf24c5
TH
6111 init_timer_deferrable(&ap->fastdrain_timer);
6112 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6113 ap->fastdrain_timer.data = (unsigned long)ap;
1da177e4 6114
838df628 6115 ap->cbl = ATA_CBL_NONE;
838df628 6116
9af5c9c9
TH
6117 ap->link.ap = ap;
6118
f58229f8 6119 /* can't use iterator, ap isn't initialized yet */
acf356b1 6120 for (i = 0; i < ATA_MAX_DEVICES; i++) {
9af5c9c9
TH
6121 struct ata_device *dev = &ap->link.device[i];
6122 dev->link = &ap->link;
72fa4b74 6123 dev->devno = i;
3ef3b43d 6124 ata_dev_init(dev);
acf356b1 6125 }
1da177e4
LT
6126
6127#ifdef ATA_IRQ_TRAP
6128 ap->stats.unhandled_irq = 1;
6129 ap->stats.idle_irq = 1;
6130#endif
1da177e4 6131 return ap;
1da177e4
LT
6132}
6133
f0d36efd
TH
6134static void ata_host_release(struct device *gendev, void *res)
6135{
6136 struct ata_host *host = dev_get_drvdata(gendev);
6137 int i;
6138
6139 for (i = 0; i < host->n_ports; i++) {
6140 struct ata_port *ap = host->ports[i];
6141
ecef7253
TH
6142 if (!ap)
6143 continue;
6144
6145 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
f0d36efd 6146 ap->ops->port_stop(ap);
f0d36efd
TH
6147 }
6148
ecef7253 6149 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
f0d36efd 6150 host->ops->host_stop(host);
1aa56cca 6151
1aa506e4
TH
6152 for (i = 0; i < host->n_ports; i++) {
6153 struct ata_port *ap = host->ports[i];
6154
4911487a
TH
6155 if (!ap)
6156 continue;
6157
6158 if (ap->scsi_host)
1aa506e4
TH
6159 scsi_host_put(ap->scsi_host);
6160
4911487a 6161 kfree(ap);
1aa506e4
TH
6162 host->ports[i] = NULL;
6163 }
6164
1aa56cca 6165 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
6166}
6167
f3187195
TH
6168/**
6169 * ata_host_alloc - allocate and init basic ATA host resources
6170 * @dev: generic device this host is associated with
6171 * @max_ports: maximum number of ATA ports associated with this host
6172 *
6173 * Allocate and initialize basic ATA host resources. LLD calls
6174 * this function to allocate a host, initializes it fully and
6175 * attaches it using ata_host_register().
6176 *
6177 * @max_ports ports are allocated and host->n_ports is
6178 * initialized to @max_ports. The caller is allowed to decrease
6179 * host->n_ports before calling ata_host_register(). The unused
6180 * ports will be automatically freed on registration.
6181 *
6182 * RETURNS:
6183 * Allocate ATA host on success, NULL on failure.
6184 *
6185 * LOCKING:
6186 * Inherited from calling layer (may sleep).
6187 */
6188struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6189{
6190 struct ata_host *host;
6191 size_t sz;
6192 int i;
6193
6194 DPRINTK("ENTER\n");
6195
6196 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6197 return NULL;
6198
6199 /* alloc a container for our list of ATA ports (buses) */
6200 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6201 /* alloc a container for our list of ATA ports (buses) */
6202 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6203 if (!host)
6204 goto err_out;
6205
6206 devres_add(dev, host);
6207 dev_set_drvdata(dev, host);
6208
6209 spin_lock_init(&host->lock);
6210 host->dev = dev;
6211 host->n_ports = max_ports;
6212
6213 /* allocate ports bound to this host */
6214 for (i = 0; i < max_ports; i++) {
6215 struct ata_port *ap;
6216
6217 ap = ata_port_alloc(host);
6218 if (!ap)
6219 goto err_out;
6220
6221 ap->port_no = i;
6222 host->ports[i] = ap;
6223 }
6224
6225 devres_remove_group(dev, NULL);
6226 return host;
6227
6228 err_out:
6229 devres_release_group(dev, NULL);
6230 return NULL;
6231}
6232
f5cda257
TH
6233/**
6234 * ata_host_alloc_pinfo - alloc host and init with port_info array
6235 * @dev: generic device this host is associated with
6236 * @ppi: array of ATA port_info to initialize host with
6237 * @n_ports: number of ATA ports attached to this host
6238 *
6239 * Allocate ATA host and initialize with info from @ppi. If NULL
6240 * terminated, @ppi may contain fewer entries than @n_ports. The
6241 * last entry will be used for the remaining ports.
