fastboot: make scsi probes asynchronous
[linux-2.6-block.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
92c52c52
AC
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
1da177e4
LT
41 */
42
1da177e4
LT
43#include <linux/kernel.h>
44#include <linux/module.h>
45#include <linux/pci.h>
46#include <linux/init.h>
47#include <linux/list.h>
48#include <linux/mm.h>
1da177e4
LT
49#include <linux/spinlock.h>
50#include <linux/blkdev.h>
51#include <linux/delay.h>
52#include <linux/timer.h>
53#include <linux/interrupt.h>
54#include <linux/completion.h>
55#include <linux/suspend.h>
56#include <linux/workqueue.h>
378f058c 57#include <linux/scatterlist.h>
2dcb407e 58#include <linux/io.h>
1da177e4 59#include <scsi/scsi.h>
193515d5 60#include <scsi/scsi_cmnd.h>
1da177e4
LT
61#include <scsi/scsi_host.h>
62#include <linux/libata.h>
1da177e4 63#include <asm/byteorder.h>
140b5e59 64#include <linux/cdrom.h>
1da177e4
LT
65
66#include "libata.h"
67
fda0efc5 68
d7bb4cc7 69/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
70const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
71const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
72const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 73
029cfd6b 74const struct ata_port_operations ata_base_port_ops = {
0aa1113d 75 .prereset = ata_std_prereset,
203c75b8 76 .postreset = ata_std_postreset,
a1efdaba 77 .error_handler = ata_std_error_handler,
029cfd6b
TH
78};
79
80const struct ata_port_operations sata_port_ops = {
81 .inherits = &ata_base_port_ops,
82
83 .qc_defer = ata_std_qc_defer,
57c9efdf 84 .hardreset = sata_std_hardreset,
029cfd6b
TH
85};
86
3373efd8
TH
87static unsigned int ata_dev_init_params(struct ata_device *dev,
88 u16 heads, u16 sectors);
89static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
218f3d30
JG
90static unsigned int ata_dev_set_feature(struct ata_device *dev,
91 u8 enable, u8 feature);
3373efd8 92static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 93static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 94
f3187195 95unsigned int ata_print_id = 1;
1da177e4
LT
96static struct workqueue_struct *ata_wq;
97
453b07ac
TH
98struct workqueue_struct *ata_aux_wq;
99
33267325
TH
100struct ata_force_param {
101 const char *name;
102 unsigned int cbl;
103 int spd_limit;
104 unsigned long xfer_mask;
105 unsigned int horkage_on;
106 unsigned int horkage_off;
05944bdf 107 unsigned int lflags;
33267325
TH
108};
109
110struct ata_force_ent {
111 int port;
112 int device;
113 struct ata_force_param param;
114};
115
116static struct ata_force_ent *ata_force_tbl;
117static int ata_force_tbl_size;
118
119static char ata_force_param_buf[PAGE_SIZE] __initdata;
7afb4222
TH
120/* param_buf is thrown away after initialization, disallow read */
121module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
33267325
TH
122MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
123
2486fa56 124static int atapi_enabled = 1;
1623c81e
JG
125module_param(atapi_enabled, int, 0444);
126MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
127
c5c61bda 128static int atapi_dmadir = 0;
95de719a
AL
129module_param(atapi_dmadir, int, 0444);
130MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
131
baf4fdfa
ML
132int atapi_passthru16 = 1;
133module_param(atapi_passthru16, int, 0444);
134MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
135
c3c013a2
JG
136int libata_fua = 0;
137module_param_named(fua, libata_fua, int, 0444);
138MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
139
2dcb407e 140static int ata_ignore_hpa;
1e999736
AC
141module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
142MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
143
b3a70601
AC
144static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
145module_param_named(dma, libata_dma_mask, int, 0444);
146MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
147
87fbc5a0 148static int ata_probe_timeout;
a8601e5f
AM
149module_param(ata_probe_timeout, int, 0444);
150MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
151
6ebe9d86 152int libata_noacpi = 0;
d7d0dad6 153module_param_named(noacpi, libata_noacpi, int, 0444);
6ebe9d86 154MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
11ef697b 155
ae8d4ee7
AC
156int libata_allow_tpm = 0;
157module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
158MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands");
159
1da177e4
LT
160MODULE_AUTHOR("Jeff Garzik");
161MODULE_DESCRIPTION("Library module for ATA devices");
162MODULE_LICENSE("GPL");
163MODULE_VERSION(DRV_VERSION);
164
0baab86b 165
1eca4365
TH
166/**
167 * ata_link_next - link iteration helper
168 * @link: the previous link, NULL to start
169 * @ap: ATA port containing links to iterate
170 * @mode: iteration mode, one of ATA_LITER_*
171 *
172 * LOCKING:
173 * Host lock or EH context.
aadffb68 174 *
1eca4365
TH
175 * RETURNS:
176 * Pointer to the next link.
aadffb68 177 */
1eca4365
TH
178struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
179 enum ata_link_iter_mode mode)
aadffb68 180{
1eca4365
TH
181 BUG_ON(mode != ATA_LITER_EDGE &&
182 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
183
aadffb68 184 /* NULL link indicates start of iteration */
1eca4365
TH
185 if (!link)
186 switch (mode) {
187 case ATA_LITER_EDGE:
188 case ATA_LITER_PMP_FIRST:
189 if (sata_pmp_attached(ap))
190 return ap->pmp_link;
191 /* fall through */
192 case ATA_LITER_HOST_FIRST:
193 return &ap->link;
194 }
aadffb68 195
1eca4365
TH
196 /* we just iterated over the host link, what's next? */
197 if (link == &ap->link)
198 switch (mode) {
199 case ATA_LITER_HOST_FIRST:
200 if (sata_pmp_attached(ap))
201 return ap->pmp_link;
202 /* fall through */
203 case ATA_LITER_PMP_FIRST:
204 if (unlikely(ap->slave_link))
b1c72916 205 return ap->slave_link;
1eca4365
TH
206 /* fall through */
207 case ATA_LITER_EDGE:
aadffb68 208 return NULL;
b1c72916 209 }
aadffb68 210
b1c72916
TH
211 /* slave_link excludes PMP */
212 if (unlikely(link == ap->slave_link))
213 return NULL;
214
1eca4365 215 /* we were over a PMP link */
aadffb68
TH
216 if (++link < ap->pmp_link + ap->nr_pmp_links)
217 return link;
1eca4365
TH
218
219 if (mode == ATA_LITER_PMP_FIRST)
220 return &ap->link;
221
aadffb68
TH
222 return NULL;
223}
224
1eca4365
TH
225/**
226 * ata_dev_next - device iteration helper
227 * @dev: the previous device, NULL to start
228 * @link: ATA link containing devices to iterate
229 * @mode: iteration mode, one of ATA_DITER_*
230 *
231 * LOCKING:
232 * Host lock or EH context.
233 *
234 * RETURNS:
235 * Pointer to the next device.
236 */
237struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
238 enum ata_dev_iter_mode mode)
239{
240 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
241 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
242
243 /* NULL dev indicates start of iteration */
244 if (!dev)
245 switch (mode) {
246 case ATA_DITER_ENABLED:
247 case ATA_DITER_ALL:
248 dev = link->device;
249 goto check;
250 case ATA_DITER_ENABLED_REVERSE:
251 case ATA_DITER_ALL_REVERSE:
252 dev = link->device + ata_link_max_devices(link) - 1;
253 goto check;
254 }
255
256 next:
257 /* move to the next one */
258 switch (mode) {
259 case ATA_DITER_ENABLED:
260 case ATA_DITER_ALL:
261 if (++dev < link->device + ata_link_max_devices(link))
262 goto check;
263 return NULL;
264 case ATA_DITER_ENABLED_REVERSE:
265 case ATA_DITER_ALL_REVERSE:
266 if (--dev >= link->device)
267 goto check;
268 return NULL;
269 }
270
271 check:
272 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
273 !ata_dev_enabled(dev))
274 goto next;
275 return dev;
276}
277
b1c72916
TH
278/**
279 * ata_dev_phys_link - find physical link for a device
280 * @dev: ATA device to look up physical link for
281 *
282 * Look up physical link which @dev is attached to. Note that
283 * this is different from @dev->link only when @dev is on slave
284 * link. For all other cases, it's the same as @dev->link.
285 *
286 * LOCKING:
287 * Don't care.
288 *
289 * RETURNS:
290 * Pointer to the found physical link.
291 */
292struct ata_link *ata_dev_phys_link(struct ata_device *dev)
293{
294 struct ata_port *ap = dev->link->ap;
295
296 if (!ap->slave_link)
297 return dev->link;
298 if (!dev->devno)
299 return &ap->link;
300 return ap->slave_link;
301}
302
33267325
TH
303/**
304 * ata_force_cbl - force cable type according to libata.force
4cdfa1b3 305 * @ap: ATA port of interest
33267325
TH
306 *
307 * Force cable type according to libata.force and whine about it.
308 * The last entry which has matching port number is used, so it
309 * can be specified as part of device force parameters. For
310 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
311 * same effect.
312 *
313 * LOCKING:
314 * EH context.
315 */
316void ata_force_cbl(struct ata_port *ap)
317{
318 int i;
319
320 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
321 const struct ata_force_ent *fe = &ata_force_tbl[i];
322
323 if (fe->port != -1 && fe->port != ap->print_id)
324 continue;
325
326 if (fe->param.cbl == ATA_CBL_NONE)
327 continue;
328
329 ap->cbl = fe->param.cbl;
330 ata_port_printk(ap, KERN_NOTICE,
331 "FORCE: cable set to %s\n", fe->param.name);
332 return;
333 }
334}
335
336/**
05944bdf 337 * ata_force_link_limits - force link limits according to libata.force
33267325
TH
338 * @link: ATA link of interest
339 *
05944bdf
TH
340 * Force link flags and SATA spd limit according to libata.force
341 * and whine about it. When only the port part is specified
342 * (e.g. 1:), the limit applies to all links connected to both
343 * the host link and all fan-out ports connected via PMP. If the
344 * device part is specified as 0 (e.g. 1.00:), it specifies the
345 * first fan-out link not the host link. Device number 15 always
b1c72916
TH
346 * points to the host link whether PMP is attached or not. If the
347 * controller has slave link, device number 16 points to it.
33267325
TH
348 *
349 * LOCKING:
350 * EH context.
351 */
05944bdf 352static void ata_force_link_limits(struct ata_link *link)
33267325 353{
05944bdf 354 bool did_spd = false;
b1c72916
TH
355 int linkno = link->pmp;
356 int i;
33267325
TH
357
358 if (ata_is_host_link(link))
b1c72916 359 linkno += 15;
33267325
TH
360
361 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
362 const struct ata_force_ent *fe = &ata_force_tbl[i];
363
364 if (fe->port != -1 && fe->port != link->ap->print_id)
365 continue;
366
367 if (fe->device != -1 && fe->device != linkno)
368 continue;
369
05944bdf
TH
370 /* only honor the first spd limit */
371 if (!did_spd && fe->param.spd_limit) {
372 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
373 ata_link_printk(link, KERN_NOTICE,
374 "FORCE: PHY spd limit set to %s\n",
375 fe->param.name);
376 did_spd = true;
377 }
33267325 378
05944bdf
TH
379 /* let lflags stack */
380 if (fe->param.lflags) {
381 link->flags |= fe->param.lflags;
382 ata_link_printk(link, KERN_NOTICE,
383 "FORCE: link flag 0x%x forced -> 0x%x\n",
384 fe->param.lflags, link->flags);
385 }
33267325
TH
386 }
387}
388
389/**
390 * ata_force_xfermask - force xfermask according to libata.force
391 * @dev: ATA device of interest
392 *
393 * Force xfer_mask according to libata.force and whine about it.
394 * For consistency with link selection, device number 15 selects
395 * the first device connected to the host link.
396 *
397 * LOCKING:
398 * EH context.
399 */
400static void ata_force_xfermask(struct ata_device *dev)
401{
402 int devno = dev->link->pmp + dev->devno;
403 int alt_devno = devno;
404 int i;
405
b1c72916
TH
406 /* allow n.15/16 for devices attached to host port */
407 if (ata_is_host_link(dev->link))
408 alt_devno += 15;
33267325
TH
409
410 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
411 const struct ata_force_ent *fe = &ata_force_tbl[i];
412 unsigned long pio_mask, mwdma_mask, udma_mask;
413
414 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
415 continue;
416
417 if (fe->device != -1 && fe->device != devno &&
418 fe->device != alt_devno)
419 continue;
420
421 if (!fe->param.xfer_mask)
422 continue;
423
424 ata_unpack_xfermask(fe->param.xfer_mask,
425 &pio_mask, &mwdma_mask, &udma_mask);
426 if (udma_mask)
427 dev->udma_mask = udma_mask;
428 else if (mwdma_mask) {
429 dev->udma_mask = 0;
430 dev->mwdma_mask = mwdma_mask;
431 } else {
432 dev->udma_mask = 0;
433 dev->mwdma_mask = 0;
434 dev->pio_mask = pio_mask;
435 }
436
437 ata_dev_printk(dev, KERN_NOTICE,
438 "FORCE: xfer_mask set to %s\n", fe->param.name);
439 return;
440 }
441}
442
443/**
444 * ata_force_horkage - force horkage according to libata.force
445 * @dev: ATA device of interest
446 *
447 * Force horkage according to libata.force and whine about it.
448 * For consistency with link selection, device number 15 selects
449 * the first device connected to the host link.
450 *
451 * LOCKING:
452 * EH context.
453 */
454static void ata_force_horkage(struct ata_device *dev)
455{
456 int devno = dev->link->pmp + dev->devno;
457 int alt_devno = devno;
458 int i;
459
b1c72916
TH
460 /* allow n.15/16 for devices attached to host port */
461 if (ata_is_host_link(dev->link))
462 alt_devno += 15;
33267325
TH
463
464 for (i = 0; i < ata_force_tbl_size; i++) {
465 const struct ata_force_ent *fe = &ata_force_tbl[i];
466
467 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
468 continue;
469
470 if (fe->device != -1 && fe->device != devno &&
471 fe->device != alt_devno)
472 continue;
473
474 if (!(~dev->horkage & fe->param.horkage_on) &&
475 !(dev->horkage & fe->param.horkage_off))
476 continue;
477
478 dev->horkage |= fe->param.horkage_on;
479 dev->horkage &= ~fe->param.horkage_off;
480
481 ata_dev_printk(dev, KERN_NOTICE,
482 "FORCE: horkage modified (%s)\n", fe->param.name);
483 }
484}
485
436d34b3
TH
486/**
487 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
488 * @opcode: SCSI opcode
489 *
490 * Determine ATAPI command type from @opcode.
491 *
492 * LOCKING:
493 * None.
494 *
495 * RETURNS:
496 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
497 */
498int atapi_cmd_type(u8 opcode)
499{
500 switch (opcode) {
501 case GPCMD_READ_10:
502 case GPCMD_READ_12:
503 return ATAPI_READ;
504
505 case GPCMD_WRITE_10:
506 case GPCMD_WRITE_12:
507 case GPCMD_WRITE_AND_VERIFY_10:
508 return ATAPI_WRITE;
509
510 case GPCMD_READ_CD:
511 case GPCMD_READ_CD_MSF:
512 return ATAPI_READ_CD;
513
e52dcc48
TH
514 case ATA_16:
515 case ATA_12:
516 if (atapi_passthru16)
517 return ATAPI_PASS_THRU;
518 /* fall thru */
436d34b3
TH
519 default:
520 return ATAPI_MISC;
521 }
522}
523
1da177e4
LT
524/**
525 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
526 * @tf: Taskfile to convert
1da177e4 527 * @pmp: Port multiplier port
9977126c
TH
528 * @is_cmd: This FIS is for command
529 * @fis: Buffer into which data will output
1da177e4
LT
530 *
531 * Converts a standard ATA taskfile to a Serial ATA
532 * FIS structure (Register - Host to Device).
533 *
534 * LOCKING:
535 * Inherited from caller.
536 */
9977126c 537void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 538{
9977126c
TH
539 fis[0] = 0x27; /* Register - Host to Device FIS */
540 fis[1] = pmp & 0xf; /* Port multiplier number*/
541 if (is_cmd)
542 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
543
1da177e4
LT
544 fis[2] = tf->command;
545 fis[3] = tf->feature;
546
547 fis[4] = tf->lbal;
548 fis[5] = tf->lbam;
549 fis[6] = tf->lbah;
550 fis[7] = tf->device;
551
552 fis[8] = tf->hob_lbal;
553 fis[9] = tf->hob_lbam;
554 fis[10] = tf->hob_lbah;
555 fis[11] = tf->hob_feature;
556
557 fis[12] = tf->nsect;
558 fis[13] = tf->hob_nsect;
559 fis[14] = 0;
560 fis[15] = tf->ctl;
561
562 fis[16] = 0;
563 fis[17] = 0;
564 fis[18] = 0;
565 fis[19] = 0;
566}
567
568/**
569 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
570 * @fis: Buffer from which data will be input
571 * @tf: Taskfile to output
572 *
e12a1be6 573 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
574 *
575 * LOCKING:
576 * Inherited from caller.
577 */
578
057ace5e 579void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
580{
581 tf->command = fis[2]; /* status */
582 tf->feature = fis[3]; /* error */
583
584 tf->lbal = fis[4];
585 tf->lbam = fis[5];
586 tf->lbah = fis[6];
587 tf->device = fis[7];
588
589 tf->hob_lbal = fis[8];
590 tf->hob_lbam = fis[9];
591 tf->hob_lbah = fis[10];
592
593 tf->nsect = fis[12];
594 tf->hob_nsect = fis[13];
595}
596
8cbd6df1
AL
597static const u8 ata_rw_cmds[] = {
598 /* pio multi */
599 ATA_CMD_READ_MULTI,
600 ATA_CMD_WRITE_MULTI,
601 ATA_CMD_READ_MULTI_EXT,
602 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
603 0,
604 0,
605 0,
606 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
607 /* pio */
608 ATA_CMD_PIO_READ,
609 ATA_CMD_PIO_WRITE,
610 ATA_CMD_PIO_READ_EXT,
611 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
612 0,
613 0,
614 0,
615 0,
8cbd6df1
AL
616 /* dma */
617 ATA_CMD_READ,
618 ATA_CMD_WRITE,
619 ATA_CMD_READ_EXT,
9a3dccc4
TH
620 ATA_CMD_WRITE_EXT,
621 0,
622 0,
623 0,
624 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 625};
1da177e4
LT
626
627/**
8cbd6df1 628 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
629 * @tf: command to examine and configure
630 * @dev: device tf belongs to
1da177e4 631 *
2e9edbf8 632 * Examine the device configuration and tf->flags to calculate
8cbd6df1 633 * the proper read/write commands and protocol to use.
1da177e4
LT
634 *
635 * LOCKING:
636 * caller.
637 */
bd056d7e 638static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 639{
9a3dccc4 640 u8 cmd;
1da177e4 641
9a3dccc4 642 int index, fua, lba48, write;
2e9edbf8 643
9a3dccc4 644 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
645 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
646 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 647
8cbd6df1
AL
648 if (dev->flags & ATA_DFLAG_PIO) {
649 tf->protocol = ATA_PROT_PIO;
9a3dccc4 650 index = dev->multi_count ? 0 : 8;
9af5c9c9 651 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
652 /* Unable to use DMA due to host limitation */
653 tf->protocol = ATA_PROT_PIO;
0565c26d 654 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
655 } else {
656 tf->protocol = ATA_PROT_DMA;
9a3dccc4 657 index = 16;
8cbd6df1 658 }
1da177e4 659
9a3dccc4
TH
660 cmd = ata_rw_cmds[index + fua + lba48 + write];
661 if (cmd) {
662 tf->command = cmd;
663 return 0;
664 }
665 return -1;
1da177e4
LT
666}
667
35b649fe
TH
668/**
669 * ata_tf_read_block - Read block address from ATA taskfile
670 * @tf: ATA taskfile of interest
671 * @dev: ATA device @tf belongs to
672 *
673 * LOCKING:
674 * None.
675 *
676 * Read block address from @tf. This function can handle all
677 * three address formats - LBA, LBA48 and CHS. tf->protocol and
678 * flags select the address format to use.
679 *
680 * RETURNS:
681 * Block address read from @tf.
682 */
683u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
684{
685 u64 block = 0;
686
687 if (tf->flags & ATA_TFLAG_LBA) {
688 if (tf->flags & ATA_TFLAG_LBA48) {
689 block |= (u64)tf->hob_lbah << 40;
690 block |= (u64)tf->hob_lbam << 32;
44901a96 691 block |= (u64)tf->hob_lbal << 24;
35b649fe
TH
692 } else
693 block |= (tf->device & 0xf) << 24;
694
695 block |= tf->lbah << 16;
696 block |= tf->lbam << 8;
697 block |= tf->lbal;
698 } else {
699 u32 cyl, head, sect;
700
701 cyl = tf->lbam | (tf->lbah << 8);
702 head = tf->device & 0xf;
703 sect = tf->lbal;
704
705 block = (cyl * dev->heads + head) * dev->sectors + sect;
706 }
707
708 return block;
709}
710
bd056d7e
TH
711/**
712 * ata_build_rw_tf - Build ATA taskfile for given read/write request
713 * @tf: Target ATA taskfile
714 * @dev: ATA device @tf belongs to
715 * @block: Block address
716 * @n_block: Number of blocks
717 * @tf_flags: RW/FUA etc...
718 * @tag: tag
719 *
720 * LOCKING:
721 * None.
722 *
723 * Build ATA taskfile @tf for read/write request described by
724 * @block, @n_block, @tf_flags and @tag on @dev.
725 *
726 * RETURNS:
727 *
728 * 0 on success, -ERANGE if the request is too large for @dev,
729 * -EINVAL if the request is invalid.
730 */
731int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
732 u64 block, u32 n_block, unsigned int tf_flags,
733 unsigned int tag)
734{
735 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
736 tf->flags |= tf_flags;
737
6d1245bf 738 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
739 /* yay, NCQ */
740 if (!lba_48_ok(block, n_block))
741 return -ERANGE;
742
743 tf->protocol = ATA_PROT_NCQ;
744 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
745
746 if (tf->flags & ATA_TFLAG_WRITE)
747 tf->command = ATA_CMD_FPDMA_WRITE;
748 else
749 tf->command = ATA_CMD_FPDMA_READ;
750
751 tf->nsect = tag << 3;
752 tf->hob_feature = (n_block >> 8) & 0xff;
753 tf->feature = n_block & 0xff;
754
755 tf->hob_lbah = (block >> 40) & 0xff;
756 tf->hob_lbam = (block >> 32) & 0xff;
757 tf->hob_lbal = (block >> 24) & 0xff;
758 tf->lbah = (block >> 16) & 0xff;
759 tf->lbam = (block >> 8) & 0xff;
760 tf->lbal = block & 0xff;
761
762 tf->device = 1 << 6;
763 if (tf->flags & ATA_TFLAG_FUA)
764 tf->device |= 1 << 7;
765 } else if (dev->flags & ATA_DFLAG_LBA) {
766 tf->flags |= ATA_TFLAG_LBA;
767
768 if (lba_28_ok(block, n_block)) {
769 /* use LBA28 */
770 tf->device |= (block >> 24) & 0xf;
771 } else if (lba_48_ok(block, n_block)) {
772 if (!(dev->flags & ATA_DFLAG_LBA48))
773 return -ERANGE;
774
775 /* use LBA48 */
776 tf->flags |= ATA_TFLAG_LBA48;
777
778 tf->hob_nsect = (n_block >> 8) & 0xff;
779
780 tf->hob_lbah = (block >> 40) & 0xff;
781 tf->hob_lbam = (block >> 32) & 0xff;
782 tf->hob_lbal = (block >> 24) & 0xff;
783 } else
784 /* request too large even for LBA48 */
785 return -ERANGE;
786
787 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
788 return -EINVAL;
789
790 tf->nsect = n_block & 0xff;
791
792 tf->lbah = (block >> 16) & 0xff;
793 tf->lbam = (block >> 8) & 0xff;
794 tf->lbal = block & 0xff;
795
796 tf->device |= ATA_LBA;
797 } else {
798 /* CHS */
799 u32 sect, head, cyl, track;
800
801 /* The request -may- be too large for CHS addressing. */
802 if (!lba_28_ok(block, n_block))
803 return -ERANGE;
804
805 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
806 return -EINVAL;
807
808 /* Convert LBA to CHS */
809 track = (u32)block / dev->sectors;
810 cyl = track / dev->heads;
811 head = track % dev->heads;
812 sect = (u32)block % dev->sectors + 1;
813
814 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
815 (u32)block, track, cyl, head, sect);
816
817 /* Check whether the converted CHS can fit.
818 Cylinder: 0-65535
819 Head: 0-15
820 Sector: 1-255*/
821 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
822 return -ERANGE;
823
824 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
825 tf->lbal = sect;
826 tf->lbam = cyl;
827 tf->lbah = cyl >> 8;
828 tf->device |= head;
829 }
830
831 return 0;
832}
833
cb95d562
TH
834/**
835 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
836 * @pio_mask: pio_mask
837 * @mwdma_mask: mwdma_mask
838 * @udma_mask: udma_mask
839 *
840 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
841 * unsigned int xfer_mask.
842 *
843 * LOCKING:
844 * None.
845 *
846 * RETURNS:
847 * Packed xfer_mask.
848 */
7dc951ae
TH
849unsigned long ata_pack_xfermask(unsigned long pio_mask,
850 unsigned long mwdma_mask,
851 unsigned long udma_mask)
cb95d562
TH
852{
853 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
854 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
855 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
856}
857
c0489e4e
TH
858/**
859 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
860 * @xfer_mask: xfer_mask to unpack
861 * @pio_mask: resulting pio_mask
862 * @mwdma_mask: resulting mwdma_mask
863 * @udma_mask: resulting udma_mask
864 *
865 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
866 * Any NULL distination masks will be ignored.
867 */
7dc951ae
TH
868void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
869 unsigned long *mwdma_mask, unsigned long *udma_mask)
c0489e4e
TH
870{
871 if (pio_mask)
872 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
873 if (mwdma_mask)
874 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
875 if (udma_mask)
876 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
877}
878
cb95d562 879static const struct ata_xfer_ent {
be9a50c8 880 int shift, bits;
cb95d562
TH
881 u8 base;
882} ata_xfer_tbl[] = {
70cd071e
TH
883 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
884 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
885 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
cb95d562
TH
886 { -1, },
887};
888
889/**
890 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
891 * @xfer_mask: xfer_mask of interest
892 *
893 * Return matching XFER_* value for @xfer_mask. Only the highest
894 * bit of @xfer_mask is considered.
895 *
896 * LOCKING:
897 * None.
898 *
899 * RETURNS:
70cd071e 900 * Matching XFER_* value, 0xff if no match found.
cb95d562 901 */
7dc951ae 902u8 ata_xfer_mask2mode(unsigned long xfer_mask)
cb95d562
TH
903{
904 int highbit = fls(xfer_mask) - 1;
905 const struct ata_xfer_ent *ent;
906
907 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
908 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
909 return ent->base + highbit - ent->shift;
70cd071e 910 return 0xff;
cb95d562
TH
911}
912
913/**
914 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
915 * @xfer_mode: XFER_* of interest
916 *
917 * Return matching xfer_mask for @xfer_mode.
918 *
919 * LOCKING:
920 * None.
921 *
922 * RETURNS:
923 * Matching xfer_mask, 0 if no match found.
924 */
7dc951ae 925unsigned long ata_xfer_mode2mask(u8 xfer_mode)
cb95d562
TH
926{
927 const struct ata_xfer_ent *ent;
928
929 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
930 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
70cd071e
TH
931 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
932 & ~((1 << ent->shift) - 1);
cb95d562
TH
933 return 0;
934}
935
936/**
937 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
938 * @xfer_mode: XFER_* of interest
939 *
940 * Return matching xfer_shift for @xfer_mode.
941 *
942 * LOCKING:
943 * None.
944 *
945 * RETURNS:
946 * Matching xfer_shift, -1 if no match found.
947 */
7dc951ae 948int ata_xfer_mode2shift(unsigned long xfer_mode)
cb95d562
TH
949{
950 const struct ata_xfer_ent *ent;
951
952 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
953 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
954 return ent->shift;
955 return -1;
956}
957
1da177e4 958/**
1da7b0d0
TH
959 * ata_mode_string - convert xfer_mask to string
960 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
961 *
962 * Determine string which represents the highest speed
1da7b0d0 963 * (highest bit in @modemask).
