libata: workaround DRQ=1 ERR=1 for ATAPI tape drives
[linux-2.6-block.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
1da177e4
LT
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/mm.h>
41#include <linux/highmem.h>
42#include <linux/spinlock.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/completion.h>
48#include <linux/suspend.h>
49#include <linux/workqueue.h>
67846b30 50#include <linux/jiffies.h>
378f058c 51#include <linux/scatterlist.h>
2dcb407e 52#include <linux/io.h>
1da177e4 53#include <scsi/scsi.h>
193515d5 54#include <scsi/scsi_cmnd.h>
1da177e4
LT
55#include <scsi/scsi_host.h>
56#include <linux/libata.h>
1da177e4
LT
57#include <asm/semaphore.h>
58#include <asm/byteorder.h>
59
60#include "libata.h"
61
fda0efc5 62
d7bb4cc7 63/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
64const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
65const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
66const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 67
3373efd8
TH
68static unsigned int ata_dev_init_params(struct ata_device *dev,
69 u16 heads, u16 sectors);
70static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
218f3d30
JG
71static unsigned int ata_dev_set_feature(struct ata_device *dev,
72 u8 enable, u8 feature);
3373efd8 73static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 74static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 75
f3187195 76unsigned int ata_print_id = 1;
1da177e4
LT
77static struct workqueue_struct *ata_wq;
78
453b07ac
TH
79struct workqueue_struct *ata_aux_wq;
80
418dc1f5 81int atapi_enabled = 1;
1623c81e
JG
82module_param(atapi_enabled, int, 0444);
83MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
84
95de719a
AL
85int atapi_dmadir = 0;
86module_param(atapi_dmadir, int, 0444);
87MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
88
baf4fdfa
ML
89int atapi_passthru16 = 1;
90module_param(atapi_passthru16, int, 0444);
91MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
92
c3c013a2
JG
93int libata_fua = 0;
94module_param_named(fua, libata_fua, int, 0444);
95MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
96
2dcb407e 97static int ata_ignore_hpa;
1e999736
AC
98module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
99MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
100
b3a70601
AC
101static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
102module_param_named(dma, libata_dma_mask, int, 0444);
103MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
104
a8601e5f
AM
105static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
106module_param(ata_probe_timeout, int, 0444);
107MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
108
6ebe9d86 109int libata_noacpi = 0;
d7d0dad6 110module_param_named(noacpi, libata_noacpi, int, 0444);
6ebe9d86 111MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
11ef697b 112
1da177e4
LT
113MODULE_AUTHOR("Jeff Garzik");
114MODULE_DESCRIPTION("Library module for ATA devices");
115MODULE_LICENSE("GPL");
116MODULE_VERSION(DRV_VERSION);
117
0baab86b 118
1da177e4
LT
119/**
120 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
121 * @tf: Taskfile to convert
1da177e4 122 * @pmp: Port multiplier port
9977126c
TH
123 * @is_cmd: This FIS is for command
124 * @fis: Buffer into which data will output
1da177e4
LT
125 *
126 * Converts a standard ATA taskfile to a Serial ATA
127 * FIS structure (Register - Host to Device).
128 *
129 * LOCKING:
130 * Inherited from caller.
131 */
9977126c 132void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 133{
9977126c
TH
134 fis[0] = 0x27; /* Register - Host to Device FIS */
135 fis[1] = pmp & 0xf; /* Port multiplier number*/
136 if (is_cmd)
137 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
138
1da177e4
LT
139 fis[2] = tf->command;
140 fis[3] = tf->feature;
141
142 fis[4] = tf->lbal;
143 fis[5] = tf->lbam;
144 fis[6] = tf->lbah;
145 fis[7] = tf->device;
146
147 fis[8] = tf->hob_lbal;
148 fis[9] = tf->hob_lbam;
149 fis[10] = tf->hob_lbah;
150 fis[11] = tf->hob_feature;
151
152 fis[12] = tf->nsect;
153 fis[13] = tf->hob_nsect;
154 fis[14] = 0;
155 fis[15] = tf->ctl;
156
157 fis[16] = 0;
158 fis[17] = 0;
159 fis[18] = 0;
160 fis[19] = 0;
161}
162
163/**
164 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
165 * @fis: Buffer from which data will be input
166 * @tf: Taskfile to output
167 *
e12a1be6 168 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
169 *
170 * LOCKING:
171 * Inherited from caller.
172 */
173
057ace5e 174void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
175{
176 tf->command = fis[2]; /* status */
177 tf->feature = fis[3]; /* error */
178
179 tf->lbal = fis[4];
180 tf->lbam = fis[5];
181 tf->lbah = fis[6];
182 tf->device = fis[7];
183
184 tf->hob_lbal = fis[8];
185 tf->hob_lbam = fis[9];
186 tf->hob_lbah = fis[10];
187
188 tf->nsect = fis[12];
189 tf->hob_nsect = fis[13];
190}
191
8cbd6df1
AL
192static const u8 ata_rw_cmds[] = {
193 /* pio multi */
194 ATA_CMD_READ_MULTI,
195 ATA_CMD_WRITE_MULTI,
196 ATA_CMD_READ_MULTI_EXT,
197 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
198 0,
199 0,
200 0,
201 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
202 /* pio */
203 ATA_CMD_PIO_READ,
204 ATA_CMD_PIO_WRITE,
205 ATA_CMD_PIO_READ_EXT,
206 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
207 0,
208 0,
209 0,
210 0,
8cbd6df1
AL
211 /* dma */
212 ATA_CMD_READ,
213 ATA_CMD_WRITE,
214 ATA_CMD_READ_EXT,
9a3dccc4
TH
215 ATA_CMD_WRITE_EXT,
216 0,
217 0,
218 0,
219 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 220};
1da177e4
LT
221
222/**
8cbd6df1 223 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
224 * @tf: command to examine and configure
225 * @dev: device tf belongs to
1da177e4 226 *
2e9edbf8 227 * Examine the device configuration and tf->flags to calculate
8cbd6df1 228 * the proper read/write commands and protocol to use.
1da177e4
LT
229 *
230 * LOCKING:
231 * caller.
232 */
bd056d7e 233static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 234{
9a3dccc4 235 u8 cmd;
1da177e4 236
9a3dccc4 237 int index, fua, lba48, write;
2e9edbf8 238
9a3dccc4 239 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
240 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
241 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 242
8cbd6df1
AL
243 if (dev->flags & ATA_DFLAG_PIO) {
244 tf->protocol = ATA_PROT_PIO;
9a3dccc4 245 index = dev->multi_count ? 0 : 8;
9af5c9c9 246 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
247 /* Unable to use DMA due to host limitation */
248 tf->protocol = ATA_PROT_PIO;
0565c26d 249 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
250 } else {
251 tf->protocol = ATA_PROT_DMA;
9a3dccc4 252 index = 16;
8cbd6df1 253 }
1da177e4 254
9a3dccc4
TH
255 cmd = ata_rw_cmds[index + fua + lba48 + write];
256 if (cmd) {
257 tf->command = cmd;
258 return 0;
259 }
260 return -1;
1da177e4
LT
261}
262
35b649fe
TH
263/**
264 * ata_tf_read_block - Read block address from ATA taskfile
265 * @tf: ATA taskfile of interest
266 * @dev: ATA device @tf belongs to
267 *
268 * LOCKING:
269 * None.
270 *
271 * Read block address from @tf. This function can handle all
272 * three address formats - LBA, LBA48 and CHS. tf->protocol and
273 * flags select the address format to use.
274 *
275 * RETURNS:
276 * Block address read from @tf.