6242 *
6243 * RETURNS:
6244 * Allocate ATA host on success, NULL on failure.
6245 *
6246 * LOCKING:
6247 * Inherited from calling layer (may sleep).
6248 */
6249struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6250 const struct ata_port_info * const * ppi,
6251 int n_ports)
6252{
6253 const struct ata_port_info *pi;
6254 struct ata_host *host;
6255 int i, j;
6256
6257 host = ata_host_alloc(dev, n_ports);
6258 if (!host)
6259 return NULL;
6260
6261 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6262 struct ata_port *ap = host->ports[i];
6263
6264 if (ppi[j])
6265 pi = ppi[j++];
6266
6267 ap->pio_mask = pi->pio_mask;
6268 ap->mwdma_mask = pi->mwdma_mask;
6269 ap->udma_mask = pi->udma_mask;
6270 ap->flags |= pi->flags;
6271 ap->ops = pi->port_ops;
6272
6273 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6274 host->ops = pi->port_ops;
6275 if (!host->private_data && pi->private_data)
6276 host->private_data = pi->private_data;
6277 }
6278
6279 return host;
6280}
6281
ecef7253
TH
6282/**
6283 * ata_host_start - start and freeze ports of an ATA host
6284 * @host: ATA host to start ports for
6285 *
6286 * Start and then freeze ports of @host. Started status is
6287 * recorded in host->flags, so this function can be called
6288 * multiple times. Ports are guaranteed to get started only
f3187195
TH
6289 * once. If host->ops isn't initialized yet, its set to the
6290 * first non-dummy port ops.
ecef7253
TH
6291 *
6292 * LOCKING:
6293 * Inherited from calling layer (may sleep).
6294 *
6295 * RETURNS:
6296 * 0 if all ports are started successfully, -errno otherwise.
6297 */
6298int ata_host_start(struct ata_host *host)
6299{
6300 int i, rc;
6301
6302 if (host->flags & ATA_HOST_STARTED)
6303 return 0;
6304
6305 for (i = 0; i < host->n_ports; i++) {
6306 struct ata_port *ap = host->ports[i];
6307
f3187195
TH
6308 if (!host->ops && !ata_port_is_dummy(ap))
6309 host->ops = ap->ops;
6310
ecef7253
TH
6311 if (ap->ops->port_start) {
6312 rc = ap->ops->port_start(ap);
6313 if (rc) {
6314 ata_port_printk(ap, KERN_ERR, "failed to "
6315 "start port (errno=%d)\n", rc);
6316 goto err_out;
6317 }
6318 }
6319
6320 ata_eh_freeze_port(ap);
6321 }
6322
6323 host->flags |= ATA_HOST_STARTED;
6324 return 0;
6325
6326 err_out:
6327 while (--i >= 0) {
6328 struct ata_port *ap = host->ports[i];
6329
6330 if (ap->ops->port_stop)
6331 ap->ops->port_stop(ap);
6332 }
6333 return rc;
6334}
6335
b03732f0 6336/**
cca3974e
JG
6337 * ata_sas_host_init - Initialize a host struct
6338 * @host: host to initialize
6339 * @dev: device host is attached to
6340 * @flags: host flags
6341 * @ops: port_ops
b03732f0
BK
6342 *
6343 * LOCKING:
6344 * PCI/etc. bus probe sem.