1da177e4
LT
964 *
965 * LOCKING:
966 * None.
967 *
968 * RETURNS:
969 * Constant C string representing highest speed listed in
1da7b0d0 970 * @mode_mask, or the constant C string "<n/a>".
1da177e4 971 */
7dc951ae 972const char *ata_mode_string(unsigned long xfer_mask)
1da177e4 973{
75f554bc
TH
974 static const char * const xfer_mode_str[] = {
975 "PIO0",
976 "PIO1",
977 "PIO2",
978 "PIO3",
979 "PIO4",
b352e57d
AC
980 "PIO5",
981 "PIO6",
75f554bc
TH
982 "MWDMA0",
983 "MWDMA1",
984 "MWDMA2",
b352e57d
AC
985 "MWDMA3",
986 "MWDMA4",
75f554bc
TH
987 "UDMA/16",
988 "UDMA/25",
989 "UDMA/33",
990 "UDMA/44",
991 "UDMA/66",
992 "UDMA/100",
993 "UDMA/133",
994 "UDMA7",
995 };
1da7b0d0 996 int highbit;
1da177e4 997
1da7b0d0
TH
998 highbit = fls(xfer_mask) - 1;
999 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1000 return xfer_mode_str[highbit];
1da177e4 1001 return "<n/a>";
1da177e4
LT
1002}
1003
4c360c81
TH
1004static const char *sata_spd_string(unsigned int spd)
1005{
1006 static const char * const spd_str[] = {
1007 "1.5 Gbps",
1008 "3.0 Gbps",
1009 };
1010
1011 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1012 return "<unknown>";
1013 return spd_str[spd - 1];
1014}
1015
3373efd8 1016void ata_dev_disable(struct ata_device *dev)
0b8efb0a 1017{
09d7f9b0 1018 if (ata_dev_enabled(dev)) {
9af5c9c9 1019 if (ata_msg_drv(dev->link->ap))
09d7f9b0 1020 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
562f0c2d 1021 ata_acpi_on_disable(dev);
4ae72a1e
TH
1022 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
1023 ATA_DNXFER_QUIET);
0b8efb0a
TH
1024 dev->class++;
1025 }
1026}
1027
ca77329f
KCA
1028static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
1029{
1030 struct ata_link *link = dev->link;
1031 struct ata_port *ap = link->ap;
1032 u32 scontrol;
1033 unsigned int err_mask;
1034 int rc;
1035
1036 /*
1037 * disallow DIPM for drivers which haven't set
1038 * ATA_FLAG_IPM. This is because when DIPM is enabled,
1039 * phy ready will be set in the interrupt status on
1040 * state changes, which will cause some drivers to
1041 * think there are errors - additionally drivers will
1042 * need to disable hot plug.
1043 */
1044 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
1045 ap->pm_policy = NOT_AVAILABLE;
1046 return -EINVAL;
1047 }
1048
1049 /*
1050 * For DIPM, we will only enable it for the
1051 * min_power setting.
1052 *
1053 * Why? Because Disks are too stupid to know that
1054 * If the host rejects a request to go to SLUMBER
1055 * they should retry at PARTIAL, and instead it
1056 * just would give up. So, for medium_power to
1057 * work at all, we need to only allow HIPM.
1058 */
1059 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
1060 if (rc)
1061 return rc;
1062
1063 switch (policy) {
1064 case MIN_POWER:
1065 /* no restrictions on IPM transitions */
1066 scontrol &= ~(0x3 << 8);
1067 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1068 if (rc)
1069 return rc;
1070
1071 /* enable DIPM */
1072 if (dev->flags & ATA_DFLAG_DIPM)
1073 err_mask = ata_dev_set_feature(dev,
1074 SETFEATURES_SATA_ENABLE, SATA_DIPM);
1075 break;
1076 case MEDIUM_POWER:
1077 /* allow IPM to PARTIAL */
1078 scontrol &= ~(0x1 << 8);
1079 scontrol |= (0x2 << 8);
1080 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1081 if (rc)
1082 return rc;
1083
f5456b63
KCA
1084 /*
1085 * we don't have to disable DIPM since IPM flags
1086 * disallow transitions to SLUMBER, which effectively
1087 * disable DIPM if it does not support PARTIAL
1088 */
ca77329f
KCA
1089 break;
1090 case NOT_AVAILABLE:
1091 case MAX_PERFORMANCE:
1092 /* disable all IPM transitions */
1093 scontrol |= (0x3 << 8);
1094 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1095 if (rc)
1096 return rc;
1097
f5456b63
KCA
1098 /*
1099 * we don't have to disable DIPM since IPM flags
1100 * disallow all transitions which effectively
1101 * disable DIPM anyway.
1102 */
ca77329f
KCA
1103 break;
1104 }
1105
1106 /* FIXME: handle SET FEATURES failure */
1107 (void) err_mask;
1108
1109 return 0;
1110}
1111
1112/**
1113 * ata_dev_enable_pm - enable SATA interface power management
48166fd9
SH
1114 * @dev: device to enable power management
1115 * @policy: the link power management policy
ca77329f
KCA
1116 *
1117 * Enable SATA Interface power management. This will enable
1118 * Device Interface Power Management (DIPM) for min_power
1119 * policy, and then call driver specific callbacks for
1120 * enabling Host Initiated Power management.
1121 *
1122 * Locking: Caller.
1123 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
1124 */
1125void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
1126{
1127 int rc = 0;
1128 struct ata_port *ap = dev->link->ap;
1129
1130 /* set HIPM first, then DIPM */
1131 if (ap->ops->enable_pm)
1132 rc = ap->ops->enable_pm(ap, policy);
1133 if (rc)
1134 goto enable_pm_out;
1135 rc = ata_dev_set_dipm(dev, policy);
1136
1137enable_pm_out:
1138 if (rc)
1139 ap->pm_policy = MAX_PERFORMANCE;
1140 else
1141 ap->pm_policy = policy;
1142 return /* rc */; /* hopefully we can use 'rc' eventually */
1143}
1144
1992a5ed 1145#ifdef CONFIG_PM
ca77329f
KCA
1146/**
1147 * ata_dev_disable_pm - disable SATA interface power management
48166fd9 1148 * @dev: device to disable power management
ca77329f
KCA
1149 *
1150 * Disable SATA Interface power management. This will disable
1151 * Device Interface Power Management (DIPM) without changing
1152 * policy, call driver specific callbacks for disabling Host
1153 * Initiated Power management.
1154 *
1155 * Locking: Caller.
1156 * Returns: void
1157 */
1158static void ata_dev_disable_pm(struct ata_device *dev)
1159{
1160 struct ata_port *ap = dev->link->ap;
1161
1162 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
1163 if (ap->ops->disable_pm)
1164 ap->ops->disable_pm(ap);
1165}
1992a5ed 1166#endif /* CONFIG_PM */
ca77329f
KCA
1167
1168void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
1169{
1170 ap->pm_policy = policy;
3ec25ebd 1171 ap->link.eh_info.action |= ATA_EH_LPM;
ca77329f
KCA
1172 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
1173 ata_port_schedule_eh(ap);
1174}
1175
1992a5ed 1176#ifdef CONFIG_PM
ca77329f
KCA
1177static void ata_lpm_enable(struct ata_host *host)
1178{
1179 struct ata_link *link;
1180 struct ata_port *ap;
1181 struct ata_device *dev;
1182 int i;
1183
1184 for (i = 0; i < host->n_ports; i++) {
1185 ap = host->ports[i];
1eca4365
TH
1186 ata_for_each_link(link, ap, EDGE) {
1187 ata_for_each_dev(dev, link, ALL)
ca77329f
KCA
1188 ata_dev_disable_pm(dev);
1189 }
1190 }
1191}
1192
1193static void ata_lpm_disable(struct ata_host *host)
1194{
1195 int i;
1196
1197 for (i = 0; i < host->n_ports; i++) {
1198 struct ata_port *ap = host->ports[i];
1199 ata_lpm_schedule(ap, ap->pm_policy);
1200 }
1201}
1992a5ed 1202#endif /* CONFIG_PM */
ca77329f 1203
1da177e4
LT
1204/**
1205 * ata_dev_classify - determine device type based on ATA-spec signature
1206 * @tf: ATA taskfile register set for device to be identified
1207 *
1208 * Determine from taskfile register contents whether a device is
1209 * ATA or ATAPI, as per "Signature and persistence" section
1210 * of ATA/PI spec (volume 1, sect 5.14).
1211 *
1212 * LOCKING:
1213 * None.
1214 *
1215 * RETURNS:
633273a3
TH
1216 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1217 * %ATA_DEV_UNKNOWN the event of failure.
1da177e4 1218 */
057ace5e 1219unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
1220{
1221 /* Apple's open source Darwin code hints that some devices only
1222 * put a proper signature into the LBA mid/high registers,
1223 * So, we only check those. It's sufficient for uniqueness.
633273a3
TH
1224 *
1225 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1226 * signatures for ATA and ATAPI devices attached on SerialATA,
1227 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1228 * spec has never mentioned about using different signatures
1229 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1230 * Multiplier specification began to use 0x69/0x96 to identify
1231 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1232 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1233 * 0x69/0x96 shortly and described them as reserved for
1234 * SerialATA.
1235 *
1236 * We follow the current spec and consider that 0x69/0x96
1237 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1da177e4 1238 */
633273a3 1239 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1da177e4
LT
1240 DPRINTK("found ATA device by sig\n");
1241 return ATA_DEV_ATA;
1242 }
1243
633273a3 1244 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1da177e4
LT
1245 DPRINTK("found ATAPI device by sig\n");
1246 return ATA_DEV_ATAPI;
1247 }
1248
633273a3
TH
1249 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1250 DPRINTK("found PMP device by sig\n");
1251 return ATA_DEV_PMP;
1252 }
1253
1254 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
2dcb407e 1255 printk(KERN_INFO "ata: SEMB device ignored\n");
633273a3
TH
1256 return ATA_DEV_SEMB_UNSUP; /* not yet */
1257 }
1258
1da177e4
LT
1259 DPRINTK("unknown device\n");
1260 return ATA_DEV_UNKNOWN;
1261}
1262
1da177e4 1263/**
6a62a04d 1264 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
1265 * @id: IDENTIFY DEVICE results we will examine
1266 * @s: string into which data is output
1267 * @ofs: offset into identify device page
1268 * @len: length of string to return. must be an even number.
1269 *
1270 * The strings in the IDENTIFY DEVICE page are broken up into
1271 * 16-bit chunks. Run through the string, and output each
1272 * 8-bit chunk linearly, regardless of platform.
1273 *
1274 * LOCKING:
1275 * caller.
1276 */
1277
6a62a04d
TH
1278void ata_id_string(const u16 *id, unsigned char *s,
1279 unsigned int ofs, unsigned int len)
1da177e4
LT
1280{
1281 unsigned int c;
1282
963e4975
AC
1283 BUG_ON(len & 1);
1284
1da177e4
LT
1285 while (len > 0) {
1286 c = id[ofs] >> 8;
1287 *s = c;
1288 s++;
1289
1290 c = id[ofs] & 0xff;
1291 *s = c;
1292 s++;
1293
1294 ofs++;
1295 len -= 2;
1296 }
1297}
1298
0e949ff3 1299/**
6a62a04d 1300 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
1301 * @id: IDENTIFY DEVICE results we will examine
1302 * @s: string into which data is output
1303 * @ofs: offset into identify device page
1304 * @len: length of string to return. must be an odd number.
1305 *
6a62a04d 1306 * This function is identical to ata_id_string except that it
0e949ff3
TH
1307 * trims trailing spaces and terminates the resulting string with
1308 * null. @len must be actual maximum length (even number) + 1.
1309 *
1310 * LOCKING:
1311 * caller.
1312 */
6a62a04d
TH
1313void ata_id_c_string(const u16 *id, unsigned char *s,
1314 unsigned int ofs, unsigned int len)
0e949ff3
TH
1315{
1316 unsigned char *p;
1317
6a62a04d 1318 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
1319
1320 p = s + strnlen(s, len - 1);
1321 while (p > s && p[-1] == ' ')
1322 p--;
1323 *p = '\0';
1324}
0baab86b 1325
db6f8759
TH
1326static u64 ata_id_n_sectors(const u16 *id)
1327{
1328 if (ata_id_has_lba(id)) {
1329 if (ata_id_has_lba48(id))
1330 return ata_id_u64(id, 100);
1331 else
1332 return ata_id_u32(id, 60);
1333 } else {
1334 if (ata_id_current_chs_valid(id))
1335 return ata_id_u32(id, 57);
1336 else
1337 return id[1] * id[3] * id[6];
1338 }
1339}
1340
a5987e0a 1341u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1e999736
AC
1342{
1343 u64 sectors = 0;
1344
1345 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1346 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
ba14a9c2 1347 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1e999736
AC
1348 sectors |= (tf->lbah & 0xff) << 16;
1349 sectors |= (tf->lbam & 0xff) << 8;
1350 sectors |= (tf->lbal & 0xff);
1351
a5987e0a 1352 return sectors;
1e999736
AC
1353}
1354
a5987e0a 1355u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1e999736
AC
1356{
1357 u64 sectors = 0;
1358
1359 sectors |= (tf->device & 0x0f) << 24;
1360 sectors |= (tf->lbah & 0xff) << 16;
1361 sectors |= (tf->lbam & 0xff) << 8;
1362 sectors |= (tf->lbal & 0xff);
1363
a5987e0a 1364 return sectors;
1e999736
AC
1365}
1366
1367/**
c728a914
TH
1368 * ata_read_native_max_address - Read native max address
1369 * @dev: target device
1370 * @max_sectors: out parameter for the result native max address
1e999736 1371 *
c728a914
TH
1372 * Perform an LBA48 or LBA28 native size query upon the device in
1373 * question.
1e999736 1374 *
c728a914
TH
1375 * RETURNS:
1376 * 0 on success, -EACCES if command is aborted by the drive.
1377 * -EIO on other errors.
1e999736 1378 */
c728a914 1379static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1e999736 1380{
c728a914 1381 unsigned int err_mask;
1e999736 1382 struct ata_taskfile tf;
c728a914 1383 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1384
1385 ata_tf_init(dev, &tf);
1386
c728a914 1387 /* always clear all address registers */
1e999736 1388 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1e999736 1389
c728a914
TH
1390 if (lba48) {
1391 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1392 tf.flags |= ATA_TFLAG_LBA48;
1393 } else
1394 tf.command = ATA_CMD_READ_NATIVE_MAX;
1e999736 1395
1e999736 1396 tf.protocol |= ATA_PROT_NODATA;
c728a914
TH
1397 tf.device |= ATA_LBA;
1398
2b789108 1399 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1400 if (err_mask) {
1401 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1402 "max address (err_mask=0x%x)\n", err_mask);
1403 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1404 return -EACCES;
1405 return -EIO;
1406 }
1e999736 1407
c728a914 1408 if (lba48)
a5987e0a 1409 *max_sectors = ata_tf_to_lba48(&tf) + 1;
c728a914 1410 else
a5987e0a 1411 *max_sectors = ata_tf_to_lba(&tf) + 1;
2dcb407e 1412 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
93328e11 1413 (*max_sectors)--;
c728a914 1414 return 0;
1e999736
AC
1415}
1416
1417/**
c728a914
TH
1418 * ata_set_max_sectors - Set max sectors
1419 * @dev: target device
6b38d1d1 1420 * @new_sectors: new max sectors value to set for the device
1e999736 1421 *
c728a914
TH
1422 * Set max sectors of @dev to @new_sectors.
1423 *
1424 * RETURNS:
1425 * 0 on success, -EACCES if command is aborted or denied (due to
1426 * previous non-volatile SET_MAX) by the drive. -EIO on other
1427 * errors.
1e999736 1428 */
05027adc 1429static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1e999736 1430{
c728a914 1431 unsigned int err_mask;
1e999736 1432 struct ata_taskfile tf;
c728a914 1433 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1434
1435 new_sectors--;
1436
1437 ata_tf_init(dev, &tf);
1438
1e999736 1439 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
c728a914
TH
1440
1441 if (lba48) {
1442 tf.command = ATA_CMD_SET_MAX_EXT;
1443 tf.flags |= ATA_TFLAG_LBA48;
1444
1445 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1446 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1447 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1e582ba4 1448 } else {
c728a914
TH
1449 tf.command = ATA_CMD_SET_MAX;
1450
1e582ba4
TH
1451 tf.device |= (new_sectors >> 24) & 0xf;
1452 }
1453
1e999736 1454 tf.protocol |= ATA_PROT_NODATA;
c728a914 1455 tf.device |= ATA_LBA;
1e999736
AC
1456
1457 tf.lbal = (new_sectors >> 0) & 0xff;
1458 tf.lbam = (new_sectors >> 8) & 0xff;
1459 tf.lbah = (new_sectors >> 16) & 0xff;
1e999736 1460
2b789108 1461 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1462 if (err_mask) {
1463 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1464 "max address (err_mask=0x%x)\n", err_mask);
1465 if (err_mask == AC_ERR_DEV &&
1466 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1467 return -EACCES;
1468 return -EIO;
1469 }
1470
c728a914 1471 return 0;
1e999736
AC
1472}
1473
1474/**
1475 * ata_hpa_resize - Resize a device with an HPA set
1476 * @dev: Device to resize
1477 *
1478 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1479 * it if required to the full size of the media. The caller must check
1480 * the drive has the HPA feature set enabled.
05027adc
TH
1481 *
1482 * RETURNS:
1483 * 0 on success, -errno on failure.
1e999736 1484 */
05027adc 1485static int ata_hpa_resize(struct ata_device *dev)
1e999736 1486{
05027adc
TH
1487 struct ata_eh_context *ehc = &dev->link->eh_context;
1488 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1489 u64 sectors = ata_id_n_sectors(dev->id);
1490 u64 native_sectors;
c728a914 1491 int rc;
a617c09f 1492
05027adc
TH
1493 /* do we need to do it? */
1494 if (dev->class != ATA_DEV_ATA ||
1495 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1496 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
c728a914 1497 return 0;
1e999736 1498
05027adc
TH
1499 /* read native max address */
1500 rc = ata_read_native_max_address(dev, &native_sectors);
1501 if (rc) {
dda7aba1
TH
1502 /* If device aborted the command or HPA isn't going to
1503 * be unlocked, skip HPA resizing.
05027adc 1504 */
dda7aba1 1505 if (rc == -EACCES || !ata_ignore_hpa) {
05027adc 1506 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
dda7aba1 1507 "broken, skipping HPA handling\n");
05027adc
TH
1508 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1509
1510 /* we can continue if device aborted the command */
1511 if (rc == -EACCES)
1512 rc = 0;
1e999736 1513 }
37301a55 1514
05027adc
TH
1515 return rc;
1516 }
1517
1518 /* nothing to do? */
1519 if (native_sectors <= sectors || !ata_ignore_hpa) {
1520 if (!print_info || native_sectors == sectors)
1521 return 0;
1522
1523 if (native_sectors > sectors)
1524 ata_dev_printk(dev, KERN_INFO,
1525 "HPA detected: current %llu, native %llu\n",
1526 (unsigned long long)sectors,
1527 (unsigned long long)native_sectors);
1528 else if (native_sectors < sectors)
1529 ata_dev_printk(dev, KERN_WARNING,
1530 "native sectors (%llu) is smaller than "
1531 "sectors (%llu)\n",
1532 (unsigned long long)native_sectors,
1533 (unsigned long long)sectors);
1534 return 0;
1535 }
1536
1537 /* let's unlock HPA */
1538 rc = ata_set_max_sectors(dev, native_sectors);
1539 if (rc == -EACCES) {
1540 /* if device aborted the command, skip HPA resizing */
1541 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1542 "(%llu -> %llu), skipping HPA handling\n",
1543 (unsigned long long)sectors,
1544 (unsigned long long)native_sectors);
1545 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1546 return 0;
1547 } else if (rc)
1548 return rc;
1549
1550 /* re-read IDENTIFY data */
1551 rc = ata_dev_reread_id(dev, 0);
1552 if (rc) {
1553 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1554 "data after HPA resizing\n");
1555 return rc;
1556 }
1557
1558 if (print_info) {
1559 u64 new_sectors = ata_id_n_sectors(dev->id);
1560 ata_dev_printk(dev, KERN_INFO,
1561 "HPA unlocked: %llu -> %llu, native %llu\n",
1562 (unsigned long long)sectors,
1563 (unsigned long long)new_sectors,
1564 (unsigned long long)native_sectors);
1565 }
1566
1567 return 0;
1e999736
AC
1568}
1569
1da177e4
LT
1570/**
1571 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1572 * @id: IDENTIFY DEVICE page to dump
1da177e4 1573 *
0bd3300a
TH
1574 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1575 * page.
1da177e4
LT
1576 *
1577 * LOCKING:
1578 * caller.
1579 */
1580
0bd3300a 1581static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1582{
1583 DPRINTK("49==0x%04x "
1584 "53==0x%04x "
1585 "63==0x%04x "
1586 "64==0x%04x "
1587 "75==0x%04x \n",
0bd3300a
TH
1588 id[49],
1589 id[53],
1590 id[63],
1591 id[64],
1592 id[75]);
1da177e4
LT
1593 DPRINTK("80==0x%04x "
1594 "81==0x%04x "
1595 "82==0x%04x "
1596 "83==0x%04x "
1597 "84==0x%04x \n",
0bd3300a
TH
1598 id[80],
1599 id[81],
1600 id[82],
1601 id[83],
1602 id[84]);
1da177e4
LT
1603 DPRINTK("88==0x%04x "
1604 "93==0x%04x\n",
0bd3300a
TH
1605 id[88],
1606 id[93]);
1da177e4
LT
1607}
1608
cb95d562
TH
1609/**
1610 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1611 * @id: IDENTIFY data to compute xfer mask from
1612 *
1613 * Compute the xfermask for this device. This is not as trivial
1614 * as it seems if we must consider early devices correctly.
1615 *
1616 * FIXME: pre IDE drive timing (do we care ?).
1617 *
1618 * LOCKING:
1619 * None.
1620 *
1621 * RETURNS:
1622 * Computed xfermask
1623 */
7dc951ae 1624unsigned long ata_id_xfermask(const u16 *id)
cb95d562 1625{
7dc951ae 1626 unsigned long pio_mask, mwdma_mask, udma_mask;
cb95d562
TH
1627
1628 /* Usual case. Word 53 indicates word 64 is valid */
1629 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1630 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1631 pio_mask <<= 3;
1632 pio_mask |= 0x7;
1633 } else {
1634 /* If word 64 isn't valid then Word 51 high byte holds
1635 * the PIO timing number for the maximum. Turn it into
1636 * a mask.
1637 */
7a0f1c8a 1638 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb 1639 if (mode < 5) /* Valid PIO range */
2dcb407e 1640 pio_mask = (2 << mode) - 1;
46767aeb
AC
1641 else
1642 pio_mask = 1;
cb95d562
TH
1643
1644 /* But wait.. there's more. Design your standards by
1645 * committee and you too can get a free iordy field to
1646 * process. However its the speeds not the modes that
1647 * are supported... Note drivers using the timing API
1648 * will get this right anyway
1649 */
1650 }
1651
1652 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1653
b352e57d
AC
1654 if (ata_id_is_cfa(id)) {
1655 /*
1656 * Process compact flash extended modes
1657 */
1658 int pio = id[163] & 0x7;
1659 int dma = (id[163] >> 3) & 7;
1660
1661 if (pio)
1662 pio_mask |= (1 << 5);
1663 if (pio > 1)
1664 pio_mask |= (1 << 6);
1665 if (dma)
1666 mwdma_mask |= (1 << 3);
1667 if (dma > 1)
1668 mwdma_mask |= (1 << 4);
1669 }
1670
fb21f0d0
TH
1671 udma_mask = 0;
1672 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1673 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1674
1675 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1676}
1677
86e45b6b 1678/**
442eacc3 1679 * ata_pio_queue_task - Queue port_task
86e45b6b 1680 * @ap: The ata_port to queue port_task for
65f27f38 1681 * @data: data for @fn to use
341c2c95 1682 * @delay: delay time in msecs for workqueue function
86e45b6b
TH
1683 *
1684 * Schedule @fn(@data) for execution after @delay jiffies using
1685 * port_task. There is one port_task per port and it's the
1686 * user(low level driver)'s responsibility to make sure that only
1687 * one task is active at any given time.
1688 *
1689 * libata core layer takes care of synchronization between
442eacc3 1690 * port_task and EH. ata_pio_queue_task() may be ignored for EH
86e45b6b
TH
1691 * synchronization.
1692 *
1693 * LOCKING:
1694 * Inherited from caller.
1695 */
624d5c51 1696void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay)
86e45b6b 1697{
65f27f38 1698 ap->port_task_data = data;
86e45b6b 1699
45a66c1c 1700 /* may fail if ata_port_flush_task() in progress */
341c2c95 1701 queue_delayed_work(ata_wq, &ap->port_task, msecs_to_jiffies(delay));
86e45b6b
TH
1702}
1703
1704/**
1705 * ata_port_flush_task - Flush port_task
1706 * @ap: The ata_port to flush port_task for
1707 *
1708 * After this function completes, port_task is guranteed not to
1709 * be running or scheduled.
1710 *
1711 * LOCKING:
1712 * Kernel thread context (may sleep)
1713 */
1714void ata_port_flush_task(struct ata_port *ap)
1715{
86e45b6b
TH
1716 DPRINTK("ENTER\n");
1717
45a66c1c 1718 cancel_rearming_delayed_work(&ap->port_task);
86e45b6b 1719
0dd4b21f 1720 if (ata_msg_ctl(ap))
7f5e4e8d 1721 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
86e45b6b
TH
1722}
1723
7102d230 1724static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1725{
77853bf2 1726 struct completion *waiting = qc->private_data;
a2a7a662 1727
a2a7a662 1728 complete(waiting);
a2a7a662
TH
1729}
1730
1731/**
2432697b 1732 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1733 * @dev: Device to which the command is sent
1734 * @tf: Taskfile registers for the command and the result
d69cf37d 1735 * @cdb: CDB for packet command
a2a7a662 1736 * @dma_dir: Data tranfer direction of the command
5c1ad8b3 1737 * @sgl: sg list for the data buffer of the command
2432697b 1738 * @n_elem: Number of sg entries
2b789108 1739 * @timeout: Timeout in msecs (0 for default)
a2a7a662
TH
1740 *
1741 * Executes libata internal command with timeout. @tf contains
1742 * command on entry and result on return. Timeout and error
1743 * conditions are reported via return value. No recovery action
1744 * is taken after a command times out. It's caller's duty to
1745 * clean up after timeout.
1746 *
1747 * LOCKING:
1748 * None. Should be called with kernel context, might sleep.
551e8889
TH
1749 *
1750 * RETURNS:
1751 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1752 */
2432697b
TH
1753unsigned ata_exec_internal_sg(struct ata_device *dev,
1754 struct ata_taskfile *tf, const u8 *cdb,
87260216 1755 int dma_dir, struct scatterlist *sgl,
2b789108 1756 unsigned int n_elem, unsigned long timeout)
a2a7a662 1757{
9af5c9c9
TH
1758 struct ata_link *link = dev->link;
1759 struct ata_port *ap = link->ap;
a2a7a662 1760 u8 command = tf->command;
87fbc5a0 1761 int auto_timeout = 0;
a2a7a662 1762 struct ata_queued_cmd *qc;
2ab7db1f 1763 unsigned int tag, preempted_tag;
dedaf2b0 1764 u32 preempted_sactive, preempted_qc_active;
da917d69 1765 int preempted_nr_active_links;
60be6b9a 1766 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1767 unsigned long flags;
77853bf2 1768 unsigned int err_mask;
d95a717f 1769 int rc;
a2a7a662 1770
ba6a1308 1771 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1772
e3180499 1773 /* no internal command while frozen */
b51e9e5d 1774 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1775 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1776 return AC_ERR_SYSTEM;
1777 }
1778
2ab7db1f 1779 /* initialize internal qc */
a2a7a662 1780
2ab7db1f
TH
1781 /* XXX: Tag 0 is used for drivers with legacy EH as some
1782 * drivers choke if any other tag is given. This breaks
1783 * ata_tag_internal() test for those drivers. Don't use new
1784 * EH stuff without converting to it.