277 */
278u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
279{
280 u64 block = 0;
281
282 if (tf->flags & ATA_TFLAG_LBA) {
283 if (tf->flags & ATA_TFLAG_LBA48) {
284 block |= (u64)tf->hob_lbah << 40;
285 block |= (u64)tf->hob_lbam << 32;
286 block |= tf->hob_lbal << 24;
287 } else
288 block |= (tf->device & 0xf) << 24;
289
290 block |= tf->lbah << 16;
291 block |= tf->lbam << 8;
292 block |= tf->lbal;
293 } else {
294 u32 cyl, head, sect;
295
296 cyl = tf->lbam | (tf->lbah << 8);
297 head = tf->device & 0xf;
298 sect = tf->lbal;
299
300 block = (cyl * dev->heads + head) * dev->sectors + sect;
301 }
302
303 return block;
304}
305
bd056d7e
TH
306/**
307 * ata_build_rw_tf - Build ATA taskfile for given read/write request
308 * @tf: Target ATA taskfile
309 * @dev: ATA device @tf belongs to
310 * @block: Block address
311 * @n_block: Number of blocks
312 * @tf_flags: RW/FUA etc...
313 * @tag: tag
314 *
315 * LOCKING:
316 * None.
317 *
318 * Build ATA taskfile @tf for read/write request described by
319 * @block, @n_block, @tf_flags and @tag on @dev.
320 *
321 * RETURNS:
322 *
323 * 0 on success, -ERANGE if the request is too large for @dev,
324 * -EINVAL if the request is invalid.
325 */
326int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
327 u64 block, u32 n_block, unsigned int tf_flags,
328 unsigned int tag)
329{
330 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
331 tf->flags |= tf_flags;
332
6d1245bf 333 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
334 /* yay, NCQ */
335 if (!lba_48_ok(block, n_block))
336 return -ERANGE;
337
338 tf->protocol = ATA_PROT_NCQ;
339 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
340
341 if (tf->flags & ATA_TFLAG_WRITE)
342 tf->command = ATA_CMD_FPDMA_WRITE;
343 else
344 tf->command = ATA_CMD_FPDMA_READ;
345
346 tf->nsect = tag << 3;
347 tf->hob_feature = (n_block >> 8) & 0xff;
348 tf->feature = n_block & 0xff;
349
350 tf->hob_lbah = (block >> 40) & 0xff;
351 tf->hob_lbam = (block >> 32) & 0xff;
352 tf->hob_lbal = (block >> 24) & 0xff;
353 tf->lbah = (block >> 16) & 0xff;
354 tf->lbam = (block >> 8) & 0xff;
355 tf->lbal = block & 0xff;
356
357 tf->device = 1 << 6;
358 if (tf->flags & ATA_TFLAG_FUA)
359 tf->device |= 1 << 7;
360 } else if (dev->flags & ATA_DFLAG_LBA) {
361 tf->flags |= ATA_TFLAG_LBA;
362
363 if (lba_28_ok(block, n_block)) {
364 /* use LBA28 */
365 tf->device |= (block >> 24) & 0xf;
366 } else if (lba_48_ok(block, n_block)) {
367 if (!(dev->flags & ATA_DFLAG_LBA48))
368 return -ERANGE;
369
370 /* use LBA48 */
371 tf->flags |= ATA_TFLAG_LBA48;
372
373 tf->hob_nsect = (n_block >> 8) & 0xff;
374
375 tf->hob_lbah = (block >> 40) & 0xff;
376 tf->hob_lbam = (block >> 32) & 0xff;
377 tf->hob_lbal = (block >> 24) & 0xff;
378 } else
379 /* request too large even for LBA48 */
380 return -ERANGE;
381
382 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
383 return -EINVAL;
384
385 tf->nsect = n_block & 0xff;
386
387 tf->lbah = (block >> 16) & 0xff;
388 tf->lbam = (block >> 8) & 0xff;
389 tf->lbal = block & 0xff;
390
391 tf->device |= ATA_LBA;
392 } else {
393 /* CHS */
394 u32 sect, head, cyl, track;
395
396 /* The request -may- be too large for CHS addressing. */
397 if (!lba_28_ok(block, n_block))
398 return -ERANGE;
399
400 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
401 return -EINVAL;
402
403 /* Convert LBA to CHS */
404 track = (u32)block / dev->sectors;
405 cyl = track / dev->heads;
406 head = track % dev->heads;
407 sect = (u32)block % dev->sectors + 1;
408
409 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
410 (u32)block, track, cyl, head, sect);
411
412 /* Check whether the converted CHS can fit.
413 Cylinder: 0-65535
414 Head: 0-15
415 Sector: 1-255*/
416 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
417 return -ERANGE;
418
419 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
420 tf->lbal = sect;
421 tf->lbam = cyl;
422 tf->lbah = cyl >> 8;
423 tf->device |= head;
424 }
425
426 return 0;
427}
428
cb95d562
TH
429/**
430 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
431 * @pio_mask: pio_mask
432 * @mwdma_mask: mwdma_mask
433 * @udma_mask: udma_mask
434 *
435 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
436 * unsigned int xfer_mask.
437 *
438 * LOCKING:
439 * None.
440 *
441 * RETURNS:
442 * Packed xfer_mask.
443 */
444static unsigned int ata_pack_xfermask(unsigned int pio_mask,
445 unsigned int mwdma_mask,
446 unsigned int udma_mask)
447{
448 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
449 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
450 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
451}
452
c0489e4e
TH
453/**
454 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
455 * @xfer_mask: xfer_mask to unpack
456 * @pio_mask: resulting pio_mask
457 * @mwdma_mask: resulting mwdma_mask
458 * @udma_mask: resulting udma_mask
459 *
460 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
461 * Any NULL distination masks will be ignored.
462 */
463static void ata_unpack_xfermask(unsigned int xfer_mask,
464 unsigned int *pio_mask,
465 unsigned int *mwdma_mask,
466 unsigned int *udma_mask)
467{
468 if (pio_mask)
469 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
470 if (mwdma_mask)
471 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
472 if (udma_mask)
473 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
474}
475
cb95d562 476static const struct ata_xfer_ent {
be9a50c8 477 int shift, bits;
cb95d562
TH
478 u8 base;
479} ata_xfer_tbl[] = {
480 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
481 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
482 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
483 { -1, },
484};
485
486/**
487 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
488 * @xfer_mask: xfer_mask of interest
489 *
490 * Return matching XFER_* value for @xfer_mask. Only the highest
491 * bit of @xfer_mask is considered.
492 *
493 * LOCKING:
494 * None.
495 *
496 * RETURNS:
497 * Matching XFER_* value, 0 if no match found.
498 */
499static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
500{
501 int highbit = fls(xfer_mask) - 1;
502 const struct ata_xfer_ent *ent;
503
504 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
505 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
506 return ent->base + highbit - ent->shift;
507 return 0;
508}
509
510/**
511 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
512 * @xfer_mode: XFER_* of interest
513 *
514 * Return matching xfer_mask for @xfer_mode.
515 *
516 * LOCKING:
517 * None.
518 *
519 * RETURNS:
520 * Matching xfer_mask, 0 if no match found.
521 */
522static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
523{
524 const struct ata_xfer_ent *ent;
525
526 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
527 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
528 return 1 << (ent->shift + xfer_mode - ent->base);
529 return 0;
530}
531
532/**
533 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
534 * @xfer_mode: XFER_* of interest
535 *
536 * Return matching xfer_shift for @xfer_mode.
537 *
538 * LOCKING:
539 * None.
540 *
541 * RETURNS:
542 * Matching xfer_shift, -1 if no match found.
543 */
544static int ata_xfer_mode2shift(unsigned int xfer_mode)
545{
546 const struct ata_xfer_ent *ent;
547
548 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
549 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
550 return ent->shift;
551 return -1;
552}
553
1da177e4 554/**
1da7b0d0
TH
555 * ata_mode_string - convert xfer_mask to string
556 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
557 *
558 * Determine string which represents the highest speed
1da7b0d0 559 * (highest bit in @modemask).
1da177e4
LT
560 *
561 * LOCKING:
562 * None.
