ACPI: EC: Check if boot_ec was really found in DSDT
[linux-2.6-block.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
1da177e4
LT
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/mm.h>
41#include <linux/highmem.h>
42#include <linux/spinlock.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/completion.h>
48#include <linux/suspend.h>
49#include <linux/workqueue.h>
67846b30 50#include <linux/jiffies.h>
378f058c 51#include <linux/scatterlist.h>
1da177e4 52#include <scsi/scsi.h>
193515d5 53#include <scsi/scsi_cmnd.h>
1da177e4
LT
54#include <scsi/scsi_host.h>
55#include <linux/libata.h>
56#include <asm/io.h>
57#include <asm/semaphore.h>
58#include <asm/byteorder.h>
59
60#include "libata.h"
61
8bc3fc47 62#define DRV_VERSION "2.21" /* must be exactly four chars */
fda0efc5
JG
63
64
d7bb4cc7 65/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
66const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 69
3373efd8
TH
70static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 74static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 75
f3187195 76unsigned int ata_print_id = 1;
1da177e4
LT
77static struct workqueue_struct *ata_wq;
78
453b07ac
TH
79struct workqueue_struct *ata_aux_wq;
80
418dc1f5 81int atapi_enabled = 1;
1623c81e
JG
82module_param(atapi_enabled, int, 0444);
83MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
84
95de719a
AL
85int atapi_dmadir = 0;
86module_param(atapi_dmadir, int, 0444);
87MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
88
c3c013a2
JG
89int libata_fua = 0;
90module_param_named(fua, libata_fua, int, 0444);
91MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
92
1e999736
AC
93static int ata_ignore_hpa = 0;
94module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
95MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
96
a8601e5f
AM
97static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
98module_param(ata_probe_timeout, int, 0444);
99MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
100
d7d0dad6
JG
101int libata_noacpi = 1;
102module_param_named(noacpi, libata_noacpi, int, 0444);
11ef697b
KCA
103MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
104
1da177e4
LT
105MODULE_AUTHOR("Jeff Garzik");
106MODULE_DESCRIPTION("Library module for ATA devices");
107MODULE_LICENSE("GPL");
108MODULE_VERSION(DRV_VERSION);
109
0baab86b 110
1da177e4
LT
111/**
112 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
113 * @tf: Taskfile to convert
1da177e4 114 * @pmp: Port multiplier port
9977126c
TH
115 * @is_cmd: This FIS is for command
116 * @fis: Buffer into which data will output
1da177e4
LT
117 *
118 * Converts a standard ATA taskfile to a Serial ATA
119 * FIS structure (Register - Host to Device).
120 *
121 * LOCKING:
122 * Inherited from caller.
123 */
9977126c 124void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 125{
9977126c
TH
126 fis[0] = 0x27; /* Register - Host to Device FIS */
127 fis[1] = pmp & 0xf; /* Port multiplier number*/
128 if (is_cmd)
129 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
130
1da177e4
LT
131 fis[2] = tf->command;
132 fis[3] = tf->feature;
133
134 fis[4] = tf->lbal;
135 fis[5] = tf->lbam;
136 fis[6] = tf->lbah;
137 fis[7] = tf->device;
138
139 fis[8] = tf->hob_lbal;
140 fis[9] = tf->hob_lbam;
141 fis[10] = tf->hob_lbah;
142 fis[11] = tf->hob_feature;
143
144 fis[12] = tf->nsect;
145 fis[13] = tf->hob_nsect;
146 fis[14] = 0;
147 fis[15] = tf->ctl;
148
149 fis[16] = 0;
150 fis[17] = 0;
151 fis[18] = 0;
152 fis[19] = 0;
153}
154
155/**
156 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
157 * @fis: Buffer from which data will be input
158 * @tf: Taskfile to output
159 *
e12a1be6 160 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
161 *
162 * LOCKING:
163 * Inherited from caller.
164 */
165
057ace5e 166void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
167{
168 tf->command = fis[2]; /* status */
169 tf->feature = fis[3]; /* error */
170
171 tf->lbal = fis[4];
172 tf->lbam = fis[5];
173 tf->lbah = fis[6];
174 tf->device = fis[7];
175
176 tf->hob_lbal = fis[8];
177 tf->hob_lbam = fis[9];
178 tf->hob_lbah = fis[10];
179
180 tf->nsect = fis[12];
181 tf->hob_nsect = fis[13];
182}
183
8cbd6df1
AL
184static const u8 ata_rw_cmds[] = {
185 /* pio multi */
186 ATA_CMD_READ_MULTI,
187 ATA_CMD_WRITE_MULTI,
188 ATA_CMD_READ_MULTI_EXT,
189 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
190 0,
191 0,
192 0,
193 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
194 /* pio */
195 ATA_CMD_PIO_READ,
196 ATA_CMD_PIO_WRITE,
197 ATA_CMD_PIO_READ_EXT,
198 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
199 0,
200 0,
201 0,
202 0,
8cbd6df1
AL
203 /* dma */
204 ATA_CMD_READ,
205 ATA_CMD_WRITE,
206 ATA_CMD_READ_EXT,
9a3dccc4
TH
207 ATA_CMD_WRITE_EXT,
208 0,
209 0,
210 0,
211 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 212};
1da177e4
LT
213
214/**
8cbd6df1 215 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
216 * @tf: command to examine and configure
217 * @dev: device tf belongs to
1da177e4 218 *
2e9edbf8 219 * Examine the device configuration and tf->flags to calculate
8cbd6df1 220 * the proper read/write commands and protocol to use.
1da177e4
LT
221 *
222 * LOCKING:
223 * caller.
224 */
bd056d7e 225static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 226{
9a3dccc4 227 u8 cmd;
1da177e4 228
9a3dccc4 229 int index, fua, lba48, write;
2e9edbf8 230
9a3dccc4 231 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
232 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
233 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 234
8cbd6df1
AL
235 if (dev->flags & ATA_DFLAG_PIO) {
236 tf->protocol = ATA_PROT_PIO;
9a3dccc4 237 index = dev->multi_count ? 0 : 8;
bd056d7e 238 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
239 /* Unable to use DMA due to host limitation */
240 tf->protocol = ATA_PROT_PIO;
0565c26d 241 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
242 } else {
243 tf->protocol = ATA_PROT_DMA;
9a3dccc4 244 index = 16;
8cbd6df1 245 }
1da177e4 246
9a3dccc4
TH
247 cmd = ata_rw_cmds[index + fua + lba48 + write];
248 if (cmd) {
249 tf->command = cmd;
250 return 0;
251 }
252 return -1;
1da177e4
LT
253}
254
35b649fe
TH
255/**
256 * ata_tf_read_block - Read block address from ATA taskfile
257 * @tf: ATA taskfile of interest
258 * @dev: ATA device @tf belongs to
259 *
260 * LOCKING:
261 * None.
262 *
263 * Read block address from @tf. This function can handle all
264 * three address formats - LBA, LBA48 and CHS. tf->protocol and
265 * flags select the address format to use.
266 *
267 * RETURNS:
268 * Block address read from @tf.
269 */
270u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
271{
272 u64 block = 0;
273
274 if (tf->flags & ATA_TFLAG_LBA) {
275 if (tf->flags & ATA_TFLAG_LBA48) {
276 block |= (u64)tf->hob_lbah << 40;
277 block |= (u64)tf->hob_lbam << 32;
278 block |= tf->hob_lbal << 24;
279 } else
280 block |= (tf->device & 0xf) << 24;
281
282 block |= tf->lbah << 16;
283 block |= tf->lbam << 8;
284 block |= tf->lbal;
285 } else {
286 u32 cyl, head, sect;
287
288 cyl = tf->lbam | (tf->lbah << 8);
289 head = tf->device & 0xf;
290 sect = tf->lbal;
291
292 block = (cyl * dev->heads + head) * dev->sectors + sect;
293 }
294
295 return block;
296}
297
bd056d7e
TH
298/**
299 * ata_build_rw_tf - Build ATA taskfile for given read/write request
300 * @tf: Target ATA taskfile
301 * @dev: ATA device @tf belongs to
302 * @block: Block address
303 * @n_block: Number of blocks
304 * @tf_flags: RW/FUA etc...
305 * @tag: tag
306 *
307 * LOCKING:
308 * None.
309 *
310 * Build ATA taskfile @tf for read/write request described by
311 * @block, @n_block, @tf_flags and @tag on @dev.
312 *
313 * RETURNS:
314 *
315 * 0 on success, -ERANGE if the request is too large for @dev,
316 * -EINVAL if the request is invalid.
317 */
318int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
319 u64 block, u32 n_block, unsigned int tf_flags,
320 unsigned int tag)
321{
322 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
323 tf->flags |= tf_flags;
324
6d1245bf 325 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
326 /* yay, NCQ */
327 if (!lba_48_ok(block, n_block))
328 return -ERANGE;
329
330 tf->protocol = ATA_PROT_NCQ;
331 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
332
333 if (tf->flags & ATA_TFLAG_WRITE)
334 tf->command = ATA_CMD_FPDMA_WRITE;
335 else
336 tf->command = ATA_CMD_FPDMA_READ;
337
338 tf->nsect = tag << 3;
339 tf->hob_feature = (n_block >> 8) & 0xff;
340 tf->feature = n_block & 0xff;
341
342 tf->hob_lbah = (block >> 40) & 0xff;
343 tf->hob_lbam = (block >> 32) & 0xff;
344 tf->hob_lbal = (block >> 24) & 0xff;
345 tf->lbah = (block >> 16) & 0xff;
346 tf->lbam = (block >> 8) & 0xff;
347 tf->lbal = block & 0xff;
348
349 tf->device = 1 << 6;
350 if (tf->flags & ATA_TFLAG_FUA)
351 tf->device |= 1 << 7;
352 } else if (dev->flags & ATA_DFLAG_LBA) {
353 tf->flags |= ATA_TFLAG_LBA;
354
355 if (lba_28_ok(block, n_block)) {
356 /* use LBA28 */
357 tf->device |= (block >> 24) & 0xf;
358 } else if (lba_48_ok(block, n_block)) {
359 if (!(dev->flags & ATA_DFLAG_LBA48))
360 return -ERANGE;
361
362 /* use LBA48 */
363 tf->flags |= ATA_TFLAG_LBA48;
364
365 tf->hob_nsect = (n_block >> 8) & 0xff;
366
367 tf->hob_lbah = (block >> 40) & 0xff;
368 tf->hob_lbam = (block >> 32) & 0xff;
369 tf->hob_lbal = (block >> 24) & 0xff;
370 } else
371 /* request too large even for LBA48 */
372 return -ERANGE;
373
374 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
375 return -EINVAL;
376
377 tf->nsect = n_block & 0xff;
378
379 tf->lbah = (block >> 16) & 0xff;
380 tf->lbam = (block >> 8) & 0xff;
381 tf->lbal = block & 0xff;
382
383 tf->device |= ATA_LBA;
384 } else {
385 /* CHS */
386 u32 sect, head, cyl, track;
387
388 /* The request -may- be too large for CHS addressing. */
389 if (!lba_28_ok(block, n_block))
390 return -ERANGE;
391
392 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
393 return -EINVAL;
394
395 /* Convert LBA to CHS */
396 track = (u32)block / dev->sectors;
397 cyl = track / dev->heads;
398 head = track % dev->heads;
399 sect = (u32)block % dev->sectors + 1;
400
401 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
402 (u32)block, track, cyl, head, sect);
403
404 /* Check whether the converted CHS can fit.
405 Cylinder: 0-65535
406 Head: 0-15
407 Sector: 1-255*/
408 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
409 return -ERANGE;
410
411 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
412 tf->lbal = sect;
413 tf->lbam = cyl;
414 tf->lbah = cyl >> 8;
415 tf->device |= head;
416 }
417
418 return 0;
419}
420
cb95d562
TH
421/**
422 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
423 * @pio_mask: pio_mask
424 * @mwdma_mask: mwdma_mask
425 * @udma_mask: udma_mask
426 *
427 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
428 * unsigned int xfer_mask.
429 *
430 * LOCKING:
431 * None.
432 *
433 * RETURNS:
434 * Packed xfer_mask.
435 */
436static unsigned int ata_pack_xfermask(unsigned int pio_mask,
437 unsigned int mwdma_mask,
438 unsigned int udma_mask)
439{
440 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
441 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
442 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
443}
444
c0489e4e
TH
445/**
446 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
447 * @xfer_mask: xfer_mask to unpack
448 * @pio_mask: resulting pio_mask
449 * @mwdma_mask: resulting mwdma_mask
450 * @udma_mask: resulting udma_mask
451 *
452 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
453 * Any NULL distination masks will be ignored.
454 */
455static void ata_unpack_xfermask(unsigned int xfer_mask,
456 unsigned int *pio_mask,
457 unsigned int *mwdma_mask,
458 unsigned int *udma_mask)
459{
460 if (pio_mask)
461 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
462 if (mwdma_mask)
463 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
464 if (udma_mask)
465 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
466}
467
cb95d562 468static const struct ata_xfer_ent {
be9a50c8 469 int shift, bits;
cb95d562
TH
470 u8 base;
471} ata_xfer_tbl[] = {
472 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
473 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
474 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
475 { -1, },
476};
477
478/**
479 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
480 * @xfer_mask: xfer_mask of interest
481 *
482 * Return matching XFER_* value for @xfer_mask. Only the highest
483 * bit of @xfer_mask is considered.
484 *
485 * LOCKING:
486 * None.
487 *
488 * RETURNS:
489 * Matching XFER_* value, 0 if no match found.
490 */
491static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
492{
493 int highbit = fls(xfer_mask) - 1;
494 const struct ata_xfer_ent *ent;
495
496 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
497 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
498 return ent->base + highbit - ent->shift;
499 return 0;
500}
501
502/**
503 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
504 * @xfer_mode: XFER_* of interest
505 *
506 * Return matching xfer_mask for @xfer_mode.
507 *
508 * LOCKING:
509 * None.
510 *
511 * RETURNS:
512 * Matching xfer_mask, 0 if no match found.
513 */
514static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
515{
516 const struct ata_xfer_ent *ent;
517
518 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
519 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
520 return 1 << (ent->shift + xfer_mode - ent->base);
521 return 0;
522}
523
524/**
525 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
526 * @xfer_mode: XFER_* of interest
527 *
528 * Return matching xfer_shift for @xfer_mode.
529 *
530 * LOCKING:
531 * None.
532 *
533 * RETURNS:
534 * Matching xfer_shift, -1 if no match found.
535 */
536static int ata_xfer_mode2shift(unsigned int xfer_mode)
537{
538 const struct ata_xfer_ent *ent;
539
540 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
541 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
542 return ent->shift;
543 return -1;
544}
545
1da177e4 546/**
1da7b0d0
TH
547 * ata_mode_string - convert xfer_mask to string
548 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
549 *
550 * Determine string which represents the highest speed
1da7b0d0 551 * (highest bit in @modemask).
1da177e4
LT
552 *
553 * LOCKING:
554 * None.
555 *
556 * RETURNS:
557 * Constant C string representing highest speed listed in
1da7b0d0 558 * @mode_mask, or the constant C string "<n/a>".
1da177e4 559 */
1da7b0d0 560static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 561{
75f554bc
TH
562 static const char * const xfer_mode_str[] = {
563 "PIO0",
564 "PIO1",
565 "PIO2",
566 "PIO3",
567 "PIO4",
b352e57d
AC
568 "PIO5",
569 "PIO6",
75f554bc
TH
570 "MWDMA0",
571 "MWDMA1",
572 "MWDMA2",
b352e57d
AC
573 "MWDMA3",
574 "MWDMA4",
75f554bc
TH
575 "UDMA/16",
576 "UDMA/25",
577 "UDMA/33",
578 "UDMA/44",
579 "UDMA/66",
580 "UDMA/100",
581 "UDMA/133",
582 "UDMA7",
583 };
1da7b0d0 584 int highbit;
1da177e4 585
1da7b0d0
TH
586 highbit = fls(xfer_mask) - 1;
587 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
588 return xfer_mode_str[highbit];
1da177e4 589 return "<n/a>";
1da177e4
LT
590}
591
4c360c81
TH
592static const char *sata_spd_string(unsigned int spd)
593{
594 static const char * const spd_str[] = {
595 "1.5 Gbps",
596 "3.0 Gbps",
597 };
598
599 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
600 return "<unknown>";
601 return spd_str[spd - 1];
602}
603
3373efd8 604void ata_dev_disable(struct ata_device *dev)
0b8efb0a 605{
09d7f9b0
TH
606 if (ata_dev_enabled(dev)) {
607 if (ata_msg_drv(dev->ap))
608 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
4ae72a1e
TH
609 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
610 ATA_DNXFER_QUIET);
0b8efb0a
TH
611 dev->class++;
612 }
613}
614
1da177e4 615/**
0d5ff566 616 * ata_devchk - PATA device presence detection
1da177e4
LT
617 * @ap: ATA channel to examine
618 * @device: Device to examine (starting at zero)
619 *
620 * This technique was originally described in
621 * Hale Landis's ATADRVR (www.ata-atapi.com), and
622 * later found its way into the ATA/ATAPI spec.
623 *
624 * Write a pattern to the ATA shadow registers,
625 * and if a device is present, it will respond by
626 * correctly storing and echoing back the
627 * ATA shadow register contents.
628 *
629 * LOCKING:
630 * caller.
631 */
632
0d5ff566 633static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1da177e4
LT
634{
635 struct ata_ioports *ioaddr = &ap->ioaddr;
636 u8 nsect, lbal;
637
638 ap->ops->dev_select(ap, device);
639
0d5ff566
TH
640 iowrite8(0x55, ioaddr->nsect_addr);
641 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 642
0d5ff566
TH
643 iowrite8(0xaa, ioaddr->nsect_addr);
644 iowrite8(0x55, ioaddr->lbal_addr);
1da177e4 645
0d5ff566
TH
646 iowrite8(0x55, ioaddr->nsect_addr);
647 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 648
0d5ff566
TH
649 nsect = ioread8(ioaddr->nsect_addr);
650 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
651
652 if ((nsect == 0x55) && (lbal == 0xaa))
653 return 1; /* we found a device */
654
655 return 0; /* nothing found */
656}
657
1da177e4
LT
658/**
659 * ata_dev_classify - determine device type based on ATA-spec signature
660 * @tf: ATA taskfile register set for device to be identified
661 *
662 * Determine from taskfile register contents whether a device is
663 * ATA or ATAPI, as per "Signature and persistence" section
664 * of ATA/PI spec (volume 1, sect 5.14).
665 *
666 * LOCKING:
667 * None.
668 *
669 * RETURNS:
670 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
671 * the event of failure.
672 */
673
057ace5e 674unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
675{
676 /* Apple's open source Darwin code hints that some devices only
677 * put a proper signature into the LBA mid/high registers,
678 * So, we only check those. It's sufficient for uniqueness.
679 */
680
681 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
682 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
683 DPRINTK("found ATA device by sig\n");
684 return ATA_DEV_ATA;
685 }
686
687 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
688 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
689 DPRINTK("found ATAPI device by sig\n");
690 return ATA_DEV_ATAPI;
691 }
692
693 DPRINTK("unknown device\n");
694 return ATA_DEV_UNKNOWN;
695}
696
697/**
698 * ata_dev_try_classify - Parse returned ATA device signature
699 * @ap: ATA channel to examine
700 * @device: Device to examine (starting at zero)
b4dc7623 701 * @r_err: Value of error register on completion
1da177e4
LT
702 *
703 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
704 * an ATA/ATAPI-defined set of values is placed in the ATA
705 * shadow registers, indicating the results of device detection
706 * and diagnostics.
707 *
708 * Select the ATA device, and read the values from the ATA shadow
709 * registers. Then parse according to the Error register value,
710 * and the spec-defined values examined by ata_dev_classify().
711 *
712 * LOCKING:
713 * caller.
b4dc7623
TH
714 *
715 * RETURNS:
716 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
717 */
718
a619f981 719unsigned int
b4dc7623 720ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 721{
1da177e4
LT
722 struct ata_taskfile tf;
723 unsigned int class;
724 u8 err;
725
726 ap->ops->dev_select(ap, device);
727
728 memset(&tf, 0, sizeof(tf));
729
1da177e4 730 ap->ops->tf_read(ap, &tf);
0169e284 731 err = tf.feature;
b4dc7623
TH
732 if (r_err)
733 *r_err = err;
1da177e4 734
93590859
AC
735 /* see if device passed diags: if master then continue and warn later */
736 if (err == 0 && device == 0)
737 /* diagnostic fail : do nothing _YET_ */
738 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
739 else if (err == 1)
1da177e4
LT
740 /* do nothing */ ;
741 else if ((device == 0) && (err == 0x81))
742 /* do nothing */ ;
743 else
b4dc7623 744 return ATA_DEV_NONE;
1da177e4 745
b4dc7623 746 /* determine if device is ATA or ATAPI */
1da177e4 747 class = ata_dev_classify(&tf);
b4dc7623 748
1da177e4 749 if (class == ATA_DEV_UNKNOWN)
b4dc7623 750 return ATA_DEV_NONE;
1da177e4 751 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
752 return ATA_DEV_NONE;
753 return class;
1da177e4
LT
754}
755
756/**
6a62a04d 757 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
758 * @id: IDENTIFY DEVICE results we will examine
759 * @s: string into which data is output
760 * @ofs: offset into identify device page
761 * @len: length of string to return. must be an even number.
762 *
763 * The strings in the IDENTIFY DEVICE page are broken up into
764 * 16-bit chunks. Run through the string, and output each
765 * 8-bit chunk linearly, regardless of platform.
766 *
767 * LOCKING:
768 * caller.
769 */
770
6a62a04d
TH
771void ata_id_string(const u16 *id, unsigned char *s,
772 unsigned int ofs, unsigned int len)
1da177e4
LT
773{
774 unsigned int c;
775
776 while (len > 0) {
777 c = id[ofs] >> 8;
778 *s = c;
779 s++;
780
781 c = id[ofs] & 0xff;
782 *s = c;
783 s++;
784
785 ofs++;
786 len -= 2;
787 }
788}
789
0e949ff3 790/**
6a62a04d 791 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
792 * @id: IDENTIFY DEVICE results we will examine
793 * @s: string into which data is output
794 * @ofs: offset into identify device page
795 * @len: length of string to return. must be an odd number.
796 *
6a62a04d 797 * This function is identical to ata_id_string except that it
0e949ff3
TH
798 * trims trailing spaces and terminates the resulting string with
799 * null. @len must be actual maximum length (even number) + 1.
800 *
801 * LOCKING:
802 * caller.
803 */
6a62a04d
TH
804void ata_id_c_string(const u16 *id, unsigned char *s,
805 unsigned int ofs, unsigned int len)
0e949ff3
TH
806{
807 unsigned char *p;
808
809 WARN_ON(!(len & 1));
810
6a62a04d 811 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
812
813 p = s + strnlen(s, len - 1);
814 while (p > s && p[-1] == ' ')
815 p--;
816 *p = '\0';
817}
0baab86b 818
1e999736
AC
819static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
820{
821 u64 sectors = 0;
822
823 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
824 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
825 sectors |= (tf->hob_lbal & 0xff) << 24;
826 sectors |= (tf->lbah & 0xff) << 16;
827 sectors |= (tf->lbam & 0xff) << 8;
828 sectors |= (tf->lbal & 0xff);
829
830 return ++sectors;
831}
832
833static u64 ata_tf_to_lba(struct ata_taskfile *tf)
834{
835 u64 sectors = 0;
836
837 sectors |= (tf->device & 0x0f) << 24;
838 sectors |= (tf->lbah & 0xff) << 16;
839 sectors |= (tf->lbam & 0xff) << 8;
840 sectors |= (tf->lbal & 0xff);
841
842 return ++sectors;
843}
844
845/**
846 * ata_read_native_max_address_ext - LBA48 native max query
847 * @dev: Device to query
848 *
849 * Perform an LBA48 size query upon the device in question. Return the
850 * actual LBA48 size or zero if the command fails.
851 */
852
853static u64 ata_read_native_max_address_ext(struct ata_device *dev)
854{
855 unsigned int err;
856 struct ata_taskfile tf;
857
858 ata_tf_init(dev, &tf);
859
860 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
861 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
862 tf.protocol |= ATA_PROT_NODATA;
863 tf.device |= 0x40;
864
865 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
866 if (err)
867 return 0;
868
869 return ata_tf_to_lba48(&tf);
870}
871
872/**
873 * ata_read_native_max_address - LBA28 native max query
874 * @dev: Device to query
875 *
876 * Performa an LBA28 size query upon the device in question. Return the
877 * actual LBA28 size or zero if the command fails.
878 */
879
880static u64 ata_read_native_max_address(struct ata_device *dev)
881{
882 unsigned int err;
883 struct ata_taskfile tf;
884
885 ata_tf_init(dev, &tf);
886
887 tf.command = ATA_CMD_READ_NATIVE_MAX;
888 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
889 tf.protocol |= ATA_PROT_NODATA;
890 tf.device |= 0x40;
891
892 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
893 if (err)
894 return 0;
895
896 return ata_tf_to_lba(&tf);
897}
898
899/**
900 * ata_set_native_max_address_ext - LBA48 native max set
901 * @dev: Device to query
6b38d1d1 902 * @new_sectors: new max sectors value to set for the device
1e999736
AC
903 *
904 * Perform an LBA48 size set max upon the device in question. Return the
905 * actual LBA48 size or zero if the command fails.
906 */
907
908static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors)
909{
910 unsigned int err;
911 struct ata_taskfile tf;
912
913 new_sectors--;
914
915 ata_tf_init(dev, &tf);
916
917 tf.command = ATA_CMD_SET_MAX_EXT;
918 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
919 tf.protocol |= ATA_PROT_NODATA;
920 tf.device |= 0x40;
921
922 tf.lbal = (new_sectors >> 0) & 0xff;
923 tf.lbam = (new_sectors >> 8) & 0xff;
924 tf.lbah = (new_sectors >> 16) & 0xff;
925
926 tf.hob_lbal = (new_sectors >> 24) & 0xff;
927 tf.hob_lbam = (new_sectors >> 32) & 0xff;
928 tf.hob_lbah = (new_sectors >> 40) & 0xff;
929
930 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
931 if (err)
932 return 0;
933
934 return ata_tf_to_lba48(&tf);
935}
936
937/**
938 * ata_set_native_max_address - LBA28 native max set
939 * @dev: Device to query
6b38d1d1 940 * @new_sectors: new max sectors value to set for the device
1e999736
AC
941 *
942 * Perform an LBA28 size set max upon the device in question. Return the
943 * actual LBA28 size or zero if the command fails.
944 */
945
946static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors)
947{
948 unsigned int err;
949 struct ata_taskfile tf;
950
951 new_sectors--;
952
953 ata_tf_init(dev, &tf);
954
955 tf.command = ATA_CMD_SET_MAX;
956 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
957 tf.protocol |= ATA_PROT_NODATA;
958
959 tf.lbal = (new_sectors >> 0) & 0xff;
960 tf.lbam = (new_sectors >> 8) & 0xff;
961 tf.lbah = (new_sectors >> 16) & 0xff;
962 tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40;
963
964 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
965 if (err)
966 return 0;
967
968 return ata_tf_to_lba(&tf);
969}
970
971/**
972 * ata_hpa_resize - Resize a device with an HPA set
973 * @dev: Device to resize
974 *
975 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
976 * it if required to the full size of the media. The caller must check
977 * the drive has the HPA feature set enabled.