1785 */
1786 if (ap->ops->error_handler)
1787 tag = ATA_TAG_INTERNAL;
1788 else
1789 tag = 0;
1790
8a8bc223
TH
1791 if (test_and_set_bit(tag, &ap->qc_allocated))
1792 BUG();
f69499f4 1793 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1794
1795 qc->tag = tag;
1796 qc->scsicmd = NULL;
1797 qc->ap = ap;
1798 qc->dev = dev;
1799 ata_qc_reinit(qc);
1800
9af5c9c9
TH
1801 preempted_tag = link->active_tag;
1802 preempted_sactive = link->sactive;
dedaf2b0 1803 preempted_qc_active = ap->qc_active;
da917d69 1804 preempted_nr_active_links = ap->nr_active_links;
9af5c9c9
TH
1805 link->active_tag = ATA_TAG_POISON;
1806 link->sactive = 0;
dedaf2b0 1807 ap->qc_active = 0;
da917d69 1808 ap->nr_active_links = 0;
2ab7db1f
TH
1809
1810 /* prepare & issue qc */
a2a7a662 1811 qc->tf = *tf;
d69cf37d
TH
1812 if (cdb)
1813 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1814 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1815 qc->dma_dir = dma_dir;
1816 if (dma_dir != DMA_NONE) {
2432697b 1817 unsigned int i, buflen = 0;
87260216 1818 struct scatterlist *sg;
2432697b 1819
87260216
JA
1820 for_each_sg(sgl, sg, n_elem, i)
1821 buflen += sg->length;
2432697b 1822
87260216 1823 ata_sg_init(qc, sgl, n_elem);
49c80429 1824 qc->nbytes = buflen;
a2a7a662
TH
1825 }
1826
77853bf2 1827 qc->private_data = &wait;
a2a7a662
TH
1828 qc->complete_fn = ata_qc_complete_internal;
1829
8e0e694a 1830 ata_qc_issue(qc);
a2a7a662 1831
ba6a1308 1832 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1833
87fbc5a0
TH
1834 if (!timeout) {
1835 if (ata_probe_timeout)
1836 timeout = ata_probe_timeout * 1000;
1837 else {
1838 timeout = ata_internal_cmd_timeout(dev, command);
1839 auto_timeout = 1;
1840 }
1841 }
2b789108
TH
1842
1843 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
d95a717f
TH
1844
1845 ata_port_flush_task(ap);
41ade50c 1846
d95a717f 1847 if (!rc) {
ba6a1308 1848 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1849
1850 /* We're racing with irq here. If we lose, the
1851 * following test prevents us from completing the qc
d95a717f
TH
1852 * twice. If we win, the port is frozen and will be
1853 * cleaned up by ->post_internal_cmd().
a2a7a662 1854 */
77853bf2 1855 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1856 qc->err_mask |= AC_ERR_TIMEOUT;
1857
1858 if (ap->ops->error_handler)
1859 ata_port_freeze(ap);
1860 else
1861 ata_qc_complete(qc);
f15a1daf 1862
0dd4b21f
BP
1863 if (ata_msg_warn(ap))
1864 ata_dev_printk(dev, KERN_WARNING,
88574551 1865 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1866 }
1867
ba6a1308 1868 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1869 }
1870
d95a717f
TH
1871 /* do post_internal_cmd */
1872 if (ap->ops->post_internal_cmd)
1873 ap->ops->post_internal_cmd(qc);
1874
a51d644a
TH
1875 /* perform minimal error analysis */
1876 if (qc->flags & ATA_QCFLAG_FAILED) {
1877 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1878 qc->err_mask |= AC_ERR_DEV;
1879
1880 if (!qc->err_mask)
1881 qc->err_mask |= AC_ERR_OTHER;
1882
1883 if (qc->err_mask & ~AC_ERR_OTHER)
1884 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1885 }
1886
15869303 1887 /* finish up */
ba6a1308 1888 spin_lock_irqsave(ap->lock, flags);
15869303 1889
e61e0672 1890 *tf = qc->result_tf;
77853bf2
TH
1891 err_mask = qc->err_mask;
1892
1893 ata_qc_free(qc);
9af5c9c9
TH
1894 link->active_tag = preempted_tag;
1895 link->sactive = preempted_sactive;
dedaf2b0 1896 ap->qc_active = preempted_qc_active;
da917d69 1897 ap->nr_active_links = preempted_nr_active_links;
77853bf2 1898
1f7dd3e9
TH
1899 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1900 * Until those drivers are fixed, we detect the condition
1901 * here, fail the command with AC_ERR_SYSTEM and reenable the
1902 * port.
1903 *
1904 * Note that this doesn't change any behavior as internal
1905 * command failure results in disabling the device in the
1906 * higher layer for LLDDs without new reset/EH callbacks.
1907 *
1908 * Kill the following code as soon as those drivers are fixed.
1909 */
198e0fed 1910 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1911 err_mask |= AC_ERR_SYSTEM;
1912 ata_port_probe(ap);
1913 }
1914
ba6a1308 1915 spin_unlock_irqrestore(ap->lock, flags);
15869303 1916
87fbc5a0
TH
1917 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1918 ata_internal_cmd_timed_out(dev, command);
1919
77853bf2 1920 return err_mask;
a2a7a662
TH
1921}
1922
2432697b 1923/**
33480a0e 1924 * ata_exec_internal - execute libata internal command
2432697b
TH
1925 * @dev: Device to which the command is sent
1926 * @tf: Taskfile registers for the command and the result
1927 * @cdb: CDB for packet command
1928 * @dma_dir: Data tranfer direction of the command
1929 * @buf: Data buffer of the command
1930 * @buflen: Length of data buffer
2b789108 1931 * @timeout: Timeout in msecs (0 for default)
2432697b
TH
1932 *
1933 * Wrapper around ata_exec_internal_sg() which takes simple
1934 * buffer instead of sg list.
1935 *
1936 * LOCKING:
1937 * None. Should be called with kernel context, might sleep.
1938 *
1939 * RETURNS:
1940 * Zero on success, AC_ERR_* mask on failure
1941 */
1942unsigned ata_exec_internal(struct ata_device *dev,
1943 struct ata_taskfile *tf, const u8 *cdb,
2b789108
TH
1944 int dma_dir, void *buf, unsigned int buflen,
1945 unsigned long timeout)
2432697b 1946{
33480a0e
TH
1947 struct scatterlist *psg = NULL, sg;
1948 unsigned int n_elem = 0;
2432697b 1949
33480a0e
TH
1950 if (dma_dir != DMA_NONE) {
1951 WARN_ON(!buf);
1952 sg_init_one(&sg, buf, buflen);
1953 psg = &sg;
1954 n_elem++;
1955 }
2432697b 1956
2b789108
TH
1957 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1958 timeout);
2432697b
TH
1959}
1960
977e6b9f
TH
1961/**
1962 * ata_do_simple_cmd - execute simple internal command
1963 * @dev: Device to which the command is sent
1964 * @cmd: Opcode to execute
1965 *
1966 * Execute a 'simple' command, that only consists of the opcode
1967 * 'cmd' itself, without filling any other registers
1968 *
1969 * LOCKING:
1970 * Kernel thread context (may sleep).
1971 *
1972 * RETURNS:
1973 * Zero on success, AC_ERR_* mask on failure
e58eb583 1974 */
77b08fb5 1975unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1976{
1977 struct ata_taskfile tf;
e58eb583
TH
1978
1979 ata_tf_init(dev, &tf);
1980
1981 tf.command = cmd;
1982 tf.flags |= ATA_TFLAG_DEVICE;
1983 tf.protocol = ATA_PROT_NODATA;
1984
2b789108 1985 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
e58eb583
TH
1986}
1987
1bc4ccff
AC
1988/**
1989 * ata_pio_need_iordy - check if iordy needed
1990 * @adev: ATA device
1991 *
1992 * Check if the current speed of the device requires IORDY. Used
1993 * by various controllers for chip configuration.
1994 */
a617c09f 1995
1bc4ccff
AC
1996unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1997{
432729f0
AC
1998 /* Controller doesn't support IORDY. Probably a pointless check
1999 as the caller should know this */
9af5c9c9 2000 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 2001 return 0;
432729f0
AC
2002 /* PIO3 and higher it is mandatory */
2003 if (adev->pio_mode > XFER_PIO_2)
2004 return 1;
2005 /* We turn it on when possible */
2006 if (ata_id_has_iordy(adev->id))
1bc4ccff 2007 return 1;
432729f0
AC
2008 return 0;
2009}
2e9edbf8 2010
432729f0
AC
2011/**
2012 * ata_pio_mask_no_iordy - Return the non IORDY mask
2013 * @adev: ATA device
2014 *
2015 * Compute the highest mode possible if we are not using iordy. Return
2016 * -1 if no iordy mode is available.
2017 */
a617c09f 2018
432729f0
AC
2019static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
2020{
1bc4ccff 2021 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 2022 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 2023 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
2024 /* Is the speed faster than the drive allows non IORDY ? */
2025 if (pio) {
2026 /* This is cycle times not frequency - watch the logic! */
2027 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
2028 return 3 << ATA_SHIFT_PIO;
2029 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
2030 }
2031 }
432729f0 2032 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
2033}
2034
963e4975
AC
2035/**
2036 * ata_do_dev_read_id - default ID read method
2037 * @dev: device
2038 * @tf: proposed taskfile
2039 * @id: data buffer
2040 *
2041 * Issue the identify taskfile and hand back the buffer containing
2042 * identify data. For some RAID controllers and for pre ATA devices
2043 * this function is wrapped or replaced by the driver
2044 */
2045unsigned int ata_do_dev_read_id(struct ata_device *dev,
2046 struct ata_taskfile *tf, u16 *id)
2047{
2048 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
2049 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
2050}
2051
1da177e4 2052/**
49016aca 2053 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
2054 * @dev: target device
2055 * @p_class: pointer to class of the target device (may be changed)
bff04647 2056 * @flags: ATA_READID_* flags
fe635c7e 2057 * @id: buffer to read IDENTIFY data into
1da177e4 2058 *
49016aca
TH
2059 * Read ID data from the specified device. ATA_CMD_ID_ATA is
2060 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
2061 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
2062 * for pre-ATA4 drives.
1da177e4 2063 *
50a99018 2064 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2dcb407e 2065 * now we abort if we hit that case.
50a99018 2066 *
1da177e4 2067 * LOCKING:
49016aca
TH
2068 * Kernel thread context (may sleep)
2069 *
2070 * RETURNS:
2071 * 0 on success, -errno otherwise.
1da177e4 2072 */
a9beec95 2073int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 2074 unsigned int flags, u16 *id)
1da177e4 2075{
9af5c9c9 2076 struct ata_port *ap = dev->link->ap;
49016aca 2077 unsigned int class = *p_class;
a0123703 2078 struct ata_taskfile tf;
49016aca
TH
2079 unsigned int err_mask = 0;
2080 const char *reason;
54936f8b 2081 int may_fallback = 1, tried_spinup = 0;
49016aca 2082 int rc;
1da177e4 2083
0dd4b21f 2084 if (ata_msg_ctl(ap))
7f5e4e8d 2085 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
1da177e4 2086
963e4975 2087retry:
3373efd8 2088 ata_tf_init(dev, &tf);
a0123703 2089
49016aca
TH
2090 switch (class) {
2091 case ATA_DEV_ATA:
a0123703 2092 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
2093 break;
2094 case ATA_DEV_ATAPI:
a0123703 2095 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
2096 break;
2097 default:
2098 rc = -ENODEV;
2099 reason = "unsupported class";
2100 goto err_out;
1da177e4
LT
2101 }
2102
a0123703 2103 tf.protocol = ATA_PROT_PIO;
81afe893
TH
2104
2105 /* Some devices choke if TF registers contain garbage. Make
2106 * sure those are properly initialized.
2107 */
2108 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2109
2110 /* Device presence detection is unreliable on some
2111 * controllers. Always poll IDENTIFY if available.
2112 */
2113 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 2114
963e4975
AC
2115 if (ap->ops->read_id)
2116 err_mask = ap->ops->read_id(dev, &tf, id);
2117 else
2118 err_mask = ata_do_dev_read_id(dev, &tf, id);
2119
a0123703 2120 if (err_mask) {
800b3996 2121 if (err_mask & AC_ERR_NODEV_HINT) {
1ffc151f
TH
2122 ata_dev_printk(dev, KERN_DEBUG,
2123 "NODEV after polling detection\n");
55a8e2c8
TH
2124 return -ENOENT;
2125 }
2126
1ffc151f
TH
2127 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
2128 /* Device or controller might have reported
2129 * the wrong device class. Give a shot at the
2130 * other IDENTIFY if the current one is
2131 * aborted by the device.
2132 */
2133 if (may_fallback) {
2134 may_fallback = 0;
2135
2136 if (class == ATA_DEV_ATA)
2137 class = ATA_DEV_ATAPI;
2138 else
2139 class = ATA_DEV_ATA;
2140 goto retry;
2141 }
2142
2143 /* Control reaches here iff the device aborted
2144 * both flavors of IDENTIFYs which happens
2145 * sometimes with phantom devices.
2146 */
2147 ata_dev_printk(dev, KERN_DEBUG,
2148 "both IDENTIFYs aborted, assuming NODEV\n");
2149 return -ENOENT;
54936f8b
TH
2150 }
2151
49016aca
TH
2152 rc = -EIO;
2153 reason = "I/O error";
1da177e4
LT
2154 goto err_out;
2155 }
2156
54936f8b
TH
2157 /* Falling back doesn't make sense if ID data was read
2158 * successfully at least once.
2159 */
2160 may_fallback = 0;
2161
49016aca 2162 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 2163
49016aca 2164 /* sanity check */
a4f5749b 2165 rc = -EINVAL;
6070068b 2166 reason = "device reports invalid type";
a4f5749b
TH
2167
2168 if (class == ATA_DEV_ATA) {
2169 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
2170 goto err_out;
2171 } else {
2172 if (ata_id_is_ata(id))
2173 goto err_out;
49016aca
TH
2174 }
2175
169439c2
ML
2176 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2177 tried_spinup = 1;
2178 /*
2179 * Drive powered-up in standby mode, and requires a specific
2180 * SET_FEATURES spin-up subcommand before it will accept
2181 * anything other than the original IDENTIFY command.
2182 */
218f3d30 2183 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
fb0582f9 2184 if (err_mask && id[2] != 0x738c) {
169439c2
ML
2185 rc = -EIO;
2186 reason = "SPINUP failed";
2187 goto err_out;
2188 }
2189 /*
2190 * If the drive initially returned incomplete IDENTIFY info,
2191 * we now must reissue the IDENTIFY command.
2192 */
2193 if (id[2] == 0x37c8)
2194 goto retry;
2195 }
2196
bff04647 2197 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
2198 /*
2199 * The exact sequence expected by certain pre-ATA4 drives is:
2200 * SRST RESET
50a99018
AC
2201 * IDENTIFY (optional in early ATA)
2202 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
49016aca
TH
2203 * anything else..
2204 * Some drives were very specific about that exact sequence.
50a99018
AC
2205 *
2206 * Note that ATA4 says lba is mandatory so the second check
2207 * shoud never trigger.
49016aca
TH
2208 */
2209 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 2210 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
2211 if (err_mask) {
2212 rc = -EIO;
2213 reason = "INIT_DEV_PARAMS failed";
2214 goto err_out;
2215 }
2216
2217 /* current CHS translation info (id[53-58]) might be
2218 * changed. reread the identify device info.
2219 */
bff04647 2220 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
2221 goto retry;
2222 }
2223 }
2224
2225 *p_class = class;
fe635c7e 2226
49016aca
TH
2227 return 0;
2228
2229 err_out:
88574551 2230 if (ata_msg_warn(ap))
0dd4b21f 2231 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 2232 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
2233 return rc;
2234}
2235
3373efd8 2236static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 2237{
9af5c9c9 2238 struct ata_port *ap = dev->link->ap;
9ce8e307
JA
2239
2240 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2241 return 0;
2242
9af5c9c9 2243 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
2244}
2245
a6e6ce8e
TH
2246static void ata_dev_config_ncq(struct ata_device *dev,
2247 char *desc, size_t desc_sz)
2248{
9af5c9c9 2249 struct ata_port *ap = dev->link->ap;
a6e6ce8e
TH
2250 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2251
2252 if (!ata_id_has_ncq(dev->id)) {
2253 desc[0] = '\0';
2254 return;
2255 }
75683fe7 2256 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6
AC
2257 snprintf(desc, desc_sz, "NCQ (not used)");
2258 return;
2259 }
a6e6ce8e 2260 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 2261 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
2262 dev->flags |= ATA_DFLAG_NCQ;
2263 }
2264
2265 if (hdepth >= ddepth)
2266 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2267 else
2268 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2269}
2270
49016aca 2271/**
ffeae418 2272 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
2273 * @dev: Target device to configure
2274 *
2275 * Configure @dev according to @dev->id. Generic and low-level
2276 * driver specific fixups are also applied.
49016aca
TH
2277 *
2278 * LOCKING:
ffeae418
TH
2279 * Kernel thread context (may sleep)
2280 *
2281 * RETURNS:
2282 * 0 on success, -errno otherwise
49016aca 2283 */
efdaedc4 2284int ata_dev_configure(struct ata_device *dev)
49016aca 2285{
9af5c9c9
TH
2286 struct ata_port *ap = dev->link->ap;
2287 struct ata_eh_context *ehc = &dev->link->eh_context;
6746544c 2288 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 2289 const u16 *id = dev->id;
7dc951ae 2290 unsigned long xfer_mask;
b352e57d 2291 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
2292 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2293 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 2294 int rc;
49016aca 2295
0dd4b21f 2296 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e 2297 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
7f5e4e8d 2298 __func__);
ffeae418 2299 return 0;
49016aca
TH
2300 }
2301
0dd4b21f 2302 if (ata_msg_probe(ap))
7f5e4e8d 2303 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
1da177e4 2304
75683fe7
TH
2305 /* set horkage */
2306 dev->horkage |= ata_dev_blacklisted(dev);
33267325 2307 ata_force_horkage(dev);
75683fe7 2308
50af2fa1
TH
2309 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2310 ata_dev_printk(dev, KERN_INFO,
2311 "unsupported device, disabling\n");
2312 ata_dev_disable(dev);
2313 return 0;
2314 }
2315
2486fa56
TH
2316 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2317 dev->class == ATA_DEV_ATAPI) {
2318 ata_dev_printk(dev, KERN_WARNING,
2319 "WARNING: ATAPI is %s, device ignored.\n",
2320 atapi_enabled ? "not supported with this driver"
2321 : "disabled");
2322 ata_dev_disable(dev);
2323 return 0;
2324 }
2325
6746544c
TH
2326 /* let ACPI work its magic */
2327 rc = ata_acpi_on_devcfg(dev);
2328 if (rc)
2329 return rc;
08573a86 2330
05027adc
TH
2331 /* massage HPA, do it early as it might change IDENTIFY data */
2332 rc = ata_hpa_resize(dev);
2333 if (rc)
2334 return rc;
2335
c39f5ebe 2336 /* print device capabilities */
0dd4b21f 2337 if (ata_msg_probe(ap))
88574551
TH
2338 ata_dev_printk(dev, KERN_DEBUG,
2339 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2340 "85:%04x 86:%04x 87:%04x 88:%04x\n",
7f5e4e8d 2341 __func__,
f15a1daf
TH
2342 id[49], id[82], id[83], id[84],
2343 id[85], id[86], id[87], id[88]);
c39f5ebe 2344
208a9933 2345 /* initialize to-be-configured parameters */
ea1dd4e1 2346 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
2347 dev->max_sectors = 0;
2348 dev->cdb_len = 0;
2349 dev->n_sectors = 0;
2350 dev->cylinders = 0;
2351 dev->heads = 0;
2352 dev->sectors = 0;
2353
1da177e4
LT
2354 /*
2355 * common ATA, ATAPI feature tests
2356 */
2357
ff8854b2 2358 /* find max transfer mode; for printk only */
1148c3a7 2359 xfer_mask = ata_id_xfermask(id);
1da177e4 2360
0dd4b21f
BP
2361 if (ata_msg_probe(ap))
2362 ata_dump_id(id);
1da177e4 2363
ef143d57
AL
2364 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2365 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2366 sizeof(fwrevbuf));
2367
2368 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2369 sizeof(modelbuf));
2370
1da177e4
LT
2371 /* ATA-specific feature tests */
2372 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
2373 if (ata_id_is_cfa(id)) {
2374 if (id[162] & 1) /* CPRM may make this media unusable */
44877b4e
TH
2375 ata_dev_printk(dev, KERN_WARNING,
2376 "supports DRM functions and may "
2377 "not be fully accessable.\n");
b352e57d 2378 snprintf(revbuf, 7, "CFA");
ae8d4ee7 2379 } else {
2dcb407e 2380 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
ae8d4ee7
AC
2381 /* Warn the user if the device has TPM extensions */
2382 if (ata_id_has_tpm(id))
2383 ata_dev_printk(dev, KERN_WARNING,
2384 "supports DRM functions and may "
2385 "not be fully accessable.\n");
2386 }
b352e57d 2387
1148c3a7 2388 dev->n_sectors = ata_id_n_sectors(id);
2940740b 2389
3f64f565
EM
2390 if (dev->id[59] & 0x100)
2391 dev->multi_count = dev->id[59] & 0xff;
2392
1148c3a7 2393 if (ata_id_has_lba(id)) {
4c2d721a 2394 const char *lba_desc;
a6e6ce8e 2395 char ncq_desc[20];
8bf62ece 2396
4c2d721a
TH
2397 lba_desc = "LBA";
2398 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 2399 if (ata_id_has_lba48(id)) {
8bf62ece 2400 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 2401 lba_desc = "LBA48";
6fc49adb
TH
2402
2403 if (dev->n_sectors >= (1UL << 28) &&
2404 ata_id_has_flush_ext(id))
2405 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 2406 }
8bf62ece 2407
a6e6ce8e
TH
2408 /* config NCQ */
2409 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2410
8bf62ece 2411 /* print device info to dmesg */
3f64f565
EM
2412 if (ata_msg_drv(ap) && print_info) {
2413 ata_dev_printk(dev, KERN_INFO,
2414 "%s: %s, %s, max %s\n",
2415 revbuf, modelbuf, fwrevbuf,
2416 ata_mode_string(xfer_mask));
2417 ata_dev_printk(dev, KERN_INFO,
2418 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 2419 (unsigned long long)dev->n_sectors,
3f64f565
EM
2420 dev->multi_count, lba_desc, ncq_desc);
2421 }
ffeae418 2422 } else {
8bf62ece
AL
2423 /* CHS */
2424
2425 /* Default translation */
1148c3a7
TH
2426 dev->cylinders = id[1];
2427 dev->heads = id[3];
2428 dev->sectors = id[6];
8bf62ece 2429
1148c3a7 2430 if (ata_id_current_chs_valid(id)) {
8bf62ece 2431 /* Current CHS translation is valid. */
1148c3a7
TH
2432 dev->cylinders = id[54];
2433 dev->heads = id[55];
2434 dev->sectors = id[56];
8bf62ece
AL
2435 }
2436
2437 /* print device info to dmesg */
3f64f565 2438 if (ata_msg_drv(ap) && print_info) {
88574551 2439 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2440 "%s: %s, %s, max %s\n",
2441 revbuf, modelbuf, fwrevbuf,
2442 ata_mode_string(xfer_mask));
a84471fe 2443 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2444 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2445 (unsigned long long)dev->n_sectors,
2446 dev->multi_count, dev->cylinders,
2447 dev->heads, dev->sectors);
2448 }
07f6f7d0
AL
2449 }
2450
6e7846e9 2451 dev->cdb_len = 16;
1da177e4
LT
2452 }
2453
2454 /* ATAPI-specific feature tests */
2c13b7ce 2455 else if (dev->class == ATA_DEV_ATAPI) {
854c73a2
TH
2456 const char *cdb_intr_string = "";
2457 const char *atapi_an_string = "";
91163006 2458 const char *dma_dir_string = "";
7d77b247 2459 u32 sntf;
08a556db 2460
1148c3a7 2461 rc = atapi_cdb_len(id);
1da177e4 2462 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 2463 if (ata_msg_warn(ap))
88574551
TH
2464 ata_dev_printk(dev, KERN_WARNING,
2465 "unsupported CDB len\n");
ffeae418 2466 rc = -EINVAL;
1da177e4
LT
2467 goto err_out_nosup;
2468 }
6e7846e9 2469 dev->cdb_len = (unsigned int) rc;
1da177e4 2470
7d77b247
TH
2471 /* Enable ATAPI AN if both the host and device have
2472 * the support. If PMP is attached, SNTF is required
2473 * to enable ATAPI AN to discern between PHY status
2474 * changed notifications and ATAPI ANs.
9f45cbd3 2475 */
7d77b247 2476 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
071f44b1 2477 (!sata_pmp_attached(ap) ||
7d77b247 2478 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
854c73a2
TH
2479 unsigned int err_mask;
2480
9f45cbd3 2481 /* issue SET feature command to turn this on */
218f3d30
JG
2482 err_mask = ata_dev_set_feature(dev,
2483 SETFEATURES_SATA_ENABLE, SATA_AN);
854c73a2 2484 if (err_mask)
9f45cbd3 2485 ata_dev_printk(dev, KERN_ERR,
854c73a2
TH
2486 "failed to enable ATAPI AN "
2487 "(err_mask=0x%x)\n", err_mask);
2488 else {
9f45cbd3 2489 dev->flags |= ATA_DFLAG_AN;
854c73a2
TH
2490 atapi_an_string = ", ATAPI AN";
2491 }
9f45cbd3
KCA
2492 }
2493
08a556db 2494 if (ata_id_cdb_intr(dev->id)) {
312f7da2 2495 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
2496 cdb_intr_string = ", CDB intr";
2497 }
312f7da2 2498
91163006
TH
2499 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2500 dev->flags |= ATA_DFLAG_DMADIR;
2501 dma_dir_string = ", DMADIR";
2502 }
2503
1da177e4 2504 /* print device info to dmesg */
5afc8142 2505 if (ata_msg_drv(ap) && print_info)
ef143d57 2506 ata_dev_printk(dev, KERN_INFO,
91163006 2507 "ATAPI: %s, %s, max %s%s%s%s\n",
ef143d57 2508 modelbuf, fwrevbuf,
12436c30 2509 ata_mode_string(xfer_mask),
91163006
TH
2510 cdb_intr_string, atapi_an_string,
2511 dma_dir_string);
1da177e4
LT
2512 }
2513
914ed354
TH
2514 /* determine max_sectors */
2515 dev->max_sectors = ATA_MAX_SECTORS;
2516 if (dev->flags & ATA_DFLAG_LBA48)
2517 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2518
ca77329f
KCA
2519 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2520 if (ata_id_has_hipm(dev->id))
2521 dev->flags |= ATA_DFLAG_HIPM;
2522 if (ata_id_has_dipm(dev->id))
2523 dev->flags |= ATA_DFLAG_DIPM;
2524 }
2525
c5038fc0
AC
2526 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2527 200 sectors */
3373efd8 2528 if (ata_dev_knobble(dev)) {
5afc8142 2529 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2530 ata_dev_printk(dev, KERN_INFO,
2531 "applying bridge limits\n");
5a529139 2532 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2533 dev->max_sectors = ATA_MAX_SECTORS;
2534 }
2535
f8d8e579 2536 if ((dev->class == ATA_DEV_ATAPI) &&
f442cd86 2537 (atapi_command_packet_set(id) == TYPE_TAPE)) {
f8d8e579 2538 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
f442cd86
AL
2539 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2540 }
f8d8e579 2541
75683fe7 2542 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2543 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2544 dev->max_sectors);
18d6e9d5 2545
ca77329f
KCA
2546 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2547 dev->horkage |= ATA_HORKAGE_IPM;
2548
2549 /* reset link pm_policy for this port to no pm */
2550 ap->pm_policy = MAX_PERFORMANCE;
2551 }
2552
4b2f3ede 2553 if (ap->ops->dev_config)
cd0d3bbc 2554 ap->ops->dev_config(dev);
4b2f3ede 2555
c5038fc0
AC
2556 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2557 /* Let the user know. We don't want to disallow opens for
2558 rescue purposes, or in case the vendor is just a blithering
2559 idiot. Do this after the dev_config call as some controllers
2560 with buggy firmware may want to avoid reporting false device
2561 bugs */
2562
2563 if (print_info) {
2564 ata_dev_printk(dev, KERN_WARNING,
2565"Drive reports diagnostics failure. This may indicate a drive\n");
2566 ata_dev_printk(dev, KERN_WARNING,
2567"fault or invalid emulation. Contact drive vendor for information.\n");
2568 }
2569 }
2570
ac70a964
TH
2571 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2572 ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires "
2573 "firmware update to be fully functional.\n");
2574 ata_dev_printk(dev, KERN_WARNING, " contact the vendor "
2575 "or visit http://ata.wiki.kernel.org.\n");
2576 }
2577
ffeae418 2578 return 0;
1da177e4
LT
2579
2580err_out_nosup:
0dd4b21f 2581 if (ata_msg_probe(ap))
88574551 2582 ata_dev_printk(dev, KERN_DEBUG,
7f5e4e8d 2583 "%s: EXIT, err\n", __func__);
ffeae418 2584 return rc;
1da177e4
LT
2585}
2586
be0d18df 2587/**
2e41e8e6 2588 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2589 * @ap: port
2590 *
2e41e8e6 2591 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2592 * detection.