6345 *
6346 */
f3187195 6347/* KILLME - the only user left is ipr */
cca3974e
JG
6348void ata_host_init(struct ata_host *host, struct device *dev,
6349 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 6350{
cca3974e
JG
6351 spin_lock_init(&host->lock);
6352 host->dev = dev;
6353 host->flags = flags;
6354 host->ops = ops;
b03732f0
BK
6355}
6356
f3187195
TH
6357/**
6358 * ata_host_register - register initialized ATA host
6359 * @host: ATA host to register
6360 * @sht: template for SCSI host
6361 *
6362 * Register initialized ATA host. @host is allocated using
6363 * ata_host_alloc() and fully initialized by LLD. This function
6364 * starts ports, registers @host with ATA and SCSI layers and
6365 * probe registered devices.
6366 *
6367 * LOCKING:
6368 * Inherited from calling layer (may sleep).
6369 *
6370 * RETURNS:
6371 * 0 on success, -errno otherwise.
6372 */
6373int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6374{
6375 int i, rc;
6376
6377 /* host must have been started */
6378 if (!(host->flags & ATA_HOST_STARTED)) {
6379 dev_printk(KERN_ERR, host->dev,
6380 "BUG: trying to register unstarted host\n");
6381 WARN_ON(1);
6382 return -EINVAL;
6383 }
6384
6385 /* Blow away unused ports. This happens when LLD can't
6386 * determine the exact number of ports to allocate at
6387 * allocation time.
6388 */
6389 for (i = host->n_ports; host->ports[i]; i++)
6390 kfree(host->ports[i]);
6391
6392 /* give ports names and add SCSI hosts */
6393 for (i = 0; i < host->n_ports; i++)
6394 host->ports[i]->print_id = ata_print_id++;
6395
6396 rc = ata_scsi_add_hosts(host, sht);
6397 if (rc)
6398 return rc;
6399
fafbae87
TH
6400 /* associate with ACPI nodes */
6401 ata_acpi_associate(host);
6402
f3187195
TH
6403 /* set cable, sata_spd_limit and report */
6404 for (i = 0; i < host->n_ports; i++) {
6405 struct ata_port *ap = host->ports[i];
6406 int irq_line;
6407 u32 scontrol;
6408 unsigned long xfer_mask;
6409
6410 /* set SATA cable type if still unset */
6411 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6412 ap->cbl = ATA_CBL_SATA;
6413
6414 /* init sata_spd_limit to the current value */
936fd732 6415 if (sata_scr_read(&ap->link, SCR_CONTROL, &scontrol) == 0) {
f3187195 6416 int spd = (scontrol >> 4) & 0xf;
afe3cc51 6417 if (spd)
9af5c9c9 6418 ap->link.hw_sata_spd_limit &= (1 << spd) - 1;
f3187195 6419 }
9af5c9c9 6420 ap->link.sata_spd_limit = ap->link.hw_sata_spd_limit;
f3187195
TH
6421
6422 /* report the secondary IRQ for second channel legacy */
6423 irq_line = host->irq;
6424 if (i == 1 && host->irq2)
6425 irq_line = host->irq2;
6426
6427 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6428 ap->udma_mask);
6429
6430 /* print per-port info to dmesg */
6431 if (!ata_port_is_dummy(ap))
6432 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
6433 "ctl 0x%p bmdma 0x%p irq %d\n",
a16abc0b 6434 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
f3187195
TH
6435 ata_mode_string(xfer_mask),
6436 ap->ioaddr.cmd_addr,
6437 ap->ioaddr.ctl_addr,
6438 ap->ioaddr.bmdma_addr,
6439 irq_line);
6440 else
6441 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6442 }
6443
6444 /* perform each probe synchronously */
6445 DPRINTK("probe begin\n");
6446 for (i = 0; i < host->n_ports; i++) {
6447 struct ata_port *ap = host->ports[i];
6448 int rc;
6449
6450 /* probe */
6451 if (ap->ops->error_handler) {
9af5c9c9 6452 struct ata_eh_info *ehi = &ap->link.eh_info;
f3187195
TH
6453 unsigned long flags;
6454
6455 ata_port_probe(ap);
6456
6457 /* kick EH for boot probing */
6458 spin_lock_irqsave(ap->lock, flags);
6459
f58229f8
TH
6460 ehi->probe_mask =
6461 (1 << ata_link_max_devices(&ap->link)) - 1;
f3187195
TH
6462 ehi->action |= ATA_EH_SOFTRESET;
6463 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6464
f4d6d004 6465 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
f3187195
TH
6466 ap->pflags |= ATA_PFLAG_LOADING;
6467 ata_port_schedule_eh(ap);
6468
6469 spin_unlock_irqrestore(ap->lock, flags);
6470
6471 /* wait for EH to finish */
6472 ata_port_wait_eh(ap);
6473 } else {
6474 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6475 rc = ata_bus_probe(ap);
6476 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6477
6478 if (rc) {
6479 /* FIXME: do something useful here?