978 */
979
980static u64 ata_hpa_resize(struct ata_device *dev)
981{
982 u64 sectors = dev->n_sectors;
983 u64 hpa_sectors;
a617c09f 984
1e999736
AC
985 if (ata_id_has_lba48(dev->id))
986 hpa_sectors = ata_read_native_max_address_ext(dev);
987 else
988 hpa_sectors = ata_read_native_max_address(dev);
989
1e999736
AC
990 if (hpa_sectors > sectors) {
991 ata_dev_printk(dev, KERN_INFO,
992 "Host Protected Area detected:\n"
993 "\tcurrent size: %lld sectors\n"
994 "\tnative size: %lld sectors\n",
bd1d5ec6 995 (long long)sectors, (long long)hpa_sectors);
1e999736
AC
996
997 if (ata_ignore_hpa) {
998 if (ata_id_has_lba48(dev->id))
999 hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors);
1000 else
bd1d5ec6
AM
1001 hpa_sectors = ata_set_native_max_address(dev,
1002 hpa_sectors);
1e999736
AC
1003
1004 if (hpa_sectors) {
bd1d5ec6
AM
1005 ata_dev_printk(dev, KERN_INFO, "native size "
1006 "increased to %lld sectors\n",
1007 (long long)hpa_sectors);
1e999736
AC
1008 return hpa_sectors;
1009 }
1010 }
37301a55
TH
1011 } else if (hpa_sectors < sectors)
1012 ata_dev_printk(dev, KERN_WARNING, "%s 1: hpa sectors (%lld) "
1013 "is smaller than sectors (%lld)\n", __FUNCTION__,
1014 (long long)hpa_sectors, (long long)sectors);
1015
1e999736
AC
1016 return sectors;
1017}
1018
2940740b
TH
1019static u64 ata_id_n_sectors(const u16 *id)
1020{
1021 if (ata_id_has_lba(id)) {
1022 if (ata_id_has_lba48(id))
1023 return ata_id_u64(id, 100);
1024 else
1025 return ata_id_u32(id, 60);
1026 } else {
1027 if (ata_id_current_chs_valid(id))
1028 return ata_id_u32(id, 57);
1029 else
1030 return id[1] * id[3] * id[6];
1031 }
1032}
1033
10305f0f
A
1034/**
1035 * ata_id_to_dma_mode - Identify DMA mode from id block
1036 * @dev: device to identify
cc261267 1037 * @unknown: mode to assume if we cannot tell
10305f0f
A
1038 *
1039 * Set up the timing values for the device based upon the identify
1040 * reported values for the DMA mode. This function is used by drivers
1041 * which rely upon firmware configured modes, but wish to report the
1042 * mode correctly when possible.
1043 *
1044 * In addition we emit similarly formatted messages to the default
1045 * ata_dev_set_mode handler, in order to provide consistency of
1046 * presentation.
1047 */
1048
1049void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1050{
1051 unsigned int mask;
1052 u8 mode;
1053
1054 /* Pack the DMA modes */
1055 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1056 if (dev->id[53] & 0x04)
1057 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1058
1059 /* Select the mode in use */
1060 mode = ata_xfer_mask2mode(mask);
1061
1062 if (mode != 0) {
1063 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1064 ata_mode_string(mask));
1065 } else {
1066 /* SWDMA perhaps ? */
1067 mode = unknown;
1068 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1069 }
1070
1071 /* Configure the device reporting */
1072 dev->xfer_mode = mode;
1073 dev->xfer_shift = ata_xfer_mode2shift(mode);
1074}
1075
0baab86b
EF
1076/**
1077 * ata_noop_dev_select - Select device 0/1 on ATA bus
1078 * @ap: ATA channel to manipulate
1079 * @device: ATA device (numbered from zero) to select
1080 *
1081 * This function performs no actual function.
1082 *
1083 * May be used as the dev_select() entry in ata_port_operations.
1084 *
1085 * LOCKING:
1086 * caller.
1087 */
1da177e4
LT
1088void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1089{
1090}
1091
0baab86b 1092
1da177e4
LT
1093/**
1094 * ata_std_dev_select - Select device 0/1 on ATA bus
1095 * @ap: ATA channel to manipulate
1096 * @device: ATA device (numbered from zero) to select
1097 *
1098 * Use the method defined in the ATA specification to
1099 * make either device 0, or device 1, active on the
0baab86b
EF
1100 * ATA channel. Works with both PIO and MMIO.
1101 *
1102 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
1103 *
1104 * LOCKING:
1105 * caller.
1106 */
1107
1108void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1109{
1110 u8 tmp;
1111
1112 if (device == 0)
1113 tmp = ATA_DEVICE_OBS;
1114 else
1115 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1116
0d5ff566 1117 iowrite8(tmp, ap->ioaddr.device_addr);
1da177e4
LT
1118 ata_pause(ap); /* needed; also flushes, for mmio */
1119}
1120
1121/**
1122 * ata_dev_select - Select device 0/1 on ATA bus
1123 * @ap: ATA channel to manipulate
1124 * @device: ATA device (numbered from zero) to select
1125 * @wait: non-zero to wait for Status register BSY bit to clear
1126 * @can_sleep: non-zero if context allows sleeping
1127 *
1128 * Use the method defined in the ATA specification to
1129 * make either device 0, or device 1, active on the
1130 * ATA channel.
1131 *
1132 * This is a high-level version of ata_std_dev_select(),
1133 * which additionally provides the services of inserting
1134 * the proper pauses and status polling, where needed.
1135 *
1136 * LOCKING:
1137 * caller.
1138 */
1139
1140void ata_dev_select(struct ata_port *ap, unsigned int device,
1141 unsigned int wait, unsigned int can_sleep)
1142{
88574551 1143 if (ata_msg_probe(ap))
44877b4e
TH
1144 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1145 "device %u, wait %u\n", device, wait);
1da177e4
LT
1146
1147 if (wait)
1148 ata_wait_idle(ap);
1149
1150 ap->ops->dev_select(ap, device);
1151
1152 if (wait) {
1153 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1154 msleep(150);
1155 ata_wait_idle(ap);
1156 }
1157}
1158
1159/**
1160 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1161 * @id: IDENTIFY DEVICE page to dump
1da177e4 1162 *
0bd3300a
TH
1163 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1164 * page.
1da177e4
LT
1165 *
1166 * LOCKING:
1167 * caller.
1168 */
1169
0bd3300a 1170static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1171{
1172 DPRINTK("49==0x%04x "
1173 "53==0x%04x "
1174 "63==0x%04x "
1175 "64==0x%04x "
1176 "75==0x%04x \n",
0bd3300a
TH
1177 id[49],
1178 id[53],
1179 id[63],
1180 id[64],
1181 id[75]);
1da177e4
LT
1182 DPRINTK("80==0x%04x "
1183 "81==0x%04x "
1184 "82==0x%04x "
1185 "83==0x%04x "
1186 "84==0x%04x \n",
0bd3300a
TH
1187 id[80],
1188 id[81],
1189 id[82],
1190 id[83],
1191 id[84]);
1da177e4
LT
1192 DPRINTK("88==0x%04x "
1193 "93==0x%04x\n",
0bd3300a
TH
1194 id[88],
1195 id[93]);
1da177e4
LT
1196}
1197
cb95d562
TH
1198/**
1199 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1200 * @id: IDENTIFY data to compute xfer mask from
1201 *
1202 * Compute the xfermask for this device. This is not as trivial
1203 * as it seems if we must consider early devices correctly.
1204 *
1205 * FIXME: pre IDE drive timing (do we care ?).
1206 *
1207 * LOCKING:
1208 * None.
1209 *
1210 * RETURNS:
1211 * Computed xfermask
1212 */
1213static unsigned int ata_id_xfermask(const u16 *id)
1214{
1215 unsigned int pio_mask, mwdma_mask, udma_mask;
1216
1217 /* Usual case. Word 53 indicates word 64 is valid */
1218 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1219 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1220 pio_mask <<= 3;
1221 pio_mask |= 0x7;
1222 } else {
1223 /* If word 64 isn't valid then Word 51 high byte holds
1224 * the PIO timing number for the maximum. Turn it into
1225 * a mask.
1226 */
7a0f1c8a 1227 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb
AC
1228 if (mode < 5) /* Valid PIO range */
1229 pio_mask = (2 << mode) - 1;
1230 else
1231 pio_mask = 1;
cb95d562
TH
1232
1233 /* But wait.. there's more. Design your standards by
1234 * committee and you too can get a free iordy field to
1235 * process. However its the speeds not the modes that
1236 * are supported... Note drivers using the timing API
1237 * will get this right anyway
1238 */
1239 }
1240
1241 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1242
b352e57d
AC
1243 if (ata_id_is_cfa(id)) {
1244 /*
1245 * Process compact flash extended modes
1246 */
1247 int pio = id[163] & 0x7;
1248 int dma = (id[163] >> 3) & 7;
1249
1250 if (pio)
1251 pio_mask |= (1 << 5);
1252 if (pio > 1)
1253 pio_mask |= (1 << 6);
1254 if (dma)
1255 mwdma_mask |= (1 << 3);
1256 if (dma > 1)
1257 mwdma_mask |= (1 << 4);
1258 }
1259
fb21f0d0
TH
1260 udma_mask = 0;
1261 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1262 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1263
1264 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1265}
1266
86e45b6b
TH
1267/**
1268 * ata_port_queue_task - Queue port_task
1269 * @ap: The ata_port to queue port_task for
e2a7f77a 1270 * @fn: workqueue function to be scheduled
65f27f38 1271 * @data: data for @fn to use
e2a7f77a 1272 * @delay: delay time for workqueue function
86e45b6b
TH
1273 *
1274 * Schedule @fn(@data) for execution after @delay jiffies using
1275 * port_task. There is one port_task per port and it's the
1276 * user(low level driver)'s responsibility to make sure that only
1277 * one task is active at any given time.
1278 *
1279 * libata core layer takes care of synchronization between
1280 * port_task and EH. ata_port_queue_task() may be ignored for EH
1281 * synchronization.
1282 *
1283 * LOCKING:
1284 * Inherited from caller.
1285 */
65f27f38 1286void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
86e45b6b
TH
1287 unsigned long delay)
1288{
65f27f38
DH
1289 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1290 ap->port_task_data = data;
86e45b6b 1291
45a66c1c
ON
1292 /* may fail if ata_port_flush_task() in progress */
1293 queue_delayed_work(ata_wq, &ap->port_task, delay);
86e45b6b
TH
1294}
1295
1296/**
1297 * ata_port_flush_task - Flush port_task
1298 * @ap: The ata_port to flush port_task for
1299 *
1300 * After this function completes, port_task is guranteed not to
1301 * be running or scheduled.
1302 *
1303 * LOCKING:
1304 * Kernel thread context (may sleep)
1305 */
1306void ata_port_flush_task(struct ata_port *ap)
1307{
86e45b6b
TH
1308 DPRINTK("ENTER\n");
1309
45a66c1c 1310 cancel_rearming_delayed_work(&ap->port_task);
86e45b6b 1311
0dd4b21f
BP
1312 if (ata_msg_ctl(ap))
1313 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
1314}
1315
7102d230 1316static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1317{
77853bf2 1318 struct completion *waiting = qc->private_data;
a2a7a662 1319
a2a7a662 1320 complete(waiting);
a2a7a662
TH
1321}
1322
1323/**
2432697b 1324 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1325 * @dev: Device to which the command is sent
1326 * @tf: Taskfile registers for the command and the result
d69cf37d 1327 * @cdb: CDB for packet command
a2a7a662 1328 * @dma_dir: Data tranfer direction of the command
2432697b
TH
1329 * @sg: sg list for the data buffer of the command
1330 * @n_elem: Number of sg entries
a2a7a662
TH
1331 *
1332 * Executes libata internal command with timeout. @tf contains
1333 * command on entry and result on return. Timeout and error
1334 * conditions are reported via return value. No recovery action
1335 * is taken after a command times out. It's caller's duty to
1336 * clean up after timeout.
1337 *
1338 * LOCKING:
1339 * None. Should be called with kernel context, might sleep.
551e8889
TH
1340 *
1341 * RETURNS:
1342 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1343 */
2432697b
TH
1344unsigned ata_exec_internal_sg(struct ata_device *dev,
1345 struct ata_taskfile *tf, const u8 *cdb,
1346 int dma_dir, struct scatterlist *sg,
1347 unsigned int n_elem)
a2a7a662 1348{
3373efd8 1349 struct ata_port *ap = dev->ap;
a2a7a662
TH
1350 u8 command = tf->command;
1351 struct ata_queued_cmd *qc;
2ab7db1f 1352 unsigned int tag, preempted_tag;
dedaf2b0 1353 u32 preempted_sactive, preempted_qc_active;
60be6b9a 1354 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1355 unsigned long flags;
77853bf2 1356 unsigned int err_mask;
d95a717f 1357 int rc;
a2a7a662 1358
ba6a1308 1359 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1360
e3180499 1361 /* no internal command while frozen */
b51e9e5d 1362 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1363 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1364 return AC_ERR_SYSTEM;
1365 }
1366
2ab7db1f 1367 /* initialize internal qc */
a2a7a662 1368
2ab7db1f
TH
1369 /* XXX: Tag 0 is used for drivers with legacy EH as some
1370 * drivers choke if any other tag is given. This breaks
1371 * ata_tag_internal() test for those drivers. Don't use new
1372 * EH stuff without converting to it.
1373 */
1374 if (ap->ops->error_handler)
1375 tag = ATA_TAG_INTERNAL;
1376 else
1377 tag = 0;
1378
6cec4a39 1379 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1380 BUG();
f69499f4 1381 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1382
1383 qc->tag = tag;
1384 qc->scsicmd = NULL;
1385 qc->ap = ap;
1386 qc->dev = dev;
1387 ata_qc_reinit(qc);
1388
1389 preempted_tag = ap->active_tag;
dedaf2b0
TH
1390 preempted_sactive = ap->sactive;
1391 preempted_qc_active = ap->qc_active;
2ab7db1f 1392 ap->active_tag = ATA_TAG_POISON;
dedaf2b0
TH
1393 ap->sactive = 0;
1394 ap->qc_active = 0;
2ab7db1f
TH
1395
1396 /* prepare & issue qc */
a2a7a662 1397 qc->tf = *tf;
d69cf37d
TH
1398 if (cdb)
1399 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1400 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1401 qc->dma_dir = dma_dir;
1402 if (dma_dir != DMA_NONE) {
2432697b
TH
1403 unsigned int i, buflen = 0;
1404
1405 for (i = 0; i < n_elem; i++)
1406 buflen += sg[i].length;
1407
1408 ata_sg_init(qc, sg, n_elem);
49c80429 1409 qc->nbytes = buflen;
a2a7a662
TH
1410 }
1411
77853bf2 1412 qc->private_data = &wait;
a2a7a662
TH
1413 qc->complete_fn = ata_qc_complete_internal;
1414
8e0e694a 1415 ata_qc_issue(qc);
a2a7a662 1416
ba6a1308 1417 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1418
a8601e5f 1419 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
d95a717f
TH
1420
1421 ata_port_flush_task(ap);
41ade50c 1422
d95a717f 1423 if (!rc) {
ba6a1308 1424 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1425
1426 /* We're racing with irq here. If we lose, the
1427 * following test prevents us from completing the qc
d95a717f
TH
1428 * twice. If we win, the port is frozen and will be
1429 * cleaned up by ->post_internal_cmd().
a2a7a662 1430 */
77853bf2 1431 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1432 qc->err_mask |= AC_ERR_TIMEOUT;
1433
1434 if (ap->ops->error_handler)
1435 ata_port_freeze(ap);
1436 else
1437 ata_qc_complete(qc);
f15a1daf 1438
0dd4b21f
BP
1439 if (ata_msg_warn(ap))
1440 ata_dev_printk(dev, KERN_WARNING,
88574551 1441 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1442 }
1443
ba6a1308 1444 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1445 }
1446
d95a717f
TH
1447 /* do post_internal_cmd */
1448 if (ap->ops->post_internal_cmd)
1449 ap->ops->post_internal_cmd(qc);
1450
a51d644a
TH
1451 /* perform minimal error analysis */
1452 if (qc->flags & ATA_QCFLAG_FAILED) {
1453 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1454 qc->err_mask |= AC_ERR_DEV;
1455
1456 if (!qc->err_mask)
1457 qc->err_mask |= AC_ERR_OTHER;
1458
1459 if (qc->err_mask & ~AC_ERR_OTHER)
1460 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1461 }
1462
15869303 1463 /* finish up */
ba6a1308 1464 spin_lock_irqsave(ap->lock, flags);
15869303 1465
e61e0672 1466 *tf = qc->result_tf;
77853bf2
TH
1467 err_mask = qc->err_mask;
1468
1469 ata_qc_free(qc);
2ab7db1f 1470 ap->active_tag = preempted_tag;
dedaf2b0
TH
1471 ap->sactive = preempted_sactive;
1472 ap->qc_active = preempted_qc_active;
77853bf2 1473
1f7dd3e9
TH
1474 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1475 * Until those drivers are fixed, we detect the condition
1476 * here, fail the command with AC_ERR_SYSTEM and reenable the
1477 * port.
1478 *
1479 * Note that this doesn't change any behavior as internal
1480 * command failure results in disabling the device in the
1481 * higher layer for LLDDs without new reset/EH callbacks.
1482 *
1483 * Kill the following code as soon as those drivers are fixed.
1484 */
198e0fed 1485 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1486 err_mask |= AC_ERR_SYSTEM;
1487 ata_port_probe(ap);
1488 }
1489
ba6a1308 1490 spin_unlock_irqrestore(ap->lock, flags);
15869303 1491
77853bf2 1492 return err_mask;
a2a7a662
TH
1493}
1494
2432697b 1495/**
33480a0e 1496 * ata_exec_internal - execute libata internal command
2432697b
TH
1497 * @dev: Device to which the command is sent
1498 * @tf: Taskfile registers for the command and the result
1499 * @cdb: CDB for packet command
1500 * @dma_dir: Data tranfer direction of the command
1501 * @buf: Data buffer of the command
1502 * @buflen: Length of data buffer
1503 *
1504 * Wrapper around ata_exec_internal_sg() which takes simple
1505 * buffer instead of sg list.
1506 *
1507 * LOCKING:
1508 * None. Should be called with kernel context, might sleep.
1509 *
1510 * RETURNS:
1511 * Zero on success, AC_ERR_* mask on failure
1512 */
1513unsigned ata_exec_internal(struct ata_device *dev,
1514 struct ata_taskfile *tf, const u8 *cdb,
1515 int dma_dir, void *buf, unsigned int buflen)
1516{
33480a0e
TH
1517 struct scatterlist *psg = NULL, sg;
1518 unsigned int n_elem = 0;
2432697b 1519
33480a0e
TH
1520 if (dma_dir != DMA_NONE) {
1521 WARN_ON(!buf);
1522 sg_init_one(&sg, buf, buflen);
1523 psg = &sg;
1524 n_elem++;
1525 }
2432697b 1526
33480a0e 1527 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
2432697b
TH
1528}
1529
977e6b9f
TH
1530/**
1531 * ata_do_simple_cmd - execute simple internal command
1532 * @dev: Device to which the command is sent
1533 * @cmd: Opcode to execute
1534 *
1535 * Execute a 'simple' command, that only consists of the opcode
1536 * 'cmd' itself, without filling any other registers
1537 *
1538 * LOCKING:
1539 * Kernel thread context (may sleep).
1540 *
1541 * RETURNS:
1542 * Zero on success, AC_ERR_* mask on failure
e58eb583 1543 */
77b08fb5 1544unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1545{
1546 struct ata_taskfile tf;
e58eb583
TH
1547
1548 ata_tf_init(dev, &tf);
1549
1550 tf.command = cmd;
1551 tf.flags |= ATA_TFLAG_DEVICE;
1552 tf.protocol = ATA_PROT_NODATA;
1553
977e6b9f 1554 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
e58eb583
TH
1555}
1556
1bc4ccff
AC
1557/**
1558 * ata_pio_need_iordy - check if iordy needed
1559 * @adev: ATA device
1560 *
1561 * Check if the current speed of the device requires IORDY. Used
1562 * by various controllers for chip configuration.
1563 */
a617c09f 1564
1bc4ccff
AC
1565unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1566{
432729f0
AC
1567 /* Controller doesn't support IORDY. Probably a pointless check
1568 as the caller should know this */
1569 if (adev->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1570 return 0;
432729f0
AC
1571 /* PIO3 and higher it is mandatory */
1572 if (adev->pio_mode > XFER_PIO_2)
1573 return 1;
1574 /* We turn it on when possible */
1575 if (ata_id_has_iordy(adev->id))
1bc4ccff 1576 return 1;
432729f0
AC
1577 return 0;
1578}
2e9edbf8 1579
432729f0
AC
1580/**
1581 * ata_pio_mask_no_iordy - Return the non IORDY mask
1582 * @adev: ATA device
1583 *
1584 * Compute the highest mode possible if we are not using iordy. Return
1585 * -1 if no iordy mode is available.
1586 */
a617c09f 1587
432729f0
AC
1588static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1589{
1bc4ccff 1590 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1591 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1592 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1593 /* Is the speed faster than the drive allows non IORDY ? */
1594 if (pio) {
1595 /* This is cycle times not frequency - watch the logic! */
1596 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1597 return 3 << ATA_SHIFT_PIO;
1598 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1599 }
1600 }
432729f0 1601 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1602}
1603
1da177e4 1604/**
49016aca 1605 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1606 * @dev: target device
1607 * @p_class: pointer to class of the target device (may be changed)
bff04647 1608 * @flags: ATA_READID_* flags
fe635c7e 1609 * @id: buffer to read IDENTIFY data into
1da177e4 1610 *
49016aca
TH
1611 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1612 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1613 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1614 * for pre-ATA4 drives.
1da177e4
LT
1615 *
1616 * LOCKING:
49016aca
TH
1617 * Kernel thread context (may sleep)
1618 *
1619 * RETURNS:
1620 * 0 on success, -errno otherwise.
1da177e4 1621 */
a9beec95 1622int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1623 unsigned int flags, u16 *id)
1da177e4 1624{
3373efd8 1625 struct ata_port *ap = dev->ap;
49016aca 1626 unsigned int class = *p_class;
a0123703 1627 struct ata_taskfile tf;
49016aca
TH
1628 unsigned int err_mask = 0;
1629 const char *reason;
54936f8b 1630 int may_fallback = 1, tried_spinup = 0;
49016aca 1631 int rc;
1da177e4 1632
0dd4b21f 1633 if (ata_msg_ctl(ap))
44877b4e 1634 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1635
49016aca 1636 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
49016aca 1637 retry:
3373efd8 1638 ata_tf_init(dev, &tf);
a0123703 1639
49016aca
TH
1640 switch (class) {
1641 case ATA_DEV_ATA:
a0123703 1642 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1643 break;
1644 case ATA_DEV_ATAPI:
a0123703 1645 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1646 break;
1647 default:
1648 rc = -ENODEV;
1649 reason = "unsupported class";
1650 goto err_out;
1da177e4
LT
1651 }
1652
a0123703 1653 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1654
1655 /* Some devices choke if TF registers contain garbage. Make
1656 * sure those are properly initialized.
1657 */
1658 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1659
1660 /* Device presence detection is unreliable on some
1661 * controllers. Always poll IDENTIFY if available.
1662 */
1663 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1664
3373efd8 1665 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1666 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1667 if (err_mask) {
800b3996 1668 if (err_mask & AC_ERR_NODEV_HINT) {
55a8e2c8 1669 DPRINTK("ata%u.%d: NODEV after polling detection\n",
44877b4e 1670 ap->print_id, dev->devno);
55a8e2c8
TH
1671 return -ENOENT;
1672 }
1673
54936f8b
TH
1674 /* Device or controller might have reported the wrong
1675 * device class. Give a shot at the other IDENTIFY if
1676 * the current one is aborted by the device.
1677 */
1678 if (may_fallback &&
1679 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1680 may_fallback = 0;
1681
1682 if (class == ATA_DEV_ATA)
1683 class = ATA_DEV_ATAPI;
1684 else
1685 class = ATA_DEV_ATA;
1686 goto retry;
1687 }
1688
49016aca
TH
1689 rc = -EIO;
1690 reason = "I/O error";
1da177e4
LT
1691 goto err_out;
1692 }
1693
54936f8b
TH
1694 /* Falling back doesn't make sense if ID data was read
1695 * successfully at least once.
1696 */
1697 may_fallback = 0;
1698
49016aca 1699 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1700
49016aca 1701 /* sanity check */
a4f5749b 1702 rc = -EINVAL;
6070068b 1703 reason = "device reports invalid type";
a4f5749b
TH
1704
1705 if (class == ATA_DEV_ATA) {
1706 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1707 goto err_out;
1708 } else {
1709 if (ata_id_is_ata(id))
1710 goto err_out;
49016aca
TH
1711 }
1712
169439c2
ML
1713 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1714 tried_spinup = 1;
1715 /*
1716 * Drive powered-up in standby mode, and requires a specific
1717 * SET_FEATURES spin-up subcommand before it will accept
1718 * anything other than the original IDENTIFY command.
1719 */
1720 ata_tf_init(dev, &tf);
1721 tf.command = ATA_CMD_SET_FEATURES;
1722 tf.feature = SETFEATURES_SPINUP;
1723 tf.protocol = ATA_PROT_NODATA;
1724 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1725 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
fb0582f9 1726 if (err_mask && id[2] != 0x738c) {
169439c2
ML
1727 rc = -EIO;
1728 reason = "SPINUP failed";
1729 goto err_out;
1730 }
1731 /*
1732 * If the drive initially returned incomplete IDENTIFY info,
1733 * we now must reissue the IDENTIFY command.
1734 */
1735 if (id[2] == 0x37c8)
1736 goto retry;
1737 }
1738
bff04647 1739 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
1740 /*
1741 * The exact sequence expected by certain pre-ATA4 drives is:
1742 * SRST RESET
1743 * IDENTIFY
1744 * INITIALIZE DEVICE PARAMETERS
1745 * anything else..
1746 * Some drives were very specific about that exact sequence.
1747 */
1748 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1749 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1750 if (err_mask) {
1751 rc = -EIO;
1752 reason = "INIT_DEV_PARAMS failed";
1753 goto err_out;
1754 }
1755
1756 /* current CHS translation info (id[53-58]) might be
1757 * changed. reread the identify device info.
1758 */
bff04647 1759 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
1760 goto retry;
1761 }
1762 }
1763
1764 *p_class = class;
fe635c7e 1765
49016aca
TH
1766 return 0;
1767
1768 err_out:
88574551 1769 if (ata_msg_warn(ap))
0dd4b21f 1770 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 1771 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1772 return rc;
1773}
1774
3373efd8 1775static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1776{
3373efd8 1777 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1778}
1779
a6e6ce8e
TH
1780static void ata_dev_config_ncq(struct ata_device *dev,
1781 char *desc, size_t desc_sz)
1782{
1783 struct ata_port *ap = dev->ap;
1784 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1785
1786 if (!ata_id_has_ncq(dev->id)) {
1787 desc[0] = '\0';
1788 return;
1789 }
75683fe7 1790 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6
AC
1791 snprintf(desc, desc_sz, "NCQ (not used)");
1792 return;
1793 }
a6e6ce8e 1794 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 1795 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
1796 dev->flags |= ATA_DFLAG_NCQ;
1797 }
1798
1799 if (hdepth >= ddepth)
1800 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1801 else
1802 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1803}
1804
49016aca 1805/**
ffeae418 1806 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
1807 * @dev: Target device to configure
1808 *
1809 * Configure @dev according to @dev->id. Generic and low-level
1810 * driver specific fixups are also applied.