2593 */
2594
2595int ata_cable_40wire(struct ata_port *ap)
2596{
2597 return ATA_CBL_PATA40;
2598}
2599
2600/**
2e41e8e6 2601 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2602 * @ap: port
2603 *
2e41e8e6 2604 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2605 * detection.
2606 */
2607
2608int ata_cable_80wire(struct ata_port *ap)
2609{
2610 return ATA_CBL_PATA80;
2611}
2612
2613/**
2614 * ata_cable_unknown - return unknown PATA cable.
2615 * @ap: port
2616 *
2617 * Helper method for drivers which have no PATA cable detection.
2618 */
2619
2620int ata_cable_unknown(struct ata_port *ap)
2621{
2622 return ATA_CBL_PATA_UNK;
2623}
2624
c88f90c3
TH
2625/**
2626 * ata_cable_ignore - return ignored PATA cable.
2627 * @ap: port
2628 *
2629 * Helper method for drivers which don't use cable type to limit
2630 * transfer mode.
2631 */
2632int ata_cable_ignore(struct ata_port *ap)
2633{
2634 return ATA_CBL_PATA_IGN;
2635}
2636
be0d18df
AC
2637/**
2638 * ata_cable_sata - return SATA cable type
2639 * @ap: port
2640 *
2641 * Helper method for drivers which have SATA cables
2642 */
2643
2644int ata_cable_sata(struct ata_port *ap)
2645{
2646 return ATA_CBL_SATA;
2647}
2648
1da177e4
LT
2649/**
2650 * ata_bus_probe - Reset and probe ATA bus
2651 * @ap: Bus to probe
2652 *
0cba632b
JG
2653 * Master ATA bus probing function. Initiates a hardware-dependent
2654 * bus reset, then attempts to identify any devices found on
2655 * the bus.
2656 *
1da177e4 2657 * LOCKING:
0cba632b 2658 * PCI/etc. bus probe sem.
1da177e4
LT
2659 *
2660 * RETURNS:
96072e69 2661 * Zero on success, negative errno otherwise.
1da177e4
LT
2662 */
2663
80289167 2664int ata_bus_probe(struct ata_port *ap)
1da177e4 2665{
28ca5c57 2666 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2667 int tries[ATA_MAX_DEVICES];
f58229f8 2668 int rc;
e82cbdb9 2669 struct ata_device *dev;
1da177e4 2670
28ca5c57 2671 ata_port_probe(ap);
c19ba8af 2672
1eca4365 2673 ata_for_each_dev(dev, &ap->link, ALL)
f58229f8 2674 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
14d2bac1
TH
2675
2676 retry:
1eca4365 2677 ata_for_each_dev(dev, &ap->link, ALL) {
cdeab114
TH
2678 /* If we issue an SRST then an ATA drive (not ATAPI)
2679 * may change configuration and be in PIO0 timing. If
2680 * we do a hard reset (or are coming from power on)
2681 * this is true for ATA or ATAPI. Until we've set a
2682 * suitable controller mode we should not touch the
2683 * bus as we may be talking too fast.
2684 */
2685 dev->pio_mode = XFER_PIO_0;
2686
2687 /* If the controller has a pio mode setup function
2688 * then use it to set the chipset to rights. Don't
2689 * touch the DMA setup as that will be dealt with when
2690 * configuring devices.
2691 */
2692 if (ap->ops->set_piomode)
2693 ap->ops->set_piomode(ap, dev);
2694 }
2695
2044470c 2696 /* reset and determine device classes */
52783c5d 2697 ap->ops->phy_reset(ap);
2061a47a 2698
1eca4365 2699 ata_for_each_dev(dev, &ap->link, ALL) {
52783c5d
TH
2700 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2701 dev->class != ATA_DEV_UNKNOWN)
2702 classes[dev->devno] = dev->class;
2703 else
2704 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2705
52783c5d 2706 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2707 }
1da177e4 2708
52783c5d 2709 ata_port_probe(ap);
2044470c 2710
f31f0cc2
JG
2711 /* read IDENTIFY page and configure devices. We have to do the identify
2712 specific sequence bass-ackwards so that PDIAG- is released by
2713 the slave device */
2714
1eca4365 2715 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
f58229f8
TH
2716 if (tries[dev->devno])
2717 dev->class = classes[dev->devno];
ffeae418 2718
14d2bac1 2719 if (!ata_dev_enabled(dev))
ffeae418 2720 continue;
ffeae418 2721
bff04647
TH
2722 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2723 dev->id);
14d2bac1
TH
2724 if (rc)
2725 goto fail;
f31f0cc2
JG
2726 }
2727
be0d18df
AC
2728 /* Now ask for the cable type as PDIAG- should have been released */
2729 if (ap->ops->cable_detect)
2730 ap->cbl = ap->ops->cable_detect(ap);
2731
1eca4365
TH
2732 /* We may have SATA bridge glue hiding here irrespective of
2733 * the reported cable types and sensed types. When SATA
2734 * drives indicate we have a bridge, we don't know which end
2735 * of the link the bridge is which is a problem.
2736 */
2737 ata_for_each_dev(dev, &ap->link, ENABLED)
614fe29b
AC
2738 if (ata_id_is_sata(dev->id))
2739 ap->cbl = ATA_CBL_SATA;
614fe29b 2740
f31f0cc2
JG
2741 /* After the identify sequence we can now set up the devices. We do
2742 this in the normal order so that the user doesn't get confused */
2743
1eca4365 2744 ata_for_each_dev(dev, &ap->link, ENABLED) {
9af5c9c9 2745 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
efdaedc4 2746 rc = ata_dev_configure(dev);
9af5c9c9 2747 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2748 if (rc)
2749 goto fail;
1da177e4
LT
2750 }
2751
e82cbdb9 2752 /* configure transfer mode */
0260731f 2753 rc = ata_set_mode(&ap->link, &dev);
4ae72a1e 2754 if (rc)
51713d35 2755 goto fail;
1da177e4 2756
1eca4365
TH
2757 ata_for_each_dev(dev, &ap->link, ENABLED)
2758 return 0;
1da177e4 2759
e82cbdb9
TH
2760 /* no device present, disable port */
2761 ata_port_disable(ap);
96072e69 2762 return -ENODEV;
14d2bac1
TH
2763
2764 fail:
4ae72a1e
TH
2765 tries[dev->devno]--;
2766
14d2bac1
TH
2767 switch (rc) {
2768 case -EINVAL:
4ae72a1e 2769 /* eeek, something went very wrong, give up */
14d2bac1
TH
2770 tries[dev->devno] = 0;
2771 break;
4ae72a1e
TH
2772
2773 case -ENODEV:
2774 /* give it just one more chance */
2775 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2776 case -EIO:
4ae72a1e
TH
2777 if (tries[dev->devno] == 1) {
2778 /* This is the last chance, better to slow
2779 * down than lose it.
2780 */
936fd732 2781 sata_down_spd_limit(&ap->link);
4ae72a1e
TH
2782 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2783 }
14d2bac1
TH
2784 }
2785
4ae72a1e 2786 if (!tries[dev->devno])
3373efd8 2787 ata_dev_disable(dev);
ec573755 2788
14d2bac1 2789 goto retry;
1da177e4
LT
2790}
2791
2792/**
0cba632b
JG
2793 * ata_port_probe - Mark port as enabled
2794 * @ap: Port for which we indicate enablement
1da177e4 2795 *
0cba632b
JG
2796 * Modify @ap data structure such that the system
2797 * thinks that the entire port is enabled.
2798 *
cca3974e 2799 * LOCKING: host lock, or some other form of
0cba632b 2800 * serialization.
1da177e4
LT
2801 */
2802
2803void ata_port_probe(struct ata_port *ap)
2804{
198e0fed 2805 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
2806}
2807
3be680b7
TH
2808/**
2809 * sata_print_link_status - Print SATA link status
936fd732 2810 * @link: SATA link to printk link status about
3be680b7
TH
2811 *
2812 * This function prints link speed and status of a SATA link.
2813 *
2814 * LOCKING:
2815 * None.
2816 */
6bdb4fc9 2817static void sata_print_link_status(struct ata_link *link)
3be680b7 2818{
6d5f9732 2819 u32 sstatus, scontrol, tmp;
3be680b7 2820
936fd732 2821 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3be680b7 2822 return;
936fd732 2823 sata_scr_read(link, SCR_CONTROL, &scontrol);
3be680b7 2824
b1c72916 2825 if (ata_phys_link_online(link)) {
3be680b7 2826 tmp = (sstatus >> 4) & 0xf;
936fd732 2827 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2828 "SATA link up %s (SStatus %X SControl %X)\n",
2829 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2830 } else {
936fd732 2831 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2832 "SATA link down (SStatus %X SControl %X)\n",
2833 sstatus, scontrol);
3be680b7
TH
2834 }
2835}
2836
ebdfca6e
AC
2837/**
2838 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2839 * @adev: device
2840 *
2841 * Obtain the other device on the same cable, or if none is
2842 * present NULL is returned
2843 */
2e9edbf8 2844
3373efd8 2845struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2846{
9af5c9c9
TH
2847 struct ata_link *link = adev->link;
2848 struct ata_device *pair = &link->device[1 - adev->devno];
e1211e3f 2849 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2850 return NULL;
2851 return pair;
2852}
2853
1da177e4 2854/**
780a87f7
JG
2855 * ata_port_disable - Disable port.
2856 * @ap: Port to be disabled.
1da177e4 2857 *
780a87f7
JG
2858 * Modify @ap data structure such that the system
2859 * thinks that the entire port is disabled, and should
2860 * never attempt to probe or communicate with devices
2861 * on this port.
2862 *
cca3974e 2863 * LOCKING: host lock, or some other form of
780a87f7 2864 * serialization.
1da177e4
LT
2865 */
2866
2867void ata_port_disable(struct ata_port *ap)
2868{
9af5c9c9
TH
2869 ap->link.device[0].class = ATA_DEV_NONE;
2870 ap->link.device[1].class = ATA_DEV_NONE;
198e0fed 2871 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2872}
2873
1c3fae4d 2874/**
3c567b7d 2875 * sata_down_spd_limit - adjust SATA spd limit downward
936fd732 2876 * @link: Link to adjust SATA spd limit for
1c3fae4d 2877 *
936fd732 2878 * Adjust SATA spd limit of @link downward. Note that this
1c3fae4d 2879 * function only adjusts the limit. The change must be applied
3c567b7d 2880 * using sata_set_spd().
1c3fae4d
TH
2881 *
2882 * LOCKING:
2883 * Inherited from caller.
2884 *
2885 * RETURNS:
2886 * 0 on success, negative errno on failure
2887 */
936fd732 2888int sata_down_spd_limit(struct ata_link *link)
1c3fae4d 2889{
81952c54
TH
2890 u32 sstatus, spd, mask;
2891 int rc, highbit;
1c3fae4d 2892
936fd732 2893 if (!sata_scr_valid(link))
008a7896
TH
2894 return -EOPNOTSUPP;
2895
2896 /* If SCR can be read, use it to determine the current SPD.
936fd732 2897 * If not, use cached value in link->sata_spd.
008a7896 2898 */
936fd732 2899 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
008a7896
TH
2900 if (rc == 0)
2901 spd = (sstatus >> 4) & 0xf;
2902 else
936fd732 2903 spd = link->sata_spd;
1c3fae4d 2904
936fd732 2905 mask = link->sata_spd_limit;
1c3fae4d
TH
2906 if (mask <= 1)
2907 return -EINVAL;
008a7896
TH
2908
2909 /* unconditionally mask off the highest bit */
1c3fae4d
TH
2910 highbit = fls(mask) - 1;
2911 mask &= ~(1 << highbit);
2912
008a7896
TH
2913 /* Mask off all speeds higher than or equal to the current
2914 * one. Force 1.5Gbps if current SPD is not available.
2915 */
2916 if (spd > 1)
2917 mask &= (1 << (spd - 1)) - 1;
2918 else
2919 mask &= 1;
2920
2921 /* were we already at the bottom? */
1c3fae4d
TH
2922 if (!mask)
2923 return -EINVAL;
2924
936fd732 2925 link->sata_spd_limit = mask;
1c3fae4d 2926
936fd732 2927 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
f15a1daf 2928 sata_spd_string(fls(mask)));
1c3fae4d
TH
2929
2930 return 0;
2931}
2932
936fd732 2933static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
1c3fae4d 2934{
5270222f
TH
2935 struct ata_link *host_link = &link->ap->link;
2936 u32 limit, target, spd;
1c3fae4d 2937
5270222f
TH
2938 limit = link->sata_spd_limit;
2939
2940 /* Don't configure downstream link faster than upstream link.
2941 * It doesn't speed up anything and some PMPs choke on such
2942 * configuration.
2943 */
2944 if (!ata_is_host_link(link) && host_link->sata_spd)
2945 limit &= (1 << host_link->sata_spd) - 1;
2946
2947 if (limit == UINT_MAX)
2948 target = 0;
1c3fae4d 2949 else
5270222f 2950 target = fls(limit);
1c3fae4d
TH
2951
2952 spd = (*scontrol >> 4) & 0xf;
5270222f 2953 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
1c3fae4d 2954
5270222f 2955 return spd != target;
1c3fae4d
TH
2956}
2957
2958/**
3c567b7d 2959 * sata_set_spd_needed - is SATA spd configuration needed
936fd732 2960 * @link: Link in question
1c3fae4d
TH
2961 *
2962 * Test whether the spd limit in SControl matches
936fd732 2963 * @link->sata_spd_limit. This function is used to determine
1c3fae4d
TH
2964 * whether hardreset is necessary to apply SATA spd
2965 * configuration.
2966 *
2967 * LOCKING:
2968 * Inherited from caller.
2969 *
2970 * RETURNS:
2971 * 1 if SATA spd configuration is needed, 0 otherwise.
2972 */
1dc55e87 2973static int sata_set_spd_needed(struct ata_link *link)
1c3fae4d
TH
2974{
2975 u32 scontrol;
2976
936fd732 2977 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
db64bcf3 2978 return 1;
1c3fae4d 2979
936fd732 2980 return __sata_set_spd_needed(link, &scontrol);
1c3fae4d
TH
2981}
2982
2983/**
3c567b7d 2984 * sata_set_spd - set SATA spd according to spd limit
936fd732 2985 * @link: Link to set SATA spd for
1c3fae4d 2986 *
936fd732 2987 * Set SATA spd of @link according to sata_spd_limit.
1c3fae4d
TH
2988 *
2989 * LOCKING:
2990 * Inherited from caller.
2991 *
2992 * RETURNS:
2993 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2994 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2995 */
936fd732 2996int sata_set_spd(struct ata_link *link)
1c3fae4d
TH
2997{
2998 u32 scontrol;
81952c54 2999 int rc;
1c3fae4d 3000
936fd732 3001 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3002 return rc;
1c3fae4d 3003
936fd732 3004 if (!__sata_set_spd_needed(link, &scontrol))
1c3fae4d
TH
3005 return 0;
3006
936fd732 3007 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54
TH
3008 return rc;
3009
1c3fae4d
TH
3010 return 1;
3011}
3012
452503f9
AC
3013/*
3014 * This mode timing computation functionality is ported over from
3015 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3016 */
3017/*
b352e57d 3018 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 3019 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
3020 * for UDMA6, which is currently supported only by Maxtor drives.
3021 *
3022 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
3023 */
3024
3025static const struct ata_timing ata_timing[] = {
70cd071e
TH
3026/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
3027 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
3028 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
3029 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
3030 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
3031 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
3032 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
3033 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
452503f9 3034
70cd071e
TH
3035 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
3036 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
3037 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
452503f9 3038
70cd071e
TH
3039 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
3040 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
3041 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
b352e57d 3042 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
70cd071e 3043 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
452503f9
AC
3044
3045/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
70cd071e
TH
3046 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
3047 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
3048 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
3049 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
3050 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
3051 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
3052 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
452503f9
AC
3053
3054 { 0xFF }
3055};
3056
2dcb407e
JG
3057#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3058#define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
452503f9
AC
3059
3060static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3061{
3062 q->setup = EZ(t->setup * 1000, T);
3063 q->act8b = EZ(t->act8b * 1000, T);
3064 q->rec8b = EZ(t->rec8b * 1000, T);
3065 q->cyc8b = EZ(t->cyc8b * 1000, T);
3066 q->active = EZ(t->active * 1000, T);
3067 q->recover = EZ(t->recover * 1000, T);
3068 q->cycle = EZ(t->cycle * 1000, T);
3069 q->udma = EZ(t->udma * 1000, UT);
3070}
3071
3072void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3073 struct ata_timing *m, unsigned int what)
3074{
3075 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3076 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3077 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3078 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3079 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3080 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3081 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3082 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3083}
3084
6357357c 3085const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
452503f9 3086{
70cd071e
TH
3087 const struct ata_timing *t = ata_timing;
3088
3089 while (xfer_mode > t->mode)
3090 t++;
452503f9 3091
70cd071e
TH
3092 if (xfer_mode == t->mode)
3093 return t;
3094 return NULL;
452503f9
AC
3095}
3096
3097int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3098 struct ata_timing *t, int T, int UT)
3099{
3100 const struct ata_timing *s;
3101 struct ata_timing p;
3102
3103 /*
2e9edbf8 3104 * Find the mode.
75b1f2f8 3105 */
452503f9
AC
3106
3107 if (!(s = ata_timing_find_mode(speed)))
3108 return -EINVAL;
3109
75b1f2f8
AL
3110 memcpy(t, s, sizeof(*s));
3111
452503f9
AC
3112 /*
3113 * If the drive is an EIDE drive, it can tell us it needs extended
3114 * PIO/MW_DMA cycle timing.
3115 */
3116
3117 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3118 memset(&p, 0, sizeof(p));
2dcb407e 3119 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
452503f9
AC
3120 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
3121 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2dcb407e 3122 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
452503f9
AC
3123 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
3124 }
3125 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3126 }
3127
3128 /*
3129 * Convert the timing to bus clock counts.
3130 */
3131
75b1f2f8 3132 ata_timing_quantize(t, t, T, UT);
452503f9
AC
3133
3134 /*
c893a3ae
RD
3135 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3136 * S.M.A.R.T * and some other commands. We have to ensure that the
3137 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
3138 */
3139
fd3367af 3140 if (speed > XFER_PIO_6) {
452503f9
AC
3141 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3142 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3143 }
3144
3145 /*
c893a3ae 3146 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
3147 */
3148
3149 if (t->act8b + t->rec8b < t->cyc8b) {
3150 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3151 t->rec8b = t->cyc8b - t->act8b;
3152 }
3153
3154 if (t->active + t->recover < t->cycle) {
3155 t->active += (t->cycle - (t->active + t->recover)) / 2;
3156 t->recover = t->cycle - t->active;
3157 }
a617c09f 3158
4f701d1e
AC
3159 /* In a few cases quantisation may produce enough errors to
3160 leave t->cycle too low for the sum of active and recovery
3161 if so we must correct this */
3162 if (t->active + t->recover > t->cycle)
3163 t->cycle = t->active + t->recover;
452503f9
AC
3164
3165 return 0;
3166}
3167
a0f79b92
TH
3168/**
3169 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3170 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3171 * @cycle: cycle duration in ns
3172 *
3173 * Return matching xfer mode for @cycle. The returned mode is of
3174 * the transfer type specified by @xfer_shift. If @cycle is too
3175 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3176 * than the fastest known mode, the fasted mode is returned.
3177 *
3178 * LOCKING:
3179 * None.
3180 *
3181 * RETURNS:
3182 * Matching xfer_mode, 0xff if no match found.
3183 */
3184u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3185{
3186 u8 base_mode = 0xff, last_mode = 0xff;
3187 const struct ata_xfer_ent *ent;
3188 const struct ata_timing *t;
3189
3190 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3191 if (ent->shift == xfer_shift)
3192 base_mode = ent->base;
3193
3194 for (t = ata_timing_find_mode(base_mode);
3195 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3196 unsigned short this_cycle;
3197
3198 switch (xfer_shift) {
3199 case ATA_SHIFT_PIO:
3200 case ATA_SHIFT_MWDMA:
3201 this_cycle = t->cycle;
3202 break;
3203 case ATA_SHIFT_UDMA:
3204 this_cycle = t->udma;
3205 break;
3206 default:
3207 return 0xff;
3208 }
3209
3210 if (cycle > this_cycle)
3211 break;
3212
3213 last_mode = t->mode;
3214 }
3215
3216 return last_mode;
3217}
3218
cf176e1a
TH
3219/**
3220 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 3221 * @dev: Device to adjust xfer masks
458337db 3222 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
3223 *
3224 * Adjust xfer masks of @dev downward. Note that this function
3225 * does not apply the change. Invoking ata_set_mode() afterwards
3226 * will apply the limit.
3227 *
3228 * LOCKING:
3229 * Inherited from caller.
3230 *
3231 * RETURNS:
3232 * 0 on success, negative errno on failure
3233 */
458337db 3234int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 3235{
458337db 3236 char buf[32];
7dc951ae
TH
3237 unsigned long orig_mask, xfer_mask;
3238 unsigned long pio_mask, mwdma_mask, udma_mask;
458337db 3239 int quiet, highbit;
cf176e1a 3240
458337db
TH
3241 quiet = !!(sel & ATA_DNXFER_QUIET);
3242 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 3243
458337db
TH
3244 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3245 dev->mwdma_mask,
3246 dev->udma_mask);
3247 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 3248
458337db
TH
3249 switch (sel) {
3250 case ATA_DNXFER_PIO:
3251 highbit = fls(pio_mask) - 1;
3252 pio_mask &= ~(1 << highbit);
3253 break;
3254
3255 case ATA_DNXFER_DMA:
3256 if (udma_mask) {
3257 highbit = fls(udma_mask) - 1;
3258 udma_mask &= ~(1 << highbit);
3259 if (!udma_mask)
3260 return -ENOENT;
3261 } else if (mwdma_mask) {
3262 highbit = fls(mwdma_mask) - 1;
3263 mwdma_mask &= ~(1 << highbit);
3264 if (!mwdma_mask)
3265 return -ENOENT;
3266 }
3267 break;
3268
3269 case ATA_DNXFER_40C:
3270 udma_mask &= ATA_UDMA_MASK_40C;
3271 break;
3272
3273 case ATA_DNXFER_FORCE_PIO0:
3274 pio_mask &= 1;
3275 case ATA_DNXFER_FORCE_PIO:
3276 mwdma_mask = 0;
3277 udma_mask = 0;
3278 break;
3279
458337db
TH
3280 default:
3281 BUG();
3282 }
3283
3284 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3285
3286 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3287 return -ENOENT;
3288
3289 if (!quiet) {
3290 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3291 snprintf(buf, sizeof(buf), "%s:%s",
3292 ata_mode_string(xfer_mask),
3293 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3294 else
3295 snprintf(buf, sizeof(buf), "%s",
3296 ata_mode_string(xfer_mask));
3297
3298 ata_dev_printk(dev, KERN_WARNING,
3299 "limiting speed to %s\n", buf);
3300 }
cf176e1a
TH
3301
3302 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3303 &dev->udma_mask);
3304
cf176e1a 3305 return 0;
cf176e1a
TH
3306}
3307
3373efd8 3308static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 3309{
9af5c9c9 3310 struct ata_eh_context *ehc = &dev->link->eh_context;
4055dee7
TH
3311 const char *dev_err_whine = "";
3312 int ign_dev_err = 0;
83206a29
TH
3313 unsigned int err_mask;
3314 int rc;
1da177e4 3315
e8384607 3316 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
3317 if (dev->xfer_shift == ATA_SHIFT_PIO)
3318 dev->flags |= ATA_DFLAG_PIO;
3319
3373efd8 3320 err_mask = ata_dev_set_xfermode(dev);
2dcb407e 3321
4055dee7
TH
3322 if (err_mask & ~AC_ERR_DEV)
3323 goto fail;
3324
3325 /* revalidate */
3326 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3327 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3328 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3329 if (rc)
3330 return rc;
3331
b93fda12
AC
3332 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3333 /* Old CFA may refuse this command, which is just fine */
3334 if (ata_id_is_cfa(dev->id))
3335 ign_dev_err = 1;
3336 /* Catch several broken garbage emulations plus some pre
3337 ATA devices */
3338 if (ata_id_major_version(dev->id) == 0 &&
3339 dev->pio_mode <= XFER_PIO_2)
3340 ign_dev_err = 1;
3341 /* Some very old devices and some bad newer ones fail
3342 any kind of SET_XFERMODE request but support PIO0-2
3343 timings and no IORDY */
3344 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3345 ign_dev_err = 1;
3346 }
3acaf94b
AC
3347 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3348 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
c5038fc0 3349 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3acaf94b
AC
3350 dev->dma_mode == XFER_MW_DMA_0 &&
3351 (dev->id[63] >> 8) & 1)
4055dee7 3352 ign_dev_err = 1;
3acaf94b 3353
4055dee7
TH
3354 /* if the device is actually configured correctly, ignore dev err */
3355 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3356 ign_dev_err = 1;
1da177e4 3357
4055dee7
TH
3358 if (err_mask & AC_ERR_DEV) {
3359 if (!ign_dev_err)
3360 goto fail;
3361 else
3362 dev_err_whine = " (device error ignored)";
3363 }
48a8a14f 3364
23e71c3d
TH
3365 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3366 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 3367
4055dee7
TH
3368 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3369 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3370 dev_err_whine);
3371
83206a29 3372 return 0;
4055dee7
TH
3373
3374 fail:
3375 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3376 "(err_mask=0x%x)\n", err_mask);
3377 return -EIO;
1da177e4
LT
3378}
3379
1da177e4 3380/**
04351821 3381 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 3382 * @link: link on which timings will be programmed
1967b7ff 3383 * @r_failed_dev: out parameter for failed device
1da177e4 3384 *
04351821
A
3385 * Standard implementation of the function used to tune and set
3386 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3387 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 3388 * returned in @r_failed_dev.