563 *
564 * RETURNS:
565 * Constant C string representing highest speed listed in
1da7b0d0 566 * @mode_mask, or the constant C string "<n/a>".
1da177e4 567 */
1da7b0d0 568static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 569{
75f554bc
TH
570 static const char * const xfer_mode_str[] = {
571 "PIO0",
572 "PIO1",
573 "PIO2",
574 "PIO3",
575 "PIO4",
b352e57d
AC
576 "PIO5",
577 "PIO6",
75f554bc
TH
578 "MWDMA0",
579 "MWDMA1",
580 "MWDMA2",
b352e57d
AC
581 "MWDMA3",
582 "MWDMA4",
75f554bc
TH
583 "UDMA/16",
584 "UDMA/25",
585 "UDMA/33",
586 "UDMA/44",
587 "UDMA/66",
588 "UDMA/100",
589 "UDMA/133",
590 "UDMA7",
591 };
1da7b0d0 592 int highbit;
1da177e4 593
1da7b0d0
TH
594 highbit = fls(xfer_mask) - 1;
595 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
596 return xfer_mode_str[highbit];
1da177e4 597 return "<n/a>";
1da177e4
LT
598}
599
4c360c81
TH
600static const char *sata_spd_string(unsigned int spd)
601{
602 static const char * const spd_str[] = {
603 "1.5 Gbps",
604 "3.0 Gbps",
605 };
606
607 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
608 return "<unknown>";
609 return spd_str[spd - 1];
610}
611
3373efd8 612void ata_dev_disable(struct ata_device *dev)
0b8efb0a 613{
09d7f9b0 614 if (ata_dev_enabled(dev)) {
9af5c9c9 615 if (ata_msg_drv(dev->link->ap))
09d7f9b0 616 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
4ae72a1e
TH
617 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
618 ATA_DNXFER_QUIET);
0b8efb0a
TH
619 dev->class++;
620 }
621}
622
ca77329f
KCA
623static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
624{
625 struct ata_link *link = dev->link;
626 struct ata_port *ap = link->ap;
627 u32 scontrol;
628 unsigned int err_mask;
629 int rc;
630
631 /*
632 * disallow DIPM for drivers which haven't set
633 * ATA_FLAG_IPM. This is because when DIPM is enabled,
634 * phy ready will be set in the interrupt status on
635 * state changes, which will cause some drivers to
636 * think there are errors - additionally drivers will
637 * need to disable hot plug.
638 */
639 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
640 ap->pm_policy = NOT_AVAILABLE;
641 return -EINVAL;
642 }
643
644 /*
645 * For DIPM, we will only enable it for the
646 * min_power setting.
647 *
648 * Why? Because Disks are too stupid to know that
649 * If the host rejects a request to go to SLUMBER
650 * they should retry at PARTIAL, and instead it
651 * just would give up. So, for medium_power to
652 * work at all, we need to only allow HIPM.
653 */
654 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
655 if (rc)
656 return rc;
657
658 switch (policy) {
659 case MIN_POWER:
660 /* no restrictions on IPM transitions */
661 scontrol &= ~(0x3 << 8);
662 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
663 if (rc)
664 return rc;
665
666 /* enable DIPM */
667 if (dev->flags & ATA_DFLAG_DIPM)
668 err_mask = ata_dev_set_feature(dev,
669 SETFEATURES_SATA_ENABLE, SATA_DIPM);
670 break;
671 case MEDIUM_POWER:
672 /* allow IPM to PARTIAL */
673 scontrol &= ~(0x1 << 8);
674 scontrol |= (0x2 << 8);
675 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
676 if (rc)
677 return rc;
678
f5456b63
KCA
679 /*
680 * we don't have to disable DIPM since IPM flags
681 * disallow transitions to SLUMBER, which effectively
682 * disable DIPM if it does not support PARTIAL
683 */
ca77329f
KCA
684 break;
685 case NOT_AVAILABLE:
686 case MAX_PERFORMANCE:
687 /* disable all IPM transitions */
688 scontrol |= (0x3 << 8);
689 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
690 if (rc)
691 return rc;
692
f5456b63
KCA
693 /*
694 * we don't have to disable DIPM since IPM flags
695 * disallow all transitions which effectively
696 * disable DIPM anyway.
697 */
ca77329f
KCA
698 break;
699 }
700
701 /* FIXME: handle SET FEATURES failure */
702 (void) err_mask;
703
704 return 0;
705}
706
707/**
708 * ata_dev_enable_pm - enable SATA interface power management
48166fd9
SH
709 * @dev: device to enable power management
710 * @policy: the link power management policy
ca77329f
KCA
711 *
712 * Enable SATA Interface power management. This will enable
713 * Device Interface Power Management (DIPM) for min_power
714 * policy, and then call driver specific callbacks for
715 * enabling Host Initiated Power management.
716 *
717 * Locking: Caller.
718 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
719 */
720void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
721{
722 int rc = 0;
723 struct ata_port *ap = dev->link->ap;
724
725 /* set HIPM first, then DIPM */
726 if (ap->ops->enable_pm)
727 rc = ap->ops->enable_pm(ap, policy);
728 if (rc)
729 goto enable_pm_out;
730 rc = ata_dev_set_dipm(dev, policy);
731
732enable_pm_out:
733 if (rc)
734 ap->pm_policy = MAX_PERFORMANCE;
735 else
736 ap->pm_policy = policy;
737 return /* rc */; /* hopefully we can use 'rc' eventually */
738}
739
1992a5ed 740#ifdef CONFIG_PM
ca77329f
KCA
741/**
742 * ata_dev_disable_pm - disable SATA interface power management
48166fd9 743 * @dev: device to disable power management
ca77329f
KCA
744 *
745 * Disable SATA Interface power management. This will disable
746 * Device Interface Power Management (DIPM) without changing
747 * policy, call driver specific callbacks for disabling Host
748 * Initiated Power management.
749 *
750 * Locking: Caller.
751 * Returns: void
752 */
753static void ata_dev_disable_pm(struct ata_device *dev)
754{
755 struct ata_port *ap = dev->link->ap;
756
757 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
758 if (ap->ops->disable_pm)
759 ap->ops->disable_pm(ap);
760}
1992a5ed 761#endif /* CONFIG_PM */
ca77329f
KCA
762
763void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
764{
765 ap->pm_policy = policy;
766 ap->link.eh_info.action |= ATA_EHI_LPM;
767 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
768 ata_port_schedule_eh(ap);
769}
770
1992a5ed 771#ifdef CONFIG_PM
ca77329f
KCA
772static void ata_lpm_enable(struct ata_host *host)
773{
774 struct ata_link *link;
775 struct ata_port *ap;
776 struct ata_device *dev;
777 int i;
778
779 for (i = 0; i < host->n_ports; i++) {
780 ap = host->ports[i];
781 ata_port_for_each_link(link, ap) {
782 ata_link_for_each_dev(dev, link)
783 ata_dev_disable_pm(dev);
784 }
785 }
786}
787
788static void ata_lpm_disable(struct ata_host *host)
789{
790 int i;
791
792 for (i = 0; i < host->n_ports; i++) {
793 struct ata_port *ap = host->ports[i];
794 ata_lpm_schedule(ap, ap->pm_policy);
795 }
796}
1992a5ed 797#endif /* CONFIG_PM */
ca77329f
KCA
798
799
1da177e4 800/**
0d5ff566 801 * ata_devchk - PATA device presence detection
1da177e4
LT
802 * @ap: ATA channel to examine
803 * @device: Device to examine (starting at zero)
804 *
805 * This technique was originally described in
806 * Hale Landis's ATADRVR (www.ata-atapi.com), and
807 * later found its way into the ATA/ATAPI spec.
808 *
809 * Write a pattern to the ATA shadow registers,
810 * and if a device is present, it will respond by
811 * correctly storing and echoing back the
812 * ATA shadow register contents.
813 *
814 * LOCKING:
815 * caller.