49016aca
TH
1811 *
1812 * LOCKING:
ffeae418
TH
1813 * Kernel thread context (may sleep)
1814 *
1815 * RETURNS:
1816 * 0 on success, -errno otherwise
49016aca 1817 */
efdaedc4 1818int ata_dev_configure(struct ata_device *dev)
49016aca 1819{
3373efd8 1820 struct ata_port *ap = dev->ap;
6746544c
TH
1821 struct ata_eh_context *ehc = &ap->eh_context;
1822 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 1823 const u16 *id = dev->id;
ff8854b2 1824 unsigned int xfer_mask;
b352e57d 1825 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
1826 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1827 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 1828 int rc;
49016aca 1829
0dd4b21f 1830 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e
TH
1831 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1832 __FUNCTION__);
ffeae418 1833 return 0;
49016aca
TH
1834 }
1835
0dd4b21f 1836 if (ata_msg_probe(ap))
44877b4e 1837 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1838
75683fe7
TH
1839 /* set horkage */
1840 dev->horkage |= ata_dev_blacklisted(dev);
1841
6746544c
TH
1842 /* let ACPI work its magic */
1843 rc = ata_acpi_on_devcfg(dev);
1844 if (rc)
1845 return rc;
08573a86 1846
c39f5ebe 1847 /* print device capabilities */
0dd4b21f 1848 if (ata_msg_probe(ap))
88574551
TH
1849 ata_dev_printk(dev, KERN_DEBUG,
1850 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1851 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 1852 __FUNCTION__,
f15a1daf
TH
1853 id[49], id[82], id[83], id[84],
1854 id[85], id[86], id[87], id[88]);
c39f5ebe 1855
208a9933 1856 /* initialize to-be-configured parameters */
ea1dd4e1 1857 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1858 dev->max_sectors = 0;
1859 dev->cdb_len = 0;
1860 dev->n_sectors = 0;
1861 dev->cylinders = 0;
1862 dev->heads = 0;
1863 dev->sectors = 0;
1864
1da177e4
LT
1865 /*
1866 * common ATA, ATAPI feature tests
1867 */
1868
ff8854b2 1869 /* find max transfer mode; for printk only */
1148c3a7 1870 xfer_mask = ata_id_xfermask(id);
1da177e4 1871
0dd4b21f
BP
1872 if (ata_msg_probe(ap))
1873 ata_dump_id(id);
1da177e4 1874
ef143d57
AL
1875 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1876 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1877 sizeof(fwrevbuf));
1878
1879 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1880 sizeof(modelbuf));
1881
1da177e4
LT
1882 /* ATA-specific feature tests */
1883 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
1884 if (ata_id_is_cfa(id)) {
1885 if (id[162] & 1) /* CPRM may make this media unusable */
44877b4e
TH
1886 ata_dev_printk(dev, KERN_WARNING,
1887 "supports DRM functions and may "
1888 "not be fully accessable.\n");
b352e57d
AC
1889 snprintf(revbuf, 7, "CFA");
1890 }
1891 else
1892 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1893
1148c3a7 1894 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1895
3f64f565
EM
1896 if (dev->id[59] & 0x100)
1897 dev->multi_count = dev->id[59] & 0xff;
1898
1148c3a7 1899 if (ata_id_has_lba(id)) {
4c2d721a 1900 const char *lba_desc;
a6e6ce8e 1901 char ncq_desc[20];
8bf62ece 1902
4c2d721a
TH
1903 lba_desc = "LBA";
1904 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1905 if (ata_id_has_lba48(id)) {
8bf62ece 1906 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 1907 lba_desc = "LBA48";
6fc49adb
TH
1908
1909 if (dev->n_sectors >= (1UL << 28) &&
1910 ata_id_has_flush_ext(id))
1911 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 1912 }
8bf62ece 1913
1e999736
AC
1914 if (ata_id_hpa_enabled(dev->id))
1915 dev->n_sectors = ata_hpa_resize(dev);
1916
a6e6ce8e
TH
1917 /* config NCQ */
1918 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1919
8bf62ece 1920 /* print device info to dmesg */
3f64f565
EM
1921 if (ata_msg_drv(ap) && print_info) {
1922 ata_dev_printk(dev, KERN_INFO,
1923 "%s: %s, %s, max %s\n",
1924 revbuf, modelbuf, fwrevbuf,
1925 ata_mode_string(xfer_mask));
1926 ata_dev_printk(dev, KERN_INFO,
1927 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 1928 (unsigned long long)dev->n_sectors,
3f64f565
EM
1929 dev->multi_count, lba_desc, ncq_desc);
1930 }
ffeae418 1931 } else {
8bf62ece
AL
1932 /* CHS */
1933
1934 /* Default translation */
1148c3a7
TH
1935 dev->cylinders = id[1];
1936 dev->heads = id[3];
1937 dev->sectors = id[6];
8bf62ece 1938
1148c3a7 1939 if (ata_id_current_chs_valid(id)) {
8bf62ece 1940 /* Current CHS translation is valid. */
1148c3a7
TH
1941 dev->cylinders = id[54];
1942 dev->heads = id[55];
1943 dev->sectors = id[56];
8bf62ece
AL
1944 }
1945
1946 /* print device info to dmesg */
3f64f565 1947 if (ata_msg_drv(ap) && print_info) {
88574551 1948 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
1949 "%s: %s, %s, max %s\n",
1950 revbuf, modelbuf, fwrevbuf,
1951 ata_mode_string(xfer_mask));
a84471fe 1952 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
1953 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1954 (unsigned long long)dev->n_sectors,
1955 dev->multi_count, dev->cylinders,
1956 dev->heads, dev->sectors);
1957 }
07f6f7d0
AL
1958 }
1959
6e7846e9 1960 dev->cdb_len = 16;
1da177e4
LT
1961 }
1962
1963 /* ATAPI-specific feature tests */
2c13b7ce 1964 else if (dev->class == ATA_DEV_ATAPI) {
08a556db
AL
1965 char *cdb_intr_string = "";
1966
1148c3a7 1967 rc = atapi_cdb_len(id);
1da177e4 1968 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 1969 if (ata_msg_warn(ap))
88574551
TH
1970 ata_dev_printk(dev, KERN_WARNING,
1971 "unsupported CDB len\n");
ffeae418 1972 rc = -EINVAL;
1da177e4
LT
1973 goto err_out_nosup;
1974 }
6e7846e9 1975 dev->cdb_len = (unsigned int) rc;
1da177e4 1976
08a556db 1977 if (ata_id_cdb_intr(dev->id)) {
312f7da2 1978 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
1979 cdb_intr_string = ", CDB intr";
1980 }
312f7da2 1981
1da177e4 1982 /* print device info to dmesg */
5afc8142 1983 if (ata_msg_drv(ap) && print_info)
ef143d57
AL
1984 ata_dev_printk(dev, KERN_INFO,
1985 "ATAPI: %s, %s, max %s%s\n",
1986 modelbuf, fwrevbuf,
12436c30
TH
1987 ata_mode_string(xfer_mask),
1988 cdb_intr_string);
1da177e4
LT
1989 }
1990
914ed354
TH
1991 /* determine max_sectors */
1992 dev->max_sectors = ATA_MAX_SECTORS;
1993 if (dev->flags & ATA_DFLAG_LBA48)
1994 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1995
93590859
AC
1996 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1997 /* Let the user know. We don't want to disallow opens for
1998 rescue purposes, or in case the vendor is just a blithering
1999 idiot */
2000 if (print_info) {
2001 ata_dev_printk(dev, KERN_WARNING,
2002"Drive reports diagnostics failure. This may indicate a drive\n");
2003 ata_dev_printk(dev, KERN_WARNING,
2004"fault or invalid emulation. Contact drive vendor for information.\n");
2005 }
2006 }
2007
4b2f3ede 2008 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 2009 if (ata_dev_knobble(dev)) {
5afc8142 2010 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2011 ata_dev_printk(dev, KERN_INFO,
2012 "applying bridge limits\n");
5a529139 2013 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2014 dev->max_sectors = ATA_MAX_SECTORS;
2015 }
2016
75683fe7 2017 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2018 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2019 dev->max_sectors);
18d6e9d5 2020
4b2f3ede 2021 if (ap->ops->dev_config)
cd0d3bbc 2022 ap->ops->dev_config(dev);
4b2f3ede 2023
0dd4b21f
BP
2024 if (ata_msg_probe(ap))
2025 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2026 __FUNCTION__, ata_chk_status(ap));
ffeae418 2027 return 0;
1da177e4
LT
2028
2029err_out_nosup:
0dd4b21f 2030 if (ata_msg_probe(ap))
88574551
TH
2031 ata_dev_printk(dev, KERN_DEBUG,
2032 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 2033 return rc;
1da177e4
LT
2034}
2035
be0d18df 2036/**
2e41e8e6 2037 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2038 * @ap: port
2039 *
2e41e8e6 2040 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2041 * detection.
2042 */
2043
2044int ata_cable_40wire(struct ata_port *ap)
2045{
2046 return ATA_CBL_PATA40;
2047}
2048
2049/**
2e41e8e6 2050 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2051 * @ap: port
2052 *
2e41e8e6 2053 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2054 * detection.
2055 */
2056
2057int ata_cable_80wire(struct ata_port *ap)
2058{
2059 return ATA_CBL_PATA80;
2060}
2061
2062/**
2063 * ata_cable_unknown - return unknown PATA cable.
2064 * @ap: port
2065 *
2066 * Helper method for drivers which have no PATA cable detection.
2067 */
2068
2069int ata_cable_unknown(struct ata_port *ap)
2070{
2071 return ATA_CBL_PATA_UNK;
2072}
2073
2074/**
2075 * ata_cable_sata - return SATA cable type
2076 * @ap: port
2077 *
2078 * Helper method for drivers which have SATA cables
2079 */
2080
2081int ata_cable_sata(struct ata_port *ap)
2082{
2083 return ATA_CBL_SATA;
2084}
2085
1da177e4
LT
2086/**
2087 * ata_bus_probe - Reset and probe ATA bus
2088 * @ap: Bus to probe
2089 *
0cba632b
JG
2090 * Master ATA bus probing function. Initiates a hardware-dependent
2091 * bus reset, then attempts to identify any devices found on
2092 * the bus.
2093 *
1da177e4 2094 * LOCKING:
0cba632b 2095 * PCI/etc. bus probe sem.
1da177e4
LT
2096 *
2097 * RETURNS:
96072e69 2098 * Zero on success, negative errno otherwise.
1da177e4
LT
2099 */
2100
80289167 2101int ata_bus_probe(struct ata_port *ap)
1da177e4 2102{
28ca5c57 2103 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2104 int tries[ATA_MAX_DEVICES];
4ae72a1e 2105 int i, rc;
e82cbdb9 2106 struct ata_device *dev;
1da177e4 2107
28ca5c57 2108 ata_port_probe(ap);
c19ba8af 2109
14d2bac1
TH
2110 for (i = 0; i < ATA_MAX_DEVICES; i++)
2111 tries[i] = ATA_PROBE_MAX_TRIES;
2112
2113 retry:
2044470c 2114 /* reset and determine device classes */
52783c5d 2115 ap->ops->phy_reset(ap);
2061a47a 2116
52783c5d
TH
2117 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2118 dev = &ap->device[i];
c19ba8af 2119
52783c5d
TH
2120 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2121 dev->class != ATA_DEV_UNKNOWN)
2122 classes[dev->devno] = dev->class;
2123 else
2124 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2125
52783c5d 2126 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2127 }
1da177e4 2128
52783c5d 2129 ata_port_probe(ap);
2044470c 2130
b6079ca4
AC
2131 /* after the reset the device state is PIO 0 and the controller
2132 state is undefined. Record the mode */
2133
2134 for (i = 0; i < ATA_MAX_DEVICES; i++)
2135 ap->device[i].pio_mode = XFER_PIO_0;
2136
f31f0cc2
JG
2137 /* read IDENTIFY page and configure devices. We have to do the identify
2138 specific sequence bass-ackwards so that PDIAG- is released by
2139 the slave device */
2140
2141 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) {
e82cbdb9 2142 dev = &ap->device[i];
28ca5c57 2143
ec573755
TH
2144 if (tries[i])
2145 dev->class = classes[i];
ffeae418 2146
14d2bac1 2147 if (!ata_dev_enabled(dev))
ffeae418 2148 continue;
ffeae418 2149
bff04647
TH
2150 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2151 dev->id);
14d2bac1
TH
2152 if (rc)
2153 goto fail;
f31f0cc2
JG
2154 }
2155
be0d18df
AC
2156 /* Now ask for the cable type as PDIAG- should have been released */
2157 if (ap->ops->cable_detect)
2158 ap->cbl = ap->ops->cable_detect(ap);
2159
f31f0cc2
JG
2160 /* After the identify sequence we can now set up the devices. We do
2161 this in the normal order so that the user doesn't get confused */
2162
2163 for(i = 0; i < ATA_MAX_DEVICES; i++) {
2164 dev = &ap->device[i];
2165 if (!ata_dev_enabled(dev))
2166 continue;
14d2bac1 2167
efdaedc4
TH
2168 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
2169 rc = ata_dev_configure(dev);
2170 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2171 if (rc)
2172 goto fail;
1da177e4
LT
2173 }
2174
e82cbdb9 2175 /* configure transfer mode */
3adcebb2 2176 rc = ata_set_mode(ap, &dev);
4ae72a1e 2177 if (rc)
51713d35 2178 goto fail;
1da177e4 2179
e82cbdb9
TH
2180 for (i = 0; i < ATA_MAX_DEVICES; i++)
2181 if (ata_dev_enabled(&ap->device[i]))
2182 return 0;
1da177e4 2183
e82cbdb9
TH
2184 /* no device present, disable port */
2185 ata_port_disable(ap);
1da177e4 2186 ap->ops->port_disable(ap);
96072e69 2187 return -ENODEV;
14d2bac1
TH
2188
2189 fail:
4ae72a1e
TH
2190 tries[dev->devno]--;
2191
14d2bac1
TH
2192 switch (rc) {
2193 case -EINVAL:
4ae72a1e 2194 /* eeek, something went very wrong, give up */
14d2bac1
TH
2195 tries[dev->devno] = 0;
2196 break;
4ae72a1e
TH
2197
2198 case -ENODEV:
2199 /* give it just one more chance */
2200 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2201 case -EIO:
4ae72a1e
TH
2202 if (tries[dev->devno] == 1) {
2203 /* This is the last chance, better to slow
2204 * down than lose it.
2205 */
2206 sata_down_spd_limit(ap);
2207 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2208 }
14d2bac1
TH
2209 }
2210
4ae72a1e 2211 if (!tries[dev->devno])
3373efd8 2212 ata_dev_disable(dev);
ec573755 2213
14d2bac1 2214 goto retry;
1da177e4
LT
2215}
2216
2217/**
0cba632b
JG
2218 * ata_port_probe - Mark port as enabled
2219 * @ap: Port for which we indicate enablement
1da177e4 2220 *
0cba632b
JG
2221 * Modify @ap data structure such that the system
2222 * thinks that the entire port is enabled.
2223 *
cca3974e 2224 * LOCKING: host lock, or some other form of
0cba632b 2225 * serialization.
1da177e4
LT
2226 */
2227
2228void ata_port_probe(struct ata_port *ap)
2229{
198e0fed 2230 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
2231}
2232
3be680b7
TH
2233/**
2234 * sata_print_link_status - Print SATA link status
2235 * @ap: SATA port to printk link status about
2236 *
2237 * This function prints link speed and status of a SATA link.
2238 *
2239 * LOCKING:
2240 * None.
2241 */
43727fbc 2242void sata_print_link_status(struct ata_port *ap)
3be680b7 2243{
6d5f9732 2244 u32 sstatus, scontrol, tmp;
3be680b7 2245
81952c54 2246 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
3be680b7 2247 return;
81952c54 2248 sata_scr_read(ap, SCR_CONTROL, &scontrol);
3be680b7 2249
81952c54 2250 if (ata_port_online(ap)) {
3be680b7 2251 tmp = (sstatus >> 4) & 0xf;
f15a1daf
TH
2252 ata_port_printk(ap, KERN_INFO,
2253 "SATA link up %s (SStatus %X SControl %X)\n",
2254 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2255 } else {
f15a1daf
TH
2256 ata_port_printk(ap, KERN_INFO,
2257 "SATA link down (SStatus %X SControl %X)\n",
2258 sstatus, scontrol);
3be680b7
TH
2259 }
2260}
2261
1da177e4 2262/**
780a87f7
JG
2263 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2264 * @ap: SATA port associated with target SATA PHY.
1da177e4 2265 *
780a87f7
JG
2266 * This function issues commands to standard SATA Sxxx
2267 * PHY registers, to wake up the phy (and device), and
2268 * clear any reset condition.
1da177e4
LT
2269 *
2270 * LOCKING:
0cba632b 2271 * PCI/etc. bus probe sem.
1da177e4
LT
2272 *
2273 */
2274void __sata_phy_reset(struct ata_port *ap)
2275{
2276 u32 sstatus;
2277 unsigned long timeout = jiffies + (HZ * 5);
2278
2279 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 2280 /* issue phy wake/reset */
81952c54 2281 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
2282 /* Couldn't find anything in SATA I/II specs, but
2283 * AHCI-1.1 10.4.2 says at least 1 ms. */
2284 mdelay(1);
1da177e4 2285 }
81952c54
TH
2286 /* phy wake/clear reset */
2287 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1da177e4
LT
2288
2289 /* wait for phy to become ready, if necessary */
2290 do {
2291 msleep(200);
81952c54 2292 sata_scr_read(ap, SCR_STATUS, &sstatus);
1da177e4
LT
2293 if ((sstatus & 0xf) != 1)
2294 break;
2295 } while (time_before(jiffies, timeout));
2296
3be680b7
TH
2297 /* print link status */
2298 sata_print_link_status(ap);
656563e3 2299
3be680b7 2300 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 2301 if (!ata_port_offline(ap))
1da177e4 2302 ata_port_probe(ap);
3be680b7 2303 else
1da177e4 2304 ata_port_disable(ap);
1da177e4 2305
198e0fed 2306 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2307 return;
2308
2309 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2310 ata_port_disable(ap);
2311 return;
2312 }
2313
2314 ap->cbl = ATA_CBL_SATA;
2315}
2316
2317/**
780a87f7
JG
2318 * sata_phy_reset - Reset SATA bus.
2319 * @ap: SATA port associated with target SATA PHY.
1da177e4 2320 *
780a87f7
JG
2321 * This function resets the SATA bus, and then probes
2322 * the bus for devices.
1da177e4
LT
2323 *
2324 * LOCKING:
0cba632b 2325 * PCI/etc. bus probe sem.
1da177e4
LT
2326 *
2327 */
2328void sata_phy_reset(struct ata_port *ap)
2329{
2330 __sata_phy_reset(ap);
198e0fed 2331 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2332 return;
2333 ata_bus_reset(ap);
2334}
2335
ebdfca6e
AC
2336/**
2337 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2338 * @adev: device
2339 *
2340 * Obtain the other device on the same cable, or if none is
2341 * present NULL is returned
2342 */
2e9edbf8 2343
3373efd8 2344struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2345{
3373efd8 2346 struct ata_port *ap = adev->ap;
ebdfca6e 2347 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 2348 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2349 return NULL;
2350 return pair;
2351}
2352
1da177e4 2353/**
780a87f7
JG
2354 * ata_port_disable - Disable port.
2355 * @ap: Port to be disabled.
1da177e4 2356 *
780a87f7
JG
2357 * Modify @ap data structure such that the system
2358 * thinks that the entire port is disabled, and should
2359 * never attempt to probe or communicate with devices
2360 * on this port.
2361 *
cca3974e 2362 * LOCKING: host lock, or some other form of
780a87f7 2363 * serialization.
1da177e4
LT
2364 */
2365
2366void ata_port_disable(struct ata_port *ap)
2367{
2368 ap->device[0].class = ATA_DEV_NONE;
2369 ap->device[1].class = ATA_DEV_NONE;
198e0fed 2370 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2371}
2372
1c3fae4d 2373/**
3c567b7d 2374 * sata_down_spd_limit - adjust SATA spd limit downward
1c3fae4d
TH
2375 * @ap: Port to adjust SATA spd limit for
2376 *
2377 * Adjust SATA spd limit of @ap downward. Note that this
2378 * function only adjusts the limit. The change must be applied
3c567b7d 2379 * using sata_set_spd().
1c3fae4d
TH
2380 *
2381 * LOCKING:
2382 * Inherited from caller.
2383 *
2384 * RETURNS:
2385 * 0 on success, negative errno on failure
2386 */
3c567b7d 2387int sata_down_spd_limit(struct ata_port *ap)
1c3fae4d 2388{
81952c54
TH
2389 u32 sstatus, spd, mask;
2390 int rc, highbit;
1c3fae4d 2391
008a7896
TH
2392 if (!sata_scr_valid(ap))
2393 return -EOPNOTSUPP;
2394
2395 /* If SCR can be read, use it to determine the current SPD.
2396 * If not, use cached value in ap->sata_spd.
2397 */
81952c54 2398 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
008a7896
TH
2399 if (rc == 0)
2400 spd = (sstatus >> 4) & 0xf;
2401 else
2402 spd = ap->sata_spd;
1c3fae4d
TH
2403
2404 mask = ap->sata_spd_limit;
2405 if (mask <= 1)
2406 return -EINVAL;
008a7896
TH
2407
2408 /* unconditionally mask off the highest bit */
1c3fae4d
TH
2409 highbit = fls(mask) - 1;
2410 mask &= ~(1 << highbit);
2411
008a7896
TH
2412 /* Mask off all speeds higher than or equal to the current
2413 * one. Force 1.5Gbps if current SPD is not available.
2414 */
2415 if (spd > 1)
2416 mask &= (1 << (spd - 1)) - 1;
2417 else
2418 mask &= 1;
2419
2420 /* were we already at the bottom? */
1c3fae4d
TH
2421 if (!mask)
2422 return -EINVAL;
2423
2424 ap->sata_spd_limit = mask;
2425
f15a1daf
TH
2426 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2427 sata_spd_string(fls(mask)));
1c3fae4d
TH
2428
2429 return 0;
2430}
2431
3c567b7d 2432static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1c3fae4d
TH
2433{
2434 u32 spd, limit;
2435
2436 if (ap->sata_spd_limit == UINT_MAX)
2437 limit = 0;
2438 else
2439 limit = fls(ap->sata_spd_limit);
2440
2441 spd = (*scontrol >> 4) & 0xf;
2442 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2443
2444 return spd != limit;
2445}
2446
2447/**
3c567b7d 2448 * sata_set_spd_needed - is SATA spd configuration needed
1c3fae4d
TH
2449 * @ap: Port in question
2450 *
2451 * Test whether the spd limit in SControl matches
2452 * @ap->sata_spd_limit. This function is used to determine
2453 * whether hardreset is necessary to apply SATA spd
2454 * configuration.
2455 *
2456 * LOCKING:
2457 * Inherited from caller.
2458 *
2459 * RETURNS:
2460 * 1 if SATA spd configuration is needed, 0 otherwise.
2461 */
3c567b7d 2462int sata_set_spd_needed(struct ata_port *ap)
1c3fae4d
TH
2463{
2464 u32 scontrol;
2465
81952c54 2466 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1c3fae4d
TH
2467 return 0;
2468
3c567b7d 2469 return __sata_set_spd_needed(ap, &scontrol);
1c3fae4d
TH
2470}
2471
2472/**
3c567b7d 2473 * sata_set_spd - set SATA spd according to spd limit
1c3fae4d
TH
2474 * @ap: Port to set SATA spd for
2475 *
2476 * Set SATA spd of @ap according to sata_spd_limit.
2477 *
2478 * LOCKING:
2479 * Inherited from caller.
2480 *
2481 * RETURNS:
2482 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2483 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2484 */
3c567b7d 2485int sata_set_spd(struct ata_port *ap)
1c3fae4d
TH
2486{
2487 u32 scontrol;
81952c54 2488 int rc;
1c3fae4d 2489
81952c54
TH
2490 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2491 return rc;
1c3fae4d 2492
3c567b7d 2493 if (!__sata_set_spd_needed(ap, &scontrol))
1c3fae4d
TH
2494 return 0;
2495
81952c54
TH
2496 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2497 return rc;
2498
1c3fae4d
TH
2499 return 1;
2500}
2501
452503f9
AC
2502/*
2503 * This mode timing computation functionality is ported over from
2504 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2505 */
2506/*
b352e57d 2507 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2508 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2509 * for UDMA6, which is currently supported only by Maxtor drives.
2510 *
2511 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2512 */
2513
2514static const struct ata_timing ata_timing[] = {
2515
2516 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2517 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2518 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2519 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2520
b352e57d
AC
2521 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2522 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
452503f9
AC
2523 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2524 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2525 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2526
2527/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 2528
452503f9
AC
2529 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2530 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2531 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 2532
452503f9
AC
2533 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2534 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2535 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2536
b352e57d
AC
2537 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2538 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
452503f9
AC
2539 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2540 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2541
2542 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2543 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2544 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2545
2546/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2547
2548 { 0xFF }
2549};
2550
2551#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2552#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2553
2554static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2555{
2556 q->setup = EZ(t->setup * 1000, T);
2557 q->act8b = EZ(t->act8b * 1000, T);
2558 q->rec8b = EZ(t->rec8b * 1000, T);
2559 q->cyc8b = EZ(t->cyc8b * 1000, T);
2560 q->active = EZ(t->active * 1000, T);
2561 q->recover = EZ(t->recover * 1000, T);
2562 q->cycle = EZ(t->cycle * 1000, T);
2563 q->udma = EZ(t->udma * 1000, UT);
2564}
2565
2566void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2567 struct ata_timing *m, unsigned int what)
2568{
2569 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2570 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2571 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2572 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2573 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2574 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2575 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2576 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2577}
2578
2579static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2580{
2581 const struct ata_timing *t;
2582
2583 for (t = ata_timing; t->mode != speed; t++)
91190758 2584 if (t->mode == 0xFF)
452503f9 2585 return NULL;
2e9edbf8 2586 return t;
452503f9
AC
2587}
2588
2589int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2590 struct ata_timing *t, int T, int UT)
2591{
2592 const struct ata_timing *s;
2593 struct ata_timing p;
2594
2595 /*
2e9edbf8 2596 * Find the mode.
75b1f2f8 2597 */
452503f9
AC
2598
2599 if (!(s = ata_timing_find_mode(speed)))
2600 return -EINVAL;
2601
75b1f2f8
AL
2602 memcpy(t, s, sizeof(*s));
2603
452503f9
AC
2604 /*
2605 * If the drive is an EIDE drive, it can tell us it needs extended
2606 * PIO/MW_DMA cycle timing.
2607 */
2608
2609 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2610 memset(&p, 0, sizeof(p));
2611 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2612 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2613 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2614 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2615 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2616 }
2617 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2618 }
2619
2620 /*
2621 * Convert the timing to bus clock counts.
2622 */
2623
75b1f2f8 2624 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2625
2626 /*
c893a3ae
RD
2627 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2628 * S.M.A.R.T * and some other commands. We have to ensure that the
2629 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2630 */
2631
fd3367af 2632 if (speed > XFER_PIO_6) {
452503f9
AC
2633 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2634 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2635 }
2636
2637 /*
c893a3ae 2638 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2639 */
2640
2641 if (t->act8b + t->rec8b < t->cyc8b) {
2642 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2643 t->rec8b = t->cyc8b - t->act8b;
2644 }
2645
2646 if (t->active + t->recover < t->cycle) {
2647 t->active += (t->cycle - (t->active + t->recover)) / 2;
2648 t->recover = t->cycle - t->active;
2649 }
a617c09f 2650
4f701d1e
AC
2651 /* In a few cases quantisation may produce enough errors to
2652 leave t->cycle too low for the sum of active and recovery
2653 if so we must correct this */
2654 if (t->active + t->recover > t->cycle)
2655 t->cycle = t->active + t->recover;
452503f9
AC
2656
2657 return 0;
2658}
2659
cf176e1a
TH
2660/**
2661 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 2662 * @dev: Device to adjust xfer masks
458337db 2663 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
2664 *
2665 * Adjust xfer masks of @dev downward. Note that this function
2666 * does not apply the change. Invoking ata_set_mode() afterwards
2667 * will apply the limit.
2668 *
2669 * LOCKING:
2670 * Inherited from caller.
2671 *
2672 * RETURNS:
2673 * 0 on success, negative errno on failure
2674 */
458337db 2675int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 2676{
458337db
TH
2677 char buf[32];
2678 unsigned int orig_mask, xfer_mask;
2679 unsigned int pio_mask, mwdma_mask, udma_mask;
2680 int quiet, highbit;
cf176e1a 2681
458337db
TH
2682 quiet = !!(sel & ATA_DNXFER_QUIET);
2683 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 2684
458337db
TH
2685 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2686 dev->mwdma_mask,
2687 dev->udma_mask);
2688 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 2689
458337db
TH
2690 switch (sel) {
2691 case ATA_DNXFER_PIO:
2692 highbit = fls(pio_mask) - 1;
2693 pio_mask &= ~(1 << highbit);
2694 break;
2695
2696 case ATA_DNXFER_DMA:
2697 if (udma_mask) {
2698 highbit = fls(udma_mask) - 1;
2699 udma_mask &= ~(1 << highbit);
2700 if (!udma_mask)
2701 return -ENOENT;
2702 } else if (mwdma_mask) {
2703 highbit = fls(mwdma_mask) - 1;
2704 mwdma_mask &= ~(1 << highbit);
2705 if (!mwdma_mask)
2706 return -ENOENT;
2707 }
2708 break;
2709
2710 case ATA_DNXFER_40C:
2711 udma_mask &= ATA_UDMA_MASK_40C;
2712 break;
2713
2714 case ATA_DNXFER_FORCE_PIO0:
2715 pio_mask &= 1;
2716 case ATA_DNXFER_FORCE_PIO:
2717 mwdma_mask = 0;
2718 udma_mask = 0;
2719 break;
2720
458337db
TH
2721 default:
2722 BUG();
2723 }
2724
2725 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2726
2727 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2728 return -ENOENT;
2729
2730 if (!quiet) {
2731 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2732 snprintf(buf, sizeof(buf), "%s:%s",
2733 ata_mode_string(xfer_mask),
2734 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2735 else
2736 snprintf(buf, sizeof(buf), "%s",
2737 ata_mode_string(xfer_mask));
2738
2739 ata_dev_printk(dev, KERN_WARNING,
2740 "limiting speed to %s\n", buf);
2741 }
cf176e1a
TH
2742
2743 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2744 &dev->udma_mask);
2745
cf176e1a 2746 return 0;
cf176e1a
TH
2747}
2748
3373efd8 2749static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2750{
baa1e78a 2751 struct ata_eh_context *ehc = &dev->ap->eh_context;
83206a29
TH
2752 unsigned int err_mask;
2753 int rc;
1da177e4 2754
e8384607 2755 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2756 if (dev->xfer_shift == ATA_SHIFT_PIO)
2757 dev->flags |= ATA_DFLAG_PIO;
2758
3373efd8 2759 err_mask = ata_dev_set_xfermode(dev);
11750a40
A
2760 /* Old CFA may refuse this command, which is just fine */
2761 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2762 err_mask &= ~AC_ERR_DEV;
2763
83206a29 2764 if (err_mask) {
f15a1daf
TH
2765 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2766 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2767 return -EIO;
2768 }
1da177e4 2769
baa1e78a 2770 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3373efd8 2771 rc = ata_dev_revalidate(dev, 0);
baa1e78a 2772 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
5eb45c02 2773 if (rc)
83206a29 2774 return rc;
48a8a14f 2775
23e71c3d
TH
2776 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2777 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2778
f15a1daf
TH
2779 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2780 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2781 return 0;
1da177e4
LT
2782}
2783
1da177e4 2784/**
04351821 2785 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
1da177e4 2786 * @ap: port on which timings will be programmed
e82cbdb9 2787 * @r_failed_dev: out paramter for failed device
1da177e4 2788 *
04351821
A
2789 * Standard implementation of the function used to tune and set
2790 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2791 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 2792 * returned in @r_failed_dev.