780a87f7 3389 *
1da177e4 3390 * LOCKING:
0cba632b 3391 * PCI/etc. bus probe sem.
e82cbdb9
TH
3392 *
3393 * RETURNS:
3394 * 0 on success, negative errno otherwise
1da177e4 3395 */
04351821 3396
0260731f 3397int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
1da177e4 3398{
0260731f 3399 struct ata_port *ap = link->ap;
e8e0619f 3400 struct ata_device *dev;
f58229f8 3401 int rc = 0, used_dma = 0, found = 0;
3adcebb2 3402
a6d5a51c 3403 /* step 1: calculate xfer_mask */
1eca4365 3404 ata_for_each_dev(dev, link, ENABLED) {
7dc951ae 3405 unsigned long pio_mask, dma_mask;
b3a70601 3406 unsigned int mode_mask;
a6d5a51c 3407
b3a70601
AC
3408 mode_mask = ATA_DMA_MASK_ATA;
3409 if (dev->class == ATA_DEV_ATAPI)
3410 mode_mask = ATA_DMA_MASK_ATAPI;
3411 else if (ata_id_is_cfa(dev->id))
3412 mode_mask = ATA_DMA_MASK_CFA;
3413
3373efd8 3414 ata_dev_xfermask(dev);
33267325 3415 ata_force_xfermask(dev);
1da177e4 3416
acf356b1
TH
3417 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3418 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
b3a70601
AC
3419
3420 if (libata_dma_mask & mode_mask)
3421 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3422 else
3423 dma_mask = 0;
3424
acf356b1
TH
3425 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3426 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 3427
4f65977d 3428 found = 1;
b15b3eba 3429 if (ata_dma_enabled(dev))
5444a6f4 3430 used_dma = 1;
a6d5a51c 3431 }
4f65977d 3432 if (!found)
e82cbdb9 3433 goto out;
a6d5a51c
TH
3434
3435 /* step 2: always set host PIO timings */
1eca4365 3436 ata_for_each_dev(dev, link, ENABLED) {
70cd071e 3437 if (dev->pio_mode == 0xff) {
f15a1daf 3438 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 3439 rc = -EINVAL;
e82cbdb9 3440 goto out;
e8e0619f
TH
3441 }
3442
3443 dev->xfer_mode = dev->pio_mode;
3444 dev->xfer_shift = ATA_SHIFT_PIO;
3445 if (ap->ops->set_piomode)
3446 ap->ops->set_piomode(ap, dev);
3447 }
1da177e4 3448
a6d5a51c 3449 /* step 3: set host DMA timings */
1eca4365
TH
3450 ata_for_each_dev(dev, link, ENABLED) {
3451 if (!ata_dma_enabled(dev))
e8e0619f
TH
3452 continue;
3453
3454 dev->xfer_mode = dev->dma_mode;
3455 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3456 if (ap->ops->set_dmamode)
3457 ap->ops->set_dmamode(ap, dev);
3458 }
1da177e4
LT
3459
3460 /* step 4: update devices' xfer mode */
1eca4365 3461 ata_for_each_dev(dev, link, ENABLED) {
3373efd8 3462 rc = ata_dev_set_mode(dev);
5bbc53f4 3463 if (rc)
e82cbdb9 3464 goto out;
83206a29 3465 }
1da177e4 3466
e8e0619f
TH
3467 /* Record simplex status. If we selected DMA then the other
3468 * host channels are not permitted to do so.
5444a6f4 3469 */
cca3974e 3470 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 3471 ap->host->simplex_claimed = ap;
5444a6f4 3472
e82cbdb9
TH
3473 out:
3474 if (rc)
3475 *r_failed_dev = dev;
3476 return rc;
1da177e4
LT
3477}
3478
aa2731ad
TH
3479/**
3480 * ata_wait_ready - wait for link to become ready
3481 * @link: link to be waited on
3482 * @deadline: deadline jiffies for the operation
3483 * @check_ready: callback to check link readiness
3484 *
3485 * Wait for @link to become ready. @check_ready should return
3486 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3487 * link doesn't seem to be occupied, other errno for other error
3488 * conditions.
3489 *
3490 * Transient -ENODEV conditions are allowed for
3491 * ATA_TMOUT_FF_WAIT.
3492 *
3493 * LOCKING:
3494 * EH context.
3495 *
3496 * RETURNS:
3497 * 0 if @linke is ready before @deadline; otherwise, -errno.
3498 */
3499int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3500 int (*check_ready)(struct ata_link *link))
3501{
3502 unsigned long start = jiffies;
341c2c95 3503 unsigned long nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
aa2731ad
TH
3504 int warned = 0;
3505
b1c72916
TH
3506 /* Slave readiness can't be tested separately from master. On
3507 * M/S emulation configuration, this function should be called
3508 * only on the master and it will handle both master and slave.
3509 */
3510 WARN_ON(link == link->ap->slave_link);
3511
aa2731ad
TH
3512 if (time_after(nodev_deadline, deadline))
3513 nodev_deadline = deadline;
3514
3515 while (1) {
3516 unsigned long now = jiffies;
3517 int ready, tmp;
3518
3519 ready = tmp = check_ready(link);
3520 if (ready > 0)
3521 return 0;
3522
3523 /* -ENODEV could be transient. Ignore -ENODEV if link
3524 * is online. Also, some SATA devices take a long
3525 * time to clear 0xff after reset. For example,
3526 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum
3527 * GoVault needs even more than that. Wait for
3528 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline.
3529 *
3530 * Note that some PATA controllers (pata_ali) explode
3531 * if status register is read more than once when
3532 * there's no device attached.
3533 */
3534 if (ready == -ENODEV) {
3535 if (ata_link_online(link))
3536 ready = 0;
3537 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3538 !ata_link_offline(link) &&
3539 time_before(now, nodev_deadline))
3540 ready = 0;
3541 }
3542
3543 if (ready)
3544 return ready;
3545 if (time_after(now, deadline))
3546 return -EBUSY;
3547
3548 if (!warned && time_after(now, start + 5 * HZ) &&
3549 (deadline - now > 3 * HZ)) {
3550 ata_link_printk(link, KERN_WARNING,
3551 "link is slow to respond, please be patient "
3552 "(ready=%d)\n", tmp);
3553 warned = 1;
3554 }
3555
3556 msleep(50);
3557 }
3558}
3559
3560/**
3561 * ata_wait_after_reset - wait for link to become ready after reset
3562 * @link: link to be waited on
3563 * @deadline: deadline jiffies for the operation
3564 * @check_ready: callback to check link readiness
3565 *
3566 * Wait for @link to become ready after reset.
3567 *
3568 * LOCKING:
3569 * EH context.
3570 *
3571 * RETURNS:
3572 * 0 if @linke is ready before @deadline; otherwise, -errno.
3573 */
2b4221bb 3574int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
aa2731ad
TH
3575 int (*check_ready)(struct ata_link *link))
3576{
341c2c95 3577 msleep(ATA_WAIT_AFTER_RESET);
aa2731ad
TH
3578
3579 return ata_wait_ready(link, deadline, check_ready);
3580}
3581
d7bb4cc7 3582/**
936fd732
TH
3583 * sata_link_debounce - debounce SATA phy status
3584 * @link: ATA link to debounce SATA phy status for
d7bb4cc7 3585 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3586 * @deadline: deadline jiffies for the operation
d7bb4cc7 3587 *
936fd732 3588* Make sure SStatus of @link reaches stable state, determined by
d7bb4cc7
TH
3589 * holding the same value where DET is not 1 for @duration polled
3590 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3591 * beginning of the stable state. Because DET gets stuck at 1 on
3592 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3593 * until timeout then returns 0 if DET is stable at 1.
3594 *
d4b2bab4
TH
3595 * @timeout is further limited by @deadline. The sooner of the
3596 * two is used.
3597 *
d7bb4cc7
TH
3598 * LOCKING:
3599 * Kernel thread context (may sleep)
3600 *
3601 * RETURNS:
3602 * 0 on success, -errno on failure.
3603 */
936fd732
TH
3604int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3605 unsigned long deadline)
7a7921e8 3606{
341c2c95
TH
3607 unsigned long interval = params[0];
3608 unsigned long duration = params[1];
d4b2bab4 3609 unsigned long last_jiffies, t;
d7bb4cc7
TH
3610 u32 last, cur;
3611 int rc;
3612
341c2c95 3613 t = ata_deadline(jiffies, params[2]);
d4b2bab4
TH
3614 if (time_before(t, deadline))
3615 deadline = t;
3616
936fd732 3617 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3618 return rc;
3619 cur &= 0xf;
3620
3621 last = cur;
3622 last_jiffies = jiffies;
3623
3624 while (1) {
341c2c95 3625 msleep(interval);
936fd732 3626 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3627 return rc;
3628 cur &= 0xf;
3629
3630 /* DET stable? */
3631 if (cur == last) {
d4b2bab4 3632 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7 3633 continue;
341c2c95
TH
3634 if (time_after(jiffies,
3635 ata_deadline(last_jiffies, duration)))
d7bb4cc7
TH
3636 return 0;
3637 continue;
3638 }
3639
3640 /* unstable, start over */
3641 last = cur;
3642 last_jiffies = jiffies;
3643
f1545154
TH
3644 /* Check deadline. If debouncing failed, return
3645 * -EPIPE to tell upper layer to lower link speed.
3646 */
d4b2bab4 3647 if (time_after(jiffies, deadline))
f1545154 3648 return -EPIPE;
d7bb4cc7
TH
3649 }
3650}
3651
3652/**
936fd732
TH
3653 * sata_link_resume - resume SATA link
3654 * @link: ATA link to resume SATA
d7bb4cc7 3655 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3656 * @deadline: deadline jiffies for the operation
d7bb4cc7 3657 *
936fd732 3658 * Resume SATA phy @link and debounce it.
d7bb4cc7
TH
3659 *
3660 * LOCKING:
3661 * Kernel thread context (may sleep)
3662 *
3663 * RETURNS:
3664 * 0 on success, -errno on failure.
3665 */
936fd732
TH
3666int sata_link_resume(struct ata_link *link, const unsigned long *params,
3667 unsigned long deadline)
d7bb4cc7 3668{
ac371987 3669 u32 scontrol, serror;
81952c54
TH
3670 int rc;
3671
936fd732 3672 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3673 return rc;
7a7921e8 3674
852ee16a 3675 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54 3676
936fd732 3677 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54 3678 return rc;
7a7921e8 3679
d7bb4cc7
TH
3680 /* Some PHYs react badly if SStatus is pounded immediately
3681 * after resuming. Delay 200ms before debouncing.
3682 */
3683 msleep(200);
7a7921e8 3684
ac371987
TH
3685 if ((rc = sata_link_debounce(link, params, deadline)))
3686 return rc;
3687
f046519f 3688 /* clear SError, some PHYs require this even for SRST to work */
ac371987
TH
3689 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3690 rc = sata_scr_write(link, SCR_ERROR, serror);
ac371987 3691
f046519f 3692 return rc != -EINVAL ? rc : 0;
7a7921e8
TH
3693}
3694
f5914a46 3695/**
0aa1113d 3696 * ata_std_prereset - prepare for reset
cc0680a5 3697 * @link: ATA link to be reset
d4b2bab4 3698 * @deadline: deadline jiffies for the operation
f5914a46 3699 *
cc0680a5 3700 * @link is about to be reset. Initialize it. Failure from
b8cffc6a
TH
3701 * prereset makes libata abort whole reset sequence and give up
3702 * that port, so prereset should be best-effort. It does its
3703 * best to prepare for reset sequence but if things go wrong, it
3704 * should just whine, not fail.
f5914a46
TH
3705 *
3706 * LOCKING:
3707 * Kernel thread context (may sleep)
3708 *
3709 * RETURNS:
3710 * 0 on success, -errno otherwise.
3711 */
0aa1113d 3712int ata_std_prereset(struct ata_link *link, unsigned long deadline)
f5914a46 3713{
cc0680a5 3714 struct ata_port *ap = link->ap;
936fd732 3715 struct ata_eh_context *ehc = &link->eh_context;
e9c83914 3716 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3717 int rc;
3718
f5914a46
TH
3719 /* if we're about to do hardreset, nothing more to do */
3720 if (ehc->i.action & ATA_EH_HARDRESET)
3721 return 0;
3722
936fd732 3723 /* if SATA, resume link */
a16abc0b 3724 if (ap->flags & ATA_FLAG_SATA) {
936fd732 3725 rc = sata_link_resume(link, timing, deadline);
b8cffc6a
TH
3726 /* whine about phy resume failure but proceed */
3727 if (rc && rc != -EOPNOTSUPP)
cc0680a5 3728 ata_link_printk(link, KERN_WARNING, "failed to resume "
f5914a46 3729 "link for reset (errno=%d)\n", rc);
f5914a46
TH
3730 }
3731
45db2f6c 3732 /* no point in trying softreset on offline link */
b1c72916 3733 if (ata_phys_link_offline(link))
45db2f6c
TH
3734 ehc->i.action &= ~ATA_EH_SOFTRESET;
3735
f5914a46
TH
3736 return 0;
3737}
3738
c2bd5804 3739/**
624d5c51
TH
3740 * sata_link_hardreset - reset link via SATA phy reset
3741 * @link: link to reset
3742 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3743 * @deadline: deadline jiffies for the operation
9dadd45b
TH
3744 * @online: optional out parameter indicating link onlineness
3745 * @check_ready: optional callback to check link readiness
c2bd5804 3746 *
624d5c51 3747 * SATA phy-reset @link using DET bits of SControl register.
9dadd45b
TH
3748 * After hardreset, link readiness is waited upon using
3749 * ata_wait_ready() if @check_ready is specified. LLDs are
3750 * allowed to not specify @check_ready and wait itself after this
3751 * function returns. Device classification is LLD's
3752 * responsibility.
3753 *
3754 * *@online is set to one iff reset succeeded and @link is online
3755 * after reset.
c2bd5804
TH
3756 *
3757 * LOCKING:
3758 * Kernel thread context (may sleep)
3759 *
3760 * RETURNS:
3761 * 0 on success, -errno otherwise.
3762 */
624d5c51 3763int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
9dadd45b
TH
3764 unsigned long deadline,
3765 bool *online, int (*check_ready)(struct ata_link *))
c2bd5804 3766{
624d5c51 3767 u32 scontrol;
81952c54 3768 int rc;
852ee16a 3769
c2bd5804
TH
3770 DPRINTK("ENTER\n");
3771
9dadd45b
TH
3772 if (online)
3773 *online = false;
3774
936fd732 3775 if (sata_set_spd_needed(link)) {
1c3fae4d
TH
3776 /* SATA spec says nothing about how to reconfigure
3777 * spd. To be on the safe side, turn off phy during
3778 * reconfiguration. This works for at least ICH7 AHCI
3779 * and Sil3124.
3780 */
936fd732 3781 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3782 goto out;
81952c54 3783
a34b6fc0 3784 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54 3785
936fd732 3786 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
b6103f6d 3787 goto out;
1c3fae4d 3788
936fd732 3789 sata_set_spd(link);
1c3fae4d
TH
3790 }
3791
3792 /* issue phy wake/reset */
936fd732 3793 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3794 goto out;
81952c54 3795
852ee16a 3796 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54 3797
936fd732 3798 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
b6103f6d 3799 goto out;
c2bd5804 3800
1c3fae4d 3801 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3802 * 10.4.2 says at least 1 ms.
3803 */
3804 msleep(1);
3805
936fd732
TH
3806 /* bring link back */
3807 rc = sata_link_resume(link, timing, deadline);
9dadd45b
TH
3808 if (rc)
3809 goto out;
3810 /* if link is offline nothing more to do */
b1c72916 3811 if (ata_phys_link_offline(link))
9dadd45b
TH
3812 goto out;
3813
3814 /* Link is online. From this point, -ENODEV too is an error. */
3815 if (online)
3816 *online = true;
3817
071f44b1 3818 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
9dadd45b
TH
3819 /* If PMP is supported, we have to do follow-up SRST.
3820 * Some PMPs don't send D2H Reg FIS after hardreset if
3821 * the first port is empty. Wait only for
3822 * ATA_TMOUT_PMP_SRST_WAIT.
3823 */
3824 if (check_ready) {
3825 unsigned long pmp_deadline;
3826
341c2c95
TH
3827 pmp_deadline = ata_deadline(jiffies,
3828 ATA_TMOUT_PMP_SRST_WAIT);
9dadd45b
TH
3829 if (time_after(pmp_deadline, deadline))
3830 pmp_deadline = deadline;
3831 ata_wait_ready(link, pmp_deadline, check_ready);
3832 }
3833 rc = -EAGAIN;
3834 goto out;
3835 }
3836
3837 rc = 0;
3838 if (check_ready)
3839 rc = ata_wait_ready(link, deadline, check_ready);
b6103f6d 3840 out:
0cbf0711
TH
3841 if (rc && rc != -EAGAIN) {
3842 /* online is set iff link is online && reset succeeded */
3843 if (online)
3844 *online = false;
9dadd45b
TH
3845 ata_link_printk(link, KERN_ERR,
3846 "COMRESET failed (errno=%d)\n", rc);
0cbf0711 3847 }
b6103f6d
TH
3848 DPRINTK("EXIT, rc=%d\n", rc);
3849 return rc;
3850}
3851
57c9efdf
TH
3852/**
3853 * sata_std_hardreset - COMRESET w/o waiting or classification
3854 * @link: link to reset
3855 * @class: resulting class of attached device
3856 * @deadline: deadline jiffies for the operation
3857 *
3858 * Standard SATA COMRESET w/o waiting or classification.
3859 *
3860 * LOCKING:
3861 * Kernel thread context (may sleep)
3862 *
3863 * RETURNS:
3864 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3865 */
3866int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3867 unsigned long deadline)
3868{
3869 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3870 bool online;
3871 int rc;
3872
3873 /* do hardreset */
3874 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
57c9efdf
TH
3875 return online ? -EAGAIN : rc;
3876}
3877
c2bd5804 3878/**
203c75b8 3879 * ata_std_postreset - standard postreset callback
cc0680a5 3880 * @link: the target ata_link
c2bd5804
TH
3881 * @classes: classes of attached devices
3882 *
3883 * This function is invoked after a successful reset. Note that
3884 * the device might have been reset more than once using
3885 * different reset methods before postreset is invoked.
c2bd5804 3886 *
c2bd5804
TH
3887 * LOCKING:
3888 * Kernel thread context (may sleep)
3889 */
203c75b8 3890void ata_std_postreset(struct ata_link *link, unsigned int *classes)
c2bd5804 3891{
f046519f
TH
3892 u32 serror;
3893
c2bd5804
TH
3894 DPRINTK("ENTER\n");
3895
f046519f
TH
3896 /* reset complete, clear SError */
3897 if (!sata_scr_read(link, SCR_ERROR, &serror))
3898 sata_scr_write(link, SCR_ERROR, serror);
3899
c2bd5804 3900 /* print link status */
936fd732 3901 sata_print_link_status(link);
c2bd5804 3902
c2bd5804
TH
3903 DPRINTK("EXIT\n");
3904}
3905
623a3128
TH
3906/**
3907 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3908 * @dev: device to compare against
3909 * @new_class: class of the new device
3910 * @new_id: IDENTIFY page of the new device
3911 *
3912 * Compare @new_class and @new_id against @dev and determine
3913 * whether @dev is the device indicated by @new_class and
3914 * @new_id.
3915 *
3916 * LOCKING:
3917 * None.
3918 *
3919 * RETURNS:
3920 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3921 */
3373efd8
TH
3922static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3923 const u16 *new_id)
623a3128
TH
3924{
3925 const u16 *old_id = dev->id;
a0cf733b
TH
3926 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3927 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3928
3929 if (dev->class != new_class) {
f15a1daf
TH
3930 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3931 dev->class, new_class);
623a3128
TH
3932 return 0;
3933 }
3934
a0cf733b
TH
3935 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3936 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3937 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3938 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3939
3940 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3941 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3942 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3943 return 0;
3944 }
3945
3946 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
3947 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3948 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3949 return 0;
3950 }
3951
623a3128
TH
3952 return 1;
3953}
3954
3955/**
fe30911b 3956 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 3957 * @dev: target ATA device
bff04647 3958 * @readid_flags: read ID flags
623a3128
TH
3959 *
3960 * Re-read IDENTIFY page and make sure @dev is still attached to
3961 * the port.
3962 *
3963 * LOCKING:
3964 * Kernel thread context (may sleep)
3965 *
3966 * RETURNS:
3967 * 0 on success, negative errno otherwise
3968 */
fe30911b 3969int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 3970{
5eb45c02 3971 unsigned int class = dev->class;
9af5c9c9 3972 u16 *id = (void *)dev->link->ap->sector_buf;
623a3128
TH
3973 int rc;
3974
fe635c7e 3975 /* read ID data */
bff04647 3976 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 3977 if (rc)
fe30911b 3978 return rc;
623a3128
TH
3979
3980 /* is the device still there? */
fe30911b
TH
3981 if (!ata_dev_same_device(dev, class, id))
3982 return -ENODEV;
623a3128 3983
fe635c7e 3984 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
3985 return 0;
3986}
3987
3988/**
3989 * ata_dev_revalidate - Revalidate ATA device
3990 * @dev: device to revalidate
422c9daa 3991 * @new_class: new class code
fe30911b
TH
3992 * @readid_flags: read ID flags
3993 *
3994 * Re-read IDENTIFY page, make sure @dev is still attached to the
3995 * port and reconfigure it according to the new IDENTIFY page.
3996 *
3997 * LOCKING:
3998 * Kernel thread context (may sleep)
3999 *
4000 * RETURNS:
4001 * 0 on success, negative errno otherwise
4002 */
422c9daa
TH
4003int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4004 unsigned int readid_flags)
fe30911b 4005{
6ddcd3b0 4006 u64 n_sectors = dev->n_sectors;
fe30911b
TH
4007 int rc;
4008
4009 if (!ata_dev_enabled(dev))
4010 return -ENODEV;
4011
422c9daa
TH
4012 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4013 if (ata_class_enabled(new_class) &&
4014 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
4015 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4016 dev->class, new_class);
4017 rc = -ENODEV;
4018 goto fail;
4019 }
4020
fe30911b
TH
4021 /* re-read ID */
4022 rc = ata_dev_reread_id(dev, readid_flags);
4023 if (rc)
4024 goto fail;
623a3128
TH
4025
4026 /* configure device according to the new ID */
efdaedc4 4027 rc = ata_dev_configure(dev);
6ddcd3b0
TH
4028 if (rc)
4029 goto fail;
4030
4031 /* verify n_sectors hasn't changed */
b54eebd6
TH
4032 if (dev->class == ATA_DEV_ATA && n_sectors &&
4033 dev->n_sectors != n_sectors) {
6ddcd3b0
TH
4034 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
4035 "%llu != %llu\n",
4036 (unsigned long long)n_sectors,
4037 (unsigned long long)dev->n_sectors);
8270bec4
TH
4038
4039 /* restore original n_sectors */
4040 dev->n_sectors = n_sectors;
4041
6ddcd3b0
TH
4042 rc = -ENODEV;
4043 goto fail;
4044 }
4045
4046 return 0;
623a3128
TH
4047
4048 fail:
f15a1daf 4049 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
4050 return rc;
4051}
4052
6919a0a6
AC
4053struct ata_blacklist_entry {
4054 const char *model_num;
4055 const char *model_rev;
4056 unsigned long horkage;
4057};
4058
4059static const struct ata_blacklist_entry ata_device_blacklist [] = {
4060 /* Devices with DMA related problems under Linux */
4061 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4062 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4063 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4064 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4065 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4066 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4067 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4068 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4069 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4070 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4071 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4072 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4073 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4074 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4075 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4076 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4077 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4078 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4079 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4080 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4081 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4082 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4083 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4084 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4085 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4086 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4087 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4088 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
2dcb407e 4089 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
39f19886 4090 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3af9a77a 4091 /* Odd clown on sil3726/4726 PMPs */
50af2fa1 4092 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
6919a0a6 4093
18d6e9d5 4094 /* Weird ATAPI devices */
40a1d531 4095 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
6a87e42e 4096 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
18d6e9d5 4097
6919a0a6
AC
4098 /* Devices we expect to fail diagnostics */
4099
4100 /* Devices where NCQ should be avoided */
4101 /* NCQ is slow */
2dcb407e 4102 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
459ad688 4103 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
09125ea6
TH
4104 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4105 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30 4106 /* NCQ is broken */
539cc7c7 4107 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
0e3dbc01 4108 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
da6f0ec2 4109 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
e41bd3e8 4110 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
5ccfca97 4111 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
539cc7c7 4112
ac70a964 4113 /* Seagate NCQ + FLUSH CACHE firmware bug */
d10d491f 4114 { "ST31500341AS", "SD15", ATA_HORKAGE_NONCQ |
ac70a964 4115 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f 4116 { "ST31500341AS", "SD16", ATA_HORKAGE_NONCQ |
ac70a964 4117 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f 4118 { "ST31500341AS", "SD17", ATA_HORKAGE_NONCQ |
ac70a964 4119 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f 4120 { "ST31500341AS", "SD18", ATA_HORKAGE_NONCQ |
ac70a964 4121 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f 4122 { "ST31500341AS", "SD19", ATA_HORKAGE_NONCQ |
ac70a964 4123 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f
TH
4124
4125 { "ST31000333AS", "SD15", ATA_HORKAGE_NONCQ |
4126 ATA_HORKAGE_FIRMWARE_WARN },
4127 { "ST31000333AS", "SD16", ATA_HORKAGE_NONCQ |
4128 ATA_HORKAGE_FIRMWARE_WARN },
4129 { "ST31000333AS", "SD17", ATA_HORKAGE_NONCQ |
4130 ATA_HORKAGE_FIRMWARE_WARN },
4131 { "ST31000333AS", "SD18", ATA_HORKAGE_NONCQ |
4132 ATA_HORKAGE_FIRMWARE_WARN },
4133 { "ST31000333AS", "SD19", ATA_HORKAGE_NONCQ |
4134 ATA_HORKAGE_FIRMWARE_WARN },
4135
4136 { "ST3640623AS", "SD15", ATA_HORKAGE_NONCQ |
4137 ATA_HORKAGE_FIRMWARE_WARN },
4138 { "ST3640623AS", "SD16", ATA_HORKAGE_NONCQ |
4139 ATA_HORKAGE_FIRMWARE_WARN },
4140 { "ST3640623AS", "SD17", ATA_HORKAGE_NONCQ |
4141 ATA_HORKAGE_FIRMWARE_WARN },
4142 { "ST3640623AS", "SD18", ATA_HORKAGE_NONCQ |
4143 ATA_HORKAGE_FIRMWARE_WARN },
4144 { "ST3640623AS", "SD19", ATA_HORKAGE_NONCQ |
4145 ATA_HORKAGE_FIRMWARE_WARN },
4146
4147 { "ST3640323AS", "SD15", ATA_HORKAGE_NONCQ |
4148 ATA_HORKAGE_FIRMWARE_WARN },
4149 { "ST3640323AS", "SD16", ATA_HORKAGE_NONCQ |
4150 ATA_HORKAGE_FIRMWARE_WARN },
4151 { "ST3640323AS", "SD17", ATA_HORKAGE_NONCQ |
4152 ATA_HORKAGE_FIRMWARE_WARN },
4153 { "ST3640323AS", "SD18", ATA_HORKAGE_NONCQ |
4154 ATA_HORKAGE_FIRMWARE_WARN },
4155 { "ST3640323AS", "SD19", ATA_HORKAGE_NONCQ |
4156 ATA_HORKAGE_FIRMWARE_WARN },
4157
4158 { "ST3320813AS", "SD15", ATA_HORKAGE_NONCQ |
4159 ATA_HORKAGE_FIRMWARE_WARN },
4160 { "ST3320813AS", "SD16", ATA_HORKAGE_NONCQ |
4161 ATA_HORKAGE_FIRMWARE_WARN },
4162 { "ST3320813AS", "SD17", ATA_HORKAGE_NONCQ |
4163 ATA_HORKAGE_FIRMWARE_WARN },
4164 { "ST3320813AS", "SD18", ATA_HORKAGE_NONCQ |
4165 ATA_HORKAGE_FIRMWARE_WARN },
4166 { "ST3320813AS", "SD19", ATA_HORKAGE_NONCQ |
4167 ATA_HORKAGE_FIRMWARE_WARN },
4168
4169 { "ST3320613AS", "SD15", ATA_HORKAGE_NONCQ |
4170 ATA_HORKAGE_FIRMWARE_WARN },
4171 { "ST3320613AS", "SD16", ATA_HORKAGE_NONCQ |
4172 ATA_HORKAGE_FIRMWARE_WARN },
4173 { "ST3320613AS", "SD17", ATA_HORKAGE_NONCQ |
4174 ATA_HORKAGE_FIRMWARE_WARN },
4175 { "ST3320613AS", "SD18", ATA_HORKAGE_NONCQ |
4176 ATA_HORKAGE_FIRMWARE_WARN },
4177 { "ST3320613AS", "SD19", ATA_HORKAGE_NONCQ |
ac70a964
TH
4178 ATA_HORKAGE_FIRMWARE_WARN },
4179
36e337d0
RH
4180 /* Blacklist entries taken from Silicon Image 3124/3132
4181 Windows driver .inf file - also several Linux problem reports */
4182 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4183 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4184 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
6919a0a6 4185
16c55b03
TH
4186 /* devices which puke on READ_NATIVE_MAX */
4187 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4188 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4189 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4190 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
6919a0a6 4191
93328e11
AC
4192 /* Devices which report 1 sector over size HPA */
4193 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4194 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
b152fcd3 4195 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
93328e11 4196
6bbfd53d
AC
4197 /* Devices which get the IVB wrong */
4198 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
a79067e5
AC
4199 /* Maybe we should just blacklist TSSTcorp... */
4200 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB, },
4201 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB, },
6bbfd53d 4202 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
e9f33406
PM
4203 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
4204 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
4205 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
6bbfd53d 4206
9ce8e307
JA
4207 /* Devices that do not need bridging limits applied */
4208 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4209
6919a0a6
AC
4210 /* End Marker */
4211 { }
1da177e4 4212};
2e9edbf8 4213
741b7763 4214static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
539cc7c7
JG
4215{
4216 const char *p;
4217 int len;
4218
4219 /*
4220 * check for trailing wildcard: *\0
4221 */
4222 p = strchr(patt, wildchar);
4223 if (p && ((*(p + 1)) == 0))
4224 len = p - patt;
317b50b8 4225 else {
539cc7c7 4226 len = strlen(name);
317b50b8
AP
4227 if (!len) {
4228 if (!*patt)
4229 return 0;
4230 return -1;
4231 }
4232 }
539cc7c7
JG
4233
4234 return strncmp(patt, name, len);
4235}
4236
75683fe7 4237static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 4238{
8bfa79fc
TH
4239 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4240 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 4241 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 4242
8bfa79fc
TH
4243 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4244 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 4245
6919a0a6 4246 while (ad->model_num) {
539cc7c7 4247 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
6919a0a6
AC
4248 if (ad->model_rev == NULL)
4249 return ad->horkage;
539cc7c7 4250 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
6919a0a6 4251 return ad->horkage;
f4b15fef 4252 }
6919a0a6 4253 ad++;
f4b15fef 4254 }
1da177e4
LT
4255 return 0;
4256}
4257
6919a0a6
AC
4258static int ata_dma_blacklisted(const struct ata_device *dev)
4259{
4260 /* We don't support polling DMA.