816 */
817
0d5ff566 818static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1da177e4
LT
819{
820 struct ata_ioports *ioaddr = &ap->ioaddr;
821 u8 nsect, lbal;
822
823 ap->ops->dev_select(ap, device);
824
0d5ff566
TH
825 iowrite8(0x55, ioaddr->nsect_addr);
826 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 827
0d5ff566
TH
828 iowrite8(0xaa, ioaddr->nsect_addr);
829 iowrite8(0x55, ioaddr->lbal_addr);
1da177e4 830
0d5ff566
TH
831 iowrite8(0x55, ioaddr->nsect_addr);
832 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 833
0d5ff566
TH
834 nsect = ioread8(ioaddr->nsect_addr);
835 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
836
837 if ((nsect == 0x55) && (lbal == 0xaa))
838 return 1; /* we found a device */
839
840 return 0; /* nothing found */
841}
842
1da177e4
LT
843/**
844 * ata_dev_classify - determine device type based on ATA-spec signature
845 * @tf: ATA taskfile register set for device to be identified
846 *
847 * Determine from taskfile register contents whether a device is
848 * ATA or ATAPI, as per "Signature and persistence" section
849 * of ATA/PI spec (volume 1, sect 5.14).
850 *
851 * LOCKING:
852 * None.
853 *
854 * RETURNS:
633273a3
TH
855 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
856 * %ATA_DEV_UNKNOWN the event of failure.
1da177e4 857 */
057ace5e 858unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
859{
860 /* Apple's open source Darwin code hints that some devices only
861 * put a proper signature into the LBA mid/high registers,
862 * So, we only check those. It's sufficient for uniqueness.
633273a3
TH
863 *
864 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
865 * signatures for ATA and ATAPI devices attached on SerialATA,
866 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
867 * spec has never mentioned about using different signatures
868 * for ATA/ATAPI devices. Then, Serial ATA II: Port
869 * Multiplier specification began to use 0x69/0x96 to identify
870 * port multpliers and 0x3c/0xc3 to identify SEMB device.
871 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
872 * 0x69/0x96 shortly and described them as reserved for
873 * SerialATA.
874 *
875 * We follow the current spec and consider that 0x69/0x96
876 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1da177e4 877 */
633273a3 878 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1da177e4
LT
879 DPRINTK("found ATA device by sig\n");
880 return ATA_DEV_ATA;
881 }
882
633273a3 883 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1da177e4
LT
884 DPRINTK("found ATAPI device by sig\n");
885 return ATA_DEV_ATAPI;
886 }
887
633273a3
TH
888 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
889 DPRINTK("found PMP device by sig\n");
890 return ATA_DEV_PMP;
891 }
892
893 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
2dcb407e 894 printk(KERN_INFO "ata: SEMB device ignored\n");
633273a3
TH
895 return ATA_DEV_SEMB_UNSUP; /* not yet */
896 }
897
1da177e4
LT
898 DPRINTK("unknown device\n");
899 return ATA_DEV_UNKNOWN;
900}
901
902/**
903 * ata_dev_try_classify - Parse returned ATA device signature
3f19859e
TH
904 * @dev: ATA device to classify (starting at zero)
905 * @present: device seems present
b4dc7623 906 * @r_err: Value of error register on completion
1da177e4
LT
907 *
908 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
909 * an ATA/ATAPI-defined set of values is placed in the ATA
910 * shadow registers, indicating the results of device detection
911 * and diagnostics.
912 *
913 * Select the ATA device, and read the values from the ATA shadow
914 * registers. Then parse according to the Error register value,
915 * and the spec-defined values examined by ata_dev_classify().
916 *
917 * LOCKING:
918 * caller.
b4dc7623
TH
919 *
920 * RETURNS:
921 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4 922 */
3f19859e
TH
923unsigned int ata_dev_try_classify(struct ata_device *dev, int present,
924 u8 *r_err)
1da177e4 925{
3f19859e 926 struct ata_port *ap = dev->link->ap;
1da177e4
LT
927 struct ata_taskfile tf;
928 unsigned int class;
929 u8 err;
930
3f19859e 931 ap->ops->dev_select(ap, dev->devno);
1da177e4
LT
932
933 memset(&tf, 0, sizeof(tf));
934
1da177e4 935 ap->ops->tf_read(ap, &tf);
0169e284 936 err = tf.feature;
b4dc7623
TH
937 if (r_err)
938 *r_err = err;
1da177e4 939
93590859 940 /* see if device passed diags: if master then continue and warn later */
3f19859e 941 if (err == 0 && dev->devno == 0)
93590859 942 /* diagnostic fail : do nothing _YET_ */
3f19859e 943 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
93590859 944 else if (err == 1)
1da177e4 945 /* do nothing */ ;
3f19859e 946 else if ((dev->devno == 0) && (err == 0x81))
1da177e4
LT
947 /* do nothing */ ;
948 else
b4dc7623 949 return ATA_DEV_NONE;
1da177e4 950
b4dc7623 951 /* determine if device is ATA or ATAPI */
1da177e4 952 class = ata_dev_classify(&tf);
b4dc7623 953
d7fbee05
TH
954 if (class == ATA_DEV_UNKNOWN) {
955 /* If the device failed diagnostic, it's likely to
956 * have reported incorrect device signature too.
957 * Assume ATA device if the device seems present but
958 * device signature is invalid with diagnostic
959 * failure.
960 */
961 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
962 class = ATA_DEV_ATA;
963 else
964 class = ATA_DEV_NONE;
965 } else if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
966 class = ATA_DEV_NONE;
967
b4dc7623 968 return class;
1da177e4
LT
969}
970
971/**
6a62a04d 972 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
973 * @id: IDENTIFY DEVICE results we will examine
974 * @s: string into which data is output
975 * @ofs: offset into identify device page
976 * @len: length of string to return. must be an even number.
977 *
978 * The strings in the IDENTIFY DEVICE page are broken up into
979 * 16-bit chunks. Run through the string, and output each
980 * 8-bit chunk linearly, regardless of platform.
981 *
982 * LOCKING:
983 * caller.
984 */
985
6a62a04d
TH
986void ata_id_string(const u16 *id, unsigned char *s,
987 unsigned int ofs, unsigned int len)
1da177e4
LT
988{
989 unsigned int c;
990
991 while (len > 0) {
992 c = id[ofs] >> 8;
993 *s = c;
994 s++;
995
996 c = id[ofs] & 0xff;
997 *s = c;
998 s++;
999
1000 ofs++;
1001 len -= 2;
1002 }
1003}
1004
0e949ff3 1005/**
6a62a04d 1006 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
1007 * @id: IDENTIFY DEVICE results we will examine
1008 * @s: string into which data is output
1009 * @ofs: offset into identify device page
1010 * @len: length of string to return. must be an odd number.
1011 *
6a62a04d 1012 * This function is identical to ata_id_string except that it
0e949ff3
TH
1013 * trims trailing spaces and terminates the resulting string with
1014 * null. @len must be actual maximum length (even number) + 1.
1015 *
1016 * LOCKING:
1017 * caller.