780a87f7 2793 *
1da177e4 2794 * LOCKING:
0cba632b 2795 * PCI/etc. bus probe sem.
e82cbdb9
TH
2796 *
2797 * RETURNS:
2798 * 0 on success, negative errno otherwise
1da177e4 2799 */
04351821
A
2800
2801int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 2802{
e8e0619f 2803 struct ata_device *dev;
e82cbdb9 2804 int i, rc = 0, used_dma = 0, found = 0;
1da177e4 2805
3adcebb2 2806
a6d5a51c
TH
2807 /* step 1: calculate xfer_mask */
2808 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 2809 unsigned int pio_mask, dma_mask;
a6d5a51c 2810
e8e0619f
TH
2811 dev = &ap->device[i];
2812
e1211e3f 2813 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2814 continue;
2815
3373efd8 2816 ata_dev_xfermask(dev);
1da177e4 2817
acf356b1
TH
2818 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2819 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2820 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2821 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2822
4f65977d 2823 found = 1;
5444a6f4
AC
2824 if (dev->dma_mode)
2825 used_dma = 1;
a6d5a51c 2826 }
4f65977d 2827 if (!found)
e82cbdb9 2828 goto out;
a6d5a51c
TH
2829
2830 /* step 2: always set host PIO timings */
e8e0619f
TH
2831 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2832 dev = &ap->device[i];
2833 if (!ata_dev_enabled(dev))
2834 continue;
2835
2836 if (!dev->pio_mode) {
f15a1daf 2837 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2838 rc = -EINVAL;
e82cbdb9 2839 goto out;
e8e0619f
TH
2840 }
2841
2842 dev->xfer_mode = dev->pio_mode;
2843 dev->xfer_shift = ATA_SHIFT_PIO;
2844 if (ap->ops->set_piomode)
2845 ap->ops->set_piomode(ap, dev);
2846 }
1da177e4 2847
a6d5a51c 2848 /* step 3: set host DMA timings */
e8e0619f
TH
2849 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2850 dev = &ap->device[i];
2851
2852 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2853 continue;
2854
2855 dev->xfer_mode = dev->dma_mode;
2856 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2857 if (ap->ops->set_dmamode)
2858 ap->ops->set_dmamode(ap, dev);
2859 }
1da177e4
LT
2860
2861 /* step 4: update devices' xfer mode */
83206a29 2862 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 2863 dev = &ap->device[i];
1da177e4 2864
18d90deb 2865 /* don't update suspended devices' xfer mode */
9666f400 2866 if (!ata_dev_enabled(dev))
83206a29
TH
2867 continue;
2868
3373efd8 2869 rc = ata_dev_set_mode(dev);
5bbc53f4 2870 if (rc)
e82cbdb9 2871 goto out;
83206a29 2872 }
1da177e4 2873
e8e0619f
TH
2874 /* Record simplex status. If we selected DMA then the other
2875 * host channels are not permitted to do so.
5444a6f4 2876 */
cca3974e 2877 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 2878 ap->host->simplex_claimed = ap;
5444a6f4 2879
e82cbdb9
TH
2880 out:
2881 if (rc)
2882 *r_failed_dev = dev;
2883 return rc;
1da177e4
LT
2884}
2885
04351821
A
2886/**
2887 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2888 * @ap: port on which timings will be programmed
2889 * @r_failed_dev: out paramter for failed device
2890 *
2891 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2892 * ata_set_mode() fails, pointer to the failing device is
2893 * returned in @r_failed_dev.
2894 *
2895 * LOCKING:
2896 * PCI/etc. bus probe sem.
2897 *
2898 * RETURNS:
2899 * 0 on success, negative errno otherwise
2900 */
2901int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2902{
2903 /* has private set_mode? */
2904 if (ap->ops->set_mode)
2905 return ap->ops->set_mode(ap, r_failed_dev);
2906 return ata_do_set_mode(ap, r_failed_dev);
2907}
2908
1fdffbce
JG
2909/**
2910 * ata_tf_to_host - issue ATA taskfile to host controller
2911 * @ap: port to which command is being issued
2912 * @tf: ATA taskfile register set
2913 *
2914 * Issues ATA taskfile register set to ATA host controller,
2915 * with proper synchronization with interrupt handler and
2916 * other threads.
2917 *
2918 * LOCKING:
cca3974e 2919 * spin_lock_irqsave(host lock)
1fdffbce
JG
2920 */
2921
2922static inline void ata_tf_to_host(struct ata_port *ap,
2923 const struct ata_taskfile *tf)
2924{
2925 ap->ops->tf_load(ap, tf);
2926 ap->ops->exec_command(ap, tf);
2927}
2928
1da177e4
LT
2929/**
2930 * ata_busy_sleep - sleep until BSY clears, or timeout
2931 * @ap: port containing status register to be polled
2932 * @tmout_pat: impatience timeout
2933 * @tmout: overall timeout
2934 *
780a87f7
JG
2935 * Sleep until ATA Status register bit BSY clears,
2936 * or a timeout occurs.
2937 *
d1adc1bb
TH
2938 * LOCKING:
2939 * Kernel thread context (may sleep).
2940 *
2941 * RETURNS:
2942 * 0 on success, -errno otherwise.
1da177e4 2943 */
d1adc1bb
TH
2944int ata_busy_sleep(struct ata_port *ap,
2945 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2946{
2947 unsigned long timer_start, timeout;
2948 u8 status;
2949
2950 status = ata_busy_wait(ap, ATA_BUSY, 300);
2951 timer_start = jiffies;
2952 timeout = timer_start + tmout_pat;
d1adc1bb
TH
2953 while (status != 0xff && (status & ATA_BUSY) &&
2954 time_before(jiffies, timeout)) {
1da177e4
LT
2955 msleep(50);
2956 status = ata_busy_wait(ap, ATA_BUSY, 3);
2957 }
2958
d1adc1bb 2959 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 2960 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
2961 "port is slow to respond, please be patient "
2962 "(Status 0x%x)\n", status);
1da177e4
LT
2963
2964 timeout = timer_start + tmout;
d1adc1bb
TH
2965 while (status != 0xff && (status & ATA_BUSY) &&
2966 time_before(jiffies, timeout)) {
1da177e4
LT
2967 msleep(50);
2968 status = ata_chk_status(ap);
2969 }
2970
d1adc1bb
TH
2971 if (status == 0xff)
2972 return -ENODEV;
2973
1da177e4 2974 if (status & ATA_BUSY) {
f15a1daf 2975 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
2976 "(%lu secs, Status 0x%x)\n",
2977 tmout / HZ, status);
d1adc1bb 2978 return -EBUSY;
1da177e4
LT
2979 }
2980
2981 return 0;
2982}
2983
d4b2bab4
TH
2984/**
2985 * ata_wait_ready - sleep until BSY clears, or timeout
2986 * @ap: port containing status register to be polled
2987 * @deadline: deadline jiffies for the operation
2988 *
2989 * Sleep until ATA Status register bit BSY clears, or timeout
2990 * occurs.
2991 *
2992 * LOCKING:
2993 * Kernel thread context (may sleep).
2994 *
2995 * RETURNS:
2996 * 0 on success, -errno otherwise.
2997 */
2998int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
2999{
3000 unsigned long start = jiffies;
3001 int warned = 0;
3002
3003 while (1) {
3004 u8 status = ata_chk_status(ap);
3005 unsigned long now = jiffies;
3006
3007 if (!(status & ATA_BUSY))
3008 return 0;
fd7fe701 3009 if (!ata_port_online(ap) && status == 0xff)
d4b2bab4
TH
3010 return -ENODEV;
3011 if (time_after(now, deadline))
3012 return -EBUSY;
3013
3014 if (!warned && time_after(now, start + 5 * HZ) &&
3015 (deadline - now > 3 * HZ)) {
3016 ata_port_printk(ap, KERN_WARNING,
3017 "port is slow to respond, please be patient "
3018 "(Status 0x%x)\n", status);
3019 warned = 1;
3020 }
3021
3022 msleep(50);
3023 }
3024}
3025
3026static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3027 unsigned long deadline)
1da177e4
LT
3028{
3029 struct ata_ioports *ioaddr = &ap->ioaddr;
3030 unsigned int dev0 = devmask & (1 << 0);
3031 unsigned int dev1 = devmask & (1 << 1);
9b89391c 3032 int rc, ret = 0;
1da177e4
LT
3033
3034 /* if device 0 was found in ata_devchk, wait for its
3035 * BSY bit to clear
3036 */
d4b2bab4
TH
3037 if (dev0) {
3038 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3039 if (rc) {
3040 if (rc != -ENODEV)
3041 return rc;
3042 ret = rc;
3043 }
d4b2bab4 3044 }
1da177e4 3045
e141d999
TH
3046 /* if device 1 was found in ata_devchk, wait for register
3047 * access briefly, then wait for BSY to clear.
1da177e4 3048 */
e141d999
TH
3049 if (dev1) {
3050 int i;
1da177e4
LT
3051
3052 ap->ops->dev_select(ap, 1);
e141d999
TH
3053
3054 /* Wait for register access. Some ATAPI devices fail
3055 * to set nsect/lbal after reset, so don't waste too
3056 * much time on it. We're gonna wait for !BSY anyway.
3057 */
3058 for (i = 0; i < 2; i++) {
3059 u8 nsect, lbal;
3060
3061 nsect = ioread8(ioaddr->nsect_addr);
3062 lbal = ioread8(ioaddr->lbal_addr);
3063 if ((nsect == 1) && (lbal == 1))
3064 break;
3065 msleep(50); /* give drive a breather */
3066 }
3067
d4b2bab4 3068 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3069 if (rc) {
3070 if (rc != -ENODEV)
3071 return rc;
3072 ret = rc;
3073 }
d4b2bab4 3074 }
1da177e4
LT
3075
3076 /* is all this really necessary? */
3077 ap->ops->dev_select(ap, 0);
3078 if (dev1)
3079 ap->ops->dev_select(ap, 1);
3080 if (dev0)
3081 ap->ops->dev_select(ap, 0);
d4b2bab4 3082
9b89391c 3083 return ret;
1da177e4
LT
3084}
3085
d4b2bab4
TH
3086static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3087 unsigned long deadline)
1da177e4
LT
3088{
3089 struct ata_ioports *ioaddr = &ap->ioaddr;
3090
44877b4e 3091 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1da177e4
LT
3092
3093 /* software reset. causes dev0 to be selected */
0d5ff566
TH
3094 iowrite8(ap->ctl, ioaddr->ctl_addr);
3095 udelay(20); /* FIXME: flush */
3096 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3097 udelay(20); /* FIXME: flush */
3098 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3099
3100 /* spec mandates ">= 2ms" before checking status.
3101 * We wait 150ms, because that was the magic delay used for
3102 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3103 * between when the ATA command register is written, and then
3104 * status is checked. Because waiting for "a while" before
3105 * checking status is fine, post SRST, we perform this magic
3106 * delay here as well.
09c7ad79
AC
3107 *
3108 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
3109 */
3110 msleep(150);
3111
2e9edbf8 3112 /* Before we perform post reset processing we want to see if
298a41ca
TH
3113 * the bus shows 0xFF because the odd clown forgets the D7
3114 * pulldown resistor.
3115 */
d1adc1bb 3116 if (ata_check_status(ap) == 0xFF)
9b89391c 3117 return -ENODEV;
09c7ad79 3118
d4b2bab4 3119 return ata_bus_post_reset(ap, devmask, deadline);
1da177e4
LT
3120}
3121
3122/**
3123 * ata_bus_reset - reset host port and associated ATA channel
3124 * @ap: port to reset
3125 *
3126 * This is typically the first time we actually start issuing
3127 * commands to the ATA channel. We wait for BSY to clear, then
3128 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3129 * result. Determine what devices, if any, are on the channel
3130 * by looking at the device 0/1 error register. Look at the signature
3131 * stored in each device's taskfile registers, to determine if
3132 * the device is ATA or ATAPI.
3133 *
3134 * LOCKING:
0cba632b 3135 * PCI/etc. bus probe sem.
cca3974e 3136 * Obtains host lock.
1da177e4
LT
3137 *
3138 * SIDE EFFECTS:
198e0fed 3139 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
3140 */
3141
3142void ata_bus_reset(struct ata_port *ap)
3143{
3144 struct ata_ioports *ioaddr = &ap->ioaddr;
3145 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3146 u8 err;
aec5c3c1 3147 unsigned int dev0, dev1 = 0, devmask = 0;
9b89391c 3148 int rc;
1da177e4 3149
44877b4e 3150 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
1da177e4
LT
3151
3152 /* determine if device 0/1 are present */
3153 if (ap->flags & ATA_FLAG_SATA_RESET)
3154 dev0 = 1;
3155 else {
3156 dev0 = ata_devchk(ap, 0);
3157 if (slave_possible)
3158 dev1 = ata_devchk(ap, 1);
3159 }
3160
3161 if (dev0)
3162 devmask |= (1 << 0);
3163 if (dev1)
3164 devmask |= (1 << 1);
3165
3166 /* select device 0 again */
3167 ap->ops->dev_select(ap, 0);
3168
3169 /* issue bus reset */
9b89391c
TH
3170 if (ap->flags & ATA_FLAG_SRST) {
3171 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3172 if (rc && rc != -ENODEV)
aec5c3c1 3173 goto err_out;
9b89391c 3174 }
1da177e4
LT
3175
3176 /*
3177 * determine by signature whether we have ATA or ATAPI devices
3178 */
b4dc7623 3179 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 3180 if ((slave_possible) && (err != 0x81))
b4dc7623 3181 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4 3182
1da177e4
LT
3183 /* is double-select really necessary? */
3184 if (ap->device[1].class != ATA_DEV_NONE)
3185 ap->ops->dev_select(ap, 1);
3186 if (ap->device[0].class != ATA_DEV_NONE)
3187 ap->ops->dev_select(ap, 0);
3188
3189 /* if no devices were detected, disable this port */
3190 if ((ap->device[0].class == ATA_DEV_NONE) &&
3191 (ap->device[1].class == ATA_DEV_NONE))
3192 goto err_out;
3193
3194 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3195 /* set up device control for ATA_FLAG_SATA_RESET */
0d5ff566 3196 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3197 }
3198
3199 DPRINTK("EXIT\n");
3200 return;
3201
3202err_out:
f15a1daf 3203 ata_port_printk(ap, KERN_ERR, "disabling port\n");
1da177e4
LT
3204 ap->ops->port_disable(ap);
3205
3206 DPRINTK("EXIT\n");
3207}
3208
d7bb4cc7
TH
3209/**
3210 * sata_phy_debounce - debounce SATA phy status
3211 * @ap: ATA port to debounce SATA phy status for
3212 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3213 * @deadline: deadline jiffies for the operation
d7bb4cc7
TH
3214 *
3215 * Make sure SStatus of @ap reaches stable state, determined by
3216 * holding the same value where DET is not 1 for @duration polled
3217 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3218 * beginning of the stable state. Because DET gets stuck at 1 on
3219 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3220 * until timeout then returns 0 if DET is stable at 1.
3221 *
d4b2bab4
TH
3222 * @timeout is further limited by @deadline. The sooner of the
3223 * two is used.
3224 *
d7bb4cc7
TH
3225 * LOCKING:
3226 * Kernel thread context (may sleep)
3227 *
3228 * RETURNS:
3229 * 0 on success, -errno on failure.
3230 */
d4b2bab4
TH
3231int sata_phy_debounce(struct ata_port *ap, const unsigned long *params,
3232 unsigned long deadline)
7a7921e8 3233{
d7bb4cc7 3234 unsigned long interval_msec = params[0];
d4b2bab4
TH
3235 unsigned long duration = msecs_to_jiffies(params[1]);
3236 unsigned long last_jiffies, t;
d7bb4cc7
TH
3237 u32 last, cur;
3238 int rc;
3239
d4b2bab4
TH
3240 t = jiffies + msecs_to_jiffies(params[2]);
3241 if (time_before(t, deadline))
3242 deadline = t;
3243
d7bb4cc7
TH
3244 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3245 return rc;
3246 cur &= 0xf;
3247
3248 last = cur;
3249 last_jiffies = jiffies;
3250
3251 while (1) {
3252 msleep(interval_msec);
3253 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3254 return rc;
3255 cur &= 0xf;
3256
3257 /* DET stable? */
3258 if (cur == last) {
d4b2bab4 3259 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7
TH
3260 continue;
3261 if (time_after(jiffies, last_jiffies + duration))
3262 return 0;
3263 continue;
3264 }
3265
3266 /* unstable, start over */
3267 last = cur;
3268 last_jiffies = jiffies;
3269
f1545154
TH
3270 /* Check deadline. If debouncing failed, return
3271 * -EPIPE to tell upper layer to lower link speed.
3272 */
d4b2bab4 3273 if (time_after(jiffies, deadline))
f1545154 3274 return -EPIPE;
d7bb4cc7
TH
3275 }
3276}
3277
3278/**
3279 * sata_phy_resume - resume SATA phy
3280 * @ap: ATA port to resume SATA phy for
3281 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3282 * @deadline: deadline jiffies for the operation
d7bb4cc7
TH
3283 *
3284 * Resume SATA phy of @ap and debounce it.
3285 *
3286 * LOCKING:
3287 * Kernel thread context (may sleep)
3288 *
3289 * RETURNS:
3290 * 0 on success, -errno on failure.
3291 */
d4b2bab4
TH
3292int sata_phy_resume(struct ata_port *ap, const unsigned long *params,
3293 unsigned long deadline)
d7bb4cc7
TH
3294{
3295 u32 scontrol;
81952c54
TH
3296 int rc;
3297
3298 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3299 return rc;
7a7921e8 3300
852ee16a 3301 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54
TH
3302
3303 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3304 return rc;
7a7921e8 3305
d7bb4cc7
TH
3306 /* Some PHYs react badly if SStatus is pounded immediately
3307 * after resuming. Delay 200ms before debouncing.
3308 */
3309 msleep(200);
7a7921e8 3310
d4b2bab4 3311 return sata_phy_debounce(ap, params, deadline);
7a7921e8
TH
3312}
3313
f5914a46
TH
3314/**
3315 * ata_std_prereset - prepare for reset
3316 * @ap: ATA port to be reset
d4b2bab4 3317 * @deadline: deadline jiffies for the operation
f5914a46 3318 *
b8cffc6a
TH
3319 * @ap is about to be reset. Initialize it. Failure from
3320 * prereset makes libata abort whole reset sequence and give up
3321 * that port, so prereset should be best-effort. It does its
3322 * best to prepare for reset sequence but if things go wrong, it
3323 * should just whine, not fail.
f5914a46
TH
3324 *
3325 * LOCKING:
3326 * Kernel thread context (may sleep)
3327 *
3328 * RETURNS:
3329 * 0 on success, -errno otherwise.
3330 */
d4b2bab4 3331int ata_std_prereset(struct ata_port *ap, unsigned long deadline)
f5914a46
TH
3332{
3333 struct ata_eh_context *ehc = &ap->eh_context;
e9c83914 3334 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3335 int rc;
3336
31daabda 3337 /* handle link resume */
28324304
TH
3338 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3339 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
3340 ehc->i.action |= ATA_EH_HARDRESET;
3341
f5914a46
TH
3342 /* if we're about to do hardreset, nothing more to do */
3343 if (ehc->i.action & ATA_EH_HARDRESET)
3344 return 0;
3345
3346 /* if SATA, resume phy */
a16abc0b 3347 if (ap->flags & ATA_FLAG_SATA) {
d4b2bab4 3348 rc = sata_phy_resume(ap, timing, deadline);
b8cffc6a
TH
3349 /* whine about phy resume failure but proceed */
3350 if (rc && rc != -EOPNOTSUPP)
f5914a46
TH
3351 ata_port_printk(ap, KERN_WARNING, "failed to resume "
3352 "link for reset (errno=%d)\n", rc);
f5914a46
TH
3353 }
3354
3355 /* Wait for !BSY if the controller can wait for the first D2H
3356 * Reg FIS and we don't know that no device is attached.
3357 */
b8cffc6a
TH
3358 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap)) {
3359 rc = ata_wait_ready(ap, deadline);
6dffaf61 3360 if (rc && rc != -ENODEV) {
b8cffc6a
TH
3361 ata_port_printk(ap, KERN_WARNING, "device not ready "
3362 "(errno=%d), forcing hardreset\n", rc);
3363 ehc->i.action |= ATA_EH_HARDRESET;
3364 }
3365 }
f5914a46
TH
3366
3367 return 0;
3368}
3369
c2bd5804
TH
3370/**
3371 * ata_std_softreset - reset host port via ATA SRST
3372 * @ap: port to reset
c2bd5804 3373 * @classes: resulting classes of attached devices
d4b2bab4 3374 * @deadline: deadline jiffies for the operation
c2bd5804 3375 *
52783c5d 3376 * Reset host port using ATA SRST.
c2bd5804
TH
3377 *
3378 * LOCKING:
3379 * Kernel thread context (may sleep)
3380 *
3381 * RETURNS:
3382 * 0 on success, -errno otherwise.
3383 */
d4b2bab4
TH
3384int ata_std_softreset(struct ata_port *ap, unsigned int *classes,
3385 unsigned long deadline)
c2bd5804
TH
3386{
3387 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
d4b2bab4
TH
3388 unsigned int devmask = 0;
3389 int rc;
c2bd5804
TH
3390 u8 err;
3391
3392 DPRINTK("ENTER\n");
3393
81952c54 3394 if (ata_port_offline(ap)) {
3a39746a
TH
3395 classes[0] = ATA_DEV_NONE;
3396 goto out;
3397 }
3398
c2bd5804
TH
3399 /* determine if device 0/1 are present */
3400 if (ata_devchk(ap, 0))
3401 devmask |= (1 << 0);
3402 if (slave_possible && ata_devchk(ap, 1))
3403 devmask |= (1 << 1);
3404
c2bd5804
TH
3405 /* select device 0 again */
3406 ap->ops->dev_select(ap, 0);
3407
3408 /* issue bus reset */
3409 DPRINTK("about to softreset, devmask=%x\n", devmask);
d4b2bab4 3410 rc = ata_bus_softreset(ap, devmask, deadline);
9b89391c
TH
3411 /* if link is occupied, -ENODEV too is an error */
3412 if (rc && (rc != -ENODEV || sata_scr_valid(ap))) {
d4b2bab4
TH
3413 ata_port_printk(ap, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3414 return rc;
c2bd5804
TH
3415 }
3416
3417 /* determine by signature whether we have ATA or ATAPI devices */
3418 classes[0] = ata_dev_try_classify(ap, 0, &err);
3419 if (slave_possible && err != 0x81)
3420 classes[1] = ata_dev_try_classify(ap, 1, &err);
3421
3a39746a 3422 out:
c2bd5804
TH
3423 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3424 return 0;
3425}
3426
3427/**
b6103f6d 3428 * sata_port_hardreset - reset port via SATA phy reset
c2bd5804 3429 * @ap: port to reset
b6103f6d 3430 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3431 * @deadline: deadline jiffies for the operation
c2bd5804
TH
3432 *
3433 * SATA phy-reset host port using DET bits of SControl register.
c2bd5804
TH
3434 *
3435 * LOCKING:
3436 * Kernel thread context (may sleep)
3437 *
3438 * RETURNS:
3439 * 0 on success, -errno otherwise.
3440 */
d4b2bab4
TH
3441int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing,
3442 unsigned long deadline)
c2bd5804 3443{
852ee16a 3444 u32 scontrol;
81952c54 3445 int rc;
852ee16a 3446
c2bd5804
TH
3447 DPRINTK("ENTER\n");
3448
3c567b7d 3449 if (sata_set_spd_needed(ap)) {
1c3fae4d
TH
3450 /* SATA spec says nothing about how to reconfigure
3451 * spd. To be on the safe side, turn off phy during
3452 * reconfiguration. This works for at least ICH7 AHCI
3453 * and Sil3124.
3454 */
81952c54 3455 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 3456 goto out;
81952c54 3457
a34b6fc0 3458 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54
TH
3459
3460 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
b6103f6d 3461 goto out;
1c3fae4d 3462
3c567b7d 3463 sata_set_spd(ap);
1c3fae4d
TH
3464 }
3465
3466 /* issue phy wake/reset */
81952c54 3467 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 3468 goto out;
81952c54 3469
852ee16a 3470 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54
TH
3471
3472 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
b6103f6d 3473 goto out;
c2bd5804 3474
1c3fae4d 3475 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3476 * 10.4.2 says at least 1 ms.
3477 */
3478 msleep(1);
3479
1c3fae4d 3480 /* bring phy back */
d4b2bab4 3481 rc = sata_phy_resume(ap, timing, deadline);
b6103f6d
TH
3482 out:
3483 DPRINTK("EXIT, rc=%d\n", rc);
3484 return rc;
3485}
3486
3487/**
3488 * sata_std_hardreset - reset host port via SATA phy reset
3489 * @ap: port to reset
3490 * @class: resulting class of attached device
d4b2bab4 3491 * @deadline: deadline jiffies for the operation
b6103f6d
TH
3492 *
3493 * SATA phy-reset host port using DET bits of SControl register,
3494 * wait for !BSY and classify the attached device.
3495 *
3496 * LOCKING:
3497 * Kernel thread context (may sleep)
3498 *
3499 * RETURNS:
3500 * 0 on success, -errno otherwise.