4261 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4262 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4263 */
9af5c9c9 4264 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
6919a0a6
AC
4265 (dev->flags & ATA_DFLAG_CDB_INTR))
4266 return 1;
75683fe7 4267 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
4268}
4269
6bbfd53d
AC
4270/**
4271 * ata_is_40wire - check drive side detection
4272 * @dev: device
4273 *
4274 * Perform drive side detection decoding, allowing for device vendors
4275 * who can't follow the documentation.
4276 */
4277
4278static int ata_is_40wire(struct ata_device *dev)
4279{
4280 if (dev->horkage & ATA_HORKAGE_IVB)
4281 return ata_drive_40wire_relaxed(dev->id);
4282 return ata_drive_40wire(dev->id);
4283}
4284
15a5551c
AC
4285/**
4286 * cable_is_40wire - 40/80/SATA decider
4287 * @ap: port to consider
4288 *
4289 * This function encapsulates the policy for speed management
4290 * in one place. At the moment we don't cache the result but
4291 * there is a good case for setting ap->cbl to the result when
4292 * we are called with unknown cables (and figuring out if it
4293 * impacts hotplug at all).
4294 *
4295 * Return 1 if the cable appears to be 40 wire.
4296 */
4297
4298static int cable_is_40wire(struct ata_port *ap)
4299{
4300 struct ata_link *link;
4301 struct ata_device *dev;
4302
4a9c7b33 4303 /* If the controller thinks we are 40 wire, we are. */
15a5551c
AC
4304 if (ap->cbl == ATA_CBL_PATA40)
4305 return 1;
4a9c7b33
TH
4306
4307 /* If the controller thinks we are 80 wire, we are. */
15a5551c
AC
4308 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4309 return 0;
4a9c7b33
TH
4310
4311 /* If the system is known to be 40 wire short cable (eg
4312 * laptop), then we allow 80 wire modes even if the drive
4313 * isn't sure.
4314 */
f792068e
AC
4315 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4316 return 0;
4a9c7b33
TH
4317
4318 /* If the controller doesn't know, we scan.
4319 *
4320 * Note: We look for all 40 wire detects at this point. Any
4321 * 80 wire detect is taken to be 80 wire cable because
4322 * - in many setups only the one drive (slave if present) will
4323 * give a valid detect
4324 * - if you have a non detect capable drive you don't want it
4325 * to colour the choice
4326 */
1eca4365
TH
4327 ata_for_each_link(link, ap, EDGE) {
4328 ata_for_each_dev(dev, link, ENABLED) {
4329 if (!ata_is_40wire(dev))
15a5551c
AC
4330 return 0;
4331 }
4332 }
4333 return 1;
4334}
4335
a6d5a51c
TH
4336/**
4337 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
4338 * @dev: Device to compute xfermask for
4339 *
acf356b1
TH
4340 * Compute supported xfermask of @dev and store it in
4341 * dev->*_mask. This function is responsible for applying all
4342 * known limits including host controller limits, device
4343 * blacklist, etc...
a6d5a51c
TH
4344 *
4345 * LOCKING:
4346 * None.
a6d5a51c 4347 */
3373efd8 4348static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 4349{
9af5c9c9
TH
4350 struct ata_link *link = dev->link;
4351 struct ata_port *ap = link->ap;
cca3974e 4352 struct ata_host *host = ap->host;
a6d5a51c 4353 unsigned long xfer_mask;
1da177e4 4354
37deecb5 4355 /* controller modes available */
565083e1
TH
4356 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4357 ap->mwdma_mask, ap->udma_mask);
4358
8343f889 4359 /* drive modes available */
37deecb5
TH
4360 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4361 dev->mwdma_mask, dev->udma_mask);
4362 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 4363
b352e57d
AC
4364 /*
4365 * CFA Advanced TrueIDE timings are not allowed on a shared
4366 * cable
4367 */
4368 if (ata_dev_pair(dev)) {
4369 /* No PIO5 or PIO6 */
4370 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4371 /* No MWDMA3 or MWDMA 4 */
4372 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4373 }
4374
37deecb5
TH
4375 if (ata_dma_blacklisted(dev)) {
4376 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
4377 ata_dev_printk(dev, KERN_WARNING,
4378 "device is on DMA blacklist, disabling DMA\n");
37deecb5 4379 }
a6d5a51c 4380
14d66ab7 4381 if ((host->flags & ATA_HOST_SIMPLEX) &&
2dcb407e 4382 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
4383 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4384 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4385 "other device, disabling DMA\n");
5444a6f4 4386 }
565083e1 4387
e424675f
JG
4388 if (ap->flags & ATA_FLAG_NO_IORDY)
4389 xfer_mask &= ata_pio_mask_no_iordy(dev);
4390
5444a6f4 4391 if (ap->ops->mode_filter)
a76b62ca 4392 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 4393
8343f889
RH
4394 /* Apply cable rule here. Don't apply it early because when
4395 * we handle hot plug the cable type can itself change.
4396 * Check this last so that we know if the transfer rate was
4397 * solely limited by the cable.
4398 * Unknown or 80 wire cables reported host side are checked
4399 * drive side as well. Cases where we know a 40wire cable
4400 * is used safely for 80 are not checked here.
4401 */
4402 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4403 /* UDMA/44 or higher would be available */
15a5551c 4404 if (cable_is_40wire(ap)) {
2dcb407e 4405 ata_dev_printk(dev, KERN_WARNING,
8343f889
RH
4406 "limited to UDMA/33 due to 40-wire cable\n");
4407 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4408 }
4409
565083e1
TH
4410 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4411 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
4412}
4413
1da177e4
LT
4414/**
4415 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
4416 * @dev: Device to which command will be sent
4417 *
780a87f7
JG
4418 * Issue SET FEATURES - XFER MODE command to device @dev
4419 * on port @ap.
4420 *
1da177e4 4421 * LOCKING:
0cba632b 4422 * PCI/etc. bus probe sem.
83206a29
TH
4423 *
4424 * RETURNS:
4425 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
4426 */
4427
3373efd8 4428static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 4429{
a0123703 4430 struct ata_taskfile tf;
83206a29 4431 unsigned int err_mask;
1da177e4
LT
4432
4433 /* set up set-features taskfile */
4434 DPRINTK("set features - xfer mode\n");
4435
464cf177
TH
4436 /* Some controllers and ATAPI devices show flaky interrupt
4437 * behavior after setting xfer mode. Use polling instead.
4438 */
3373efd8 4439 ata_tf_init(dev, &tf);
a0123703
TH
4440 tf.command = ATA_CMD_SET_FEATURES;
4441 tf.feature = SETFEATURES_XFER;
464cf177 4442 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703 4443 tf.protocol = ATA_PROT_NODATA;
b9f8ab2d 4444 /* If we are using IORDY we must send the mode setting command */
11b7becc
JG
4445 if (ata_pio_need_iordy(dev))
4446 tf.nsect = dev->xfer_mode;
b9f8ab2d
AC
4447 /* If the device has IORDY and the controller does not - turn it off */
4448 else if (ata_id_has_iordy(dev->id))
11b7becc 4449 tf.nsect = 0x01;
b9f8ab2d
AC
4450 else /* In the ancient relic department - skip all of this */
4451 return 0;
1da177e4 4452
2b789108 4453 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
9f45cbd3
KCA
4454
4455 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4456 return err_mask;
4457}
9f45cbd3 4458/**
218f3d30 4459 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
9f45cbd3
KCA
4460 * @dev: Device to which command will be sent
4461 * @enable: Whether to enable or disable the feature
218f3d30 4462 * @feature: The sector count represents the feature to set
9f45cbd3
KCA
4463 *
4464 * Issue SET FEATURES - SATA FEATURES command to device @dev
218f3d30 4465 * on port @ap with sector count
9f45cbd3
KCA
4466 *
4467 * LOCKING:
4468 * PCI/etc. bus probe sem.
4469 *
4470 * RETURNS:
4471 * 0 on success, AC_ERR_* mask otherwise.
4472 */
218f3d30
JG
4473static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4474 u8 feature)
9f45cbd3
KCA
4475{
4476 struct ata_taskfile tf;
4477 unsigned int err_mask;
4478
4479 /* set up set-features taskfile */
4480 DPRINTK("set features - SATA features\n");
4481
4482 ata_tf_init(dev, &tf);
4483 tf.command = ATA_CMD_SET_FEATURES;
4484 tf.feature = enable;
4485 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4486 tf.protocol = ATA_PROT_NODATA;
218f3d30 4487 tf.nsect = feature;
9f45cbd3 4488
2b789108 4489 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1da177e4 4490
83206a29
TH
4491 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4492 return err_mask;
1da177e4
LT
4493}
4494
8bf62ece
AL
4495/**
4496 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 4497 * @dev: Device to which command will be sent
e2a7f77a
RD
4498 * @heads: Number of heads (taskfile parameter)
4499 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
4500 *
4501 * LOCKING:
6aff8f1f
TH
4502 * Kernel thread context (may sleep)
4503 *
4504 * RETURNS:
4505 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 4506 */
3373efd8
TH
4507static unsigned int ata_dev_init_params(struct ata_device *dev,
4508 u16 heads, u16 sectors)
8bf62ece 4509{
a0123703 4510 struct ata_taskfile tf;
6aff8f1f 4511 unsigned int err_mask;
8bf62ece
AL
4512
4513 /* Number of sectors per track 1-255. Number of heads 1-16 */
4514 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 4515 return AC_ERR_INVALID;
8bf62ece
AL
4516
4517 /* set up init dev params taskfile */
4518 DPRINTK("init dev params \n");
4519
3373efd8 4520 ata_tf_init(dev, &tf);
a0123703
TH
4521 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4522 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4523 tf.protocol = ATA_PROT_NODATA;
4524 tf.nsect = sectors;
4525 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 4526
2b789108 4527 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
18b2466c
AC
4528 /* A clean abort indicates an original or just out of spec drive
4529 and we should continue as we issue the setup based on the
4530 drive reported working geometry */
4531 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4532 err_mask = 0;
8bf62ece 4533
6aff8f1f
TH
4534 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4535 return err_mask;
8bf62ece
AL
4536}
4537
1da177e4 4538/**
0cba632b
JG
4539 * ata_sg_clean - Unmap DMA memory associated with command
4540 * @qc: Command containing DMA memory to be released
4541 *
4542 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
4543 *
4544 * LOCKING:
cca3974e 4545 * spin_lock_irqsave(host lock)
1da177e4 4546 */
70e6ad0c 4547void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
4548{
4549 struct ata_port *ap = qc->ap;
ff2aeb1e 4550 struct scatterlist *sg = qc->sg;
1da177e4
LT
4551 int dir = qc->dma_dir;
4552
a4631474 4553 WARN_ON(sg == NULL);
1da177e4 4554
dde20207 4555 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 4556
dde20207
JB
4557 if (qc->n_elem)
4558 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
1da177e4
LT
4559
4560 qc->flags &= ~ATA_QCFLAG_DMAMAP;
ff2aeb1e 4561 qc->sg = NULL;
1da177e4
LT
4562}
4563
1da177e4 4564/**
5895ef9a 4565 * atapi_check_dma - Check whether ATAPI DMA can be supported
1da177e4
LT
4566 * @qc: Metadata associated with taskfile to check
4567 *
780a87f7
JG
4568 * Allow low-level driver to filter ATA PACKET commands, returning
4569 * a status indicating whether or not it is OK to use DMA for the
4570 * supplied PACKET command.
4571 *
1da177e4 4572 * LOCKING:
624d5c51
TH
4573 * spin_lock_irqsave(host lock)
4574 *
4575 * RETURNS: 0 when ATAPI DMA can be used
4576 * nonzero otherwise
4577 */
5895ef9a 4578int atapi_check_dma(struct ata_queued_cmd *qc)
624d5c51
TH
4579{
4580 struct ata_port *ap = qc->ap;
71601958 4581
624d5c51
TH
4582 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4583 * few ATAPI devices choke on such DMA requests.
4584 */
6a87e42e
TH
4585 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4586 unlikely(qc->nbytes & 15))
624d5c51 4587 return 1;
e2cec771 4588
624d5c51
TH
4589 if (ap->ops->check_atapi_dma)
4590 return ap->ops->check_atapi_dma(qc);
e2cec771 4591
624d5c51
TH
4592 return 0;
4593}
1da177e4 4594
624d5c51
TH
4595/**
4596 * ata_std_qc_defer - Check whether a qc needs to be deferred
4597 * @qc: ATA command in question
4598 *
4599 * Non-NCQ commands cannot run with any other command, NCQ or
4600 * not. As upper layer only knows the queue depth, we are
4601 * responsible for maintaining exclusion. This function checks
4602 * whether a new command @qc can be issued.
4603 *
4604 * LOCKING:
4605 * spin_lock_irqsave(host lock)
4606 *
4607 * RETURNS:
4608 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4609 */
4610int ata_std_qc_defer(struct ata_queued_cmd *qc)
4611{
4612 struct ata_link *link = qc->dev->link;
e2cec771 4613
624d5c51
TH
4614 if (qc->tf.protocol == ATA_PROT_NCQ) {
4615 if (!ata_tag_valid(link->active_tag))
4616 return 0;
4617 } else {
4618 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4619 return 0;
4620 }
e2cec771 4621
624d5c51
TH
4622 return ATA_DEFER_LINK;
4623}
6912ccd5 4624
624d5c51 4625void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
1da177e4 4626
624d5c51
TH
4627/**
4628 * ata_sg_init - Associate command with scatter-gather table.
4629 * @qc: Command to be associated
4630 * @sg: Scatter-gather table.
4631 * @n_elem: Number of elements in s/g table.
4632 *
4633 * Initialize the data-related elements of queued_cmd @qc
4634 * to point to a scatter-gather table @sg, containing @n_elem
4635 * elements.
4636 *
4637 * LOCKING:
4638 * spin_lock_irqsave(host lock)
4639 */
4640void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4641 unsigned int n_elem)
4642{
4643 qc->sg = sg;
4644 qc->n_elem = n_elem;
4645 qc->cursg = qc->sg;
4646}
bb5cb290 4647
624d5c51
TH
4648/**
4649 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4650 * @qc: Command with scatter-gather table to be mapped.
4651 *
4652 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4653 *
4654 * LOCKING:
4655 * spin_lock_irqsave(host lock)
4656 *
4657 * RETURNS:
4658 * Zero on success, negative on error.
4659 *
4660 */
4661static int ata_sg_setup(struct ata_queued_cmd *qc)
4662{
4663 struct ata_port *ap = qc->ap;
4664 unsigned int n_elem;
1da177e4 4665
624d5c51 4666 VPRINTK("ENTER, ata%u\n", ap->print_id);
e2cec771 4667
624d5c51
TH
4668 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4669 if (n_elem < 1)
4670 return -1;
bb5cb290 4671
624d5c51 4672 DPRINTK("%d sg elements mapped\n", n_elem);
bb5cb290 4673
624d5c51
TH
4674 qc->n_elem = n_elem;
4675 qc->flags |= ATA_QCFLAG_DMAMAP;
1da177e4 4676
624d5c51 4677 return 0;
1da177e4
LT
4678}
4679
624d5c51
TH
4680/**
4681 * swap_buf_le16 - swap halves of 16-bit words in place
4682 * @buf: Buffer to swap
4683 * @buf_words: Number of 16-bit words in buffer.
4684 *
4685 * Swap halves of 16-bit words if needed to convert from
4686 * little-endian byte order to native cpu byte order, or
4687 * vice-versa.
4688 *
4689 * LOCKING:
4690 * Inherited from caller.
4691 */
4692void swap_buf_le16(u16 *buf, unsigned int buf_words)
8061f5f0 4693{
624d5c51
TH
4694#ifdef __BIG_ENDIAN
4695 unsigned int i;
8061f5f0 4696
624d5c51
TH
4697 for (i = 0; i < buf_words; i++)
4698 buf[i] = le16_to_cpu(buf[i]);
4699#endif /* __BIG_ENDIAN */
8061f5f0
TH
4700}
4701
8a8bc223
TH
4702/**
4703 * ata_qc_new - Request an available ATA command, for queueing
4704 * @ap: Port associated with device @dev
4705 * @dev: Device from whom we request an available command structure
4706 *
4707 * LOCKING:
4708 * None.
4709 */
4710
4711static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4712{
4713 struct ata_queued_cmd *qc = NULL;
4714 unsigned int i;
4715
4716 /* no command while frozen */
4717 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4718 return NULL;
4719
4720 /* the last tag is reserved for internal command. */
4721 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4722 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4723 qc = __ata_qc_from_tag(ap, i);
4724 break;
4725 }
4726
4727 if (qc)
4728 qc->tag = i;
4729
4730 return qc;
4731}
4732
1da177e4
LT
4733/**
4734 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
4735 * @dev: Device from whom we request an available command structure
4736 *
4737 * LOCKING:
0cba632b 4738 * None.
1da177e4
LT
4739 */
4740
8a8bc223 4741struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 4742{
9af5c9c9 4743 struct ata_port *ap = dev->link->ap;
1da177e4
LT
4744 struct ata_queued_cmd *qc;
4745
8a8bc223 4746 qc = ata_qc_new(ap);
1da177e4 4747 if (qc) {
1da177e4
LT
4748 qc->scsicmd = NULL;
4749 qc->ap = ap;
4750 qc->dev = dev;
1da177e4 4751
2c13b7ce 4752 ata_qc_reinit(qc);
1da177e4
LT
4753 }
4754
4755 return qc;
4756}
4757
8a8bc223
TH
4758/**
4759 * ata_qc_free - free unused ata_queued_cmd
4760 * @qc: Command to complete
4761 *
4762 * Designed to free unused ata_queued_cmd object
4763 * in case something prevents using it.
4764 *
4765 * LOCKING:
4766 * spin_lock_irqsave(host lock)
4767 */
4768void ata_qc_free(struct ata_queued_cmd *qc)
4769{
4770 struct ata_port *ap = qc->ap;
4771 unsigned int tag;
4772
4773 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4774
4775 qc->flags = 0;
4776 tag = qc->tag;
4777 if (likely(ata_tag_valid(tag))) {
4778 qc->tag = ATA_TAG_POISON;
4779 clear_bit(tag, &ap->qc_allocated);
4780 }
4781}
4782
76014427 4783void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4784{
dedaf2b0 4785 struct ata_port *ap = qc->ap;
9af5c9c9 4786 struct ata_link *link = qc->dev->link;
dedaf2b0 4787
a4631474
TH
4788 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4789 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
4790
4791 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4792 ata_sg_clean(qc);
4793
7401abf2 4794 /* command should be marked inactive atomically with qc completion */
da917d69 4795 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 4796 link->sactive &= ~(1 << qc->tag);
da917d69
TH
4797 if (!link->sactive)
4798 ap->nr_active_links--;
4799 } else {
9af5c9c9 4800 link->active_tag = ATA_TAG_POISON;
da917d69
TH
4801 ap->nr_active_links--;
4802 }
4803
4804 /* clear exclusive status */
4805 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4806 ap->excl_link == link))
4807 ap->excl_link = NULL;
7401abf2 4808
3f3791d3
AL
4809 /* atapi: mark qc as inactive to prevent the interrupt handler
4810 * from completing the command twice later, before the error handler
4811 * is called. (when rc != 0 and atapi request sense is needed)
4812 */
4813 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 4814 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 4815
1da177e4 4816 /* call completion callback */
77853bf2 4817 qc->complete_fn(qc);
1da177e4
LT
4818}
4819
39599a53
TH
4820static void fill_result_tf(struct ata_queued_cmd *qc)
4821{
4822 struct ata_port *ap = qc->ap;
4823
39599a53 4824 qc->result_tf.flags = qc->tf.flags;
22183bf5 4825 ap->ops->qc_fill_rtf(qc);
39599a53
TH
4826}
4827
00115e0f
TH
4828static void ata_verify_xfer(struct ata_queued_cmd *qc)
4829{
4830 struct ata_device *dev = qc->dev;
4831
4832 if (ata_tag_internal(qc->tag))
4833 return;
4834
4835 if (ata_is_nodata(qc->tf.protocol))
4836 return;
4837
4838 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4839 return;
4840
4841 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4842}
4843
f686bcb8
TH
4844/**
4845 * ata_qc_complete - Complete an active ATA command
4846 * @qc: Command to complete
f686bcb8
TH
4847 *
4848 * Indicate to the mid and upper layers that an ATA
4849 * command has completed, with either an ok or not-ok status.
4850 *
4851 * LOCKING:
cca3974e 4852 * spin_lock_irqsave(host lock)
f686bcb8
TH
4853 */
4854void ata_qc_complete(struct ata_queued_cmd *qc)
4855{
4856 struct ata_port *ap = qc->ap;
4857
4858 /* XXX: New EH and old EH use different mechanisms to
4859 * synchronize EH with regular execution path.
4860 *
4861 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4862 * Normal execution path is responsible for not accessing a
4863 * failed qc. libata core enforces the rule by returning NULL
4864 * from ata_qc_from_tag() for failed qcs.
4865 *
4866 * Old EH depends on ata_qc_complete() nullifying completion
4867 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4868 * not synchronize with interrupt handler. Only PIO task is
4869 * taken care of.
4870 */
4871 if (ap->ops->error_handler) {
4dbfa39b
TH
4872 struct ata_device *dev = qc->dev;
4873 struct ata_eh_info *ehi = &dev->link->eh_info;
4874
b51e9e5d 4875 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
4876
4877 if (unlikely(qc->err_mask))
4878 qc->flags |= ATA_QCFLAG_FAILED;
4879
4880 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4881 if (!ata_tag_internal(qc->tag)) {
4882 /* always fill result TF for failed qc */
39599a53 4883 fill_result_tf(qc);
f686bcb8
TH
4884 ata_qc_schedule_eh(qc);
4885 return;
4886 }
4887 }
4888
4889 /* read result TF if requested */
4890 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 4891 fill_result_tf(qc);
f686bcb8 4892
4dbfa39b
TH
4893 /* Some commands need post-processing after successful
4894 * completion.
4895 */
4896 switch (qc->tf.command) {
4897 case ATA_CMD_SET_FEATURES:
4898 if (qc->tf.feature != SETFEATURES_WC_ON &&
4899 qc->tf.feature != SETFEATURES_WC_OFF)
4900 break;
4901 /* fall through */
4902 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4903 case ATA_CMD_SET_MULTI: /* multi_count changed */
4904 /* revalidate device */
4905 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4906 ata_port_schedule_eh(ap);
4907 break;
054a5fba
TH
4908
4909 case ATA_CMD_SLEEP:
4910 dev->flags |= ATA_DFLAG_SLEEPING;
4911 break;
4dbfa39b
TH
4912 }
4913
00115e0f
TH
4914 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4915 ata_verify_xfer(qc);
4916
f686bcb8
TH
4917 __ata_qc_complete(qc);
4918 } else {
4919 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4920 return;
4921
4922 /* read result TF if failed or requested */
4923 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 4924 fill_result_tf(qc);
f686bcb8
TH
4925
4926 __ata_qc_complete(qc);
4927 }
4928}
4929
dedaf2b0
TH
4930/**
4931 * ata_qc_complete_multiple - Complete multiple qcs successfully
4932 * @ap: port in question
4933 * @qc_active: new qc_active mask
dedaf2b0
TH
4934 *
4935 * Complete in-flight commands. This functions is meant to be
4936 * called from low-level driver's interrupt routine to complete
4937 * requests normally. ap->qc_active and @qc_active is compared
4938 * and commands are completed accordingly.
4939 *
4940 * LOCKING:
cca3974e 4941 * spin_lock_irqsave(host lock)
dedaf2b0
TH
4942 *
4943 * RETURNS:
4944 * Number of completed commands on success, -errno otherwise.
4945 */
79f97dad 4946int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
dedaf2b0
TH
4947{
4948 int nr_done = 0;
4949 u32 done_mask;
4950 int i;
4951
4952 done_mask = ap->qc_active ^ qc_active;
4953
4954 if (unlikely(done_mask & qc_active)) {
4955 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4956 "(%08x->%08x)\n", ap->qc_active, qc_active);
4957 return -EINVAL;
4958 }
4959
4960 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4961 struct ata_queued_cmd *qc;
4962
4963 if (!(done_mask & (1 << i)))
4964 continue;
4965
4966 if ((qc = ata_qc_from_tag(ap, i))) {
dedaf2b0
TH
4967 ata_qc_complete(qc);
4968 nr_done++;
4969 }
4970 }
4971
4972 return nr_done;
4973}
4974
1da177e4
LT
4975/**
4976 * ata_qc_issue - issue taskfile to device
4977 * @qc: command to issue to device
4978 *
4979 * Prepare an ATA command to submission to device.
4980 * This includes mapping the data into a DMA-able
4981 * area, filling in the S/G table, and finally
4982 * writing the taskfile to hardware, starting the command.
4983 *
4984 * LOCKING:
cca3974e 4985 * spin_lock_irqsave(host lock)
1da177e4 4986 */
8e0e694a 4987void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
4988{
4989 struct ata_port *ap = qc->ap;
9af5c9c9 4990 struct ata_link *link = qc->dev->link;
405e66b3 4991 u8 prot = qc->tf.protocol;
1da177e4 4992
dedaf2b0
TH
4993 /* Make sure only one non-NCQ command is outstanding. The
4994 * check is skipped for old EH because it reuses active qc to
4995 * request ATAPI sense.
4996 */
9af5c9c9 4997 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
dedaf2b0 4998
1973a023 4999 if (ata_is_ncq(prot)) {
9af5c9c9 5000 WARN_ON(link->sactive & (1 << qc->tag));
da917d69
TH
5001
5002 if (!link->sactive)
5003 ap->nr_active_links++;
9af5c9c9 5004 link->sactive |= 1 << qc->tag;
dedaf2b0 5005 } else {
9af5c9c9 5006 WARN_ON(link->sactive);
da917d69
TH
5007
5008 ap->nr_active_links++;
9af5c9c9 5009 link->active_tag = qc->tag;
dedaf2b0
TH
5010 }
5011
e4a70e76 5012 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5013 ap->qc_active |= 1 << qc->tag;
e4a70e76 5014
f92a2636
TH
5015 /* We guarantee to LLDs that they will have at least one
5016 * non-zero sg if the command is a data command.