1018 */
6a62a04d
TH
1019void ata_id_c_string(const u16 *id, unsigned char *s,
1020 unsigned int ofs, unsigned int len)
0e949ff3
TH
1021{
1022 unsigned char *p;
1023
1024 WARN_ON(!(len & 1));
1025
6a62a04d 1026 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
1027
1028 p = s + strnlen(s, len - 1);
1029 while (p > s && p[-1] == ' ')
1030 p--;
1031 *p = '\0';
1032}
0baab86b 1033
db6f8759
TH
1034static u64 ata_id_n_sectors(const u16 *id)
1035{
1036 if (ata_id_has_lba(id)) {
1037 if (ata_id_has_lba48(id))
1038 return ata_id_u64(id, 100);
1039 else
1040 return ata_id_u32(id, 60);
1041 } else {
1042 if (ata_id_current_chs_valid(id))
1043 return ata_id_u32(id, 57);
1044 else
1045 return id[1] * id[3] * id[6];
1046 }
1047}
1048
1e999736
AC
1049static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
1050{
1051 u64 sectors = 0;
1052
1053 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1054 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1055 sectors |= (tf->hob_lbal & 0xff) << 24;
1056 sectors |= (tf->lbah & 0xff) << 16;
1057 sectors |= (tf->lbam & 0xff) << 8;
1058 sectors |= (tf->lbal & 0xff);
1059
1060 return ++sectors;
1061}
1062
1063static u64 ata_tf_to_lba(struct ata_taskfile *tf)
1064{
1065 u64 sectors = 0;
1066
1067 sectors |= (tf->device & 0x0f) << 24;
1068 sectors |= (tf->lbah & 0xff) << 16;
1069 sectors |= (tf->lbam & 0xff) << 8;
1070 sectors |= (tf->lbal & 0xff);
1071
1072 return ++sectors;
1073}
1074
1075/**
c728a914
TH
1076 * ata_read_native_max_address - Read native max address
1077 * @dev: target device
1078 * @max_sectors: out parameter for the result native max address
1e999736 1079 *
c728a914
TH
1080 * Perform an LBA48 or LBA28 native size query upon the device in
1081 * question.
1e999736 1082 *
c728a914
TH
1083 * RETURNS:
1084 * 0 on success, -EACCES if command is aborted by the drive.
1085 * -EIO on other errors.
1e999736 1086 */
c728a914 1087static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1e999736 1088{
c728a914 1089 unsigned int err_mask;
1e999736 1090 struct ata_taskfile tf;
c728a914 1091 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1092
1093 ata_tf_init(dev, &tf);
1094
c728a914 1095 /* always clear all address registers */
1e999736 1096 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1e999736 1097
c728a914
TH
1098 if (lba48) {
1099 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1100 tf.flags |= ATA_TFLAG_LBA48;
1101 } else
1102 tf.command = ATA_CMD_READ_NATIVE_MAX;
1e999736 1103
1e999736 1104 tf.protocol |= ATA_PROT_NODATA;
c728a914
TH
1105 tf.device |= ATA_LBA;
1106
2b789108 1107 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1108 if (err_mask) {
1109 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1110 "max address (err_mask=0x%x)\n", err_mask);
1111 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1112 return -EACCES;
1113 return -EIO;
1114 }
1e999736 1115
c728a914
TH
1116 if (lba48)
1117 *max_sectors = ata_tf_to_lba48(&tf);
1118 else
1119 *max_sectors = ata_tf_to_lba(&tf);
2dcb407e 1120 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
93328e11 1121 (*max_sectors)--;
c728a914 1122 return 0;
1e999736
AC
1123}
1124
1125/**
c728a914
TH
1126 * ata_set_max_sectors - Set max sectors
1127 * @dev: target device
6b38d1d1 1128 * @new_sectors: new max sectors value to set for the device
1e999736 1129 *
c728a914
TH
1130 * Set max sectors of @dev to @new_sectors.
1131 *
1132 * RETURNS:
1133 * 0 on success, -EACCES if command is aborted or denied (due to
1134 * previous non-volatile SET_MAX) by the drive. -EIO on other
1135 * errors.
1e999736 1136 */
05027adc 1137static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1e999736 1138{
c728a914 1139 unsigned int err_mask;
1e999736 1140 struct ata_taskfile tf;
c728a914 1141 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1142
1143 new_sectors--;
1144
1145 ata_tf_init(dev, &tf);
1146
1e999736 1147 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
c728a914
TH
1148
1149 if (lba48) {
1150 tf.command = ATA_CMD_SET_MAX_EXT;
1151 tf.flags |= ATA_TFLAG_LBA48;
1152
1153 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1154 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1155 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1e582ba4 1156 } else {
c728a914
TH
1157 tf.command = ATA_CMD_SET_MAX;
1158
1e582ba4
TH
1159 tf.device |= (new_sectors >> 24) & 0xf;
1160 }
1161
1e999736 1162 tf.protocol |= ATA_PROT_NODATA;
c728a914 1163 tf.device |= ATA_LBA;
1e999736
AC
1164
1165 tf.lbal = (new_sectors >> 0) & 0xff;
1166 tf.lbam = (new_sectors >> 8) & 0xff;
1167 tf.lbah = (new_sectors >> 16) & 0xff;
1e999736 1168
2b789108 1169 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1170 if (err_mask) {
1171 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1172 "max address (err_mask=0x%x)\n", err_mask);
1173 if (err_mask == AC_ERR_DEV &&
1174 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1175 return -EACCES;
1176 return -EIO;
1177 }
1178
c728a914 1179 return 0;
1e999736
AC
1180}
1181
1182/**
1183 * ata_hpa_resize - Resize a device with an HPA set
1184 * @dev: Device to resize
1185 *
1186 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1187 * it if required to the full size of the media. The caller must check
1188 * the drive has the HPA feature set enabled.
05027adc
TH
1189 *
1190 * RETURNS:
1191 * 0 on success, -errno on failure.
1e999736 1192 */
05027adc 1193static int ata_hpa_resize(struct ata_device *dev)
1e999736 1194{
05027adc
TH
1195 struct ata_eh_context *ehc = &dev->link->eh_context;
1196 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1197 u64 sectors = ata_id_n_sectors(dev->id);
1198 u64 native_sectors;
c728a914 1199 int rc;
a617c09f 1200
05027adc
TH
1201 /* do we need to do it? */
1202 if (dev->class != ATA_DEV_ATA ||
1203 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1204 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
c728a914 1205 return 0;
1e999736 1206
05027adc
TH
1207 /* read native max address */
1208 rc = ata_read_native_max_address(dev, &native_sectors);
1209 if (rc) {
1210 /* If HPA isn't going to be unlocked, skip HPA
1211 * resizing from the next try.
1212 */
1213 if (!ata_ignore_hpa) {
1214 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1215 "broken, will skip HPA handling\n");
1216 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1217
1218 /* we can continue if device aborted the command */
1219 if (rc == -EACCES)
1220 rc = 0;
1e999736 1221 }
37301a55 1222
05027adc
TH
1223 return rc;
1224 }
1225
1226 /* nothing to do? */
1227 if (native_sectors <= sectors || !ata_ignore_hpa) {
1228 if (!print_info || native_sectors == sectors)
1229 return 0;
1230
1231 if (native_sectors > sectors)
1232 ata_dev_printk(dev, KERN_INFO,
1233 "HPA detected: current %llu, native %llu\n",
1234 (unsigned long long)sectors,
1235 (unsigned long long)native_sectors);
1236 else if (native_sectors < sectors)
1237 ata_dev_printk(dev, KERN_WARNING,
1238 "native sectors (%llu) is smaller than "
1239 "sectors (%llu)\n",
1240 (unsigned long long)native_sectors,
1241 (unsigned long long)sectors);
1242 return 0;
1243 }
1244
1245 /* let's unlock HPA */
1246 rc = ata_set_max_sectors(dev, native_sectors);
1247 if (rc == -EACCES) {
1248 /* if device aborted the command, skip HPA resizing */
1249 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1250 "(%llu -> %llu), skipping HPA handling\n",
1251 (unsigned long long)sectors,
1252 (unsigned long long)native_sectors);
1253 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1254 return 0;
1255 } else if (rc)
1256 return rc;
1257
1258 /* re-read IDENTIFY data */
1259 rc = ata_dev_reread_id(dev, 0);
1260 if (rc) {
1261 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1262 "data after HPA resizing\n");
1263 return rc;
1264 }
1265
1266 if (print_info) {
1267 u64 new_sectors = ata_id_n_sectors(dev->id);
1268 ata_dev_printk(dev, KERN_INFO,
1269 "HPA unlocked: %llu -> %llu, native %llu\n",
1270 (unsigned long long)sectors,
1271 (unsigned long long)new_sectors,
1272 (unsigned long long)native_sectors);
1273 }
1274
1275 return 0;
1e999736
AC
1276}
1277
10305f0f
A
1278/**
1279 * ata_id_to_dma_mode - Identify DMA mode from id block
1280 * @dev: device to identify
cc261267 1281 * @unknown: mode to assume if we cannot tell
10305f0f
A
1282 *
1283 * Set up the timing values for the device based upon the identify
1284 * reported values for the DMA mode. This function is used by drivers
1285 * which rely upon firmware configured modes, but wish to report the
1286 * mode correctly when possible.