3501 */
d4b2bab4
TH
3502int sata_std_hardreset(struct ata_port *ap, unsigned int *class,
3503 unsigned long deadline)
b6103f6d
TH
3504{
3505 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3506 int rc;
3507
3508 DPRINTK("ENTER\n");
3509
3510 /* do hardreset */
d4b2bab4 3511 rc = sata_port_hardreset(ap, timing, deadline);
b6103f6d
TH
3512 if (rc) {
3513 ata_port_printk(ap, KERN_ERR,
3514 "COMRESET failed (errno=%d)\n", rc);
3515 return rc;
3516 }
c2bd5804 3517
c2bd5804 3518 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 3519 if (ata_port_offline(ap)) {
c2bd5804
TH
3520 *class = ATA_DEV_NONE;
3521 DPRINTK("EXIT, link offline\n");
3522 return 0;
3523 }
3524
34fee227
TH
3525 /* wait a while before checking status, see SRST for more info */
3526 msleep(150);
3527
d4b2bab4 3528 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3529 /* link occupied, -ENODEV too is an error */
3530 if (rc) {
f15a1daf 3531 ata_port_printk(ap, KERN_ERR,
d4b2bab4
TH
3532 "COMRESET failed (errno=%d)\n", rc);
3533 return rc;
c2bd5804
TH
3534 }
3535
3a39746a
TH
3536 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3537
c2bd5804
TH
3538 *class = ata_dev_try_classify(ap, 0, NULL);
3539
3540 DPRINTK("EXIT, class=%u\n", *class);
3541 return 0;
3542}
3543
3544/**
3545 * ata_std_postreset - standard postreset callback
3546 * @ap: the target ata_port
3547 * @classes: classes of attached devices
3548 *
3549 * This function is invoked after a successful reset. Note that
3550 * the device might have been reset more than once using
3551 * different reset methods before postreset is invoked.
c2bd5804 3552 *
c2bd5804
TH
3553 * LOCKING:
3554 * Kernel thread context (may sleep)
3555 */
3556void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3557{
dc2b3515
TH
3558 u32 serror;
3559
c2bd5804
TH
3560 DPRINTK("ENTER\n");
3561
c2bd5804 3562 /* print link status */
81952c54 3563 sata_print_link_status(ap);
c2bd5804 3564
dc2b3515
TH
3565 /* clear SError */
3566 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3567 sata_scr_write(ap, SCR_ERROR, serror);
3568
c2bd5804
TH
3569 /* is double-select really necessary? */
3570 if (classes[0] != ATA_DEV_NONE)
3571 ap->ops->dev_select(ap, 1);
3572 if (classes[1] != ATA_DEV_NONE)
3573 ap->ops->dev_select(ap, 0);
3574
3a39746a
TH
3575 /* bail out if no device is present */
3576 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3577 DPRINTK("EXIT, no device\n");
3578 return;
3579 }
3580
3581 /* set up device control */
0d5ff566
TH
3582 if (ap->ioaddr.ctl_addr)
3583 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
c2bd5804
TH
3584
3585 DPRINTK("EXIT\n");
3586}
3587
623a3128
TH
3588/**
3589 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3590 * @dev: device to compare against
3591 * @new_class: class of the new device
3592 * @new_id: IDENTIFY page of the new device
3593 *
3594 * Compare @new_class and @new_id against @dev and determine
3595 * whether @dev is the device indicated by @new_class and
3596 * @new_id.
3597 *
3598 * LOCKING:
3599 * None.
3600 *
3601 * RETURNS:
3602 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3603 */
3373efd8
TH
3604static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3605 const u16 *new_id)
623a3128
TH
3606{
3607 const u16 *old_id = dev->id;
a0cf733b
TH
3608 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3609 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3610
3611 if (dev->class != new_class) {
f15a1daf
TH
3612 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3613 dev->class, new_class);
623a3128
TH
3614 return 0;
3615 }
3616
a0cf733b
TH
3617 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3618 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3619 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3620 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3621
3622 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3623 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3624 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3625 return 0;
3626 }
3627
3628 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
3629 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3630 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3631 return 0;
3632 }
3633
623a3128
TH
3634 return 1;
3635}
3636
3637/**
fe30911b 3638 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 3639 * @dev: target ATA device
bff04647 3640 * @readid_flags: read ID flags
623a3128
TH
3641 *
3642 * Re-read IDENTIFY page and make sure @dev is still attached to
3643 * the port.
3644 *
3645 * LOCKING:
3646 * Kernel thread context (may sleep)
3647 *
3648 * RETURNS:
3649 * 0 on success, negative errno otherwise
3650 */
fe30911b 3651int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 3652{
5eb45c02 3653 unsigned int class = dev->class;
f15a1daf 3654 u16 *id = (void *)dev->ap->sector_buf;
623a3128
TH
3655 int rc;
3656
fe635c7e 3657 /* read ID data */
bff04647 3658 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 3659 if (rc)
fe30911b 3660 return rc;
623a3128
TH
3661
3662 /* is the device still there? */
fe30911b
TH
3663 if (!ata_dev_same_device(dev, class, id))
3664 return -ENODEV;
623a3128 3665
fe635c7e 3666 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
3667 return 0;
3668}
3669
3670/**
3671 * ata_dev_revalidate - Revalidate ATA device
3672 * @dev: device to revalidate
3673 * @readid_flags: read ID flags
3674 *
3675 * Re-read IDENTIFY page, make sure @dev is still attached to the
3676 * port and reconfigure it according to the new IDENTIFY page.
3677 *
3678 * LOCKING:
3679 * Kernel thread context (may sleep)
3680 *
3681 * RETURNS:
3682 * 0 on success, negative errno otherwise
3683 */
3684int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3685{
6ddcd3b0 3686 u64 n_sectors = dev->n_sectors;
fe30911b
TH
3687 int rc;
3688
3689 if (!ata_dev_enabled(dev))
3690 return -ENODEV;
3691
3692 /* re-read ID */
3693 rc = ata_dev_reread_id(dev, readid_flags);
3694 if (rc)
3695 goto fail;
623a3128
TH
3696
3697 /* configure device according to the new ID */
efdaedc4 3698 rc = ata_dev_configure(dev);
6ddcd3b0
TH
3699 if (rc)
3700 goto fail;
3701
3702 /* verify n_sectors hasn't changed */
b54eebd6
TH
3703 if (dev->class == ATA_DEV_ATA && n_sectors &&
3704 dev->n_sectors != n_sectors) {
6ddcd3b0
TH
3705 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3706 "%llu != %llu\n",
3707 (unsigned long long)n_sectors,
3708 (unsigned long long)dev->n_sectors);
8270bec4
TH
3709
3710 /* restore original n_sectors */
3711 dev->n_sectors = n_sectors;
3712
6ddcd3b0
TH
3713 rc = -ENODEV;
3714 goto fail;
3715 }
3716
3717 return 0;
623a3128
TH
3718
3719 fail:
f15a1daf 3720 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
3721 return rc;
3722}
3723
6919a0a6
AC
3724struct ata_blacklist_entry {
3725 const char *model_num;
3726 const char *model_rev;
3727 unsigned long horkage;
3728};
3729
3730static const struct ata_blacklist_entry ata_device_blacklist [] = {
3731 /* Devices with DMA related problems under Linux */
3732 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3733 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3734 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3735 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3736 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3737 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3738 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3739 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3740 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3741 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3742 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3743 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3744 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3745 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3746 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3747 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3748 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3749 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3750 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3751 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3752 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3753 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3754 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3755 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3756 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3757 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
3758 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3759 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3760 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
39f19886 3761 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
5acd50f6 3762 { "IOMEGA ZIP 250 ATAPI", NULL, ATA_HORKAGE_NODMA }, /* temporary fix */
39ce7128
TH
3763 { "IOMEGA ZIP 250 ATAPI Floppy",
3764 NULL, ATA_HORKAGE_NODMA },
6919a0a6 3765
18d6e9d5 3766 /* Weird ATAPI devices */
40a1d531 3767 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
18d6e9d5 3768
6919a0a6
AC
3769 /* Devices we expect to fail diagnostics */
3770
3771 /* Devices where NCQ should be avoided */
3772 /* NCQ is slow */
3773 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
09125ea6
TH
3774 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3775 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30
PR
3776 /* NCQ is broken */
3777 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
e8361fc4 3778 { "Maxtor 6B200M0", "BANC1BM0", ATA_HORKAGE_NONCQ },
471e44b2 3779 { "Maxtor 6B200M0", "BANC1B10", ATA_HORKAGE_NONCQ },
2f8d90ab
PB
3780 { "HITACHI HDS7250SASUN500G 0621KTAWSD", "K2AOAJ0AHITACHI",
3781 ATA_HORKAGE_NONCQ },
96442925
JA
3782 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3783 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
36e337d0
RH
3784 /* Blacklist entries taken from Silicon Image 3124/3132
3785 Windows driver .inf file - also several Linux problem reports */
3786 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3787 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3788 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
bd9c5a39
TH
3789 /* Drives which do spurious command completion */
3790 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
2f8fcebb 3791 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
e14cbfa6 3792 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
2f8fcebb 3793 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
a520f261 3794 { "FUJITSU MHV2080BH", "00840028", ATA_HORKAGE_NONCQ, },
3fb6589c 3795 { "ST9160821AS", "3.CLF", ATA_HORKAGE_NONCQ, },
5d6aca8d 3796 { "SAMSUNG HD401LJ", "ZZ100-15", ATA_HORKAGE_NONCQ, },
6919a0a6
AC
3797
3798 /* Devices with NCQ limits */
3799
3800 /* End Marker */
3801 { }
1da177e4 3802};
2e9edbf8 3803
75683fe7 3804static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 3805{
8bfa79fc
TH
3806 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3807 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 3808 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 3809
8bfa79fc
TH
3810 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3811 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 3812
6919a0a6 3813 while (ad->model_num) {
8bfa79fc 3814 if (!strcmp(ad->model_num, model_num)) {
6919a0a6
AC
3815 if (ad->model_rev == NULL)
3816 return ad->horkage;
8bfa79fc 3817 if (!strcmp(ad->model_rev, model_rev))
6919a0a6 3818 return ad->horkage;
f4b15fef 3819 }
6919a0a6 3820 ad++;
f4b15fef 3821 }
1da177e4
LT
3822 return 0;
3823}
3824
6919a0a6
AC
3825static int ata_dma_blacklisted(const struct ata_device *dev)
3826{
3827 /* We don't support polling DMA.
3828 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3829 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3830 */
3831 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3832 (dev->flags & ATA_DFLAG_CDB_INTR))
3833 return 1;
75683fe7 3834 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
3835}
3836
a6d5a51c
TH
3837/**
3838 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
3839 * @dev: Device to compute xfermask for
3840 *
acf356b1
TH
3841 * Compute supported xfermask of @dev and store it in
3842 * dev->*_mask. This function is responsible for applying all
3843 * known limits including host controller limits, device
3844 * blacklist, etc...
a6d5a51c
TH
3845 *
3846 * LOCKING:
3847 * None.
a6d5a51c 3848 */
3373efd8 3849static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 3850{
3373efd8 3851 struct ata_port *ap = dev->ap;
cca3974e 3852 struct ata_host *host = ap->host;
a6d5a51c 3853 unsigned long xfer_mask;
1da177e4 3854
37deecb5 3855 /* controller modes available */
565083e1
TH
3856 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3857 ap->mwdma_mask, ap->udma_mask);
3858
8343f889 3859 /* drive modes available */
37deecb5
TH
3860 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3861 dev->mwdma_mask, dev->udma_mask);
3862 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 3863
b352e57d
AC
3864 /*
3865 * CFA Advanced TrueIDE timings are not allowed on a shared
3866 * cable
3867 */
3868 if (ata_dev_pair(dev)) {
3869 /* No PIO5 or PIO6 */
3870 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3871 /* No MWDMA3 or MWDMA 4 */
3872 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3873 }
3874
37deecb5
TH
3875 if (ata_dma_blacklisted(dev)) {
3876 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
3877 ata_dev_printk(dev, KERN_WARNING,
3878 "device is on DMA blacklist, disabling DMA\n");
37deecb5 3879 }
a6d5a51c 3880
14d66ab7
PV
3881 if ((host->flags & ATA_HOST_SIMPLEX) &&
3882 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
3883 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3884 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3885 "other device, disabling DMA\n");
5444a6f4 3886 }
565083e1 3887
e424675f
JG
3888 if (ap->flags & ATA_FLAG_NO_IORDY)
3889 xfer_mask &= ata_pio_mask_no_iordy(dev);
3890
5444a6f4 3891 if (ap->ops->mode_filter)
a76b62ca 3892 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 3893
8343f889
RH
3894 /* Apply cable rule here. Don't apply it early because when
3895 * we handle hot plug the cable type can itself change.
3896 * Check this last so that we know if the transfer rate was
3897 * solely limited by the cable.
3898 * Unknown or 80 wire cables reported host side are checked
3899 * drive side as well. Cases where we know a 40wire cable
3900 * is used safely for 80 are not checked here.
3901 */
3902 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3903 /* UDMA/44 or higher would be available */
3904 if((ap->cbl == ATA_CBL_PATA40) ||
3905 (ata_drive_40wire(dev->id) &&
3906 (ap->cbl == ATA_CBL_PATA_UNK ||
3907 ap->cbl == ATA_CBL_PATA80))) {
3908 ata_dev_printk(dev, KERN_WARNING,
3909 "limited to UDMA/33 due to 40-wire cable\n");
3910 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3911 }
3912
565083e1
TH
3913 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3914 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
3915}
3916
1da177e4
LT
3917/**
3918 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
3919 * @dev: Device to which command will be sent
3920 *
780a87f7
JG
3921 * Issue SET FEATURES - XFER MODE command to device @dev
3922 * on port @ap.
3923 *
1da177e4 3924 * LOCKING:
0cba632b 3925 * PCI/etc. bus probe sem.
83206a29
TH
3926 *
3927 * RETURNS:
3928 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
3929 */
3930
3373efd8 3931static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 3932{
a0123703 3933 struct ata_taskfile tf;
83206a29 3934 unsigned int err_mask;
1da177e4
LT
3935
3936 /* set up set-features taskfile */
3937 DPRINTK("set features - xfer mode\n");
3938
464cf177
TH
3939 /* Some controllers and ATAPI devices show flaky interrupt
3940 * behavior after setting xfer mode. Use polling instead.
3941 */
3373efd8 3942 ata_tf_init(dev, &tf);
a0123703
TH
3943 tf.command = ATA_CMD_SET_FEATURES;
3944 tf.feature = SETFEATURES_XFER;
464cf177 3945 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703
TH
3946 tf.protocol = ATA_PROT_NODATA;
3947 tf.nsect = dev->xfer_mode;
1da177e4 3948
3373efd8 3949 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 3950
83206a29
TH
3951 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3952 return err_mask;
1da177e4
LT
3953}
3954
8bf62ece
AL
3955/**
3956 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 3957 * @dev: Device to which command will be sent
e2a7f77a
RD
3958 * @heads: Number of heads (taskfile parameter)
3959 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
3960 *
3961 * LOCKING:
6aff8f1f
TH
3962 * Kernel thread context (may sleep)
3963 *
3964 * RETURNS:
3965 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 3966 */
3373efd8
TH
3967static unsigned int ata_dev_init_params(struct ata_device *dev,
3968 u16 heads, u16 sectors)
8bf62ece 3969{
a0123703 3970 struct ata_taskfile tf;
6aff8f1f 3971 unsigned int err_mask;
8bf62ece
AL
3972
3973 /* Number of sectors per track 1-255. Number of heads 1-16 */
3974 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3975 return AC_ERR_INVALID;
8bf62ece
AL
3976
3977 /* set up init dev params taskfile */
3978 DPRINTK("init dev params \n");
3979
3373efd8 3980 ata_tf_init(dev, &tf);
a0123703
TH
3981 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3982 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3983 tf.protocol = ATA_PROT_NODATA;
3984 tf.nsect = sectors;
3985 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3986
3373efd8 3987 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
8bf62ece 3988
6aff8f1f
TH
3989 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3990 return err_mask;
8bf62ece
AL
3991}
3992
1da177e4 3993/**
0cba632b
JG
3994 * ata_sg_clean - Unmap DMA memory associated with command
3995 * @qc: Command containing DMA memory to be released
3996 *
3997 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
3998 *
3999 * LOCKING:
cca3974e 4000 * spin_lock_irqsave(host lock)
1da177e4 4001 */
70e6ad0c 4002void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
4003{
4004 struct ata_port *ap = qc->ap;
cedc9a47 4005 struct scatterlist *sg = qc->__sg;
1da177e4 4006 int dir = qc->dma_dir;
cedc9a47 4007 void *pad_buf = NULL;
1da177e4 4008
a4631474
TH
4009 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4010 WARN_ON(sg == NULL);
1da177e4
LT
4011
4012 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 4013 WARN_ON(qc->n_elem > 1);
1da177e4 4014
2c13b7ce 4015 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 4016
cedc9a47
JG
4017 /* if we padded the buffer out to 32-bit bound, and data
4018 * xfer direction is from-device, we must copy from the
4019 * pad buffer back into the supplied buffer
4020 */
4021 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4022 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4023
4024 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 4025 if (qc->n_elem)
2f1f610b 4026 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
4027 /* restore last sg */
4028 sg[qc->orig_n_elem - 1].length += qc->pad_len;
4029 if (pad_buf) {
4030 struct scatterlist *psg = &qc->pad_sgent;
4031 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4032 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 4033 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4034 }
4035 } else {
2e242fa9 4036 if (qc->n_elem)
2f1f610b 4037 dma_unmap_single(ap->dev,
e1410f2d
JG
4038 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4039 dir);
cedc9a47
JG
4040 /* restore sg */
4041 sg->length += qc->pad_len;
4042 if (pad_buf)
4043 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4044 pad_buf, qc->pad_len);
4045 }
1da177e4
LT
4046
4047 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 4048 qc->__sg = NULL;
1da177e4
LT
4049}
4050
4051/**
4052 * ata_fill_sg - Fill PCI IDE PRD table
4053 * @qc: Metadata associated with taskfile to be transferred
4054 *
780a87f7
JG
4055 * Fill PCI IDE PRD (scatter-gather) table with segments
4056 * associated with the current disk command.
4057 *
1da177e4 4058 * LOCKING:
cca3974e 4059 * spin_lock_irqsave(host lock)
1da177e4
LT
4060 *
4061 */
4062static void ata_fill_sg(struct ata_queued_cmd *qc)
4063{
1da177e4 4064 struct ata_port *ap = qc->ap;
cedc9a47
JG
4065 struct scatterlist *sg;
4066 unsigned int idx;
1da177e4 4067
a4631474 4068 WARN_ON(qc->__sg == NULL);
f131883e 4069 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
4070
4071 idx = 0;
cedc9a47 4072 ata_for_each_sg(sg, qc) {
1da177e4
LT
4073 u32 addr, offset;
4074 u32 sg_len, len;
4075
4076 /* determine if physical DMA addr spans 64K boundary.
4077 * Note h/w doesn't support 64-bit, so we unconditionally
4078 * truncate dma_addr_t to u32.
4079 */
4080 addr = (u32) sg_dma_address(sg);
4081 sg_len = sg_dma_len(sg);
4082
4083 while (sg_len) {
4084 offset = addr & 0xffff;
4085 len = sg_len;
4086 if ((offset + sg_len) > 0x10000)
4087 len = 0x10000 - offset;
4088
4089 ap->prd[idx].addr = cpu_to_le32(addr);
4090 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4091 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4092
4093 idx++;
4094 sg_len -= len;
4095 addr += len;
4096 }
4097 }
4098
4099 if (idx)
4100 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4101}
b9a4197e 4102
d26fc955
AC
4103/**
4104 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4105 * @qc: Metadata associated with taskfile to be transferred
4106 *
4107 * Fill PCI IDE PRD (scatter-gather) table with segments
4108 * associated with the current disk command. Perform the fill
4109 * so that we avoid writing any length 64K records for
4110 * controllers that don't follow the spec.
4111 *
4112 * LOCKING:
4113 * spin_lock_irqsave(host lock)
4114 *
4115 */
4116static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4117{
4118 struct ata_port *ap = qc->ap;
4119 struct scatterlist *sg;
4120 unsigned int idx;
4121
4122 WARN_ON(qc->__sg == NULL);
4123 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4124
4125 idx = 0;
4126 ata_for_each_sg(sg, qc) {
4127 u32 addr, offset;
4128 u32 sg_len, len, blen;
4129
4130 /* determine if physical DMA addr spans 64K boundary.
4131 * Note h/w doesn't support 64-bit, so we unconditionally
4132 * truncate dma_addr_t to u32.
4133 */
4134 addr = (u32) sg_dma_address(sg);
4135 sg_len = sg_dma_len(sg);
4136
4137 while (sg_len) {
4138 offset = addr & 0xffff;
4139 len = sg_len;
4140 if ((offset + sg_len) > 0x10000)
4141 len = 0x10000 - offset;
4142
4143 blen = len & 0xffff;
4144 ap->prd[idx].addr = cpu_to_le32(addr);
4145 if (blen == 0) {
4146 /* Some PATA chipsets like the CS5530 can't
4147 cope with 0x0000 meaning 64K as the spec says */
4148 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4149 blen = 0x8000;
4150 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4151 }
4152 ap->prd[idx].flags_len = cpu_to_le32(blen);
4153 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4154
4155 idx++;
4156 sg_len -= len;
4157 addr += len;
4158 }
4159 }
4160
4161 if (idx)
4162 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4163}
4164
1da177e4
LT
4165/**
4166 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4167 * @qc: Metadata associated with taskfile to check
4168 *
780a87f7
JG
4169 * Allow low-level driver to filter ATA PACKET commands, returning
4170 * a status indicating whether or not it is OK to use DMA for the
4171 * supplied PACKET command.
4172 *
1da177e4 4173 * LOCKING:
cca3974e 4174 * spin_lock_irqsave(host lock)
0cba632b 4175 *
1da177e4
LT
4176 * RETURNS: 0 when ATAPI DMA can be used
4177 * nonzero otherwise
4178 */
4179int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4180{
4181 struct ata_port *ap = qc->ap;
b9a4197e
TH
4182
4183 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4184 * few ATAPI devices choke on such DMA requests.
4185 */
4186 if (unlikely(qc->nbytes & 15))
4187 return 1;
6f23a31d 4188
1da177e4 4189 if (ap->ops->check_atapi_dma)
b9a4197e 4190 return ap->ops->check_atapi_dma(qc);
1da177e4 4191
b9a4197e 4192 return 0;
1da177e4 4193}
b9a4197e 4194
1da177e4
LT
4195/**
4196 * ata_qc_prep - Prepare taskfile for submission
4197 * @qc: Metadata associated with taskfile to be prepared
4198 *
780a87f7
JG
4199 * Prepare ATA taskfile for submission.
4200 *
1da177e4 4201 * LOCKING:
cca3974e 4202 * spin_lock_irqsave(host lock)
1da177e4
LT
4203 */
4204void ata_qc_prep(struct ata_queued_cmd *qc)
4205{
4206 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4207 return;
4208
4209 ata_fill_sg(qc);
4210}
4211
d26fc955
AC
4212/**
4213 * ata_dumb_qc_prep - Prepare taskfile for submission
4214 * @qc: Metadata associated with taskfile to be prepared
4215 *
4216 * Prepare ATA taskfile for submission.
4217 *
4218 * LOCKING:
4219 * spin_lock_irqsave(host lock)
4220 */
4221void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4222{
4223 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4224 return;
4225
4226 ata_fill_sg_dumb(qc);
4227}
4228
e46834cd
BK
4229void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4230
0cba632b
JG
4231/**
4232 * ata_sg_init_one - Associate command with memory buffer
4233 * @qc: Command to be associated
4234 * @buf: Memory buffer
4235 * @buflen: Length of memory buffer, in bytes.
4236 *
4237 * Initialize the data-related elements of queued_cmd @qc
4238 * to point to a single memory buffer, @buf of byte length @buflen.
4239 *
4240 * LOCKING:
cca3974e 4241 * spin_lock_irqsave(host lock)
0cba632b
JG
4242 */
4243
1da177e4
LT
4244void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4245{
1da177e4
LT
4246 qc->flags |= ATA_QCFLAG_SINGLE;
4247
cedc9a47 4248 qc->__sg = &qc->sgent;
1da177e4 4249 qc->n_elem = 1;
cedc9a47 4250 qc->orig_n_elem = 1;
1da177e4 4251 qc->buf_virt = buf;
233277ca 4252 qc->nbytes = buflen;
1da177e4 4253
61c0596c 4254 sg_init_one(&qc->sgent, buf, buflen);
1da177e4
LT
4255}
4256
0cba632b
JG
4257/**
4258 * ata_sg_init - Associate command with scatter-gather table.
4259 * @qc: Command to be associated
4260 * @sg: Scatter-gather table.
4261 * @n_elem: Number of elements in s/g table.
4262 *
4263 * Initialize the data-related elements of queued_cmd @qc
4264 * to point to a scatter-gather table @sg, containing @n_elem
4265 * elements.
4266 *
4267 * LOCKING:
cca3974e 4268 * spin_lock_irqsave(host lock)
0cba632b
JG
4269 */
4270
1da177e4
LT
4271void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4272 unsigned int n_elem)
4273{
4274 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 4275 qc->__sg = sg;
1da177e4 4276 qc->n_elem = n_elem;
cedc9a47 4277 qc->orig_n_elem = n_elem;
1da177e4
LT
4278}
4279
4280/**
0cba632b
JG
4281 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4282 * @qc: Command with memory buffer to be mapped.
4283 *
4284 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
4285 *
4286 * LOCKING:
cca3974e 4287 * spin_lock_irqsave(host lock)
1da177e4
LT
4288 *
4289 * RETURNS:
0cba632b 4290 * Zero on success, negative on error.
1da177e4
LT
4291 */
4292
4293static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4294{
4295 struct ata_port *ap = qc->ap;
4296 int dir = qc->dma_dir;
cedc9a47 4297 struct scatterlist *sg = qc->__sg;
1da177e4 4298 dma_addr_t dma_address;
2e242fa9 4299 int trim_sg = 0;
1da177e4 4300
cedc9a47
JG
4301 /* we must lengthen transfers to end on a 32-bit boundary */
4302 qc->pad_len = sg->length & 3;
4303 if (qc->pad_len) {
4304 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4305 struct scatterlist *psg = &qc->pad_sgent;
4306
a4631474 4307 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4308
4309 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4310
4311 if (qc->tf.flags & ATA_TFLAG_WRITE)
4312 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4313 qc->pad_len);
4314
4315 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4316 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4317 /* trim sg */
4318 sg->length -= qc->pad_len;
2e242fa9
TH
4319 if (sg->length == 0)
4320 trim_sg = 1;
cedc9a47
JG
4321
4322 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4323 sg->length, qc->pad_len);
4324 }
4325
2e242fa9
TH
4326 if (trim_sg) {
4327 qc->n_elem--;
e1410f2d
JG
4328 goto skip_map;
4329 }
4330
2f1f610b 4331 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 4332 sg->length, dir);
537a95d9
TH
4333 if (dma_mapping_error(dma_address)) {
4334 /* restore sg */
4335 sg->length += qc->pad_len;
1da177e4 4336 return -1;
537a95d9 4337 }
1da177e4
LT
4338
4339 sg_dma_address(sg) = dma_address;
32529e01 4340 sg_dma_len(sg) = sg->length;
1da177e4 4341
2e242fa9 4342skip_map:
1da177e4
LT
4343 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4344 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4345
4346 return 0;
4347}
4348
4349/**
0cba632b
JG
4350 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4351 * @qc: Command with scatter-gather table to be mapped.
4352 *
4353 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
4354 *
4355 * LOCKING:
cca3974e 4356 * spin_lock_irqsave(host lock)
1da177e4
LT
4357 *
4358 * RETURNS:
0cba632b 4359 * Zero on success, negative on error.
1da177e4
LT
4360 *
4361 */
4362
4363static int ata_sg_setup(struct ata_queued_cmd *qc)
4364{
4365 struct ata_port *ap = qc->ap;
cedc9a47
JG
4366 struct scatterlist *sg = qc->__sg;
4367 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 4368 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4 4369
44877b4e 4370 VPRINTK("ENTER, ata%u\n", ap->print_id);
a4631474 4371 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 4372
cedc9a47
JG
4373 /* we must lengthen transfers to end on a 32-bit boundary */
4374 qc->pad_len = lsg->length & 3;
4375 if (qc->pad_len) {
4376 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4377 struct scatterlist *psg = &qc->pad_sgent;
4378 unsigned int offset;
4379
a4631474 4380 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4381
4382 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4383
4384 /*
4385 * psg->page/offset are used to copy to-be-written
4386 * data in this function or read data in ata_sg_clean.
4387 */
4388 offset = lsg->offset + lsg->length - qc->pad_len;
4389 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4390 psg->offset = offset_in_page(offset);
4391
4392 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4393 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4394 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 4395 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4396 }
4397
4398 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4399 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4400 /* trim last sg */
4401 lsg->length -= qc->pad_len;
e1410f2d
JG
4402 if (lsg->length == 0)
4403 trim_sg = 1;
cedc9a47
JG
4404
4405 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4406 qc->n_elem - 1, lsg->length, qc->pad_len);
4407 }
4408
e1410f2d
JG
4409 pre_n_elem = qc->n_elem;
4410 if (trim_sg && pre_n_elem)
4411 pre_n_elem--;
4412
4413 if (!pre_n_elem) {
4414 n_elem = 0;
4415 goto skip_map;
4416 }
4417
1da177e4 4418 dir = qc->dma_dir;
2f1f610b 4419 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
4420 if (n_elem < 1) {
4421 /* restore last sg */
4422 lsg->length += qc->pad_len;
1da177e4 4423 return -1;
537a95d9 4424 }
1da177e4
LT
4425
4426 DPRINTK("%d sg elements mapped\n", n_elem);
4427
e1410f2d 4428skip_map:
1da177e4
LT
4429 qc->n_elem = n_elem;
4430
4431 return 0;
4432}
4433
0baab86b 4434/**
c893a3ae 4435 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
4436 * @buf: Buffer to swap
4437 * @buf_words: Number of 16-bit words in buffer.