6480 * Current libata behavior will
6481 * tear down everything when
6482 * the module is removed
6483 * or the h/w is unplugged.
6484 */
6485 }
6486 }
6487 }
6488
6489 /* probes are done, now scan each port's disk(s) */
6490 DPRINTK("host probe begin\n");
6491 for (i = 0; i < host->n_ports; i++) {
6492 struct ata_port *ap = host->ports[i];
6493
1ae46317 6494 ata_scsi_scan_host(ap, 1);
f3187195
TH
6495 }
6496
6497 return 0;
6498}
6499
f5cda257
TH
6500/**
6501 * ata_host_activate - start host, request IRQ and register it
6502 * @host: target ATA host
6503 * @irq: IRQ to request
6504 * @irq_handler: irq_handler used when requesting IRQ
6505 * @irq_flags: irq_flags used when requesting IRQ
6506 * @sht: scsi_host_template to use when registering the host
6507 *
6508 * After allocating an ATA host and initializing it, most libata
6509 * LLDs perform three steps to activate the host - start host,
6510 * request IRQ and register it. This helper takes necessasry
6511 * arguments and performs the three steps in one go.
6512 *
6513 * LOCKING:
6514 * Inherited from calling layer (may sleep).
6515 *
6516 * RETURNS:
6517 * 0 on success, -errno otherwise.
6518 */
6519int ata_host_activate(struct ata_host *host, int irq,
6520 irq_handler_t irq_handler, unsigned long irq_flags,
6521 struct scsi_host_template *sht)
6522{
6523 int rc;
6524
6525 rc = ata_host_start(host);
6526 if (rc)
6527 return rc;
6528
6529 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6530 dev_driver_string(host->dev), host);
6531 if (rc)
6532 return rc;
6533
4031826b
TH
6534 /* Used to print device info at probe */
6535 host->irq = irq;
6536
f5cda257
TH
6537 rc = ata_host_register(host, sht);
6538 /* if failed, just free the IRQ and leave ports alone */
6539 if (rc)
6540 devm_free_irq(host->dev, irq, host);
6541
6542 return rc;
6543}
6544
720ba126
TH
6545/**
6546 * ata_port_detach - Detach ATA port in prepration of device removal
6547 * @ap: ATA port to be detached
6548 *
6549 * Detach all ATA devices and the associated SCSI devices of @ap;
6550 * then, remove the associated SCSI host. @ap is guaranteed to
6551 * be quiescent on return from this function.
6552 *
6553 * LOCKING:
6554 * Kernel thread context (may sleep).
6555 */
6556void ata_port_detach(struct ata_port *ap)
6557{
6558 unsigned long flags;
f58229f8 6559 struct ata_device *dev;
720ba126
TH
6560
6561 if (!ap->ops->error_handler)
c3cf30a9 6562 goto skip_eh;
720ba126
TH
6563
6564 /* tell EH we're leaving & flush EH */
ba6a1308 6565 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 6566 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 6567 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6568
6569 ata_port_wait_eh(ap);
6570
6571 /* EH is now guaranteed to see UNLOADING, so no new device
6572 * will be attached. Disable all existing devices.