1287 *
1288 * In addition we emit similarly formatted messages to the default
1289 * ata_dev_set_mode handler, in order to provide consistency of
1290 * presentation.
1291 */
1292
1293void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1294{
1295 unsigned int mask;
1296 u8 mode;
1297
1298 /* Pack the DMA modes */
1299 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1300 if (dev->id[53] & 0x04)
1301 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1302
1303 /* Select the mode in use */
1304 mode = ata_xfer_mask2mode(mask);
1305
1306 if (mode != 0) {
1307 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1308 ata_mode_string(mask));
1309 } else {
1310 /* SWDMA perhaps ? */
1311 mode = unknown;
1312 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1313 }
1314
1315 /* Configure the device reporting */
1316 dev->xfer_mode = mode;
1317 dev->xfer_shift = ata_xfer_mode2shift(mode);
1318}
1319
0baab86b
EF
1320/**
1321 * ata_noop_dev_select - Select device 0/1 on ATA bus
1322 * @ap: ATA channel to manipulate
1323 * @device: ATA device (numbered from zero) to select
1324 *
1325 * This function performs no actual function.
1326 *
1327 * May be used as the dev_select() entry in ata_port_operations.
1328 *
1329 * LOCKING:
1330 * caller.
1331 */
2dcb407e 1332void ata_noop_dev_select(struct ata_port *ap, unsigned int device)
1da177e4
LT
1333{
1334}
1335
0baab86b 1336
1da177e4
LT
1337/**
1338 * ata_std_dev_select - Select device 0/1 on ATA bus
1339 * @ap: ATA channel to manipulate
1340 * @device: ATA device (numbered from zero) to select
1341 *
1342 * Use the method defined in the ATA specification to
1343 * make either device 0, or device 1, active on the
0baab86b
EF
1344 * ATA channel. Works with both PIO and MMIO.
1345 *
1346 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
1347 *
1348 * LOCKING:
1349 * caller.
1350 */
1351
2dcb407e 1352void ata_std_dev_select(struct ata_port *ap, unsigned int device)
1da177e4
LT
1353{
1354 u8 tmp;
1355
1356 if (device == 0)
1357 tmp = ATA_DEVICE_OBS;
1358 else
1359 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1360
0d5ff566 1361 iowrite8(tmp, ap->ioaddr.device_addr);
1da177e4
LT
1362 ata_pause(ap); /* needed; also flushes, for mmio */
1363}
1364
1365/**
1366 * ata_dev_select - Select device 0/1 on ATA bus
1367 * @ap: ATA channel to manipulate
1368 * @device: ATA device (numbered from zero) to select
1369 * @wait: non-zero to wait for Status register BSY bit to clear
1370 * @can_sleep: non-zero if context allows sleeping
1371 *
1372 * Use the method defined in the ATA specification to
1373 * make either device 0, or device 1, active on the
1374 * ATA channel.
1375 *
1376 * This is a high-level version of ata_std_dev_select(),
1377 * which additionally provides the services of inserting
1378 * the proper pauses and status polling, where needed.
1379 *
1380 * LOCKING:
1381 * caller.
1382 */
1383
1384void ata_dev_select(struct ata_port *ap, unsigned int device,
1385 unsigned int wait, unsigned int can_sleep)
1386{
88574551 1387 if (ata_msg_probe(ap))
44877b4e
TH
1388 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1389 "device %u, wait %u\n", device, wait);
1da177e4
LT
1390
1391 if (wait)
1392 ata_wait_idle(ap);
1393
1394 ap->ops->dev_select(ap, device);
1395
1396 if (wait) {
9af5c9c9 1397 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
1da177e4
LT
1398 msleep(150);
1399 ata_wait_idle(ap);
1400 }
1401}
1402
1403/**
1404 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1405 * @id: IDENTIFY DEVICE page to dump
1da177e4 1406 *
0bd3300a
TH
1407 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1408 * page.
1da177e4
LT
1409 *
1410 * LOCKING:
1411 * caller.
1412 */
1413
0bd3300a 1414static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1415{
1416 DPRINTK("49==0x%04x "
1417 "53==0x%04x "
1418 "63==0x%04x "
1419 "64==0x%04x "
1420 "75==0x%04x \n",
0bd3300a
TH
1421 id[49],
1422 id[53],
1423 id[63],
1424 id[64],
1425 id[75]);
1da177e4
LT
1426 DPRINTK("80==0x%04x "
1427 "81==0x%04x "
1428 "82==0x%04x "
1429 "83==0x%04x "
1430 "84==0x%04x \n",
0bd3300a
TH
1431 id[80],
1432 id[81],
1433 id[82],
1434 id[83],
1435 id[84]);
1da177e4
LT
1436 DPRINTK("88==0x%04x "
1437 "93==0x%04x\n",
0bd3300a
TH
1438 id[88],
1439 id[93]);
1da177e4
LT
1440}
1441
cb95d562
TH
1442/**
1443 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1444 * @id: IDENTIFY data to compute xfer mask from
1445 *
1446 * Compute the xfermask for this device. This is not as trivial
1447 * as it seems if we must consider early devices correctly.
1448 *
1449 * FIXME: pre IDE drive timing (do we care ?).
1450 *
1451 * LOCKING:
1452 * None.
1453 *
1454 * RETURNS:
1455 * Computed xfermask
1456 */
1457static unsigned int ata_id_xfermask(const u16 *id)
1458{
1459 unsigned int pio_mask, mwdma_mask, udma_mask;
1460
1461 /* Usual case. Word 53 indicates word 64 is valid */
1462 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1463 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1464 pio_mask <<= 3;
1465 pio_mask |= 0x7;
1466 } else {
1467 /* If word 64 isn't valid then Word 51 high byte holds
1468 * the PIO timing number for the maximum. Turn it into
1469 * a mask.
1470 */
7a0f1c8a 1471 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb 1472 if (mode < 5) /* Valid PIO range */
2dcb407e 1473 pio_mask = (2 << mode) - 1;
46767aeb
AC
1474 else
1475 pio_mask = 1;
cb95d562
TH
1476
1477 /* But wait.. there's more. Design your standards by
1478 * committee and you too can get a free iordy field to
1479 * process. However its the speeds not the modes that
1480 * are supported... Note drivers using the timing API
1481 * will get this right anyway
1482 */
1483 }
1484
1485 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1486
b352e57d
AC
1487 if (ata_id_is_cfa(id)) {
1488 /*
1489 * Process compact flash extended modes
1490 */
1491 int pio = id[163] & 0x7;
1492 int dma = (id[163] >> 3) & 7;
1493
1494 if (pio)
1495 pio_mask |= (1 << 5);
1496 if (pio > 1)
1497 pio_mask |= (1 << 6);
1498 if (dma)
1499 mwdma_mask |= (1 << 3);
1500 if (dma > 1)
1501 mwdma_mask |= (1 << 4);
1502 }
1503
fb21f0d0
TH
1504 udma_mask = 0;
1505 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1506 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1507
1508 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1509}
1510
86e45b6b
TH
1511/**
1512 * ata_port_queue_task - Queue port_task
1513 * @ap: The ata_port to queue port_task for
e2a7f77a 1514 * @fn: workqueue function to be scheduled
65f27f38 1515 * @data: data for @fn to use
e2a7f77a 1516 * @delay: delay time for workqueue function
86e45b6b
TH
1517 *
1518 * Schedule @fn(@data) for execution after @delay jiffies using
1519 * port_task. There is one port_task per port and it's the
1520 * user(low level driver)'s responsibility to make sure that only
1521 * one task is active at any given time.