4438 *
4439 * Swap halves of 16-bit words if needed to convert from
4440 * little-endian byte order to native cpu byte order, or
4441 * vice-versa.
4442 *
4443 * LOCKING:
6f0ef4fa 4444 * Inherited from caller.
0baab86b 4445 */
1da177e4
LT
4446void swap_buf_le16(u16 *buf, unsigned int buf_words)
4447{
4448#ifdef __BIG_ENDIAN
4449 unsigned int i;
4450
4451 for (i = 0; i < buf_words; i++)
4452 buf[i] = le16_to_cpu(buf[i]);
4453#endif /* __BIG_ENDIAN */
4454}
4455
6ae4cfb5 4456/**
0d5ff566 4457 * ata_data_xfer - Transfer data by PIO
a6b2c5d4 4458 * @adev: device to target
6ae4cfb5
AL
4459 * @buf: data buffer
4460 * @buflen: buffer length
344babaa 4461 * @write_data: read/write
6ae4cfb5
AL
4462 *
4463 * Transfer data from/to the device data register by PIO.
4464 *
4465 * LOCKING:
4466 * Inherited from caller.
6ae4cfb5 4467 */
0d5ff566
TH
4468void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4469 unsigned int buflen, int write_data)
1da177e4 4470{
a6b2c5d4 4471 struct ata_port *ap = adev->ap;
6ae4cfb5 4472 unsigned int words = buflen >> 1;
1da177e4 4473
6ae4cfb5 4474 /* Transfer multiple of 2 bytes */
1da177e4 4475 if (write_data)
0d5ff566 4476 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
1da177e4 4477 else
0d5ff566 4478 ioread16_rep(ap->ioaddr.data_addr, buf, words);
6ae4cfb5
AL
4479
4480 /* Transfer trailing 1 byte, if any. */
4481 if (unlikely(buflen & 0x01)) {
4482 u16 align_buf[1] = { 0 };
4483 unsigned char *trailing_buf = buf + buflen - 1;
4484
4485 if (write_data) {
4486 memcpy(align_buf, trailing_buf, 1);
0d5ff566 4487 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
6ae4cfb5 4488 } else {
0d5ff566 4489 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
6ae4cfb5
AL
4490 memcpy(trailing_buf, align_buf, 1);
4491 }
4492 }
1da177e4
LT
4493}
4494
75e99585 4495/**
0d5ff566 4496 * ata_data_xfer_noirq - Transfer data by PIO
75e99585
AC
4497 * @adev: device to target
4498 * @buf: data buffer
4499 * @buflen: buffer length
4500 * @write_data: read/write
4501 *
88574551 4502 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
4503 * transfer with interrupts disabled.
4504 *
4505 * LOCKING:
4506 * Inherited from caller.
4507 */
0d5ff566
TH
4508void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4509 unsigned int buflen, int write_data)
75e99585
AC
4510{
4511 unsigned long flags;
4512 local_irq_save(flags);
0d5ff566 4513 ata_data_xfer(adev, buf, buflen, write_data);
75e99585
AC
4514 local_irq_restore(flags);
4515}
4516
4517
6ae4cfb5 4518/**
5a5dbd18 4519 * ata_pio_sector - Transfer a sector of data.
6ae4cfb5
AL
4520 * @qc: Command on going
4521 *
5a5dbd18 4522 * Transfer qc->sect_size bytes of data from/to the ATA device.
6ae4cfb5
AL
4523 *
4524 * LOCKING:
4525 * Inherited from caller.
4526 */
4527
1da177e4
LT
4528static void ata_pio_sector(struct ata_queued_cmd *qc)
4529{
4530 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4531 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4532 struct ata_port *ap = qc->ap;
4533 struct page *page;
4534 unsigned int offset;
4535 unsigned char *buf;
4536
5a5dbd18 4537 if (qc->curbytes == qc->nbytes - qc->sect_size)
14be71f4 4538 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4539
4540 page = sg[qc->cursg].page;
726f0785 4541 offset = sg[qc->cursg].offset + qc->cursg_ofs;
1da177e4
LT
4542
4543 /* get the current page and offset */
4544 page = nth_page(page, (offset >> PAGE_SHIFT));
4545 offset %= PAGE_SIZE;
4546
1da177e4
LT
4547 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4548
91b8b313
AL
4549 if (PageHighMem(page)) {
4550 unsigned long flags;
4551
a6b2c5d4 4552 /* FIXME: use a bounce buffer */
91b8b313
AL
4553 local_irq_save(flags);
4554 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4555
91b8b313 4556 /* do the actual data transfer */
5a5dbd18 4557 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
1da177e4 4558
91b8b313
AL
4559 kunmap_atomic(buf, KM_IRQ0);
4560 local_irq_restore(flags);
4561 } else {
4562 buf = page_address(page);
5a5dbd18 4563 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
91b8b313 4564 }
1da177e4 4565
5a5dbd18
ML
4566 qc->curbytes += qc->sect_size;
4567 qc->cursg_ofs += qc->sect_size;
1da177e4 4568
726f0785 4569 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
1da177e4
LT
4570 qc->cursg++;
4571 qc->cursg_ofs = 0;
4572 }
1da177e4 4573}
1da177e4 4574
07f6f7d0 4575/**
5a5dbd18 4576 * ata_pio_sectors - Transfer one or many sectors.
07f6f7d0
AL
4577 * @qc: Command on going
4578 *
5a5dbd18 4579 * Transfer one or many sectors of data from/to the
07f6f7d0
AL
4580 * ATA device for the DRQ request.
4581 *
4582 * LOCKING:
4583 * Inherited from caller.
4584 */
1da177e4 4585
07f6f7d0
AL
4586static void ata_pio_sectors(struct ata_queued_cmd *qc)
4587{
4588 if (is_multi_taskfile(&qc->tf)) {
4589 /* READ/WRITE MULTIPLE */
4590 unsigned int nsect;
4591
587005de 4592 WARN_ON(qc->dev->multi_count == 0);
1da177e4 4593
5a5dbd18 4594 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
726f0785 4595 qc->dev->multi_count);
07f6f7d0
AL
4596 while (nsect--)
4597 ata_pio_sector(qc);
4598 } else
4599 ata_pio_sector(qc);
4600}
4601
c71c1857
AL
4602/**
4603 * atapi_send_cdb - Write CDB bytes to hardware
4604 * @ap: Port to which ATAPI device is attached.
4605 * @qc: Taskfile currently active
4606 *
4607 * When device has indicated its readiness to accept
4608 * a CDB, this function is called. Send the CDB.
4609 *
4610 * LOCKING:
4611 * caller.
4612 */
4613
4614static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4615{
4616 /* send SCSI cdb */
4617 DPRINTK("send cdb\n");
db024d53 4618 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 4619
a6b2c5d4 4620 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
4621 ata_altstatus(ap); /* flush */
4622
4623 switch (qc->tf.protocol) {
4624 case ATA_PROT_ATAPI:
4625 ap->hsm_task_state = HSM_ST;
4626 break;
4627 case ATA_PROT_ATAPI_NODATA:
4628 ap->hsm_task_state = HSM_ST_LAST;
4629 break;
4630 case ATA_PROT_ATAPI_DMA:
4631 ap->hsm_task_state = HSM_ST_LAST;
4632 /* initiate bmdma */
4633 ap->ops->bmdma_start(qc);
4634 break;
4635 }
1da177e4
LT
4636}
4637
6ae4cfb5
AL
4638/**
4639 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4640 * @qc: Command on going
4641 * @bytes: number of bytes
4642 *
4643 * Transfer Transfer data from/to the ATAPI device.
4644 *
4645 * LOCKING:
4646 * Inherited from caller.
4647 *
4648 */
4649
1da177e4
LT
4650static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4651{
4652 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4653 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4654 struct ata_port *ap = qc->ap;
4655 struct page *page;
4656 unsigned char *buf;
4657 unsigned int offset, count;
4658
563a6e1f 4659 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 4660 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4661
4662next_sg:
563a6e1f 4663 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 4664 /*
563a6e1f
AL
4665 * The end of qc->sg is reached and the device expects
4666 * more data to transfer. In order not to overrun qc->sg
4667 * and fulfill length specified in the byte count register,
4668 * - for read case, discard trailing data from the device
4669 * - for write case, padding zero data to the device
4670 */
4671 u16 pad_buf[1] = { 0 };
4672 unsigned int words = bytes >> 1;
4673 unsigned int i;
4674
4675 if (words) /* warning if bytes > 1 */
f15a1daf
TH
4676 ata_dev_printk(qc->dev, KERN_WARNING,
4677 "%u bytes trailing data\n", bytes);
563a6e1f
AL
4678
4679 for (i = 0; i < words; i++)
a6b2c5d4 4680 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
563a6e1f 4681
14be71f4 4682 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
4683 return;
4684 }
4685
cedc9a47 4686 sg = &qc->__sg[qc->cursg];
1da177e4 4687
1da177e4
LT
4688 page = sg->page;
4689 offset = sg->offset + qc->cursg_ofs;
4690
4691 /* get the current page and offset */
4692 page = nth_page(page, (offset >> PAGE_SHIFT));
4693 offset %= PAGE_SIZE;
4694
6952df03 4695 /* don't overrun current sg */
32529e01 4696 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
4697
4698 /* don't cross page boundaries */
4699 count = min(count, (unsigned int)PAGE_SIZE - offset);
4700
7282aa4b
AL
4701 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4702
91b8b313
AL
4703 if (PageHighMem(page)) {
4704 unsigned long flags;
4705
a6b2c5d4 4706 /* FIXME: use bounce buffer */
91b8b313
AL
4707 local_irq_save(flags);
4708 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4709
91b8b313 4710 /* do the actual data transfer */
a6b2c5d4 4711 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 4712
91b8b313
AL
4713 kunmap_atomic(buf, KM_IRQ0);
4714 local_irq_restore(flags);
4715 } else {
4716 buf = page_address(page);
a6b2c5d4 4717 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 4718 }
1da177e4
LT
4719
4720 bytes -= count;
4721 qc->curbytes += count;
4722 qc->cursg_ofs += count;
4723
32529e01 4724 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
4725 qc->cursg++;
4726 qc->cursg_ofs = 0;
4727 }
4728
563a6e1f 4729 if (bytes)
1da177e4 4730 goto next_sg;
1da177e4
LT
4731}
4732
6ae4cfb5
AL
4733/**
4734 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4735 * @qc: Command on going
4736 *
4737 * Transfer Transfer data from/to the ATAPI device.
4738 *
4739 * LOCKING:
4740 * Inherited from caller.
6ae4cfb5
AL
4741 */
4742
1da177e4
LT
4743static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4744{
4745 struct ata_port *ap = qc->ap;
4746 struct ata_device *dev = qc->dev;
4747 unsigned int ireason, bc_lo, bc_hi, bytes;
4748 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4749
eec4c3f3
AL
4750 /* Abuse qc->result_tf for temp storage of intermediate TF
4751 * here to save some kernel stack usage.
4752 * For normal completion, qc->result_tf is not relevant. For
4753 * error, qc->result_tf is later overwritten by ata_qc_complete().
4754 * So, the correctness of qc->result_tf is not affected.
4755 */
4756 ap->ops->tf_read(ap, &qc->result_tf);
4757 ireason = qc->result_tf.nsect;
4758 bc_lo = qc->result_tf.lbam;
4759 bc_hi = qc->result_tf.lbah;
1da177e4
LT
4760 bytes = (bc_hi << 8) | bc_lo;
4761
4762 /* shall be cleared to zero, indicating xfer of data */
4763 if (ireason & (1 << 0))
4764 goto err_out;
4765
4766 /* make sure transfer direction matches expected */
4767 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4768 if (do_write != i_write)
4769 goto err_out;
4770
44877b4e 4771 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
312f7da2 4772
1da177e4
LT
4773 __atapi_pio_bytes(qc, bytes);
4774
4775 return;
4776
4777err_out:
f15a1daf 4778 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 4779 qc->err_mask |= AC_ERR_HSM;
14be71f4 4780 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
4781}
4782
4783/**
c234fb00
AL
4784 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4785 * @ap: the target ata_port
4786 * @qc: qc on going
1da177e4 4787 *
c234fb00
AL
4788 * RETURNS:
4789 * 1 if ok in workqueue, 0 otherwise.
1da177e4 4790 */
c234fb00
AL
4791
4792static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 4793{
c234fb00
AL
4794 if (qc->tf.flags & ATA_TFLAG_POLLING)
4795 return 1;
1da177e4 4796
c234fb00
AL
4797 if (ap->hsm_task_state == HSM_ST_FIRST) {
4798 if (qc->tf.protocol == ATA_PROT_PIO &&
4799 (qc->tf.flags & ATA_TFLAG_WRITE))
4800 return 1;
1da177e4 4801
c234fb00
AL
4802 if (is_atapi_taskfile(&qc->tf) &&
4803 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4804 return 1;
fe79e683
AL
4805 }
4806
c234fb00
AL
4807 return 0;
4808}
1da177e4 4809
c17ea20d
TH
4810/**
4811 * ata_hsm_qc_complete - finish a qc running on standard HSM
4812 * @qc: Command to complete
4813 * @in_wq: 1 if called from workqueue, 0 otherwise
4814 *
4815 * Finish @qc which is running on standard HSM.
4816 *
4817 * LOCKING:
cca3974e 4818 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
4819 * Otherwise, none on entry and grabs host lock.
4820 */
4821static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4822{
4823 struct ata_port *ap = qc->ap;
4824 unsigned long flags;
4825
4826 if (ap->ops->error_handler) {
4827 if (in_wq) {
ba6a1308 4828 spin_lock_irqsave(ap->lock, flags);
c17ea20d 4829
cca3974e
JG
4830 /* EH might have kicked in while host lock is
4831 * released.
c17ea20d
TH
4832 */
4833 qc = ata_qc_from_tag(ap, qc->tag);
4834 if (qc) {
4835 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
83625006 4836 ap->ops->irq_on(ap);
c17ea20d
TH
4837 ata_qc_complete(qc);
4838 } else
4839 ata_port_freeze(ap);
4840 }
4841
ba6a1308 4842 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4843 } else {
4844 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4845 ata_qc_complete(qc);
4846 else
4847 ata_port_freeze(ap);
4848 }
4849 } else {
4850 if (in_wq) {
ba6a1308 4851 spin_lock_irqsave(ap->lock, flags);
83625006 4852 ap->ops->irq_on(ap);
c17ea20d 4853 ata_qc_complete(qc);
ba6a1308 4854 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4855 } else
4856 ata_qc_complete(qc);
4857 }
4858}
4859
bb5cb290
AL
4860/**
4861 * ata_hsm_move - move the HSM to the next state.
4862 * @ap: the target ata_port
4863 * @qc: qc on going
4864 * @status: current device status
4865 * @in_wq: 1 if called from workqueue, 0 otherwise
4866 *
4867 * RETURNS:
4868 * 1 when poll next status needed, 0 otherwise.
4869 */
9a1004d0
TH
4870int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4871 u8 status, int in_wq)
e2cec771 4872{
bb5cb290
AL
4873 unsigned long flags = 0;
4874 int poll_next;
4875
6912ccd5
AL
4876 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4877
bb5cb290
AL
4878 /* Make sure ata_qc_issue_prot() does not throw things
4879 * like DMA polling into the workqueue. Notice that
4880 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4881 */
c234fb00 4882 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 4883
e2cec771 4884fsm_start:
999bb6f4 4885 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
44877b4e 4886 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
999bb6f4 4887
e2cec771
AL
4888 switch (ap->hsm_task_state) {
4889 case HSM_ST_FIRST:
bb5cb290
AL
4890 /* Send first data block or PACKET CDB */
4891
4892 /* If polling, we will stay in the work queue after
4893 * sending the data. Otherwise, interrupt handler
4894 * takes over after sending the data.
4895 */
4896 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4897
e2cec771 4898 /* check device status */
3655d1d3
AL
4899 if (unlikely((status & ATA_DRQ) == 0)) {
4900 /* handle BSY=0, DRQ=0 as error */
4901 if (likely(status & (ATA_ERR | ATA_DF)))
4902 /* device stops HSM for abort/error */
4903 qc->err_mask |= AC_ERR_DEV;
4904 else
4905 /* HSM violation. Let EH handle this */
4906 qc->err_mask |= AC_ERR_HSM;
4907
14be71f4 4908 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 4909 goto fsm_start;
1da177e4
LT
4910 }
4911
71601958
AL
4912 /* Device should not ask for data transfer (DRQ=1)
4913 * when it finds something wrong.
eee6c32f
AL
4914 * We ignore DRQ here and stop the HSM by
4915 * changing hsm_task_state to HSM_ST_ERR and
4916 * let the EH abort the command or reset the device.
71601958
AL
4917 */
4918 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
4919 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4920 "error, dev_stat 0x%X\n", status);
3655d1d3 4921 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4922 ap->hsm_task_state = HSM_ST_ERR;
4923 goto fsm_start;
71601958 4924 }
1da177e4 4925
bb5cb290
AL
4926 /* Send the CDB (atapi) or the first data block (ata pio out).
4927 * During the state transition, interrupt handler shouldn't
4928 * be invoked before the data transfer is complete and
4929 * hsm_task_state is changed. Hence, the following locking.
4930 */
4931 if (in_wq)
ba6a1308 4932 spin_lock_irqsave(ap->lock, flags);
1da177e4 4933
bb5cb290
AL
4934 if (qc->tf.protocol == ATA_PROT_PIO) {
4935 /* PIO data out protocol.
4936 * send first data block.
4937 */
0565c26d 4938
bb5cb290
AL
4939 /* ata_pio_sectors() might change the state
4940 * to HSM_ST_LAST. so, the state is changed here
4941 * before ata_pio_sectors().
4942 */
4943 ap->hsm_task_state = HSM_ST;
4944 ata_pio_sectors(qc);
4945 ata_altstatus(ap); /* flush */
4946 } else
4947 /* send CDB */
4948 atapi_send_cdb(ap, qc);
4949
4950 if (in_wq)
ba6a1308 4951 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
4952
4953 /* if polling, ata_pio_task() handles the rest.
4954 * otherwise, interrupt handler takes over from here.
4955 */
e2cec771 4956 break;
1c848984 4957
e2cec771
AL
4958 case HSM_ST:
4959 /* complete command or read/write the data register */
4960 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4961 /* ATAPI PIO protocol */
4962 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
4963 /* No more data to transfer or device error.
4964 * Device error will be tagged in HSM_ST_LAST.
4965 */
e2cec771
AL
4966 ap->hsm_task_state = HSM_ST_LAST;
4967 goto fsm_start;
4968 }
1da177e4 4969
71601958
AL
4970 /* Device should not ask for data transfer (DRQ=1)
4971 * when it finds something wrong.
eee6c32f
AL
4972 * We ignore DRQ here and stop the HSM by
4973 * changing hsm_task_state to HSM_ST_ERR and
4974 * let the EH abort the command or reset the device.
71601958
AL
4975 */
4976 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
4977 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4978 "device error, dev_stat 0x%X\n",
4979 status);
3655d1d3 4980 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4981 ap->hsm_task_state = HSM_ST_ERR;
4982 goto fsm_start;
71601958 4983 }
1da177e4 4984
e2cec771 4985 atapi_pio_bytes(qc);
7fb6ec28 4986
e2cec771
AL
4987 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4988 /* bad ireason reported by device */
4989 goto fsm_start;
1da177e4 4990
e2cec771
AL
4991 } else {
4992 /* ATA PIO protocol */
4993 if (unlikely((status & ATA_DRQ) == 0)) {
4994 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
4995 if (likely(status & (ATA_ERR | ATA_DF)))
4996 /* device stops HSM for abort/error */
4997 qc->err_mask |= AC_ERR_DEV;
4998 else
55a8e2c8
TH
4999 /* HSM violation. Let EH handle this.
5000 * Phantom devices also trigger this
5001 * condition. Mark hint.
5002 */
5003 qc->err_mask |= AC_ERR_HSM |
5004 AC_ERR_NODEV_HINT;
3655d1d3 5005
e2cec771
AL
5006 ap->hsm_task_state = HSM_ST_ERR;
5007 goto fsm_start;
5008 }
1da177e4 5009
eee6c32f
AL
5010 /* For PIO reads, some devices may ask for
5011 * data transfer (DRQ=1) alone with ERR=1.
5012 * We respect DRQ here and transfer one
5013 * block of junk data before changing the
5014 * hsm_task_state to HSM_ST_ERR.
5015 *
5016 * For PIO writes, ERR=1 DRQ=1 doesn't make
5017 * sense since the data block has been
5018 * transferred to the device.
71601958
AL
5019 */
5020 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
5021 /* data might be corrputed */
5022 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
5023
5024 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5025 ata_pio_sectors(qc);
5026 ata_altstatus(ap);
5027 status = ata_wait_idle(ap);
5028 }
5029
3655d1d3
AL
5030 if (status & (ATA_BUSY | ATA_DRQ))
5031 qc->err_mask |= AC_ERR_HSM;
5032
eee6c32f
AL
5033 /* ata_pio_sectors() might change the
5034 * state to HSM_ST_LAST. so, the state
5035 * is changed after ata_pio_sectors().
5036 */
5037 ap->hsm_task_state = HSM_ST_ERR;
5038 goto fsm_start;
71601958
AL
5039 }
5040
e2cec771
AL
5041 ata_pio_sectors(qc);
5042
5043 if (ap->hsm_task_state == HSM_ST_LAST &&
5044 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5045 /* all data read */
5046 ata_altstatus(ap);
52a32205 5047 status = ata_wait_idle(ap);
e2cec771
AL
5048 goto fsm_start;
5049 }
5050 }
5051
5052 ata_altstatus(ap); /* flush */
bb5cb290 5053 poll_next = 1;
1da177e4
LT
5054 break;
5055
14be71f4 5056 case HSM_ST_LAST:
6912ccd5
AL
5057 if (unlikely(!ata_ok(status))) {
5058 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
5059 ap->hsm_task_state = HSM_ST_ERR;
5060 goto fsm_start;
5061 }
5062
5063 /* no more data to transfer */
4332a771 5064 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
44877b4e 5065 ap->print_id, qc->dev->devno, status);
e2cec771 5066
6912ccd5
AL
5067 WARN_ON(qc->err_mask);
5068
e2cec771 5069 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 5070
e2cec771 5071 /* complete taskfile transaction */
c17ea20d 5072 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5073
5074 poll_next = 0;
1da177e4
LT
5075 break;
5076
14be71f4 5077 case HSM_ST_ERR:
e2cec771
AL
5078 /* make sure qc->err_mask is available to
5079 * know what's wrong and recover
5080 */
5081 WARN_ON(qc->err_mask == 0);
5082
5083 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 5084
999bb6f4 5085 /* complete taskfile transaction */
c17ea20d 5086 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5087
5088 poll_next = 0;
e2cec771
AL
5089 break;
5090 default:
bb5cb290 5091 poll_next = 0;
6912ccd5 5092 BUG();
1da177e4
LT
5093 }
5094
bb5cb290 5095 return poll_next;
1da177e4
LT
5096}
5097
65f27f38 5098static void ata_pio_task(struct work_struct *work)
8061f5f0 5099{
65f27f38
DH
5100 struct ata_port *ap =
5101 container_of(work, struct ata_port, port_task.work);
5102 struct ata_queued_cmd *qc = ap->port_task_data;
8061f5f0 5103 u8 status;
a1af3734 5104 int poll_next;
8061f5f0 5105
7fb6ec28 5106fsm_start:
a1af3734 5107 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 5108
a1af3734
AL
5109 /*
5110 * This is purely heuristic. This is a fast path.
5111 * Sometimes when we enter, BSY will be cleared in
5112 * a chk-status or two. If not, the drive is probably seeking
5113 * or something. Snooze for a couple msecs, then
5114 * chk-status again. If still busy, queue delayed work.
5115 */
5116 status = ata_busy_wait(ap, ATA_BUSY, 5);
5117 if (status & ATA_BUSY) {
5118 msleep(2);
5119 status = ata_busy_wait(ap, ATA_BUSY, 10);
5120 if (status & ATA_BUSY) {
31ce6dae 5121 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
5122 return;
5123 }
8061f5f0
TH
5124 }
5125
a1af3734
AL
5126 /* move the HSM */
5127 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 5128
a1af3734
AL
5129 /* another command or interrupt handler
5130 * may be running at this point.
5131 */
5132 if (poll_next)
7fb6ec28 5133 goto fsm_start;
8061f5f0
TH
5134}
5135
1da177e4
LT
5136/**
5137 * ata_qc_new - Request an available ATA command, for queueing
5138 * @ap: Port associated with device @dev
5139 * @dev: Device from whom we request an available command structure
5140 *
5141 * LOCKING:
0cba632b 5142 * None.
1da177e4
LT
5143 */
5144
5145static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5146{
5147 struct ata_queued_cmd *qc = NULL;
5148 unsigned int i;
5149
e3180499 5150 /* no command while frozen */
b51e9e5d 5151 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
5152 return NULL;
5153
2ab7db1f
TH
5154 /* the last tag is reserved for internal command. */
5155 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 5156 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 5157 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
5158 break;
5159 }
5160
5161 if (qc)
5162 qc->tag = i;
5163
5164 return qc;
5165}
5166
5167/**
5168 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
5169 * @dev: Device from whom we request an available command structure
5170 *
5171 * LOCKING:
0cba632b 5172 * None.
1da177e4
LT
5173 */
5174
3373efd8 5175struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 5176{
3373efd8 5177 struct ata_port *ap = dev->ap;
1da177e4
LT
5178 struct ata_queued_cmd *qc;
5179
5180 qc = ata_qc_new(ap);
5181 if (qc) {
1da177e4
LT
5182 qc->scsicmd = NULL;
5183 qc->ap = ap;
5184 qc->dev = dev;
1da177e4 5185
2c13b7ce 5186 ata_qc_reinit(qc);
1da177e4
LT
5187 }
5188
5189 return qc;
5190}
5191
1da177e4
LT
5192/**
5193 * ata_qc_free - free unused ata_queued_cmd
5194 * @qc: Command to complete
5195 *
5196 * Designed to free unused ata_queued_cmd object
5197 * in case something prevents using it.
5198 *
5199 * LOCKING:
cca3974e 5200 * spin_lock_irqsave(host lock)
1da177e4
LT
5201 */
5202void ata_qc_free(struct ata_queued_cmd *qc)
5203{
4ba946e9
TH
5204 struct ata_port *ap = qc->ap;
5205 unsigned int tag;
5206
a4631474 5207 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 5208
4ba946e9
TH
5209 qc->flags = 0;
5210 tag = qc->tag;
5211 if (likely(ata_tag_valid(tag))) {
4ba946e9 5212 qc->tag = ATA_TAG_POISON;
6cec4a39 5213 clear_bit(tag, &ap->qc_allocated);
4ba946e9 5214 }
1da177e4
LT
5215}
5216
76014427 5217void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 5218{
dedaf2b0
TH
5219 struct ata_port *ap = qc->ap;
5220
a4631474
TH
5221 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5222 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
5223
5224 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5225 ata_sg_clean(qc);
5226
7401abf2 5227 /* command should be marked inactive atomically with qc completion */
dedaf2b0
TH
5228 if (qc->tf.protocol == ATA_PROT_NCQ)
5229 ap->sactive &= ~(1 << qc->tag);
5230 else
5231 ap->active_tag = ATA_TAG_POISON;
7401abf2 5232
3f3791d3
AL
5233 /* atapi: mark qc as inactive to prevent the interrupt handler
5234 * from completing the command twice later, before the error handler
5235 * is called. (when rc != 0 and atapi request sense is needed)
5236 */
5237 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 5238 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 5239
1da177e4 5240 /* call completion callback */
77853bf2 5241 qc->complete_fn(qc);
1da177e4
LT
5242}
5243
39599a53
TH
5244static void fill_result_tf(struct ata_queued_cmd *qc)
5245{
5246 struct ata_port *ap = qc->ap;
5247
39599a53 5248 qc->result_tf.flags = qc->tf.flags;
4742d54f 5249 ap->ops->tf_read(ap, &qc->result_tf);
39599a53
TH
5250}
5251
f686bcb8
TH
5252/**
5253 * ata_qc_complete - Complete an active ATA command
5254 * @qc: Command to complete
5255 * @err_mask: ATA Status register contents
5256 *
5257 * Indicate to the mid and upper layers that an ATA
5258 * command has completed, with either an ok or not-ok status.