6573 */
ba6a1308 6574 spin_lock_irqsave(ap->lock, flags);
720ba126 6575
f58229f8
TH
6576 ata_link_for_each_dev(dev, &ap->link)
6577 ata_dev_disable(dev);
720ba126 6578
ba6a1308 6579 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6580
6581 /* Final freeze & EH. All in-flight commands are aborted. EH
6582 * will be skipped and retrials will be terminated with bad
6583 * target.
6584 */
ba6a1308 6585 spin_lock_irqsave(ap->lock, flags);
720ba126 6586 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 6587 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6588
6589 ata_port_wait_eh(ap);
45a66c1c 6590 cancel_rearming_delayed_work(&ap->hotplug_task);
720ba126 6591
c3cf30a9 6592 skip_eh:
720ba126 6593 /* remove the associated SCSI host */
cca3974e 6594 scsi_remove_host(ap->scsi_host);
720ba126
TH
6595}
6596
0529c159
TH
6597/**
6598 * ata_host_detach - Detach all ports of an ATA host
6599 * @host: Host to detach
6600 *
6601 * Detach all ports of @host.
6602 *
6603 * LOCKING:
6604 * Kernel thread context (may sleep).
6605 */
6606void ata_host_detach(struct ata_host *host)
6607{
6608 int i;
6609
6610 for (i = 0; i < host->n_ports; i++)
6611 ata_port_detach(host->ports[i]);
6612}
6613
1da177e4
LT
6614/**
6615 * ata_std_ports - initialize ioaddr with standard port offsets.
6616 * @ioaddr: IO address structure to be initialized
0baab86b
EF
6617 *
6618 * Utility function which initializes data_addr, error_addr,
6619 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6620 * device_addr, status_addr, and command_addr to standard offsets
6621 * relative to cmd_addr.
6622 *
6623 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 6624 */
0baab86b 6625
1da177e4
LT
6626void ata_std_ports(struct ata_ioports *ioaddr)
6627{
6628 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6629 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6630 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6631 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6632 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6633 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6634 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6635 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6636 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6637 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6638}
6639
0baab86b 6640
374b1873
JG
6641#ifdef CONFIG_PCI
6642
1da177e4
LT
6643/**
6644 * ata_pci_remove_one - PCI layer callback for device removal
6645 * @pdev: PCI device that was removed
6646 *
b878ca5d
TH
6647 * PCI layer indicates to libata via this hook that hot-unplug or
6648 * module unload event has occurred. Detach all ports. Resource
6649 * release is handled via devres.
1da177e4
LT
6650 *
6651 * LOCKING:
6652 * Inherited from PCI layer (may sleep).