1522 *
1523 * libata core layer takes care of synchronization between
1524 * port_task and EH. ata_port_queue_task() may be ignored for EH
1525 * synchronization.
1526 *
1527 * LOCKING:
1528 * Inherited from caller.
1529 */
65f27f38 1530void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
86e45b6b
TH
1531 unsigned long delay)
1532{
65f27f38
DH
1533 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1534 ap->port_task_data = data;
86e45b6b 1535
45a66c1c
ON
1536 /* may fail if ata_port_flush_task() in progress */
1537 queue_delayed_work(ata_wq, &ap->port_task, delay);
86e45b6b
TH
1538}
1539
1540/**
1541 * ata_port_flush_task - Flush port_task
1542 * @ap: The ata_port to flush port_task for
1543 *
1544 * After this function completes, port_task is guranteed not to
1545 * be running or scheduled.
1546 *
1547 * LOCKING:
1548 * Kernel thread context (may sleep)
1549 */
1550void ata_port_flush_task(struct ata_port *ap)
1551{
86e45b6b
TH
1552 DPRINTK("ENTER\n");
1553
45a66c1c 1554 cancel_rearming_delayed_work(&ap->port_task);
86e45b6b 1555
0dd4b21f
BP
1556 if (ata_msg_ctl(ap))
1557 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
1558}
1559
7102d230 1560static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1561{
77853bf2 1562 struct completion *waiting = qc->private_data;
a2a7a662 1563
a2a7a662 1564 complete(waiting);
a2a7a662
TH
1565}
1566
1567/**
2432697b 1568 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1569 * @dev: Device to which the command is sent
1570 * @tf: Taskfile registers for the command and the result
d69cf37d 1571 * @cdb: CDB for packet command
a2a7a662 1572 * @dma_dir: Data tranfer direction of the command
5c1ad8b3 1573 * @sgl: sg list for the data buffer of the command
2432697b 1574 * @n_elem: Number of sg entries
2b789108 1575 * @timeout: Timeout in msecs (0 for default)
a2a7a662
TH
1576 *
1577 * Executes libata internal command with timeout. @tf contains
1578 * command on entry and result on return. Timeout and error
1579 * conditions are reported via return value. No recovery action
1580 * is taken after a command times out. It's caller's duty to
1581 * clean up after timeout.
1582 *
1583 * LOCKING:
1584 * None. Should be called with kernel context, might sleep.
551e8889
TH
1585 *
1586 * RETURNS:
1587 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1588 */
2432697b
TH
1589unsigned ata_exec_internal_sg(struct ata_device *dev,
1590 struct ata_taskfile *tf, const u8 *cdb,
87260216 1591 int dma_dir, struct scatterlist *sgl,
2b789108 1592 unsigned int n_elem, unsigned long timeout)
a2a7a662 1593{
9af5c9c9
TH
1594 struct ata_link *link = dev->link;
1595 struct ata_port *ap = link->ap;
a2a7a662
TH
1596 u8 command = tf->command;
1597 struct ata_queued_cmd *qc;
2ab7db1f 1598 unsigned int tag, preempted_tag;
dedaf2b0 1599 u32 preempted_sactive, preempted_qc_active;
da917d69 1600 int preempted_nr_active_links;
60be6b9a 1601 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1602 unsigned long flags;
77853bf2 1603 unsigned int err_mask;
d95a717f 1604 int rc;
a2a7a662 1605
ba6a1308 1606 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1607
e3180499 1608 /* no internal command while frozen */
b51e9e5d 1609 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1610 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1611 return AC_ERR_SYSTEM;
1612 }
1613
2ab7db1f 1614 /* initialize internal qc */
a2a7a662 1615
2ab7db1f
TH
1616 /* XXX: Tag 0 is used for drivers with legacy EH as some
1617 * drivers choke if any other tag is given. This breaks
1618 * ata_tag_internal() test for those drivers. Don't use new
1619 * EH stuff without converting to it.
1620 */
1621 if (ap->ops->error_handler)
1622 tag = ATA_TAG_INTERNAL;
1623 else
1624 tag = 0;
1625
6cec4a39 1626 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1627 BUG();
f69499f4 1628 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1629
1630 qc->tag = tag;
1631 qc->scsicmd = NULL;
1632 qc->ap = ap;
1633 qc->dev = dev;
1634 ata_qc_reinit(qc);
1635
9af5c9c9
TH
1636 preempted_tag = link->active_tag;
1637 preempted_sactive = link->sactive;
dedaf2b0 1638 preempted_qc_active = ap->qc_active;
da917d69 1639 preempted_nr_active_links = ap->nr_active_links;
9af5c9c9
TH
1640 link->active_tag = ATA_TAG_POISON;
1641 link->sactive = 0;
dedaf2b0 1642 ap->qc_active = 0;
da917d69 1643 ap->nr_active_links = 0;
2ab7db1f
TH
1644
1645 /* prepare & issue qc */
a2a7a662 1646 qc->tf = *tf;
d69cf37d
TH
1647 if (cdb)
1648 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1649 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1650 qc->dma_dir = dma_dir;
1651 if (dma_dir != DMA_NONE) {
2432697b 1652 unsigned int i, buflen = 0;
87260216 1653 struct scatterlist *sg;
2432697b 1654
87260216
JA
1655 for_each_sg(sgl, sg, n_elem, i)
1656 buflen += sg->length;
2432697b 1657
87260216 1658 ata_sg_init(qc, sgl, n_elem);
49c80429 1659 qc->nbytes = buflen;
a2a7a662
TH
1660 }
1661
77853bf2 1662 qc->private_data = &wait;
a2a7a662
TH
1663 qc->complete_fn = ata_qc_complete_internal;
1664
8e0e694a 1665 ata_qc_issue(qc);
a2a7a662 1666
ba6a1308 1667 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1668
2b789108
TH
1669 if (!timeout)
1670 timeout = ata_probe_timeout * 1000 / HZ;
1671
1672 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
d95a717f
TH
1673
1674 ata_port_flush_task(ap);
41ade50c 1675
d95a717f 1676 if (!rc) {
ba6a1308 1677 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1678
1679 /* We're racing with irq here. If we lose, the
1680 * following test prevents us from completing the qc
d95a717f
TH
1681 * twice. If we win, the port is frozen and will be
1682 * cleaned up by ->post_internal_cmd().
a2a7a662 1683 */
77853bf2 1684 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1685 qc->err_mask |= AC_ERR_TIMEOUT;
1686
1687 if (ap->ops->error_handler)
1688 ata_port_freeze(ap);
1689 else
1690 ata_qc_complete(qc);
f15a1daf 1691
0dd4b21f
BP
1692 if (ata_msg_warn(ap))
1693 ata_dev_printk(dev, KERN_WARNING,
88574551 1694 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1695 }
1696
ba6a1308 1697 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1698 }
1699
d95a717f
TH
1700 /* do post_internal_cmd */
1701 if (ap->ops->post_internal_cmd)
1702 ap->ops->post_internal_cmd(qc);
1703
a51d644a
TH
1704 /* perform minimal error analysis */
1705 if (qc->flags & ATA_QCFLAG_FAILED) {
1706 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1707 qc->err_mask |= AC_ERR_DEV;
1708
1709 if (!qc->err_mask)
1710 qc->err_mask |= AC_ERR_OTHER;
1711
1712 if (qc->err_mask & ~AC_ERR_OTHER)
1713 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1714 }
1715
15869303 1716 /* finish up */
ba6a1308 1717 spin_lock_irqsave(ap->lock, flags);
15869303 1718
e61e0672 1719 *tf = qc->result_tf;
77853bf2
TH
1720 err_mask = qc->err_mask;
1721
1722 ata_qc_free(qc);
9af5c9c9
TH
1723 link->active_tag = preempted_tag;
1724 link->sactive = preempted_sactive;
dedaf2b0 1725 ap->qc_active = preempted_qc_active;
da917d69 1726 ap->nr_active_links = preempted_nr_active_links;
77853bf2 1727
1f7dd3e9
TH
1728 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1729 * Until those drivers are fixed, we detect the condition
1730 * here, fail the command with AC_ERR_SYSTEM and reenable the
1731 * port.