5017 */
ff2aeb1e 5018 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
f92a2636 5019
405e66b3 5020 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
f92a2636 5021 (ap->flags & ATA_FLAG_PIO_DMA)))
001102d7
TH
5022 if (ata_sg_setup(qc))
5023 goto sg_err;
1da177e4 5024
cf480626 5025 /* if device is sleeping, schedule reset and abort the link */
054a5fba 5026 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
cf480626 5027 link->eh_info.action |= ATA_EH_RESET;
054a5fba
TH
5028 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5029 ata_link_abort(link);
5030 return;
5031 }
5032
1da177e4
LT
5033 ap->ops->qc_prep(qc);
5034
8e0e694a
TH
5035 qc->err_mask |= ap->ops->qc_issue(qc);
5036 if (unlikely(qc->err_mask))
5037 goto err;
5038 return;
1da177e4 5039
8e436af9 5040sg_err:
8e0e694a
TH
5041 qc->err_mask |= AC_ERR_SYSTEM;
5042err:
5043 ata_qc_complete(qc);
1da177e4
LT
5044}
5045
34bf2170
TH
5046/**
5047 * sata_scr_valid - test whether SCRs are accessible
936fd732 5048 * @link: ATA link to test SCR accessibility for
34bf2170 5049 *
936fd732 5050 * Test whether SCRs are accessible for @link.
34bf2170
TH
5051 *
5052 * LOCKING:
5053 * None.
5054 *
5055 * RETURNS:
5056 * 1 if SCRs are accessible, 0 otherwise.
5057 */
936fd732 5058int sata_scr_valid(struct ata_link *link)
34bf2170 5059{
936fd732
TH
5060 struct ata_port *ap = link->ap;
5061
a16abc0b 5062 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
5063}
5064
5065/**
5066 * sata_scr_read - read SCR register of the specified port
936fd732 5067 * @link: ATA link to read SCR for
34bf2170
TH
5068 * @reg: SCR to read
5069 * @val: Place to store read value
5070 *
936fd732 5071 * Read SCR register @reg of @link into *@val. This function is
633273a3
TH
5072 * guaranteed to succeed if @link is ap->link, the cable type of
5073 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
5074 *
5075 * LOCKING:
633273a3 5076 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5077 *
5078 * RETURNS:
5079 * 0 on success, negative errno on failure.
5080 */
936fd732 5081int sata_scr_read(struct ata_link *link, int reg, u32 *val)
34bf2170 5082{
633273a3 5083 if (ata_is_host_link(link)) {
633273a3 5084 if (sata_scr_valid(link))
82ef04fb 5085 return link->ap->ops->scr_read(link, reg, val);
633273a3
TH
5086 return -EOPNOTSUPP;
5087 }
5088
5089 return sata_pmp_scr_read(link, reg, val);
34bf2170
TH
5090}
5091
5092/**
5093 * sata_scr_write - write SCR register of the specified port
936fd732 5094 * @link: ATA link to write SCR for
34bf2170
TH
5095 * @reg: SCR to write
5096 * @val: value to write
5097 *
936fd732 5098 * Write @val to SCR register @reg of @link. This function is
633273a3
TH
5099 * guaranteed to succeed if @link is ap->link, the cable type of
5100 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
5101 *
5102 * LOCKING:
633273a3 5103 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5104 *
5105 * RETURNS:
5106 * 0 on success, negative errno on failure.
5107 */
936fd732 5108int sata_scr_write(struct ata_link *link, int reg, u32 val)
34bf2170 5109{
633273a3 5110 if (ata_is_host_link(link)) {
633273a3 5111 if (sata_scr_valid(link))
82ef04fb 5112 return link->ap->ops->scr_write(link, reg, val);
633273a3
TH
5113 return -EOPNOTSUPP;
5114 }
936fd732 5115
633273a3 5116 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
5117}
5118
5119/**
5120 * sata_scr_write_flush - write SCR register of the specified port and flush
936fd732 5121 * @link: ATA link to write SCR for
34bf2170
TH
5122 * @reg: SCR to write
5123 * @val: value to write
5124 *
5125 * This function is identical to sata_scr_write() except that this
5126 * function performs flush after writing to the register.
5127 *
5128 * LOCKING:
633273a3 5129 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5130 *
5131 * RETURNS:
5132 * 0 on success, negative errno on failure.
5133 */
936fd732 5134int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
34bf2170 5135{
633273a3 5136 if (ata_is_host_link(link)) {
633273a3 5137 int rc;
da3dbb17 5138
633273a3 5139 if (sata_scr_valid(link)) {
82ef04fb 5140 rc = link->ap->ops->scr_write(link, reg, val);
633273a3 5141 if (rc == 0)
82ef04fb 5142 rc = link->ap->ops->scr_read(link, reg, &val);
633273a3
TH
5143 return rc;
5144 }
5145 return -EOPNOTSUPP;
34bf2170 5146 }
633273a3
TH
5147
5148 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
5149}
5150
5151/**
b1c72916 5152 * ata_phys_link_online - test whether the given link is online
936fd732 5153 * @link: ATA link to test
34bf2170 5154 *
936fd732
TH
5155 * Test whether @link is online. Note that this function returns
5156 * 0 if online status of @link cannot be obtained, so
5157 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5158 *
5159 * LOCKING:
5160 * None.
5161 *
5162 * RETURNS:
b5b3fa38 5163 * True if the port online status is available and online.
34bf2170 5164 */
b1c72916 5165bool ata_phys_link_online(struct ata_link *link)
34bf2170
TH
5166{
5167 u32 sstatus;
5168
936fd732
TH
5169 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5170 (sstatus & 0xf) == 0x3)
b5b3fa38
TH
5171 return true;
5172 return false;
34bf2170
TH
5173}
5174
5175/**
b1c72916 5176 * ata_phys_link_offline - test whether the given link is offline
936fd732 5177 * @link: ATA link to test
34bf2170 5178 *
936fd732
TH
5179 * Test whether @link is offline. Note that this function
5180 * returns 0 if offline status of @link cannot be obtained, so
5181 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5182 *
5183 * LOCKING:
5184 * None.
5185 *
5186 * RETURNS:
b5b3fa38 5187 * True if the port offline status is available and offline.
34bf2170 5188 */
b1c72916 5189bool ata_phys_link_offline(struct ata_link *link)
34bf2170
TH
5190{
5191 u32 sstatus;
5192
936fd732
TH
5193 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5194 (sstatus & 0xf) != 0x3)
b5b3fa38
TH
5195 return true;
5196 return false;
34bf2170 5197}
0baab86b 5198
b1c72916
TH
5199/**
5200 * ata_link_online - test whether the given link is online
5201 * @link: ATA link to test
5202 *
5203 * Test whether @link is online. This is identical to
5204 * ata_phys_link_online() when there's no slave link. When
5205 * there's a slave link, this function should only be called on
5206 * the master link and will return true if any of M/S links is
5207 * online.
5208 *
5209 * LOCKING:
5210 * None.
5211 *
5212 * RETURNS:
5213 * True if the port online status is available and online.
5214 */
5215bool ata_link_online(struct ata_link *link)
5216{
5217 struct ata_link *slave = link->ap->slave_link;
5218
5219 WARN_ON(link == slave); /* shouldn't be called on slave link */
5220
5221 return ata_phys_link_online(link) ||
5222 (slave && ata_phys_link_online(slave));
5223}
5224
5225/**
5226 * ata_link_offline - test whether the given link is offline
5227 * @link: ATA link to test
5228 *
5229 * Test whether @link is offline. This is identical to
5230 * ata_phys_link_offline() when there's no slave link. When
5231 * there's a slave link, this function should only be called on
5232 * the master link and will return true if both M/S links are
5233 * offline.
5234 *
5235 * LOCKING:
5236 * None.
5237 *
5238 * RETURNS:
5239 * True if the port offline status is available and offline.
5240 */
5241bool ata_link_offline(struct ata_link *link)
5242{
5243 struct ata_link *slave = link->ap->slave_link;
5244
5245 WARN_ON(link == slave); /* shouldn't be called on slave link */
5246
5247 return ata_phys_link_offline(link) &&
5248 (!slave || ata_phys_link_offline(slave));
5249}
5250
6ffa01d8 5251#ifdef CONFIG_PM
cca3974e
JG
5252static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5253 unsigned int action, unsigned int ehi_flags,
5254 int wait)
500530f6
TH
5255{
5256 unsigned long flags;
5257 int i, rc;
5258
cca3974e
JG
5259 for (i = 0; i < host->n_ports; i++) {
5260 struct ata_port *ap = host->ports[i];
e3667ebf 5261 struct ata_link *link;
500530f6
TH
5262
5263 /* Previous resume operation might still be in
5264 * progress. Wait for PM_PENDING to clear.
5265 */
5266 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5267 ata_port_wait_eh(ap);
5268 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5269 }
5270
5271 /* request PM ops to EH */
5272 spin_lock_irqsave(ap->lock, flags);
5273
5274 ap->pm_mesg = mesg;
5275 if (wait) {
5276 rc = 0;
5277 ap->pm_result = &rc;
5278 }
5279
5280 ap->pflags |= ATA_PFLAG_PM_PENDING;
1eca4365 5281 ata_for_each_link(link, ap, HOST_FIRST) {
e3667ebf
TH
5282 link->eh_info.action |= action;
5283 link->eh_info.flags |= ehi_flags;
5284 }
500530f6
TH
5285
5286 ata_port_schedule_eh(ap);
5287
5288 spin_unlock_irqrestore(ap->lock, flags);
5289
5290 /* wait and check result */
5291 if (wait) {
5292 ata_port_wait_eh(ap);
5293 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5294 if (rc)
5295 return rc;
5296 }
5297 }
5298
5299 return 0;
5300}
5301
5302/**
cca3974e
JG
5303 * ata_host_suspend - suspend host
5304 * @host: host to suspend
500530f6
TH
5305 * @mesg: PM message
5306 *
cca3974e 5307 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
5308 * function requests EH to perform PM operations and waits for EH
5309 * to finish.
5310 *
5311 * LOCKING:
5312 * Kernel thread context (may sleep).
5313 *
5314 * RETURNS:
5315 * 0 on success, -errno on failure.
5316 */
cca3974e 5317int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 5318{
9666f400 5319 int rc;
500530f6 5320
ca77329f
KCA
5321 /*
5322 * disable link pm on all ports before requesting
5323 * any pm activity
5324 */
5325 ata_lpm_enable(host);
5326
cca3974e 5327 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
72ad6ec4
JG
5328 if (rc == 0)
5329 host->dev->power.power_state = mesg;
500530f6
TH
5330 return rc;
5331}
5332
5333/**
cca3974e
JG
5334 * ata_host_resume - resume host
5335 * @host: host to resume
500530f6 5336 *
cca3974e 5337 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
5338 * function requests EH to perform PM operations and returns.
5339 * Note that all resume operations are performed parallely.
5340 *
5341 * LOCKING:
5342 * Kernel thread context (may sleep).
5343 */
cca3974e 5344void ata_host_resume(struct ata_host *host)
500530f6 5345{
cf480626 5346 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
cca3974e 5347 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
72ad6ec4 5348 host->dev->power.power_state = PMSG_ON;
ca77329f
KCA
5349
5350 /* reenable link pm */
5351 ata_lpm_disable(host);
500530f6 5352}
6ffa01d8 5353#endif
500530f6 5354
c893a3ae
RD
5355/**
5356 * ata_port_start - Set port up for dma.
5357 * @ap: Port to initialize
5358 *
5359 * Called just after data structures for each port are
5360 * initialized. Allocates space for PRD table.
5361 *
5362 * May be used as the port_start() entry in ata_port_operations.
5363 *
5364 * LOCKING:
5365 * Inherited from caller.
5366 */
f0d36efd 5367int ata_port_start(struct ata_port *ap)
1da177e4 5368{
2f1f610b 5369 struct device *dev = ap->dev;
1da177e4 5370
f0d36efd
TH
5371 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5372 GFP_KERNEL);
1da177e4
LT
5373 if (!ap->prd)
5374 return -ENOMEM;
5375
1da177e4
LT
5376 return 0;
5377}
5378
3ef3b43d
TH
5379/**
5380 * ata_dev_init - Initialize an ata_device structure
5381 * @dev: Device structure to initialize
5382 *
5383 * Initialize @dev in preparation for probing.
5384 *
5385 * LOCKING:
5386 * Inherited from caller.
5387 */
5388void ata_dev_init(struct ata_device *dev)
5389{
b1c72916 5390 struct ata_link *link = ata_dev_phys_link(dev);
9af5c9c9 5391 struct ata_port *ap = link->ap;
72fa4b74
TH
5392 unsigned long flags;
5393
b1c72916 5394 /* SATA spd limit is bound to the attached device, reset together */
9af5c9c9
TH
5395 link->sata_spd_limit = link->hw_sata_spd_limit;
5396 link->sata_spd = 0;
5a04bf4b 5397
72fa4b74
TH
5398 /* High bits of dev->flags are used to record warm plug
5399 * requests which occur asynchronously. Synchronize using
cca3974e 5400 * host lock.
72fa4b74 5401 */
ba6a1308 5402 spin_lock_irqsave(ap->lock, flags);
72fa4b74 5403 dev->flags &= ~ATA_DFLAG_INIT_MASK;
3dcc323f 5404 dev->horkage = 0;
ba6a1308 5405 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 5406
72fa4b74
TH
5407 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5408 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
5409 dev->pio_mask = UINT_MAX;
5410 dev->mwdma_mask = UINT_MAX;
5411 dev->udma_mask = UINT_MAX;
5412}
5413
4fb37a25
TH
5414/**
5415 * ata_link_init - Initialize an ata_link structure
5416 * @ap: ATA port link is attached to
5417 * @link: Link structure to initialize
8989805d 5418 * @pmp: Port multiplier port number
4fb37a25
TH
5419 *
5420 * Initialize @link.
5421 *
5422 * LOCKING:
5423 * Kernel thread context (may sleep)
5424 */
fb7fd614 5425void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
4fb37a25
TH
5426{
5427 int i;
5428
5429 /* clear everything except for devices */
5430 memset(link, 0, offsetof(struct ata_link, device[0]));
5431
5432 link->ap = ap;
8989805d 5433 link->pmp = pmp;
4fb37a25
TH
5434 link->active_tag = ATA_TAG_POISON;
5435 link->hw_sata_spd_limit = UINT_MAX;
5436
5437 /* can't use iterator, ap isn't initialized yet */
5438 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5439 struct ata_device *dev = &link->device[i];
5440
5441 dev->link = link;
5442 dev->devno = dev - link->device;
5443 ata_dev_init(dev);
5444 }
5445}
5446
5447/**
5448 * sata_link_init_spd - Initialize link->sata_spd_limit
5449 * @link: Link to configure sata_spd_limit for
5450 *
5451 * Initialize @link->[hw_]sata_spd_limit to the currently
5452 * configured value.
5453 *
5454 * LOCKING:
5455 * Kernel thread context (may sleep).
5456 *
5457 * RETURNS:
5458 * 0 on success, -errno on failure.
5459 */
fb7fd614 5460int sata_link_init_spd(struct ata_link *link)
4fb37a25 5461{
33267325 5462 u8 spd;
4fb37a25
TH
5463 int rc;
5464
d127ea7b 5465 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
4fb37a25
TH
5466 if (rc)
5467 return rc;
5468
d127ea7b 5469 spd = (link->saved_scontrol >> 4) & 0xf;
4fb37a25
TH
5470 if (spd)
5471 link->hw_sata_spd_limit &= (1 << spd) - 1;
5472
05944bdf 5473 ata_force_link_limits(link);
33267325 5474
4fb37a25
TH
5475 link->sata_spd_limit = link->hw_sata_spd_limit;
5476
5477 return 0;
5478}
5479
1da177e4 5480/**
f3187195
TH
5481 * ata_port_alloc - allocate and initialize basic ATA port resources
5482 * @host: ATA host this allocated port belongs to
1da177e4 5483 *
f3187195
TH
5484 * Allocate and initialize basic ATA port resources.
5485 *
5486 * RETURNS:
5487 * Allocate ATA port on success, NULL on failure.
0cba632b 5488 *
1da177e4 5489 * LOCKING:
f3187195 5490 * Inherited from calling layer (may sleep).
1da177e4 5491 */
f3187195 5492struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 5493{
f3187195 5494 struct ata_port *ap;
1da177e4 5495
f3187195
TH
5496 DPRINTK("ENTER\n");
5497
5498 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5499 if (!ap)
5500 return NULL;
5501
f4d6d004 5502 ap->pflags |= ATA_PFLAG_INITIALIZING;
cca3974e 5503 ap->lock = &host->lock;
198e0fed 5504 ap->flags = ATA_FLAG_DISABLED;
f3187195 5505 ap->print_id = -1;
1da177e4 5506 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 5507 ap->host = host;
f3187195 5508 ap->dev = host->dev;
1da177e4 5509 ap->last_ctl = 0xFF;
bd5d825c
BP
5510
5511#if defined(ATA_VERBOSE_DEBUG)
5512 /* turn on all debugging levels */
5513 ap->msg_enable = 0x00FF;
5514#elif defined(ATA_DEBUG)
5515 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 5516#else
0dd4b21f 5517 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 5518#endif
1da177e4 5519
127102ae 5520#ifdef CONFIG_ATA_SFF
442eacc3 5521 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task);
f667fdbb
TH
5522#else
5523 INIT_DELAYED_WORK(&ap->port_task, NULL);
127102ae 5524#endif
65f27f38
DH
5525 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5526 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 5527 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 5528 init_waitqueue_head(&ap->eh_wait_q);
45fabbb7 5529 init_completion(&ap->park_req_pending);
5ddf24c5
TH
5530 init_timer_deferrable(&ap->fastdrain_timer);
5531 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5532 ap->fastdrain_timer.data = (unsigned long)ap;
1da177e4 5533
838df628 5534 ap->cbl = ATA_CBL_NONE;
838df628 5535
8989805d 5536 ata_link_init(ap, &ap->link, 0);
1da177e4
LT
5537
5538#ifdef ATA_IRQ_TRAP
5539 ap->stats.unhandled_irq = 1;
5540 ap->stats.idle_irq = 1;
5541#endif
1da177e4 5542 return ap;
1da177e4
LT
5543}
5544
f0d36efd
TH
5545static void ata_host_release(struct device *gendev, void *res)
5546{
5547 struct ata_host *host = dev_get_drvdata(gendev);
5548 int i;
5549
1aa506e4
TH
5550 for (i = 0; i < host->n_ports; i++) {
5551 struct ata_port *ap = host->ports[i];
5552
4911487a
TH
5553 if (!ap)
5554 continue;
5555
5556 if (ap->scsi_host)
1aa506e4
TH
5557 scsi_host_put(ap->scsi_host);
5558
633273a3 5559 kfree(ap->pmp_link);
b1c72916 5560 kfree(ap->slave_link);
4911487a 5561 kfree(ap);
1aa506e4
TH
5562 host->ports[i] = NULL;
5563 }
5564
1aa56cca 5565 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
5566}
5567
f3187195
TH
5568/**
5569 * ata_host_alloc - allocate and init basic ATA host resources
5570 * @dev: generic device this host is associated with
5571 * @max_ports: maximum number of ATA ports associated with this host
5572 *
5573 * Allocate and initialize basic ATA host resources. LLD calls
5574 * this function to allocate a host, initializes it fully and
5575 * attaches it using ata_host_register().
5576 *
5577 * @max_ports ports are allocated and host->n_ports is
5578 * initialized to @max_ports. The caller is allowed to decrease
5579 * host->n_ports before calling ata_host_register(). The unused
5580 * ports will be automatically freed on registration.
5581 *
5582 * RETURNS:
5583 * Allocate ATA host on success, NULL on failure.
5584 *
5585 * LOCKING:
5586 * Inherited from calling layer (may sleep).
5587 */
5588struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5589{
5590 struct ata_host *host;
5591 size_t sz;
5592 int i;
5593
5594 DPRINTK("ENTER\n");
5595
5596 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5597 return NULL;
5598
5599 /* alloc a container for our list of ATA ports (buses) */
5600 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5601 /* alloc a container for our list of ATA ports (buses) */
5602 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5603 if (!host)
5604 goto err_out;
5605
5606 devres_add(dev, host);
5607 dev_set_drvdata(dev, host);
5608
5609 spin_lock_init(&host->lock);
5610 host->dev = dev;
5611 host->n_ports = max_ports;
5612
5613 /* allocate ports bound to this host */
5614 for (i = 0; i < max_ports; i++) {
5615 struct ata_port *ap;
5616
5617 ap = ata_port_alloc(host);
5618 if (!ap)
5619 goto err_out;
5620
5621 ap->port_no = i;
5622 host->ports[i] = ap;
5623 }
5624
5625 devres_remove_group(dev, NULL);
5626 return host;
5627
5628 err_out:
5629 devres_release_group(dev, NULL);
5630 return NULL;
5631}
5632
f5cda257
TH
5633/**
5634 * ata_host_alloc_pinfo - alloc host and init with port_info array
5635 * @dev: generic device this host is associated with
5636 * @ppi: array of ATA port_info to initialize host with
5637 * @n_ports: number of ATA ports attached to this host
5638 *
5639 * Allocate ATA host and initialize with info from @ppi. If NULL
5640 * terminated, @ppi may contain fewer entries than @n_ports. The
5641 * last entry will be used for the remaining ports.
5642 *
5643 * RETURNS:
5644 * Allocate ATA host on success, NULL on failure.
5645 *
5646 * LOCKING:
5647 * Inherited from calling layer (may sleep).
5648 */
5649struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5650 const struct ata_port_info * const * ppi,
5651 int n_ports)
5652{
5653 const struct ata_port_info *pi;
5654 struct ata_host *host;
5655 int i, j;
5656
5657 host = ata_host_alloc(dev, n_ports);
5658 if (!host)
5659 return NULL;
5660
5661 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5662 struct ata_port *ap = host->ports[i];
5663
5664 if (ppi[j])
5665 pi = ppi[j++];
5666
5667 ap->pio_mask = pi->pio_mask;
5668 ap->mwdma_mask = pi->mwdma_mask;
5669 ap->udma_mask = pi->udma_mask;
5670 ap->flags |= pi->flags;
0c88758b 5671 ap->link.flags |= pi->link_flags;
f5cda257
TH
5672 ap->ops = pi->port_ops;
5673
5674 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5675 host->ops = pi->port_ops;
f5cda257
TH
5676 }
5677
5678 return host;
5679}
5680
b1c72916
TH
5681/**
5682 * ata_slave_link_init - initialize slave link
5683 * @ap: port to initialize slave link for
5684 *
5685 * Create and initialize slave link for @ap. This enables slave
5686 * link handling on the port.
5687 *
5688 * In libata, a port contains links and a link contains devices.
5689 * There is single host link but if a PMP is attached to it,
5690 * there can be multiple fan-out links. On SATA, there's usually
5691 * a single device connected to a link but PATA and SATA
5692 * controllers emulating TF based interface can have two - master
5693 * and slave.
5694 *
5695 * However, there are a few controllers which don't fit into this
5696 * abstraction too well - SATA controllers which emulate TF
5697 * interface with both master and slave devices but also have
5698 * separate SCR register sets for each device. These controllers
5699 * need separate links for physical link handling
5700 * (e.g. onlineness, link speed) but should be treated like a
5701 * traditional M/S controller for everything else (e.g. command
5702 * issue, softreset).
5703 *
5704 * slave_link is libata's way of handling this class of
5705 * controllers without impacting core layer too much. For
5706 * anything other than physical link handling, the default host
5707 * link is used for both master and slave. For physical link
5708 * handling, separate @ap->slave_link is used. All dirty details
5709 * are implemented inside libata core layer. From LLD's POV, the
5710 * only difference is that prereset, hardreset and postreset are
5711 * called once more for the slave link, so the reset sequence
5712 * looks like the following.
5713 *
5714 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5715 * softreset(M) -> postreset(M) -> postreset(S)
5716 *
5717 * Note that softreset is called only for the master. Softreset
5718 * resets both M/S by definition, so SRST on master should handle
5719 * both (the standard method will work just fine).
5720 *
5721 * LOCKING:
5722 * Should be called before host is registered.
5723 *
5724 * RETURNS:
5725 * 0 on success, -errno on failure.
5726 */
5727int ata_slave_link_init(struct ata_port *ap)
5728{
5729 struct ata_link *link;
5730
5731 WARN_ON(ap->slave_link);
5732 WARN_ON(ap->flags & ATA_FLAG_PMP);
5733
5734 link = kzalloc(sizeof(*link), GFP_KERNEL);
5735 if (!link)
5736 return -ENOMEM;
5737
5738 ata_link_init(ap, link, 1);
5739 ap->slave_link = link;
5740 return 0;
5741}
5742
32ebbc0c
TH
5743static void ata_host_stop(struct device *gendev, void *res)
5744{
5745 struct ata_host *host = dev_get_drvdata(gendev);
5746 int i;
5747
5748 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5749
5750 for (i = 0; i < host->n_ports; i++) {
5751 struct ata_port *ap = host->ports[i];
5752
5753 if (ap->ops->port_stop)
5754 ap->ops->port_stop(ap);
5755 }
5756
5757 if (host->ops->host_stop)
5758 host->ops->host_stop(host);
5759}
5760
029cfd6b
TH
5761/**
5762 * ata_finalize_port_ops - finalize ata_port_operations
5763 * @ops: ata_port_operations to finalize
5764 *
5765 * An ata_port_operations can inherit from another ops and that
5766 * ops can again inherit from another. This can go on as many
5767 * times as necessary as long as there is no loop in the
5768 * inheritance chain.
5769 *
5770 * Ops tables are finalized when the host is started. NULL or
5771 * unspecified entries are inherited from the closet ancestor
5772 * which has the method and the entry is populated with it.
5773 * After finalization, the ops table directly points to all the
5774 * methods and ->inherits is no longer necessary and cleared.
5775 *
5776 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5777 *
5778 * LOCKING:
5779 * None.
5780 */
5781static void ata_finalize_port_ops(struct ata_port_operations *ops)
5782{
2da67659 5783 static DEFINE_SPINLOCK(lock);
029cfd6b
TH
5784 const struct ata_port_operations *cur;
5785 void **begin = (void **)ops;
5786 void **end = (void **)&ops->inherits;
5787 void **pp;
5788
5789 if (!ops || !ops->inherits)
5790 return;
5791
5792 spin_lock(&lock);
5793
5794 for (cur = ops->inherits; cur; cur = cur->inherits) {
5795 void **inherit = (void **)cur;
5796
5797 for (pp = begin; pp < end; pp++, inherit++)
5798 if (!*pp)
5799 *pp = *inherit;
5800 }
5801
5802 for (pp = begin; pp < end; pp++)
5803 if (IS_ERR(*pp))
5804 *pp = NULL;
5805
5806 ops->inherits = NULL;
5807
5808 spin_unlock(&lock);
5809}
5810
ecef7253
TH
5811/**
5812 * ata_host_start - start and freeze ports of an ATA host
5813 * @host: ATA host to start ports for
5814 *
5815 * Start and then freeze ports of @host. Started status is
5816 * recorded in host->flags, so this function can be called
5817 * multiple times. Ports are guaranteed to get started only
f3187195
TH
5818 * once. If host->ops isn't initialized yet, its set to the
5819 * first non-dummy port ops.
ecef7253
TH
5820 *
5821 * LOCKING:
5822 * Inherited from calling layer (may sleep).
5823 *
5824 * RETURNS:
5825 * 0 if all ports are started successfully, -errno otherwise.