6653 */
f0d36efd 6654void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4
LT
6655{
6656 struct device *dev = pci_dev_to_dev(pdev);
cca3974e 6657 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 6658
b878ca5d 6659 ata_host_detach(host);
1da177e4
LT
6660}
6661
6662/* move to PCI subsystem */
057ace5e 6663int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6664{
6665 unsigned long tmp = 0;
6666
6667 switch (bits->width) {
6668 case 1: {
6669 u8 tmp8 = 0;
6670 pci_read_config_byte(pdev, bits->reg, &tmp8);
6671 tmp = tmp8;
6672 break;
6673 }
6674 case 2: {
6675 u16 tmp16 = 0;
6676 pci_read_config_word(pdev, bits->reg, &tmp16);
6677 tmp = tmp16;
6678 break;
6679 }
6680 case 4: {
6681 u32 tmp32 = 0;
6682 pci_read_config_dword(pdev, bits->reg, &tmp32);
6683 tmp = tmp32;
6684 break;
6685 }
6686
6687 default:
6688 return -EINVAL;
6689 }
6690
6691 tmp &= bits->mask;
6692
6693 return (tmp == bits->val) ? 1 : 0;
6694}
9b847548 6695
6ffa01d8 6696#ifdef CONFIG_PM
3c5100c1 6697void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6698{
6699 pci_save_state(pdev);
4c90d971 6700 pci_disable_device(pdev);
500530f6 6701
4c90d971 6702 if (mesg.event == PM_EVENT_SUSPEND)
500530f6 6703 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
6704}
6705
553c4aa6 6706int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 6707{
553c4aa6
TH
6708 int rc;
6709
9b847548
JA
6710 pci_set_power_state(pdev, PCI_D0);
6711 pci_restore_state(pdev);
553c4aa6 6712
b878ca5d 6713 rc = pcim_enable_device(pdev);
553c4aa6
TH
6714 if (rc) {
6715 dev_printk(KERN_ERR, &pdev->dev,
6716 "failed to enable device after resume (%d)\n", rc);
6717 return rc;
6718 }
6719
9b847548 6720 pci_set_master(pdev);
553c4aa6 6721 return 0;
500530f6
TH
6722}
6723
3c5100c1 6724int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6725{
cca3974e 6726 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
6727 int rc = 0;
6728
cca3974e 6729 rc = ata_host_suspend(host, mesg);
500530f6
TH
6730 if (rc)
6731 return rc;
6732
3c5100c1 6733 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6734
6735 return 0;
6736}
6737
6738int ata_pci_device_resume(struct pci_dev *pdev)
6739{
cca3974e 6740 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 6741 int rc;
500530f6 6742
553c4aa6
TH
6743 rc = ata_pci_device_do_resume(pdev);
6744 if (rc == 0)
6745 ata_host_resume(host);
6746 return rc;
9b847548 6747}
6ffa01d8
TH
6748#endif /* CONFIG_PM */
6749
1da177e4
LT
6750#endif /* CONFIG_PCI */
6751
6752
1da177e4
LT
6753static int __init ata_init(void)
6754{
a8601e5f 6755 ata_probe_timeout *= HZ;
1da177e4
LT
6756 ata_wq = create_workqueue("ata");
6757 if (!ata_wq)
6758 return -ENOMEM;
6759
453b07ac
TH
6760 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6761 if (!ata_aux_wq) {
6762 destroy_workqueue(ata_wq);
6763 return -ENOMEM;
6764 }
6765
1da177e4
LT
6766 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6767 return 0;
6768}
6769
6770static void __exit ata_exit(void)
6771{
6772 destroy_workqueue(ata_wq);
453b07ac 6773 destroy_workqueue(ata_aux_wq);
1da177e4
LT
6774}
6775
a4625085 6776subsys_initcall(ata_init);
1da177e4
LT
6777module_exit(ata_exit);
6778
67846b30 6779static unsigned long ratelimit_time;
34af946a 6780static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
6781
6782int ata_ratelimit(void)
6783{
6784 int rc;
6785 unsigned long flags;
6786
6787 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6788
6789 if (time_after(jiffies, ratelimit_time)) {
6790 rc = 1;
6791 ratelimit_time = jiffies + (HZ/5);
6792 } else
6793 rc = 0;
6794
6795 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6796
6797 return rc;
6798}
6799
c22daff4
TH
6800/**
6801 * ata_wait_register - wait until register value changes
6802 * @reg: IO-mapped register
6803 * @mask: Mask to apply to read register value
6804 * @val: Wait condition
6805 * @interval_msec: polling interval in milliseconds
6806 * @timeout_msec: timeout in milliseconds
6807 *
6808 * Waiting for some bits of register to change is a common
6809 * operation for ATA controllers. This function reads 32bit LE
6810 * IO-mapped register @reg and tests for the following condition.
6811 *
6812 * (*@reg & mask) != val
6813 *
6814 * If the condition is met, it returns; otherwise, the process is
6815 * repeated after @interval_msec until timeout.