5259 *
5260 * LOCKING:
cca3974e 5261 * spin_lock_irqsave(host lock)
f686bcb8
TH
5262 */
5263void ata_qc_complete(struct ata_queued_cmd *qc)
5264{
5265 struct ata_port *ap = qc->ap;
5266
5267 /* XXX: New EH and old EH use different mechanisms to
5268 * synchronize EH with regular execution path.
5269 *
5270 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5271 * Normal execution path is responsible for not accessing a
5272 * failed qc. libata core enforces the rule by returning NULL
5273 * from ata_qc_from_tag() for failed qcs.
5274 *
5275 * Old EH depends on ata_qc_complete() nullifying completion
5276 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5277 * not synchronize with interrupt handler. Only PIO task is
5278 * taken care of.
5279 */
5280 if (ap->ops->error_handler) {
b51e9e5d 5281 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
5282
5283 if (unlikely(qc->err_mask))
5284 qc->flags |= ATA_QCFLAG_FAILED;
5285
5286 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5287 if (!ata_tag_internal(qc->tag)) {
5288 /* always fill result TF for failed qc */
39599a53 5289 fill_result_tf(qc);
f686bcb8
TH
5290 ata_qc_schedule_eh(qc);
5291 return;
5292 }
5293 }
5294
5295 /* read result TF if requested */
5296 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5297 fill_result_tf(qc);
f686bcb8
TH
5298
5299 __ata_qc_complete(qc);
5300 } else {
5301 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5302 return;
5303
5304 /* read result TF if failed or requested */
5305 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5306 fill_result_tf(qc);
f686bcb8
TH
5307
5308 __ata_qc_complete(qc);
5309 }
5310}
5311
dedaf2b0
TH
5312/**
5313 * ata_qc_complete_multiple - Complete multiple qcs successfully
5314 * @ap: port in question
5315 * @qc_active: new qc_active mask
5316 * @finish_qc: LLDD callback invoked before completing a qc
5317 *
5318 * Complete in-flight commands. This functions is meant to be
5319 * called from low-level driver's interrupt routine to complete
5320 * requests normally. ap->qc_active and @qc_active is compared
5321 * and commands are completed accordingly.
5322 *
5323 * LOCKING:
cca3974e 5324 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5325 *
5326 * RETURNS:
5327 * Number of completed commands on success, -errno otherwise.
5328 */
5329int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5330 void (*finish_qc)(struct ata_queued_cmd *))
5331{
5332 int nr_done = 0;
5333 u32 done_mask;
5334 int i;
5335
5336 done_mask = ap->qc_active ^ qc_active;
5337
5338 if (unlikely(done_mask & qc_active)) {
5339 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5340 "(%08x->%08x)\n", ap->qc_active, qc_active);
5341 return -EINVAL;
5342 }
5343
5344 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5345 struct ata_queued_cmd *qc;
5346
5347 if (!(done_mask & (1 << i)))
5348 continue;
5349
5350 if ((qc = ata_qc_from_tag(ap, i))) {
5351 if (finish_qc)
5352 finish_qc(qc);
5353 ata_qc_complete(qc);
5354 nr_done++;
5355 }
5356 }
5357
5358 return nr_done;
5359}
5360
1da177e4
LT
5361static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5362{
5363 struct ata_port *ap = qc->ap;
5364
5365 switch (qc->tf.protocol) {
3dc1d881 5366 case ATA_PROT_NCQ:
1da177e4
LT
5367 case ATA_PROT_DMA:
5368 case ATA_PROT_ATAPI_DMA:
5369 return 1;
5370
5371 case ATA_PROT_ATAPI:
5372 case ATA_PROT_PIO:
1da177e4
LT
5373 if (ap->flags & ATA_FLAG_PIO_DMA)
5374 return 1;
5375
5376 /* fall through */
5377
5378 default:
5379 return 0;
5380 }
5381
5382 /* never reached */
5383}
5384
5385/**
5386 * ata_qc_issue - issue taskfile to device
5387 * @qc: command to issue to device
5388 *
5389 * Prepare an ATA command to submission to device.
5390 * This includes mapping the data into a DMA-able
5391 * area, filling in the S/G table, and finally
5392 * writing the taskfile to hardware, starting the command.
5393 *
5394 * LOCKING:
cca3974e 5395 * spin_lock_irqsave(host lock)
1da177e4 5396 */
8e0e694a 5397void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5398{
5399 struct ata_port *ap = qc->ap;
5400
dedaf2b0
TH
5401 /* Make sure only one non-NCQ command is outstanding. The
5402 * check is skipped for old EH because it reuses active qc to
5403 * request ATAPI sense.
5404 */
5405 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
5406
5407 if (qc->tf.protocol == ATA_PROT_NCQ) {
5408 WARN_ON(ap->sactive & (1 << qc->tag));
5409 ap->sactive |= 1 << qc->tag;
5410 } else {
5411 WARN_ON(ap->sactive);
5412 ap->active_tag = qc->tag;
5413 }
5414
e4a70e76 5415 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5416 ap->qc_active |= 1 << qc->tag;
e4a70e76 5417
1da177e4
LT
5418 if (ata_should_dma_map(qc)) {
5419 if (qc->flags & ATA_QCFLAG_SG) {
5420 if (ata_sg_setup(qc))
8e436af9 5421 goto sg_err;
1da177e4
LT
5422 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5423 if (ata_sg_setup_one(qc))
8e436af9 5424 goto sg_err;
1da177e4
LT
5425 }
5426 } else {
5427 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5428 }
5429
5430 ap->ops->qc_prep(qc);
5431
8e0e694a
TH
5432 qc->err_mask |= ap->ops->qc_issue(qc);
5433 if (unlikely(qc->err_mask))
5434 goto err;
5435 return;
1da177e4 5436
8e436af9
TH
5437sg_err:
5438 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
5439 qc->err_mask |= AC_ERR_SYSTEM;
5440err:
5441 ata_qc_complete(qc);
1da177e4
LT
5442}
5443
5444/**
5445 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5446 * @qc: command to issue to device
5447 *
5448 * Using various libata functions and hooks, this function
5449 * starts an ATA command. ATA commands are grouped into
5450 * classes called "protocols", and issuing each type of protocol
5451 * is slightly different.
5452 *
0baab86b
EF
5453 * May be used as the qc_issue() entry in ata_port_operations.
5454 *
1da177e4 5455 * LOCKING:
cca3974e 5456 * spin_lock_irqsave(host lock)
1da177e4
LT
5457 *
5458 * RETURNS:
9a3d9eb0 5459 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
5460 */
5461
9a3d9eb0 5462unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
5463{
5464 struct ata_port *ap = qc->ap;
5465
e50362ec
AL
5466 /* Use polling pio if the LLD doesn't handle
5467 * interrupt driven pio and atapi CDB interrupt.
5468 */
5469 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5470 switch (qc->tf.protocol) {
5471 case ATA_PROT_PIO:
e3472cbe 5472 case ATA_PROT_NODATA:
e50362ec
AL
5473 case ATA_PROT_ATAPI:
5474 case ATA_PROT_ATAPI_NODATA:
5475 qc->tf.flags |= ATA_TFLAG_POLLING;
5476 break;
5477 case ATA_PROT_ATAPI_DMA:
5478 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 5479 /* see ata_dma_blacklisted() */
e50362ec
AL
5480 BUG();
5481 break;
5482 default:
5483 break;
5484 }
5485 }
5486
312f7da2 5487 /* select the device */
1da177e4
LT
5488 ata_dev_select(ap, qc->dev->devno, 1, 0);
5489
312f7da2 5490 /* start the command */
1da177e4
LT
5491 switch (qc->tf.protocol) {
5492 case ATA_PROT_NODATA:
312f7da2
AL
5493 if (qc->tf.flags & ATA_TFLAG_POLLING)
5494 ata_qc_set_polling(qc);
5495
e5338254 5496 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
5497 ap->hsm_task_state = HSM_ST_LAST;
5498
5499 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5500 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 5501
1da177e4
LT
5502 break;
5503
5504 case ATA_PROT_DMA:
587005de 5505 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5506
1da177e4
LT
5507 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5508 ap->ops->bmdma_setup(qc); /* set up bmdma */
5509 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 5510 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
5511 break;
5512
312f7da2
AL
5513 case ATA_PROT_PIO:
5514 if (qc->tf.flags & ATA_TFLAG_POLLING)
5515 ata_qc_set_polling(qc);
1da177e4 5516
e5338254 5517 ata_tf_to_host(ap, &qc->tf);
312f7da2 5518
54f00389
AL
5519 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5520 /* PIO data out protocol */
5521 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 5522 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5523
5524 /* always send first data block using
e27486db 5525 * the ata_pio_task() codepath.
54f00389 5526 */
312f7da2 5527 } else {
54f00389
AL
5528 /* PIO data in protocol */
5529 ap->hsm_task_state = HSM_ST;
5530
5531 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5532 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5533
5534 /* if polling, ata_pio_task() handles the rest.
5535 * otherwise, interrupt handler takes over from here.
5536 */
312f7da2
AL
5537 }
5538
1da177e4
LT
5539 break;
5540
1da177e4 5541 case ATA_PROT_ATAPI:
1da177e4 5542 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
5543 if (qc->tf.flags & ATA_TFLAG_POLLING)
5544 ata_qc_set_polling(qc);
5545
e5338254 5546 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 5547
312f7da2
AL
5548 ap->hsm_task_state = HSM_ST_FIRST;
5549
5550 /* send cdb by polling if no cdb interrupt */
5551 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5552 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 5553 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5554 break;
5555
5556 case ATA_PROT_ATAPI_DMA:
587005de 5557 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5558
1da177e4
LT
5559 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5560 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
5561 ap->hsm_task_state = HSM_ST_FIRST;
5562
5563 /* send cdb by polling if no cdb interrupt */
5564 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 5565 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5566 break;
5567
5568 default:
5569 WARN_ON(1);
9a3d9eb0 5570 return AC_ERR_SYSTEM;
1da177e4
LT
5571 }
5572
5573 return 0;
5574}
5575
1da177e4
LT
5576/**
5577 * ata_host_intr - Handle host interrupt for given (port, task)
5578 * @ap: Port on which interrupt arrived (possibly...)
5579 * @qc: Taskfile currently active in engine
5580 *
5581 * Handle host interrupt for given queued command. Currently,
5582 * only DMA interrupts are handled. All other commands are
5583 * handled via polling with interrupts disabled (nIEN bit).
5584 *
5585 * LOCKING:
cca3974e 5586 * spin_lock_irqsave(host lock)
1da177e4
LT
5587 *
5588 * RETURNS:
5589 * One if interrupt was handled, zero if not (shared irq).
5590 */
5591
5592inline unsigned int ata_host_intr (struct ata_port *ap,
5593 struct ata_queued_cmd *qc)
5594{
ea54763f 5595 struct ata_eh_info *ehi = &ap->eh_info;
312f7da2 5596 u8 status, host_stat = 0;
1da177e4 5597
312f7da2 5598 VPRINTK("ata%u: protocol %d task_state %d\n",
44877b4e 5599 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 5600
312f7da2
AL
5601 /* Check whether we are expecting interrupt in this state */
5602 switch (ap->hsm_task_state) {
5603 case HSM_ST_FIRST:
6912ccd5
AL
5604 /* Some pre-ATAPI-4 devices assert INTRQ
5605 * at this state when ready to receive CDB.
5606 */
1da177e4 5607
312f7da2
AL
5608 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5609 * The flag was turned on only for atapi devices.
5610 * No need to check is_atapi_taskfile(&qc->tf) again.
5611 */
5612 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 5613 goto idle_irq;
1da177e4 5614 break;
312f7da2
AL
5615 case HSM_ST_LAST:
5616 if (qc->tf.protocol == ATA_PROT_DMA ||
5617 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5618 /* check status of DMA engine */
5619 host_stat = ap->ops->bmdma_status(ap);
44877b4e
TH
5620 VPRINTK("ata%u: host_stat 0x%X\n",
5621 ap->print_id, host_stat);
312f7da2
AL
5622
5623 /* if it's not our irq... */
5624 if (!(host_stat & ATA_DMA_INTR))
5625 goto idle_irq;
5626
5627 /* before we do anything else, clear DMA-Start bit */
5628 ap->ops->bmdma_stop(qc);
a4f16610
AL
5629
5630 if (unlikely(host_stat & ATA_DMA_ERR)) {
5631 /* error when transfering data to/from memory */
5632 qc->err_mask |= AC_ERR_HOST_BUS;
5633 ap->hsm_task_state = HSM_ST_ERR;
5634 }
312f7da2
AL
5635 }
5636 break;
5637 case HSM_ST:
5638 break;
1da177e4
LT
5639 default:
5640 goto idle_irq;
5641 }
5642
312f7da2
AL
5643 /* check altstatus */
5644 status = ata_altstatus(ap);
5645 if (status & ATA_BUSY)
5646 goto idle_irq;
1da177e4 5647
312f7da2
AL
5648 /* check main status, clearing INTRQ */
5649 status = ata_chk_status(ap);
5650 if (unlikely(status & ATA_BUSY))
5651 goto idle_irq;
1da177e4 5652
312f7da2
AL
5653 /* ack bmdma irq events */
5654 ap->ops->irq_clear(ap);
1da177e4 5655
bb5cb290 5656 ata_hsm_move(ap, qc, status, 0);
ea54763f
TH
5657
5658 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5659 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5660 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5661
1da177e4
LT
5662 return 1; /* irq handled */
5663
5664idle_irq:
5665 ap->stats.idle_irq++;
5666
5667#ifdef ATA_IRQ_TRAP
5668 if ((ap->stats.idle_irq % 1000) == 0) {
83625006 5669 ap->ops->irq_ack(ap, 0); /* debug trap */
f15a1daf 5670 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 5671 return 1;
1da177e4
LT
5672 }
5673#endif
5674 return 0; /* irq not handled */
5675}
5676
5677/**
5678 * ata_interrupt - Default ATA host interrupt handler
0cba632b 5679 * @irq: irq line (unused)
cca3974e 5680 * @dev_instance: pointer to our ata_host information structure
1da177e4 5681 *
0cba632b
JG
5682 * Default interrupt handler for PCI IDE devices. Calls
5683 * ata_host_intr() for each port that is not disabled.
5684 *
1da177e4 5685 * LOCKING:
cca3974e 5686 * Obtains host lock during operation.
1da177e4
LT
5687 *
5688 * RETURNS:
0cba632b 5689 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
5690 */
5691
7d12e780 5692irqreturn_t ata_interrupt (int irq, void *dev_instance)
1da177e4 5693{
cca3974e 5694 struct ata_host *host = dev_instance;
1da177e4
LT
5695 unsigned int i;
5696 unsigned int handled = 0;
5697 unsigned long flags;
5698
5699 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 5700 spin_lock_irqsave(&host->lock, flags);
1da177e4 5701
cca3974e 5702 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
5703 struct ata_port *ap;
5704
cca3974e 5705 ap = host->ports[i];
c1389503 5706 if (ap &&
029f5468 5707 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
5708 struct ata_queued_cmd *qc;
5709
5710 qc = ata_qc_from_tag(ap, ap->active_tag);
312f7da2 5711 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 5712 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
5713 handled |= ata_host_intr(ap, qc);
5714 }
5715 }
5716
cca3974e 5717 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
5718
5719 return IRQ_RETVAL(handled);
5720}
5721
34bf2170
TH
5722/**
5723 * sata_scr_valid - test whether SCRs are accessible
5724 * @ap: ATA port to test SCR accessibility for
5725 *
5726 * Test whether SCRs are accessible for @ap.
5727 *
5728 * LOCKING:
5729 * None.
5730 *
5731 * RETURNS:
5732 * 1 if SCRs are accessible, 0 otherwise.
5733 */
5734int sata_scr_valid(struct ata_port *ap)
5735{
a16abc0b 5736 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
5737}
5738
5739/**
5740 * sata_scr_read - read SCR register of the specified port
5741 * @ap: ATA port to read SCR for
5742 * @reg: SCR to read
5743 * @val: Place to store read value
5744 *
5745 * Read SCR register @reg of @ap into *@val. This function is
5746 * guaranteed to succeed if the cable type of the port is SATA
5747 * and the port implements ->scr_read.
5748 *
5749 * LOCKING:
5750 * None.
5751 *
5752 * RETURNS:
5753 * 0 on success, negative errno on failure.
5754 */
5755int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5756{
da3dbb17
TH
5757 if (sata_scr_valid(ap))
5758 return ap->ops->scr_read(ap, reg, val);
34bf2170
TH
5759 return -EOPNOTSUPP;
5760}
5761
5762/**
5763 * sata_scr_write - write SCR register of the specified port
5764 * @ap: ATA port to write SCR for
5765 * @reg: SCR to write
5766 * @val: value to write
5767 *
5768 * Write @val to SCR register @reg of @ap. This function is
5769 * guaranteed to succeed if the cable type of the port is SATA
5770 * and the port implements ->scr_read.
5771 *
5772 * LOCKING:
5773 * None.
5774 *
5775 * RETURNS:
5776 * 0 on success, negative errno on failure.
5777 */
5778int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5779{
da3dbb17
TH
5780 if (sata_scr_valid(ap))
5781 return ap->ops->scr_write(ap, reg, val);
34bf2170
TH
5782 return -EOPNOTSUPP;
5783}
5784
5785/**
5786 * sata_scr_write_flush - write SCR register of the specified port and flush
5787 * @ap: ATA port to write SCR for
5788 * @reg: SCR to write
5789 * @val: value to write
5790 *
5791 * This function is identical to sata_scr_write() except that this
5792 * function performs flush after writing to the register.
5793 *
5794 * LOCKING:
5795 * None.
5796 *
5797 * RETURNS:
5798 * 0 on success, negative errno on failure.
5799 */
5800int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5801{
da3dbb17
TH
5802 int rc;
5803
34bf2170 5804 if (sata_scr_valid(ap)) {
da3dbb17
TH
5805 rc = ap->ops->scr_write(ap, reg, val);
5806 if (rc == 0)
5807 rc = ap->ops->scr_read(ap, reg, &val);
5808 return rc;
34bf2170
TH
5809 }
5810 return -EOPNOTSUPP;
5811}
5812
5813/**
5814 * ata_port_online - test whether the given port is online
5815 * @ap: ATA port to test
5816 *
5817 * Test whether @ap is online. Note that this function returns 0
5818 * if online status of @ap cannot be obtained, so
5819 * ata_port_online(ap) != !ata_port_offline(ap).
5820 *
5821 * LOCKING:
5822 * None.
5823 *
5824 * RETURNS:
5825 * 1 if the port online status is available and online.
5826 */
5827int ata_port_online(struct ata_port *ap)
5828{
5829 u32 sstatus;
5830
5831 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5832 return 1;
5833 return 0;
5834}
5835
5836/**
5837 * ata_port_offline - test whether the given port is offline
5838 * @ap: ATA port to test
5839 *
5840 * Test whether @ap is offline. Note that this function returns
5841 * 0 if offline status of @ap cannot be obtained, so
5842 * ata_port_online(ap) != !ata_port_offline(ap).
5843 *
5844 * LOCKING:
5845 * None.
5846 *
5847 * RETURNS:
5848 * 1 if the port offline status is available and offline.
5849 */
5850int ata_port_offline(struct ata_port *ap)
5851{
5852 u32 sstatus;
5853
5854 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5855 return 1;
5856 return 0;
5857}
0baab86b 5858
77b08fb5 5859int ata_flush_cache(struct ata_device *dev)
9b847548 5860{
977e6b9f 5861 unsigned int err_mask;
9b847548
JA
5862 u8 cmd;
5863
5864 if (!ata_try_flush_cache(dev))
5865 return 0;
5866
6fc49adb 5867 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
9b847548
JA
5868 cmd = ATA_CMD_FLUSH_EXT;
5869 else
5870 cmd = ATA_CMD_FLUSH;
5871
977e6b9f
TH
5872 err_mask = ata_do_simple_cmd(dev, cmd);
5873 if (err_mask) {
5874 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5875 return -EIO;
5876 }
5877
5878 return 0;
9b847548
JA
5879}
5880
6ffa01d8 5881#ifdef CONFIG_PM
cca3974e
JG
5882static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5883 unsigned int action, unsigned int ehi_flags,
5884 int wait)
500530f6
TH
5885{
5886 unsigned long flags;
5887 int i, rc;
5888
cca3974e
JG
5889 for (i = 0; i < host->n_ports; i++) {
5890 struct ata_port *ap = host->ports[i];
500530f6
TH
5891
5892 /* Previous resume operation might still be in
5893 * progress. Wait for PM_PENDING to clear.
5894 */
5895 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5896 ata_port_wait_eh(ap);
5897 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5898 }
5899
5900 /* request PM ops to EH */
5901 spin_lock_irqsave(ap->lock, flags);
5902
5903 ap->pm_mesg = mesg;
5904 if (wait) {
5905 rc = 0;
5906 ap->pm_result = &rc;
5907 }
5908
5909 ap->pflags |= ATA_PFLAG_PM_PENDING;
5910 ap->eh_info.action |= action;
5911 ap->eh_info.flags |= ehi_flags;
5912
5913 ata_port_schedule_eh(ap);
5914
5915 spin_unlock_irqrestore(ap->lock, flags);
5916
5917 /* wait and check result */
5918 if (wait) {
5919 ata_port_wait_eh(ap);
5920 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5921 if (rc)
5922 return rc;
5923 }
5924 }
5925
5926 return 0;
5927}
5928
5929/**
cca3974e
JG
5930 * ata_host_suspend - suspend host
5931 * @host: host to suspend
500530f6
TH
5932 * @mesg: PM message
5933 *
cca3974e 5934 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
5935 * function requests EH to perform PM operations and waits for EH
5936 * to finish.
5937 *
5938 * LOCKING:
5939 * Kernel thread context (may sleep).
5940 *
5941 * RETURNS:
5942 * 0 on success, -errno on failure.
5943 */
cca3974e 5944int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 5945{
9666f400 5946 int rc;
500530f6 5947
cca3974e 5948 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
9666f400
TH
5949 if (rc == 0)
5950 host->dev->power.power_state = mesg;
500530f6
TH
5951 return rc;
5952}
5953
5954/**
cca3974e
JG
5955 * ata_host_resume - resume host
5956 * @host: host to resume
500530f6 5957 *
cca3974e 5958 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
5959 * function requests EH to perform PM operations and returns.
5960 * Note that all resume operations are performed parallely.
5961 *
5962 * LOCKING:
5963 * Kernel thread context (may sleep).
5964 */
cca3974e 5965void ata_host_resume(struct ata_host *host)
500530f6 5966{
cca3974e
JG
5967 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5968 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5969 host->dev->power.power_state = PMSG_ON;
500530f6 5970}
6ffa01d8 5971#endif
500530f6 5972
c893a3ae
RD
5973/**
5974 * ata_port_start - Set port up for dma.
5975 * @ap: Port to initialize
5976 *
5977 * Called just after data structures for each port are
5978 * initialized. Allocates space for PRD table.
5979 *
5980 * May be used as the port_start() entry in ata_port_operations.
5981 *
5982 * LOCKING:
5983 * Inherited from caller.
5984 */
f0d36efd 5985int ata_port_start(struct ata_port *ap)
1da177e4 5986{
2f1f610b 5987 struct device *dev = ap->dev;
6037d6bb 5988 int rc;
1da177e4 5989
f0d36efd
TH
5990 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5991 GFP_KERNEL);
1da177e4
LT
5992 if (!ap->prd)
5993 return -ENOMEM;
5994
6037d6bb 5995 rc = ata_pad_alloc(ap, dev);
f0d36efd 5996 if (rc)
6037d6bb 5997 return rc;
1da177e4 5998
f0d36efd
TH
5999 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6000 (unsigned long long)ap->prd_dma);
1da177e4
LT
6001 return 0;
6002}
6003
3ef3b43d
TH
6004/**
6005 * ata_dev_init - Initialize an ata_device structure
6006 * @dev: Device structure to initialize
6007 *
6008 * Initialize @dev in preparation for probing.
6009 *
6010 * LOCKING:
6011 * Inherited from caller.
6012 */
6013void ata_dev_init(struct ata_device *dev)
6014{
6015 struct ata_port *ap = dev->ap;
72fa4b74
TH
6016 unsigned long flags;
6017
5a04bf4b
TH
6018 /* SATA spd limit is bound to the first device */
6019 ap->sata_spd_limit = ap->hw_sata_spd_limit;
008a7896 6020 ap->sata_spd = 0;
5a04bf4b 6021
72fa4b74
TH
6022 /* High bits of dev->flags are used to record warm plug
6023 * requests which occur asynchronously. Synchronize using
cca3974e 6024 * host lock.
72fa4b74 6025 */
ba6a1308 6026 spin_lock_irqsave(ap->lock, flags);
72fa4b74 6027 dev->flags &= ~ATA_DFLAG_INIT_MASK;
ba6a1308 6028 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 6029
72fa4b74
TH
6030 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6031 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
6032 dev->pio_mask = UINT_MAX;
6033 dev->mwdma_mask = UINT_MAX;
6034 dev->udma_mask = UINT_MAX;
6035}
6036
1da177e4 6037/**
f3187195
TH
6038 * ata_port_alloc - allocate and initialize basic ATA port resources
6039 * @host: ATA host this allocated port belongs to
1da177e4 6040 *
f3187195
TH
6041 * Allocate and initialize basic ATA port resources.
6042 *
6043 * RETURNS:
6044 * Allocate ATA port on success, NULL on failure.
0cba632b 6045 *
1da177e4 6046 * LOCKING:
f3187195 6047 * Inherited from calling layer (may sleep).
1da177e4 6048 */
f3187195 6049struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 6050{
f3187195 6051 struct ata_port *ap;
1da177e4
LT
6052 unsigned int i;
6053
f3187195
TH
6054 DPRINTK("ENTER\n");
6055
6056 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6057 if (!ap)
6058 return NULL;
6059
f4d6d004 6060 ap->pflags |= ATA_PFLAG_INITIALIZING;
cca3974e 6061 ap->lock = &host->lock;
198e0fed 6062 ap->flags = ATA_FLAG_DISABLED;
f3187195 6063 ap->print_id = -1;
1da177e4 6064 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 6065 ap->host = host;
f3187195
TH
6066 ap->dev = host->dev;
6067
5a04bf4b 6068 ap->hw_sata_spd_limit = UINT_MAX;
1da177e4
LT
6069 ap->active_tag = ATA_TAG_POISON;
6070 ap->last_ctl = 0xFF;
bd5d825c
BP
6071
6072#if defined(ATA_VERBOSE_DEBUG)
6073 /* turn on all debugging levels */
6074 ap->msg_enable = 0x00FF;
6075#elif defined(ATA_DEBUG)
6076 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 6077#else
0dd4b21f 6078 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 6079#endif
1da177e4 6080
65f27f38
DH
6081 INIT_DELAYED_WORK(&ap->port_task, NULL);
6082 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6083 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 6084 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 6085 init_waitqueue_head(&ap->eh_wait_q);
5ddf24c5
TH
6086 init_timer_deferrable(&ap->fastdrain_timer);
6087 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6088 ap->fastdrain_timer.data = (unsigned long)ap;
1da177e4 6089
838df628 6090 ap->cbl = ATA_CBL_NONE;
838df628 6091
acf356b1
TH
6092 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6093 struct ata_device *dev = &ap->device[i];
38d87234 6094 dev->ap = ap;
72fa4b74 6095 dev->devno = i;
3ef3b43d 6096 ata_dev_init(dev);
acf356b1 6097 }
1da177e4
LT
6098
6099#ifdef ATA_IRQ_TRAP
6100 ap->stats.unhandled_irq = 1;
6101 ap->stats.idle_irq = 1;
6102#endif
1da177e4 6103 return ap;
1da177e4
LT
6104}
6105
f0d36efd
TH
6106static void ata_host_release(struct device *gendev, void *res)
6107{
6108 struct ata_host *host = dev_get_drvdata(gendev);
6109 int i;
6110
6111 for (i = 0; i < host->n_ports; i++) {
6112 struct ata_port *ap = host->ports[i];
6113
ecef7253
TH
6114 if (!ap)
6115 continue;
6116
6117 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
f0d36efd 6118 ap->ops->port_stop(ap);
f0d36efd
TH
6119 }
6120
ecef7253 6121 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
f0d36efd 6122 host->ops->host_stop(host);
1aa56cca 6123
1aa506e4
TH
6124 for (i = 0; i < host->n_ports; i++) {
6125 struct ata_port *ap = host->ports[i];
6126
4911487a
TH
6127 if (!ap)
6128 continue;
6129
6130 if (ap->scsi_host)
1aa506e4
TH
6131 scsi_host_put(ap->scsi_host);
6132
4911487a 6133 kfree(ap);
1aa506e4
TH
6134 host->ports[i] = NULL;
6135 }
6136
1aa56cca 6137 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
6138}
6139
f3187195
TH
6140/**
6141 * ata_host_alloc - allocate and init basic ATA host resources
6142 * @dev: generic device this host is associated with
6143 * @max_ports: maximum number of ATA ports associated with this host
6144 *
6145 * Allocate and initialize basic ATA host resources. LLD calls
6146 * this function to allocate a host, initializes it fully and
6147 * attaches it using ata_host_register().