5826 */
5827int ata_host_start(struct ata_host *host)
5828{
32ebbc0c
TH
5829 int have_stop = 0;
5830 void *start_dr = NULL;
ecef7253
TH
5831 int i, rc;
5832
5833 if (host->flags & ATA_HOST_STARTED)
5834 return 0;
5835
029cfd6b
TH
5836 ata_finalize_port_ops(host->ops);
5837
ecef7253
TH
5838 for (i = 0; i < host->n_ports; i++) {
5839 struct ata_port *ap = host->ports[i];
5840
029cfd6b
TH
5841 ata_finalize_port_ops(ap->ops);
5842
f3187195
TH
5843 if (!host->ops && !ata_port_is_dummy(ap))
5844 host->ops = ap->ops;
5845
32ebbc0c
TH
5846 if (ap->ops->port_stop)
5847 have_stop = 1;
5848 }
5849
5850 if (host->ops->host_stop)
5851 have_stop = 1;
5852
5853 if (have_stop) {
5854 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5855 if (!start_dr)
5856 return -ENOMEM;
5857 }
5858
5859 for (i = 0; i < host->n_ports; i++) {
5860 struct ata_port *ap = host->ports[i];
5861
ecef7253
TH
5862 if (ap->ops->port_start) {
5863 rc = ap->ops->port_start(ap);
5864 if (rc) {
0f9fe9b7 5865 if (rc != -ENODEV)
0f757743
AM
5866 dev_printk(KERN_ERR, host->dev,
5867 "failed to start port %d "
5868 "(errno=%d)\n", i, rc);
ecef7253
TH
5869 goto err_out;
5870 }
5871 }
ecef7253
TH
5872 ata_eh_freeze_port(ap);
5873 }
5874
32ebbc0c
TH
5875 if (start_dr)
5876 devres_add(host->dev, start_dr);
ecef7253
TH
5877 host->flags |= ATA_HOST_STARTED;
5878 return 0;
5879
5880 err_out:
5881 while (--i >= 0) {
5882 struct ata_port *ap = host->ports[i];
5883
5884 if (ap->ops->port_stop)
5885 ap->ops->port_stop(ap);
5886 }
32ebbc0c 5887 devres_free(start_dr);
ecef7253
TH
5888 return rc;
5889}
5890
b03732f0 5891/**
cca3974e
JG
5892 * ata_sas_host_init - Initialize a host struct
5893 * @host: host to initialize
5894 * @dev: device host is attached to
5895 * @flags: host flags
5896 * @ops: port_ops
b03732f0
BK
5897 *
5898 * LOCKING:
5899 * PCI/etc. bus probe sem.
5900 *
5901 */
f3187195 5902/* KILLME - the only user left is ipr */
cca3974e 5903void ata_host_init(struct ata_host *host, struct device *dev,
029cfd6b 5904 unsigned long flags, struct ata_port_operations *ops)
b03732f0 5905{
cca3974e
JG
5906 spin_lock_init(&host->lock);
5907 host->dev = dev;
5908 host->flags = flags;
5909 host->ops = ops;
b03732f0
BK
5910}
5911
f3187195
TH
5912/**
5913 * ata_host_register - register initialized ATA host
5914 * @host: ATA host to register
5915 * @sht: template for SCSI host
5916 *
5917 * Register initialized ATA host. @host is allocated using
5918 * ata_host_alloc() and fully initialized by LLD. This function
5919 * starts ports, registers @host with ATA and SCSI layers and
5920 * probe registered devices.
5921 *
5922 * LOCKING:
5923 * Inherited from calling layer (may sleep).
5924 *
5925 * RETURNS:
5926 * 0 on success, -errno otherwise.
5927 */
5928int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
5929{
5930 int i, rc;
5931
5932 /* host must have been started */
5933 if (!(host->flags & ATA_HOST_STARTED)) {
5934 dev_printk(KERN_ERR, host->dev,
5935 "BUG: trying to register unstarted host\n");
5936 WARN_ON(1);
5937 return -EINVAL;
5938 }
5939
5940 /* Blow away unused ports. This happens when LLD can't
5941 * determine the exact number of ports to allocate at
5942 * allocation time.
5943 */
5944 for (i = host->n_ports; host->ports[i]; i++)
5945 kfree(host->ports[i]);
5946
5947 /* give ports names and add SCSI hosts */
5948 for (i = 0; i < host->n_ports; i++)
5949 host->ports[i]->print_id = ata_print_id++;
5950
5951 rc = ata_scsi_add_hosts(host, sht);
5952 if (rc)
5953 return rc;
5954
fafbae87
TH
5955 /* associate with ACPI nodes */
5956 ata_acpi_associate(host);
5957
f3187195
TH
5958 /* set cable, sata_spd_limit and report */
5959 for (i = 0; i < host->n_ports; i++) {
5960 struct ata_port *ap = host->ports[i];
f3187195
TH
5961 unsigned long xfer_mask;
5962
5963 /* set SATA cable type if still unset */
5964 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5965 ap->cbl = ATA_CBL_SATA;
5966
5967 /* init sata_spd_limit to the current value */
4fb37a25 5968 sata_link_init_spd(&ap->link);
b1c72916
TH
5969 if (ap->slave_link)
5970 sata_link_init_spd(ap->slave_link);
f3187195 5971
cbcdd875 5972 /* print per-port info to dmesg */
f3187195
TH
5973 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5974 ap->udma_mask);
5975
abf6e8ed 5976 if (!ata_port_is_dummy(ap)) {
cbcdd875
TH
5977 ata_port_printk(ap, KERN_INFO,
5978 "%cATA max %s %s\n",
a16abc0b 5979 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
f3187195 5980 ata_mode_string(xfer_mask),
cbcdd875 5981 ap->link.eh_info.desc);
abf6e8ed
TH
5982 ata_ehi_clear_desc(&ap->link.eh_info);
5983 } else
f3187195
TH
5984 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5985 }
5986
5987 /* perform each probe synchronously */
5988 DPRINTK("probe begin\n");
5989 for (i = 0; i < host->n_ports; i++) {
5990 struct ata_port *ap = host->ports[i];
f3187195
TH
5991
5992 /* probe */
5993 if (ap->ops->error_handler) {
9af5c9c9 5994 struct ata_eh_info *ehi = &ap->link.eh_info;
f3187195
TH
5995 unsigned long flags;
5996
5997 ata_port_probe(ap);
5998
5999 /* kick EH for boot probing */
6000 spin_lock_irqsave(ap->lock, flags);
6001
b558eddd 6002 ehi->probe_mask |= ATA_ALL_DEVICES;
391191c1 6003 ehi->action |= ATA_EH_RESET | ATA_EH_LPM;
f3187195
TH
6004 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6005
f4d6d004 6006 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
f3187195
TH
6007 ap->pflags |= ATA_PFLAG_LOADING;
6008 ata_port_schedule_eh(ap);
6009
6010 spin_unlock_irqrestore(ap->lock, flags);
6011
6012 /* wait for EH to finish */
6013 ata_port_wait_eh(ap);
6014 } else {
6015 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6016 rc = ata_bus_probe(ap);
6017 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6018
6019 if (rc) {
6020 /* FIXME: do something useful here?
6021 * Current libata behavior will
6022 * tear down everything when
6023 * the module is removed
6024 * or the h/w is unplugged.
6025 */
6026 }
6027 }
6028 }
6029
6030 /* probes are done, now scan each port's disk(s) */
6031 DPRINTK("host probe begin\n");
6032 for (i = 0; i < host->n_ports; i++) {
6033 struct ata_port *ap = host->ports[i];
6034
1ae46317 6035 ata_scsi_scan_host(ap, 1);
f3187195
TH
6036 }
6037
6038 return 0;
6039}
6040
f5cda257
TH
6041/**
6042 * ata_host_activate - start host, request IRQ and register it
6043 * @host: target ATA host
6044 * @irq: IRQ to request
6045 * @irq_handler: irq_handler used when requesting IRQ
6046 * @irq_flags: irq_flags used when requesting IRQ
6047 * @sht: scsi_host_template to use when registering the host
6048 *
6049 * After allocating an ATA host and initializing it, most libata
6050 * LLDs perform three steps to activate the host - start host,
6051 * request IRQ and register it. This helper takes necessasry
6052 * arguments and performs the three steps in one go.
6053 *
3d46b2e2
PM
6054 * An invalid IRQ skips the IRQ registration and expects the host to
6055 * have set polling mode on the port. In this case, @irq_handler
6056 * should be NULL.
6057 *
f5cda257
TH
6058 * LOCKING:
6059 * Inherited from calling layer (may sleep).
6060 *
6061 * RETURNS:
6062 * 0 on success, -errno otherwise.
6063 */
6064int ata_host_activate(struct ata_host *host, int irq,
6065 irq_handler_t irq_handler, unsigned long irq_flags,
6066 struct scsi_host_template *sht)
6067{
cbcdd875 6068 int i, rc;
f5cda257
TH
6069
6070 rc = ata_host_start(host);
6071 if (rc)
6072 return rc;
6073
3d46b2e2
PM
6074 /* Special case for polling mode */
6075 if (!irq) {
6076 WARN_ON(irq_handler);
6077 return ata_host_register(host, sht);
6078 }
6079
f5cda257
TH
6080 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6081 dev_driver_string(host->dev), host);
6082 if (rc)
6083 return rc;
6084
cbcdd875
TH
6085 for (i = 0; i < host->n_ports; i++)
6086 ata_port_desc(host->ports[i], "irq %d", irq);
4031826b 6087
f5cda257
TH
6088 rc = ata_host_register(host, sht);
6089 /* if failed, just free the IRQ and leave ports alone */
6090 if (rc)
6091 devm_free_irq(host->dev, irq, host);
6092
6093 return rc;
6094}
6095
720ba126
TH
6096/**
6097 * ata_port_detach - Detach ATA port in prepration of device removal
6098 * @ap: ATA port to be detached
6099 *
6100 * Detach all ATA devices and the associated SCSI devices of @ap;
6101 * then, remove the associated SCSI host. @ap is guaranteed to
6102 * be quiescent on return from this function.
6103 *
6104 * LOCKING:
6105 * Kernel thread context (may sleep).
6106 */
741b7763 6107static void ata_port_detach(struct ata_port *ap)
720ba126
TH
6108{
6109 unsigned long flags;
720ba126
TH
6110
6111 if (!ap->ops->error_handler)
c3cf30a9 6112 goto skip_eh;
720ba126
TH
6113
6114 /* tell EH we're leaving & flush EH */
ba6a1308 6115 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 6116 ap->pflags |= ATA_PFLAG_UNLOADING;
ece180d1 6117 ata_port_schedule_eh(ap);
ba6a1308 6118 spin_unlock_irqrestore(ap->lock, flags);
720ba126 6119
ece180d1 6120 /* wait till EH commits suicide */
720ba126
TH
6121 ata_port_wait_eh(ap);
6122
ece180d1
TH
6123 /* it better be dead now */
6124 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
720ba126 6125
45a66c1c 6126 cancel_rearming_delayed_work(&ap->hotplug_task);
720ba126 6127
c3cf30a9 6128 skip_eh:
720ba126 6129 /* remove the associated SCSI host */
cca3974e 6130 scsi_remove_host(ap->scsi_host);
720ba126
TH
6131}
6132
0529c159
TH
6133/**
6134 * ata_host_detach - Detach all ports of an ATA host
6135 * @host: Host to detach
6136 *
6137 * Detach all ports of @host.
6138 *
6139 * LOCKING:
6140 * Kernel thread context (may sleep).
6141 */
6142void ata_host_detach(struct ata_host *host)
6143{
6144 int i;
6145
6146 for (i = 0; i < host->n_ports; i++)
6147 ata_port_detach(host->ports[i]);
562f0c2d
TH
6148
6149 /* the host is dead now, dissociate ACPI */
6150 ata_acpi_dissociate(host);
0529c159
TH
6151}
6152
374b1873
JG
6153#ifdef CONFIG_PCI
6154
1da177e4
LT
6155/**
6156 * ata_pci_remove_one - PCI layer callback for device removal
6157 * @pdev: PCI device that was removed
6158 *
b878ca5d
TH
6159 * PCI layer indicates to libata via this hook that hot-unplug or
6160 * module unload event has occurred. Detach all ports. Resource
6161 * release is handled via devres.
1da177e4
LT
6162 *
6163 * LOCKING:
6164 * Inherited from PCI layer (may sleep).
6165 */
f0d36efd 6166void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4 6167{
2855568b 6168 struct device *dev = &pdev->dev;
cca3974e 6169 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 6170
b878ca5d 6171 ata_host_detach(host);
1da177e4
LT
6172}
6173
6174/* move to PCI subsystem */
057ace5e 6175int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6176{
6177 unsigned long tmp = 0;
6178
6179 switch (bits->width) {
6180 case 1: {
6181 u8 tmp8 = 0;
6182 pci_read_config_byte(pdev, bits->reg, &tmp8);
6183 tmp = tmp8;
6184 break;
6185 }
6186 case 2: {
6187 u16 tmp16 = 0;
6188 pci_read_config_word(pdev, bits->reg, &tmp16);
6189 tmp = tmp16;
6190 break;
6191 }
6192 case 4: {
6193 u32 tmp32 = 0;
6194 pci_read_config_dword(pdev, bits->reg, &tmp32);
6195 tmp = tmp32;
6196 break;
6197 }
6198
6199 default:
6200 return -EINVAL;
6201 }
6202
6203 tmp &= bits->mask;
6204
6205 return (tmp == bits->val) ? 1 : 0;
6206}
9b847548 6207
6ffa01d8 6208#ifdef CONFIG_PM
3c5100c1 6209void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6210{
6211 pci_save_state(pdev);
4c90d971 6212 pci_disable_device(pdev);
500530f6 6213
3a2d5b70 6214 if (mesg.event & PM_EVENT_SLEEP)
500530f6 6215 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
6216}
6217
553c4aa6 6218int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 6219{
553c4aa6
TH
6220 int rc;
6221
9b847548
JA
6222 pci_set_power_state(pdev, PCI_D0);
6223 pci_restore_state(pdev);
553c4aa6 6224
b878ca5d 6225 rc = pcim_enable_device(pdev);
553c4aa6
TH
6226 if (rc) {
6227 dev_printk(KERN_ERR, &pdev->dev,
6228 "failed to enable device after resume (%d)\n", rc);
6229 return rc;
6230 }
6231
9b847548 6232 pci_set_master(pdev);
553c4aa6 6233 return 0;
500530f6
TH
6234}
6235
3c5100c1 6236int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6237{
cca3974e 6238 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
6239 int rc = 0;
6240
cca3974e 6241 rc = ata_host_suspend(host, mesg);
500530f6
TH
6242 if (rc)
6243 return rc;
6244
3c5100c1 6245 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6246
6247 return 0;
6248}
6249
6250int ata_pci_device_resume(struct pci_dev *pdev)
6251{
cca3974e 6252 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 6253 int rc;
500530f6 6254
553c4aa6
TH
6255 rc = ata_pci_device_do_resume(pdev);
6256 if (rc == 0)
6257 ata_host_resume(host);
6258 return rc;
9b847548 6259}
6ffa01d8
TH
6260#endif /* CONFIG_PM */
6261
1da177e4
LT
6262#endif /* CONFIG_PCI */
6263
33267325
TH
6264static int __init ata_parse_force_one(char **cur,
6265 struct ata_force_ent *force_ent,
6266 const char **reason)
6267{
6268 /* FIXME: Currently, there's no way to tag init const data and
6269 * using __initdata causes build failure on some versions of
6270 * gcc. Once __initdataconst is implemented, add const to the
6271 * following structure.
6272 */
6273 static struct ata_force_param force_tbl[] __initdata = {
6274 { "40c", .cbl = ATA_CBL_PATA40 },
6275 { "80c", .cbl = ATA_CBL_PATA80 },
6276 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6277 { "unk", .cbl = ATA_CBL_PATA_UNK },
6278 { "ign", .cbl = ATA_CBL_PATA_IGN },
6279 { "sata", .cbl = ATA_CBL_SATA },
6280 { "1.5Gbps", .spd_limit = 1 },
6281 { "3.0Gbps", .spd_limit = 2 },
6282 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6283 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6284 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6285 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6286 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6287 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6288 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6289 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6290 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6291 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6292 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6293 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6294 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6295 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6296 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6297 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6298 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6299 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6300 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6301 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6302 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6303 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6304 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6305 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6306 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6307 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6308 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6309 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6310 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6311 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6312 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6313 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6314 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6315 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6316 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6317 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
05944bdf
TH
6318 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6319 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6320 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
33267325
TH
6321 };
6322 char *start = *cur, *p = *cur;
6323 char *id, *val, *endp;
6324 const struct ata_force_param *match_fp = NULL;
6325 int nr_matches = 0, i;
6326
6327 /* find where this param ends and update *cur */
6328 while (*p != '\0' && *p != ',')
6329 p++;
6330
6331 if (*p == '\0')
6332 *cur = p;
6333 else
6334 *cur = p + 1;
6335
6336 *p = '\0';
6337
6338 /* parse */
6339 p = strchr(start, ':');
6340 if (!p) {
6341 val = strstrip(start);
6342 goto parse_val;
6343 }
6344 *p = '\0';
6345
6346 id = strstrip(start);
6347 val = strstrip(p + 1);
6348
6349 /* parse id */
6350 p = strchr(id, '.');
6351 if (p) {
6352 *p++ = '\0';
6353 force_ent->device = simple_strtoul(p, &endp, 10);
6354 if (p == endp || *endp != '\0') {
6355 *reason = "invalid device";
6356 return -EINVAL;
6357 }
6358 }
6359
6360 force_ent->port = simple_strtoul(id, &endp, 10);
6361 if (p == endp || *endp != '\0') {
6362 *reason = "invalid port/link";
6363 return -EINVAL;
6364 }
6365
6366 parse_val:
6367 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6368 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6369 const struct ata_force_param *fp = &force_tbl[i];
6370
6371 if (strncasecmp(val, fp->name, strlen(val)))
6372 continue;
6373
6374 nr_matches++;
6375 match_fp = fp;
6376
6377 if (strcasecmp(val, fp->name) == 0) {
6378 nr_matches = 1;
6379 break;
6380 }
6381 }
6382
6383 if (!nr_matches) {
6384 *reason = "unknown value";
6385 return -EINVAL;
6386 }
6387 if (nr_matches > 1) {
6388 *reason = "ambigious value";
6389 return -EINVAL;
6390 }
6391
6392 force_ent->param = *match_fp;
6393
6394 return 0;
6395}
6396
6397static void __init ata_parse_force_param(void)
6398{
6399 int idx = 0, size = 1;
6400 int last_port = -1, last_device = -1;
6401 char *p, *cur, *next;
6402
6403 /* calculate maximum number of params and allocate force_tbl */
6404 for (p = ata_force_param_buf; *p; p++)
6405 if (*p == ',')
6406 size++;
6407
6408 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6409 if (!ata_force_tbl) {
6410 printk(KERN_WARNING "ata: failed to extend force table, "
6411 "libata.force ignored\n");
6412 return;
6413 }
6414
6415 /* parse and populate the table */
6416 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6417 const char *reason = "";
6418 struct ata_force_ent te = { .port = -1, .device = -1 };
6419
6420 next = cur;
6421 if (ata_parse_force_one(&next, &te, &reason)) {
6422 printk(KERN_WARNING "ata: failed to parse force "
6423 "parameter \"%s\" (%s)\n",
6424 cur, reason);
6425 continue;
6426 }
6427
6428 if (te.port == -1) {
6429 te.port = last_port;
6430 te.device = last_device;
6431 }
6432
6433 ata_force_tbl[idx++] = te;
6434
6435 last_port = te.port;
6436 last_device = te.device;
6437 }
6438
6439 ata_force_tbl_size = idx;
6440}
1da177e4 6441
1da177e4
LT
6442static int __init ata_init(void)
6443{
33267325
TH
6444 ata_parse_force_param();
6445
1da177e4
LT
6446 ata_wq = create_workqueue("ata");
6447 if (!ata_wq)
49ea3b04 6448 goto free_force_tbl;
1da177e4 6449
453b07ac 6450 ata_aux_wq = create_singlethread_workqueue("ata_aux");
49ea3b04
EO
6451 if (!ata_aux_wq)
6452 goto free_wq;
453b07ac 6453
1da177e4
LT
6454 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6455 return 0;
49ea3b04
EO
6456
6457free_wq:
6458 destroy_workqueue(ata_wq);
6459free_force_tbl:
6460 kfree(ata_force_tbl);
6461 return -ENOMEM;
1da177e4
LT
6462}
6463
6464static void __exit ata_exit(void)
6465{
33267325 6466 kfree(ata_force_tbl);
1da177e4 6467 destroy_workqueue(ata_wq);
453b07ac 6468 destroy_workqueue(ata_aux_wq);
1da177e4
LT
6469}
6470
a4625085 6471subsys_initcall(ata_init);
1da177e4
LT
6472module_exit(ata_exit);
6473
67846b30 6474static unsigned long ratelimit_time;
34af946a 6475static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
6476
6477int ata_ratelimit(void)
6478{
6479 int rc;
6480 unsigned long flags;
6481
6482 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6483
6484 if (time_after(jiffies, ratelimit_time)) {
6485 rc = 1;
6486 ratelimit_time = jiffies + (HZ/5);
6487 } else
6488 rc = 0;
6489
6490 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6491
6492 return rc;
6493}
6494
c22daff4
TH
6495/**
6496 * ata_wait_register - wait until register value changes
6497 * @reg: IO-mapped register
6498 * @mask: Mask to apply to read register value
6499 * @val: Wait condition
341c2c95
TH
6500 * @interval: polling interval in milliseconds
6501 * @timeout: timeout in milliseconds
c22daff4
TH
6502 *
6503 * Waiting for some bits of register to change is a common
6504 * operation for ATA controllers. This function reads 32bit LE
6505 * IO-mapped register @reg and tests for the following condition.
6506 *
6507 * (*@reg & mask) != val
6508 *
6509 * If the condition is met, it returns; otherwise, the process is
6510 * repeated after @interval_msec until timeout.
6511 *
6512 * LOCKING:
6513 * Kernel thread context (may sleep)
6514 *
6515 * RETURNS:
6516 * The final register value.
6517 */
6518u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
341c2c95 6519 unsigned long interval, unsigned long timeout)
c22daff4 6520{
341c2c95 6521 unsigned long deadline;
c22daff4
TH
6522 u32 tmp;
6523
6524 tmp = ioread32(reg);
6525
6526 /* Calculate timeout _after_ the first read to make sure
6527 * preceding writes reach the controller before starting to
6528 * eat away the timeout.
6529 */
341c2c95 6530 deadline = ata_deadline(jiffies, timeout);
c22daff4 6531
341c2c95
TH
6532 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6533 msleep(interval);
c22daff4
TH
6534 tmp = ioread32(reg);
6535 }
6536
6537 return tmp;
6538}
6539
dd5b06c4
TH
6540/*
6541 * Dummy port_ops
6542 */
182d7bba 6543static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
dd5b06c4 6544{
182d7bba 6545 return AC_ERR_SYSTEM;
dd5b06c4
TH
6546}
6547
182d7bba 6548static void ata_dummy_error_handler(struct ata_port *ap)
dd5b06c4 6549{
182d7bba 6550 /* truly dummy */
dd5b06c4
TH
6551}
6552
029cfd6b 6553struct ata_port_operations ata_dummy_port_ops = {
dd5b06c4
TH
6554 .qc_prep = ata_noop_qc_prep,
6555 .qc_issue = ata_dummy_qc_issue,
182d7bba 6556 .error_handler = ata_dummy_error_handler,
dd5b06c4
TH
6557};
6558
21b0ad4f
TH
6559const struct ata_port_info ata_dummy_port_info = {
6560 .port_ops = &ata_dummy_port_ops,
6561};
6562
1da177e4
LT
6563/*
6564 * libata is essentially a library of internal helper functions for
6565 * low-level ATA host controller drivers. As such, the API/ABI is
6566 * likely to change as new drivers are added and updated.
6567 * Do not depend on ABI/API stability.
6568 */
e9c83914
TH
6569EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6570EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6571EXPORT_SYMBOL_GPL(sata_deb_timing_long);
029cfd6b
TH
6572EXPORT_SYMBOL_GPL(ata_base_port_ops);
6573EXPORT_SYMBOL_GPL(sata_port_ops);
dd5b06c4 6574EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 6575EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1eca4365
TH
6576EXPORT_SYMBOL_GPL(ata_link_next);
6577EXPORT_SYMBOL_GPL(ata_dev_next);
1da177e4 6578EXPORT_SYMBOL_GPL(ata_std_bios_param);
cca3974e 6579EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 6580EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 6581EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
b1c72916 6582EXPORT_SYMBOL_GPL(ata_slave_link_init);
ecef7253 6583EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 6584EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 6585EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 6586EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4 6587EXPORT_SYMBOL_GPL(ata_sg_init);
f686bcb8 6588EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 6589EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
436d34b3 6590EXPORT_SYMBOL_GPL(atapi_cmd_type);
1da177e4
LT
6591EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6592EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6357357c
TH
6593EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6594EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6595EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6596EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6597EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6598EXPORT_SYMBOL_GPL(ata_mode_string);
6599EXPORT_SYMBOL_GPL(ata_id_xfermask);
1da177e4 6600EXPORT_SYMBOL_GPL(ata_port_start);
04351821 6601EXPORT_SYMBOL_GPL(ata_do_set_mode);
31cc23b3 6602EXPORT_SYMBOL_GPL(ata_std_qc_defer);
e46834cd 6603EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4 6604EXPORT_SYMBOL_GPL(ata_port_probe);
10305f0f 6605EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 6606EXPORT_SYMBOL_GPL(sata_set_spd);
aa2731ad 6607EXPORT_SYMBOL_GPL(ata_wait_after_reset);
936fd732
TH
6608EXPORT_SYMBOL_GPL(sata_link_debounce);
6609EXPORT_SYMBOL_GPL(sata_link_resume);
0aa1113d 6610EXPORT_SYMBOL_GPL(ata_std_prereset);
cc0680a5 6611EXPORT_SYMBOL_GPL(sata_link_hardreset);
57c9efdf 6612EXPORT_SYMBOL_GPL(sata_std_hardreset);
203c75b8 6613EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
6614EXPORT_SYMBOL_GPL(ata_dev_classify);
6615EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 6616EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 6617EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 6618EXPORT_SYMBOL_GPL(ata_wait_register);
1da177e4
LT
6619EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6620EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 6621EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 6622EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 6623EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
34bf2170
TH
6624EXPORT_SYMBOL_GPL(sata_scr_valid);
6625EXPORT_SYMBOL_GPL(sata_scr_read);
6626EXPORT_SYMBOL_GPL(sata_scr_write);
6627EXPORT_SYMBOL_GPL(sata_scr_write_flush);
936fd732
TH
6628EXPORT_SYMBOL_GPL(ata_link_online);
6629EXPORT_SYMBOL_GPL(ata_link_offline);
6ffa01d8 6630#ifdef CONFIG_PM
cca3974e
JG
6631EXPORT_SYMBOL_GPL(ata_host_suspend);
6632EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 6633#endif /* CONFIG_PM */
6a62a04d
TH
6634EXPORT_SYMBOL_GPL(ata_id_string);
6635EXPORT_SYMBOL_GPL(ata_id_c_string);
963e4975 6636EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1da177e4
LT
6637EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6638
1bc4ccff 6639EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6357357c 6640EXPORT_SYMBOL_GPL(ata_timing_find_mode);
452503f9
AC
6641EXPORT_SYMBOL_GPL(ata_timing_compute);
6642EXPORT_SYMBOL_GPL(ata_timing_merge);
a0f79b92 6643EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
452503f9 6644
1da177e4
LT
6645#ifdef CONFIG_PCI
6646EXPORT_SYMBOL_GPL(pci_test_config_bits);
1da177e4 6647EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 6648#ifdef CONFIG_PM
500530f6
TH
6649EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6650EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
6651EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6652EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 6653#endif /* CONFIG_PM */
1da177e4 6654#endif /* CONFIG_PCI */
9b847548 6655
b64bbc39
TH
6656EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6657EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6658EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
cbcdd875
TH
6659EXPORT_SYMBOL_GPL(ata_port_desc);
6660#ifdef CONFIG_PCI
6661EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6662#endif /* CONFIG_PCI */
7b70fc03 6663EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
dbd82616 6664EXPORT_SYMBOL_GPL(ata_link_abort);
7b70fc03 6665EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499 6666EXPORT_SYMBOL_GPL(ata_port_freeze);
7d77b247 6667EXPORT_SYMBOL_GPL(sata_async_notification);
e3180499
TH
6668EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6669EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
6670EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6671EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
10acf3b0 6672EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
022bdb07 6673EXPORT_SYMBOL_GPL(ata_do_eh);
a1efdaba 6674EXPORT_SYMBOL_GPL(ata_std_error_handler);
be0d18df
AC
6675
6676EXPORT_SYMBOL_GPL(ata_cable_40wire);
6677EXPORT_SYMBOL_GPL(ata_cable_80wire);
6678EXPORT_SYMBOL_GPL(ata_cable_unknown);
c88f90c3 6679EXPORT_SYMBOL_GPL(ata_cable_ignore);
be0d18df 6680EXPORT_SYMBOL_GPL(ata_cable_sata);