6816 *
6817 * LOCKING:
6818 * Kernel thread context (may sleep)
6819 *
6820 * RETURNS:
6821 * The final register value.
6822 */
6823u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6824 unsigned long interval_msec,
6825 unsigned long timeout_msec)
6826{
6827 unsigned long timeout;
6828 u32 tmp;
6829
6830 tmp = ioread32(reg);
6831
6832 /* Calculate timeout _after_ the first read to make sure
6833 * preceding writes reach the controller before starting to
6834 * eat away the timeout.
6835 */
6836 timeout = jiffies + (timeout_msec * HZ) / 1000;
6837
6838 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6839 msleep(interval_msec);
6840 tmp = ioread32(reg);
6841 }
6842
6843 return tmp;
6844}
6845
dd5b06c4
TH
6846/*
6847 * Dummy port_ops
6848 */
6849static void ata_dummy_noret(struct ata_port *ap) { }
6850static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6851static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6852
6853static u8 ata_dummy_check_status(struct ata_port *ap)
6854{
6855 return ATA_DRDY;
6856}
6857
6858static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6859{
6860 return AC_ERR_SYSTEM;
6861}
6862
6863const struct ata_port_operations ata_dummy_port_ops = {
6864 .port_disable = ata_port_disable,
6865 .check_status = ata_dummy_check_status,
6866 .check_altstatus = ata_dummy_check_status,
6867 .dev_select = ata_noop_dev_select,
6868 .qc_prep = ata_noop_qc_prep,
6869 .qc_issue = ata_dummy_qc_issue,
6870 .freeze = ata_dummy_noret,
6871 .thaw = ata_dummy_noret,
6872 .error_handler = ata_dummy_noret,
6873 .post_internal_cmd = ata_dummy_qc_noret,
6874 .irq_clear = ata_dummy_noret,
6875 .port_start = ata_dummy_ret0,
6876 .port_stop = ata_dummy_noret,
6877};
6878
21b0ad4f
TH
6879const struct ata_port_info ata_dummy_port_info = {
6880 .port_ops = &ata_dummy_port_ops,
6881};
6882
1da177e4
LT
6883/*
6884 * libata is essentially a library of internal helper functions for
6885 * low-level ATA host controller drivers. As such, the API/ABI is
6886 * likely to change as new drivers are added and updated.
6887 * Do not depend on ABI/API stability.
6888 */
6889
e9c83914
TH
6890EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6891EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6892EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 6893EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 6894EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1da177e4
LT
6895EXPORT_SYMBOL_GPL(ata_std_bios_param);
6896EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 6897EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 6898EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 6899EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
ecef7253 6900EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 6901EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 6902EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 6903EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4
LT
6904EXPORT_SYMBOL_GPL(ata_sg_init);
6905EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 6906EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 6907EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 6908EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 6909EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
6910EXPORT_SYMBOL_GPL(ata_tf_load);
6911EXPORT_SYMBOL_GPL(ata_tf_read);
6912EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6913EXPORT_SYMBOL_GPL(ata_std_dev_select);
43727fbc 6914EXPORT_SYMBOL_GPL(sata_print_link_status);
1da177e4
LT
6915EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6916EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6917EXPORT_SYMBOL_GPL(ata_check_status);
6918EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
6919EXPORT_SYMBOL_GPL(ata_exec_command);
6920EXPORT_SYMBOL_GPL(ata_port_start);
d92e74d3 6921EXPORT_SYMBOL_GPL(ata_sff_port_start);
1da177e4 6922EXPORT_SYMBOL_GPL(ata_interrupt);
04351821 6923EXPORT_SYMBOL_GPL(ata_do_set_mode);
0d5ff566
TH
6924EXPORT_SYMBOL_GPL(ata_data_xfer);
6925EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
1da177e4 6926EXPORT_SYMBOL_GPL(ata_qc_prep);
d26fc955 6927EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
e46834cd 6928EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
6929EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6930EXPORT_SYMBOL_GPL(ata_bmdma_start);
6931EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6932EXPORT_SYMBOL_GPL(ata_bmdma_status);
6933EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