6148 *
6149 * @max_ports ports are allocated and host->n_ports is
6150 * initialized to @max_ports. The caller is allowed to decrease
6151 * host->n_ports before calling ata_host_register(). The unused
6152 * ports will be automatically freed on registration.
6153 *
6154 * RETURNS:
6155 * Allocate ATA host on success, NULL on failure.
6156 *
6157 * LOCKING:
6158 * Inherited from calling layer (may sleep).
6159 */
6160struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6161{
6162 struct ata_host *host;
6163 size_t sz;
6164 int i;
6165
6166 DPRINTK("ENTER\n");
6167
6168 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6169 return NULL;
6170
6171 /* alloc a container for our list of ATA ports (buses) */
6172 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6173 /* alloc a container for our list of ATA ports (buses) */
6174 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6175 if (!host)
6176 goto err_out;
6177
6178 devres_add(dev, host);
6179 dev_set_drvdata(dev, host);
6180
6181 spin_lock_init(&host->lock);
6182 host->dev = dev;
6183 host->n_ports = max_ports;
6184
6185 /* allocate ports bound to this host */
6186 for (i = 0; i < max_ports; i++) {
6187 struct ata_port *ap;
6188
6189 ap = ata_port_alloc(host);
6190 if (!ap)
6191 goto err_out;
6192
6193 ap->port_no = i;
6194 host->ports[i] = ap;
6195 }
6196
6197 devres_remove_group(dev, NULL);
6198 return host;
6199
6200 err_out:
6201 devres_release_group(dev, NULL);
6202 return NULL;
6203}
6204
f5cda257
TH
6205/**
6206 * ata_host_alloc_pinfo - alloc host and init with port_info array
6207 * @dev: generic device this host is associated with
6208 * @ppi: array of ATA port_info to initialize host with
6209 * @n_ports: number of ATA ports attached to this host
6210 *
6211 * Allocate ATA host and initialize with info from @ppi. If NULL
6212 * terminated, @ppi may contain fewer entries than @n_ports. The
6213 * last entry will be used for the remaining ports.
6214 *
6215 * RETURNS:
6216 * Allocate ATA host on success, NULL on failure.
6217 *
6218 * LOCKING:
6219 * Inherited from calling layer (may sleep).
6220 */
6221struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6222 const struct ata_port_info * const * ppi,
6223 int n_ports)
6224{
6225 const struct ata_port_info *pi;
6226 struct ata_host *host;
6227 int i, j;
6228
6229 host = ata_host_alloc(dev, n_ports);
6230 if (!host)
6231 return NULL;
6232
6233 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6234 struct ata_port *ap = host->ports[i];
6235
6236 if (ppi[j])
6237 pi = ppi[j++];
6238
6239 ap->pio_mask = pi->pio_mask;
6240 ap->mwdma_mask = pi->mwdma_mask;
6241 ap->udma_mask = pi->udma_mask;
6242 ap->flags |= pi->flags;
6243 ap->ops = pi->port_ops;
6244
6245 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6246 host->ops = pi->port_ops;
6247 if (!host->private_data && pi->private_data)
6248 host->private_data = pi->private_data;
6249 }
6250
6251 return host;
6252}
6253
ecef7253
TH
6254/**
6255 * ata_host_start - start and freeze ports of an ATA host
6256 * @host: ATA host to start ports for
6257 *
6258 * Start and then freeze ports of @host. Started status is
6259 * recorded in host->flags, so this function can be called
6260 * multiple times. Ports are guaranteed to get started only
f3187195
TH
6261 * once. If host->ops isn't initialized yet, its set to the
6262 * first non-dummy port ops.
ecef7253
TH
6263 *
6264 * LOCKING:
6265 * Inherited from calling layer (may sleep).
6266 *
6267 * RETURNS:
6268 * 0 if all ports are started successfully, -errno otherwise.
6269 */
6270int ata_host_start(struct ata_host *host)
6271{
6272 int i, rc;
6273
6274 if (host->flags & ATA_HOST_STARTED)
6275 return 0;
6276
6277 for (i = 0; i < host->n_ports; i++) {
6278 struct ata_port *ap = host->ports[i];
6279
f3187195
TH
6280 if (!host->ops && !ata_port_is_dummy(ap))
6281 host->ops = ap->ops;
6282
ecef7253
TH
6283 if (ap->ops->port_start) {
6284 rc = ap->ops->port_start(ap);
6285 if (rc) {
6286 ata_port_printk(ap, KERN_ERR, "failed to "
6287 "start port (errno=%d)\n", rc);
6288 goto err_out;
6289 }
6290 }
6291
6292 ata_eh_freeze_port(ap);
6293 }
6294
6295 host->flags |= ATA_HOST_STARTED;
6296 return 0;
6297
6298 err_out:
6299 while (--i >= 0) {
6300 struct ata_port *ap = host->ports[i];
6301
6302 if (ap->ops->port_stop)
6303 ap->ops->port_stop(ap);
6304 }
6305 return rc;
6306}
6307
b03732f0 6308/**
cca3974e
JG
6309 * ata_sas_host_init - Initialize a host struct
6310 * @host: host to initialize
6311 * @dev: device host is attached to
6312 * @flags: host flags
6313 * @ops: port_ops
b03732f0
BK
6314 *
6315 * LOCKING:
6316 * PCI/etc. bus probe sem.
6317 *
6318 */
f3187195 6319/* KILLME - the only user left is ipr */
cca3974e
JG
6320void ata_host_init(struct ata_host *host, struct device *dev,
6321 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 6322{
cca3974e
JG
6323 spin_lock_init(&host->lock);
6324 host->dev = dev;
6325 host->flags = flags;
6326 host->ops = ops;
b03732f0
BK
6327}
6328
f3187195
TH
6329/**
6330 * ata_host_register - register initialized ATA host
6331 * @host: ATA host to register
6332 * @sht: template for SCSI host
6333 *
6334 * Register initialized ATA host. @host is allocated using
6335 * ata_host_alloc() and fully initialized by LLD. This function
6336 * starts ports, registers @host with ATA and SCSI layers and
6337 * probe registered devices.
6338 *
6339 * LOCKING:
6340 * Inherited from calling layer (may sleep).
6341 *
6342 * RETURNS:
6343 * 0 on success, -errno otherwise.
6344 */
6345int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6346{
6347 int i, rc;
6348
6349 /* host must have been started */
6350 if (!(host->flags & ATA_HOST_STARTED)) {
6351 dev_printk(KERN_ERR, host->dev,
6352 "BUG: trying to register unstarted host\n");
6353 WARN_ON(1);
6354 return -EINVAL;
6355 }
6356
6357 /* Blow away unused ports. This happens when LLD can't
6358 * determine the exact number of ports to allocate at
6359 * allocation time.
6360 */
6361 for (i = host->n_ports; host->ports[i]; i++)
6362 kfree(host->ports[i]);
6363
6364 /* give ports names and add SCSI hosts */
6365 for (i = 0; i < host->n_ports; i++)
6366 host->ports[i]->print_id = ata_print_id++;
6367
6368 rc = ata_scsi_add_hosts(host, sht);
6369 if (rc)
6370 return rc;
6371
fafbae87
TH
6372 /* associate with ACPI nodes */
6373 ata_acpi_associate(host);
6374
f3187195
TH
6375 /* set cable, sata_spd_limit and report */
6376 for (i = 0; i < host->n_ports; i++) {
6377 struct ata_port *ap = host->ports[i];
6378 int irq_line;
6379 u32 scontrol;
6380 unsigned long xfer_mask;
6381
6382 /* set SATA cable type if still unset */
6383 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6384 ap->cbl = ATA_CBL_SATA;
6385
6386 /* init sata_spd_limit to the current value */
6387 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
6388 int spd = (scontrol >> 4) & 0xf;
afe3cc51
TH
6389 if (spd)
6390 ap->hw_sata_spd_limit &= (1 << spd) - 1;
f3187195
TH
6391 }
6392 ap->sata_spd_limit = ap->hw_sata_spd_limit;
6393
6394 /* report the secondary IRQ for second channel legacy */
6395 irq_line = host->irq;
6396 if (i == 1 && host->irq2)
6397 irq_line = host->irq2;
6398
6399 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6400 ap->udma_mask);
6401
6402 /* print per-port info to dmesg */
6403 if (!ata_port_is_dummy(ap))
6404 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
6405 "ctl 0x%p bmdma 0x%p irq %d\n",
a16abc0b 6406 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
f3187195
TH
6407 ata_mode_string(xfer_mask),
6408 ap->ioaddr.cmd_addr,
6409 ap->ioaddr.ctl_addr,
6410 ap->ioaddr.bmdma_addr,
6411 irq_line);
6412 else
6413 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6414 }
6415
6416 /* perform each probe synchronously */
6417 DPRINTK("probe begin\n");
6418 for (i = 0; i < host->n_ports; i++) {
6419 struct ata_port *ap = host->ports[i];
6420 int rc;
6421
6422 /* probe */
6423 if (ap->ops->error_handler) {
6424 struct ata_eh_info *ehi = &ap->eh_info;
6425 unsigned long flags;
6426
6427 ata_port_probe(ap);
6428
6429 /* kick EH for boot probing */
6430 spin_lock_irqsave(ap->lock, flags);
6431
6432 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
6433 ehi->action |= ATA_EH_SOFTRESET;
6434 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6435
f4d6d004 6436 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
f3187195
TH
6437 ap->pflags |= ATA_PFLAG_LOADING;
6438 ata_port_schedule_eh(ap);
6439
6440 spin_unlock_irqrestore(ap->lock, flags);
6441
6442 /* wait for EH to finish */
6443 ata_port_wait_eh(ap);
6444 } else {
6445 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6446 rc = ata_bus_probe(ap);
6447 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6448
6449 if (rc) {
6450 /* FIXME: do something useful here?
6451 * Current libata behavior will
6452 * tear down everything when
6453 * the module is removed
6454 * or the h/w is unplugged.
6455 */
6456 }
6457 }
6458 }
6459
6460 /* probes are done, now scan each port's disk(s) */
6461 DPRINTK("host probe begin\n");
6462 for (i = 0; i < host->n_ports; i++) {
6463 struct ata_port *ap = host->ports[i];
6464
1ae46317 6465 ata_scsi_scan_host(ap, 1);
f3187195
TH
6466 }
6467
6468 return 0;
6469}
6470
f5cda257
TH
6471/**
6472 * ata_host_activate - start host, request IRQ and register it
6473 * @host: target ATA host
6474 * @irq: IRQ to request
6475 * @irq_handler: irq_handler used when requesting IRQ
6476 * @irq_flags: irq_flags used when requesting IRQ
6477 * @sht: scsi_host_template to use when registering the host
6478 *
6479 * After allocating an ATA host and initializing it, most libata
6480 * LLDs perform three steps to activate the host - start host,
6481 * request IRQ and register it. This helper takes necessasry
6482 * arguments and performs the three steps in one go.
6483 *
6484 * LOCKING:
6485 * Inherited from calling layer (may sleep).
6486 *
6487 * RETURNS:
6488 * 0 on success, -errno otherwise.
6489 */
6490int ata_host_activate(struct ata_host *host, int irq,
6491 irq_handler_t irq_handler, unsigned long irq_flags,
6492 struct scsi_host_template *sht)
6493{
6494 int rc;
6495
6496 rc = ata_host_start(host);
6497 if (rc)
6498 return rc;
6499
6500 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6501 dev_driver_string(host->dev), host);
6502 if (rc)
6503 return rc;
6504
4031826b
TH
6505 /* Used to print device info at probe */
6506 host->irq = irq;
6507
f5cda257
TH
6508 rc = ata_host_register(host, sht);
6509 /* if failed, just free the IRQ and leave ports alone */
6510 if (rc)
6511 devm_free_irq(host->dev, irq, host);
6512
6513 return rc;
6514}
6515
720ba126
TH
6516/**
6517 * ata_port_detach - Detach ATA port in prepration of device removal
6518 * @ap: ATA port to be detached
6519 *
6520 * Detach all ATA devices and the associated SCSI devices of @ap;
6521 * then, remove the associated SCSI host. @ap is guaranteed to
6522 * be quiescent on return from this function.
6523 *
6524 * LOCKING:
6525 * Kernel thread context (may sleep).
6526 */
6527void ata_port_detach(struct ata_port *ap)
6528{
6529 unsigned long flags;
6530 int i;
6531
6532 if (!ap->ops->error_handler)
c3cf30a9 6533 goto skip_eh;
720ba126
TH
6534
6535 /* tell EH we're leaving & flush EH */
ba6a1308 6536 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 6537 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 6538 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6539
6540 ata_port_wait_eh(ap);
6541
6542 /* EH is now guaranteed to see UNLOADING, so no new device
6543 * will be attached. Disable all existing devices.
6544 */
ba6a1308 6545 spin_lock_irqsave(ap->lock, flags);
720ba126
TH
6546
6547 for (i = 0; i < ATA_MAX_DEVICES; i++)
6548 ata_dev_disable(&ap->device[i]);
6549
ba6a1308 6550 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6551
6552 /* Final freeze & EH. All in-flight commands are aborted. EH
6553 * will be skipped and retrials will be terminated with bad
6554 * target.
6555 */
ba6a1308 6556 spin_lock_irqsave(ap->lock, flags);
720ba126 6557 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 6558 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6559
6560 ata_port_wait_eh(ap);
45a66c1c 6561 cancel_rearming_delayed_work(&ap->hotplug_task);
720ba126 6562
c3cf30a9 6563 skip_eh:
720ba126 6564 /* remove the associated SCSI host */
cca3974e 6565 scsi_remove_host(ap->scsi_host);
720ba126
TH
6566}
6567
0529c159
TH
6568/**
6569 * ata_host_detach - Detach all ports of an ATA host
6570 * @host: Host to detach
6571 *
6572 * Detach all ports of @host.
6573 *
6574 * LOCKING:
6575 * Kernel thread context (may sleep).
6576 */
6577void ata_host_detach(struct ata_host *host)
6578{
6579 int i;
6580
6581 for (i = 0; i < host->n_ports; i++)
6582 ata_port_detach(host->ports[i]);
6583}
6584
1da177e4
LT
6585/**
6586 * ata_std_ports - initialize ioaddr with standard port offsets.
6587 * @ioaddr: IO address structure to be initialized
0baab86b
EF
6588 *
6589 * Utility function which initializes data_addr, error_addr,
6590 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6591 * device_addr, status_addr, and command_addr to standard offsets
6592 * relative to cmd_addr.
6593 *
6594 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 6595 */
0baab86b 6596
1da177e4
LT
6597void ata_std_ports(struct ata_ioports *ioaddr)
6598{
6599 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6600 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6601 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6602 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6603 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6604 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6605 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6606 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6607 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6608 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6609}
6610
0baab86b 6611
374b1873
JG
6612#ifdef CONFIG_PCI
6613
1da177e4
LT
6614/**
6615 * ata_pci_remove_one - PCI layer callback for device removal
6616 * @pdev: PCI device that was removed
6617 *
b878ca5d
TH
6618 * PCI layer indicates to libata via this hook that hot-unplug or
6619 * module unload event has occurred. Detach all ports. Resource
6620 * release is handled via devres.
1da177e4
LT
6621 *
6622 * LOCKING:
6623 * Inherited from PCI layer (may sleep).
6624 */
f0d36efd 6625void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4
LT
6626{
6627 struct device *dev = pci_dev_to_dev(pdev);
cca3974e 6628 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 6629
b878ca5d 6630 ata_host_detach(host);
1da177e4
LT
6631}
6632
6633/* move to PCI subsystem */
057ace5e 6634int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6635{
6636 unsigned long tmp = 0;
6637
6638 switch (bits->width) {
6639 case 1: {
6640 u8 tmp8 = 0;
6641 pci_read_config_byte(pdev, bits->reg, &tmp8);
6642 tmp = tmp8;
6643 break;
6644 }
6645 case 2: {
6646 u16 tmp16 = 0;
6647 pci_read_config_word(pdev, bits->reg, &tmp16);
6648 tmp = tmp16;
6649 break;
6650 }
6651 case 4: {
6652 u32 tmp32 = 0;
6653 pci_read_config_dword(pdev, bits->reg, &tmp32);
6654 tmp = tmp32;
6655 break;
6656 }
6657
6658 default:
6659 return -EINVAL;
6660 }
6661
6662 tmp &= bits->mask;
6663
6664 return (tmp == bits->val) ? 1 : 0;
6665}
9b847548 6666
6ffa01d8 6667#ifdef CONFIG_PM
3c5100c1 6668void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6669{
6670 pci_save_state(pdev);
4c90d971 6671 pci_disable_device(pdev);
500530f6 6672
4c90d971 6673 if (mesg.event == PM_EVENT_SUSPEND)
500530f6 6674 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
6675}
6676
553c4aa6 6677int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 6678{
553c4aa6
TH
6679 int rc;
6680
9b847548
JA
6681 pci_set_power_state(pdev, PCI_D0);
6682 pci_restore_state(pdev);
553c4aa6 6683
b878ca5d 6684 rc = pcim_enable_device(pdev);
553c4aa6
TH
6685 if (rc) {
6686 dev_printk(KERN_ERR, &pdev->dev,
6687 "failed to enable device after resume (%d)\n", rc);
6688 return rc;
6689 }
6690
9b847548 6691 pci_set_master(pdev);
553c4aa6 6692 return 0;
500530f6
TH
6693}
6694
3c5100c1 6695int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6696{
cca3974e 6697 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
6698 int rc = 0;
6699
cca3974e 6700 rc = ata_host_suspend(host, mesg);
500530f6
TH
6701 if (rc)
6702 return rc;
6703
3c5100c1 6704 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6705
6706 return 0;
6707}
6708
6709int ata_pci_device_resume(struct pci_dev *pdev)
6710{
cca3974e 6711 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 6712 int rc;
500530f6 6713
553c4aa6
TH
6714 rc = ata_pci_device_do_resume(pdev);
6715 if (rc == 0)
6716 ata_host_resume(host);
6717 return rc;
9b847548 6718}
6ffa01d8
TH
6719#endif /* CONFIG_PM */
6720
1da177e4
LT
6721#endif /* CONFIG_PCI */
6722
6723
1da177e4
LT
6724static int __init ata_init(void)
6725{
a8601e5f 6726 ata_probe_timeout *= HZ;
1da177e4
LT
6727 ata_wq = create_workqueue("ata");
6728 if (!ata_wq)
6729 return -ENOMEM;
6730
453b07ac
TH
6731 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6732 if (!ata_aux_wq) {
6733 destroy_workqueue(ata_wq);
6734 return -ENOMEM;
6735 }
6736
1da177e4
LT
6737 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6738 return 0;
6739}
6740
6741static void __exit ata_exit(void)
6742{
6743 destroy_workqueue(ata_wq);
453b07ac 6744 destroy_workqueue(ata_aux_wq);
1da177e4
LT
6745}
6746
a4625085 6747subsys_initcall(ata_init);
1da177e4
LT
6748module_exit(ata_exit);
6749
67846b30 6750static unsigned long ratelimit_time;
34af946a 6751static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
6752
6753int ata_ratelimit(void)
6754{
6755 int rc;
6756 unsigned long flags;
6757
6758 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6759
6760 if (time_after(jiffies, ratelimit_time)) {
6761 rc = 1;
6762 ratelimit_time = jiffies + (HZ/5);
6763 } else
6764 rc = 0;
6765
6766 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6767
6768 return rc;
6769}
6770
c22daff4
TH
6771/**
6772 * ata_wait_register - wait until register value changes
6773 * @reg: IO-mapped register
6774 * @mask: Mask to apply to read register value
6775 * @val: Wait condition
6776 * @interval_msec: polling interval in milliseconds
6777 * @timeout_msec: timeout in milliseconds
6778 *
6779 * Waiting for some bits of register to change is a common
6780 * operation for ATA controllers. This function reads 32bit LE
6781 * IO-mapped register @reg and tests for the following condition.
6782 *
6783 * (*@reg & mask) != val
6784 *
6785 * If the condition is met, it returns; otherwise, the process is
6786 * repeated after @interval_msec until timeout.
6787 *
6788 * LOCKING:
6789 * Kernel thread context (may sleep)
6790 *
6791 * RETURNS:
6792 * The final register value.
6793 */
6794u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6795 unsigned long interval_msec,
6796 unsigned long timeout_msec)
6797{
6798 unsigned long timeout;
6799 u32 tmp;
6800
6801 tmp = ioread32(reg);
6802
6803 /* Calculate timeout _after_ the first read to make sure
6804 * preceding writes reach the controller before starting to
6805 * eat away the timeout.
6806 */
6807 timeout = jiffies + (timeout_msec * HZ) / 1000;
6808
6809 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6810 msleep(interval_msec);
6811 tmp = ioread32(reg);
6812 }
6813
6814 return tmp;
6815}
6816
dd5b06c4
TH
6817/*
6818 * Dummy port_ops
6819 */
6820static void ata_dummy_noret(struct ata_port *ap) { }
6821static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6822static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6823
6824static u8 ata_dummy_check_status(struct ata_port *ap)
6825{
6826 return ATA_DRDY;
6827}
6828
6829static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6830{
6831 return AC_ERR_SYSTEM;
6832}
6833
6834const struct ata_port_operations ata_dummy_port_ops = {
6835 .port_disable = ata_port_disable,
6836 .check_status = ata_dummy_check_status,
6837 .check_altstatus = ata_dummy_check_status,
6838 .dev_select = ata_noop_dev_select,
6839 .qc_prep = ata_noop_qc_prep,
6840 .qc_issue = ata_dummy_qc_issue,
6841 .freeze = ata_dummy_noret,
6842 .thaw = ata_dummy_noret,
6843 .error_handler = ata_dummy_noret,
6844 .post_internal_cmd = ata_dummy_qc_noret,
6845 .irq_clear = ata_dummy_noret,
6846 .port_start = ata_dummy_ret0,
6847 .port_stop = ata_dummy_noret,
6848};
6849
21b0ad4f
TH
6850const struct ata_port_info ata_dummy_port_info = {
6851 .port_ops = &ata_dummy_port_ops,
6852};
6853
1da177e4
LT
6854/*
6855 * libata is essentially a library of internal helper functions for
6856 * low-level ATA host controller drivers. As such, the API/ABI is
6857 * likely to change as new drivers are added and updated.
6858 * Do not depend on ABI/API stability.
6859 */
6860
e9c83914
TH
6861EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6862EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6863EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 6864EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 6865EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1da177e4
LT
6866EXPORT_SYMBOL_GPL(ata_std_bios_param);
6867EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 6868EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 6869EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 6870EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
ecef7253 6871EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 6872EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 6873EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 6874EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4
LT
6875EXPORT_SYMBOL_GPL(ata_sg_init);
6876EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 6877EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 6878EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 6879EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 6880EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
6881EXPORT_SYMBOL_GPL(ata_tf_load);
6882EXPORT_SYMBOL_GPL(ata_tf_read);
6883EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6884EXPORT_SYMBOL_GPL(ata_std_dev_select);
43727fbc 6885EXPORT_SYMBOL_GPL(sata_print_link_status);
1da177e4
LT
6886EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6887EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6888EXPORT_SYMBOL_GPL(ata_check_status);
6889EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
6890EXPORT_SYMBOL_GPL(ata_exec_command);
6891EXPORT_SYMBOL_GPL(ata_port_start);
d92e74d3 6892EXPORT_SYMBOL_GPL(ata_sff_port_start);
1da177e4 6893EXPORT_SYMBOL_GPL(ata_interrupt);
04351821 6894EXPORT_SYMBOL_GPL(ata_do_set_mode);
0d5ff566
TH
6895EXPORT_SYMBOL_GPL(ata_data_xfer);
6896EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
1da177e4 6897EXPORT_SYMBOL_GPL(ata_qc_prep);
d26fc955 6898EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
e46834cd 6899EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
6900EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6901EXPORT_SYMBOL_GPL(ata_bmdma_start);
6902EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6903EXPORT_SYMBOL_GPL(ata_bmdma_status);
6904EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
6905EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6906EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6907EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6908EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6909EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 6910EXPORT_SYMBOL_GPL(ata_port_probe);
10305f0f 6911EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 6912EXPORT_SYMBOL_GPL(sata_set_spd);
d7bb4cc7
TH
6913EXPORT_SYMBOL_GPL(sata_phy_debounce);
6914EXPORT_SYMBOL_GPL(sata_phy_resume);
1da177e4
LT
6915EXPORT_SYMBOL_GPL(sata_phy_reset);
6916EXPORT_SYMBOL_GPL(__sata_phy_reset);
6917EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 6918EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 6919EXPORT_SYMBOL_GPL(ata_std_softreset);
b6103f6d 6920EXPORT_SYMBOL_GPL(sata_port_hardreset);
c2bd5804
TH
6921EXPORT_SYMBOL_GPL(sata_std_hardreset);
6922EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
6923EXPORT_SYMBOL_GPL(ata_dev_classify);
6924EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 6925EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 6926EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 6927EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 6928EXPORT_SYMBOL_GPL(ata_busy_sleep);
d4b2bab4 6929EXPORT_SYMBOL_GPL(ata_wait_ready);
86e45b6b 6930EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
6931EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6932EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 6933EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 6934EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 6935EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4 6936EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
6937EXPORT_SYMBOL_GPL(sata_scr_valid);
6938EXPORT_SYMBOL_GPL(sata_scr_read);
6939EXPORT_SYMBOL_GPL(sata_scr_write);
6940EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6941EXPORT_SYMBOL_GPL(ata_port_online);
6942EXPORT_SYMBOL_GPL(ata_port_offline);
6ffa01d8 6943#ifdef CONFIG_PM
cca3974e
JG
6944EXPORT_SYMBOL_GPL(ata_host_suspend);
6945EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 6946#endif /* CONFIG_PM */
6a62a04d
TH
6947EXPORT_SYMBOL_GPL(ata_id_string);
6948EXPORT_SYMBOL_GPL(ata_id_c_string);
10305f0f 6949EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
1da177e4
LT
6950EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6951
1bc4ccff 6952EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
6953EXPORT_SYMBOL_GPL(ata_timing_compute);
6954EXPORT_SYMBOL_GPL(ata_timing_merge);
6955
1da177e4
LT
6956#ifdef CONFIG_PCI
6957EXPORT_SYMBOL_GPL(pci_test_config_bits);
d583bc18 6958EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
1626aeb8 6959EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
d583bc18 6960EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
1da177e4
LT
6961EXPORT_SYMBOL_GPL(ata_pci_init_one);
6962EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 6963#ifdef CONFIG_PM
500530f6
TH
6964EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6965EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
6966EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6967EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 6968#endif /* CONFIG_PM */
67951ade
AC
6969EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6970EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 6971#endif /* CONFIG_PCI */
9b847548 6972
b64bbc39
TH
6973EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6974EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6975EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
ece1d636 6976EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03
TH
6977EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6978EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499
TH
6979EXPORT_SYMBOL_GPL(ata_port_freeze);
6980EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6981EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
6982EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6983EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 6984EXPORT_SYMBOL_GPL(ata_do_eh);
83625006
AI
6985EXPORT_SYMBOL_GPL(ata_irq_on);
6986EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6987EXPORT_SYMBOL_GPL(ata_irq_ack);
6988EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
a619f981 6989EXPORT_SYMBOL_GPL(ata_dev_try_classify);
be0d18df
AC
6990
6991EXPORT_SYMBOL_GPL(ata_cable_40wire);
6992EXPORT_SYMBOL_GPL(ata_cable_80wire);
6993EXPORT_SYMBOL_GPL(ata_cable_unknown);
6994EXPORT_SYMBOL_GPL(ata_cable_sata);