6934EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6935EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6936EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6937EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6938EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 6939EXPORT_SYMBOL_GPL(ata_port_probe);
10305f0f 6940EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 6941EXPORT_SYMBOL_GPL(sata_set_spd);
936fd732
TH
6942EXPORT_SYMBOL_GPL(sata_link_debounce);
6943EXPORT_SYMBOL_GPL(sata_link_resume);
1da177e4
LT
6944EXPORT_SYMBOL_GPL(sata_phy_reset);
6945EXPORT_SYMBOL_GPL(__sata_phy_reset);
6946EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 6947EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 6948EXPORT_SYMBOL_GPL(ata_std_softreset);
b6103f6d 6949EXPORT_SYMBOL_GPL(sata_port_hardreset);
c2bd5804
TH
6950EXPORT_SYMBOL_GPL(sata_std_hardreset);
6951EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
6952EXPORT_SYMBOL_GPL(ata_dev_classify);
6953EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 6954EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 6955EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 6956EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 6957EXPORT_SYMBOL_GPL(ata_busy_sleep);
d4b2bab4 6958EXPORT_SYMBOL_GPL(ata_wait_ready);
86e45b6b 6959EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
6960EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6961EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 6962EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 6963EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 6964EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4 6965EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
6966EXPORT_SYMBOL_GPL(sata_scr_valid);
6967EXPORT_SYMBOL_GPL(sata_scr_read);
6968EXPORT_SYMBOL_GPL(sata_scr_write);
6969EXPORT_SYMBOL_GPL(sata_scr_write_flush);
936fd732
TH
6970EXPORT_SYMBOL_GPL(ata_link_online);
6971EXPORT_SYMBOL_GPL(ata_link_offline);
6ffa01d8 6972#ifdef CONFIG_PM
cca3974e
JG
6973EXPORT_SYMBOL_GPL(ata_host_suspend);
6974EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 6975#endif /* CONFIG_PM */
6a62a04d
TH
6976EXPORT_SYMBOL_GPL(ata_id_string);
6977EXPORT_SYMBOL_GPL(ata_id_c_string);
10305f0f 6978EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
1da177e4
LT
6979EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6980
1bc4ccff 6981EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
6982EXPORT_SYMBOL_GPL(ata_timing_compute);
6983EXPORT_SYMBOL_GPL(ata_timing_merge);
6984
1da177e4
LT
6985#ifdef CONFIG_PCI
6986EXPORT_SYMBOL_GPL(pci_test_config_bits);
d583bc18 6987EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
1626aeb8 6988EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
d583bc18 6989EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
1da177e4
LT
6990EXPORT_SYMBOL_GPL(ata_pci_init_one);
6991EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 6992#ifdef CONFIG_PM
500530f6
TH
6993EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6994EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
6995EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6996EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 6997#endif /* CONFIG_PM */
67951ade
AC
6998EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6999EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 7000#endif /* CONFIG_PCI */
9b847548 7001
b64bbc39
TH
7002EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7003EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7004EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
ece1d636 7005EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03
TH
7006EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7007EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499
TH
7008EXPORT_SYMBOL_GPL(ata_port_freeze);
7009EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7010EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
7011EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7012EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 7013EXPORT_SYMBOL_GPL(ata_do_eh);
83625006
AI
7014EXPORT_SYMBOL_GPL(ata_irq_on);
7015EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
7016EXPORT_SYMBOL_GPL(ata_irq_ack);
7017EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
a619f981 7018EXPORT_SYMBOL_GPL(ata_dev_try_classify);
be0d18df
AC
7019
7020EXPORT_SYMBOL_GPL(ata_cable_40wire);
7021EXPORT_SYMBOL_GPL(ata_cable_80wire);
7022EXPORT_SYMBOL_GPL(ata_cable_unknown);
7023EXPORT_SYMBOL_GPL(ata_cable_sata);