1732 *
1733 * Note that this doesn't change any behavior as internal
1734 * command failure results in disabling the device in the
1735 * higher layer for LLDDs without new reset/EH callbacks.
1736 *
1737 * Kill the following code as soon as those drivers are fixed.
1738 */
198e0fed 1739 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1740 err_mask |= AC_ERR_SYSTEM;
1741 ata_port_probe(ap);
1742 }
1743
ba6a1308 1744 spin_unlock_irqrestore(ap->lock, flags);
15869303 1745
77853bf2 1746 return err_mask;
a2a7a662
TH
1747}
1748
2432697b 1749/**
33480a0e 1750 * ata_exec_internal - execute libata internal command
2432697b
TH
1751 * @dev: Device to which the command is sent
1752 * @tf: Taskfile registers for the command and the result
1753 * @cdb: CDB for packet command
1754 * @dma_dir: Data tranfer direction of the command
1755 * @buf: Data buffer of the command
1756 * @buflen: Length of data buffer
2b789108 1757 * @timeout: Timeout in msecs (0 for default)
2432697b
TH
1758 *
1759 * Wrapper around ata_exec_internal_sg() which takes simple
1760 * buffer instead of sg list.
1761 *
1762 * LOCKING:
1763 * None. Should be called with kernel context, might sleep.
1764 *
1765 * RETURNS:
1766 * Zero on success, AC_ERR_* mask on failure
1767 */
1768unsigned ata_exec_internal(struct ata_device *dev,
1769 struct ata_taskfile *tf, const u8 *cdb,
2b789108
TH
1770 int dma_dir, void *buf, unsigned int buflen,
1771 unsigned long timeout)
2432697b 1772{
33480a0e
TH
1773 struct scatterlist *psg = NULL, sg;
1774 unsigned int n_elem = 0;
2432697b 1775
33480a0e
TH
1776 if (dma_dir != DMA_NONE) {
1777 WARN_ON(!buf);
1778 sg_init_one(&sg, buf, buflen);
1779 psg = &sg;
1780 n_elem++;
1781 }
2432697b 1782
2b789108
TH
1783 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1784 timeout);
2432697b
TH
1785}
1786
977e6b9f
TH
1787/**
1788 * ata_do_simple_cmd - execute simple internal command
1789 * @dev: Device to which the command is sent
1790 * @cmd: Opcode to execute
1791 *
1792 * Execute a 'simple' command, that only consists of the opcode
1793 * 'cmd' itself, without filling any other registers
1794 *
1795 * LOCKING:
1796 * Kernel thread context (may sleep).
1797 *
1798 * RETURNS:
1799 * Zero on success, AC_ERR_* mask on failure
e58eb583 1800 */
77b08fb5 1801unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1802{
1803 struct ata_taskfile tf;
e58eb583
TH
1804
1805 ata_tf_init(dev, &tf);
1806
1807 tf.command = cmd;
1808 tf.flags |= ATA_TFLAG_DEVICE;
1809 tf.protocol = ATA_PROT_NODATA;
1810
2b789108 1811 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
e58eb583
TH
1812}
1813
1bc4ccff
AC
1814/**
1815 * ata_pio_need_iordy - check if iordy needed
1816 * @adev: ATA device
1817 *
1818 * Check if the current speed of the device requires IORDY. Used
1819 * by various controllers for chip configuration.
1820 */
a617c09f 1821
1bc4ccff
AC
1822unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1823{
432729f0
AC
1824 /* Controller doesn't support IORDY. Probably a pointless check
1825 as the caller should know this */
9af5c9c9 1826 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1827 return 0;
432729f0
AC
1828 /* PIO3 and higher it is mandatory */
1829 if (adev->pio_mode > XFER_PIO_2)
1830 return 1;
1831 /* We turn it on when possible */
1832 if (ata_id_has_iordy(adev->id))
1bc4ccff 1833 return 1;
432729f0
AC
1834 return 0;
1835}
2e9edbf8 1836
432729f0
AC
1837/**
1838 * ata_pio_mask_no_iordy - Return the non IORDY mask
1839 * @adev: ATA device
1840 *
1841 * Compute the highest mode possible if we are not using iordy. Return
1842 * -1 if no iordy mode is available.
1843 */
a617c09f 1844
432729f0
AC
1845static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1846{
1bc4ccff 1847 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1848 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1849 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1850 /* Is the speed faster than the drive allows non IORDY ? */
1851 if (pio) {
1852 /* This is cycle times not frequency - watch the logic! */
1853 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1854 return 3 << ATA_SHIFT_PIO;
1855 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1856 }
1857 }
432729f0 1858 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1859}
1860
1da177e4 1861/**
49016aca 1862 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1863 * @dev: target device
1864 * @p_class: pointer to class of the target device (may be changed)
bff04647 1865 * @flags: ATA_READID_* flags
fe635c7e 1866 * @id: buffer to read IDENTIFY data into
1da177e4 1867 *
49016aca
TH
1868 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1869 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1870 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1871 * for pre-ATA4 drives.
1da177e4 1872 *
50a99018 1873 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2dcb407e 1874 * now we abort if we hit that case.
50a99018 1875 *
1da177e4 1876 * LOCKING:
49016aca
TH
1877 * Kernel thread context (may sleep)
1878 *
1879 * RETURNS:
1880 * 0 on success, -errno otherwise.
1da177e4 1881 */
a9beec95 1882int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1883 unsigned int flags, u16 *id)
1da177e4 1884{
9af5c9c9 1885 struct ata_port *ap = dev->link->ap;
49016aca 1886 unsigned int class = *p_class;
a0123703 1887 struct ata_taskfile tf;
49016aca
TH
1888 unsigned int err_mask = 0;
1889 const char *reason;
54936f8b 1890 int may_fallback = 1, tried_spinup = 0;
49016aca 1891 int rc;
1da177e4 1892
0dd4b21f 1893 if (ata_msg_ctl(ap))
44877b4e 1894 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1895
49016aca 1896 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
49016aca 1897 retry:
3373efd8 1898 ata_tf_init(dev, &tf);
a0123703 1899
49016aca
TH
1900 switch (class) {
1901 case ATA_DEV_ATA:
a0123703 1902 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1903 break;
1904 case ATA_DEV_ATAPI:
a0123703 1905 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1906 break;
1907 default:
1908 rc = -ENODEV;
1909 reason = "unsupported class";
1910 goto err_out;
1da177e4
LT
1911 }
1912
a0123703 1913 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1914
1915 /* Some devices choke if TF registers contain garbage. Make
1916 * sure those are properly initialized.
1917 */
1918 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1919
1920 /* Device presence detection is unreliable on some
1921 * controllers. Always poll IDENTIFY if available.
1922 */
1923 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1924
3373efd8 1925 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2b789108 1926 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
a0123703 1927 if (err_mask) {
800b3996 1928 if (err_mask & AC_ERR_NODEV_HINT) {
55a8e2c8 1929 DPRINTK("ata%u.%d: NODEV after polling detection\n",
44877b4e 1930 ap->print_id, dev->devno);
55a8e2c8
TH
1931 return -ENOENT;
1932 }
1933
54936f8b
TH
1934 /* Device or controller might have reported the wrong
1935 * device class. Give a shot at the other IDENTIFY if
1936 * the current one is aborted by the device.
1937 */
1938 if (may_fallback &&
1939 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1940 may_fallback = 0;
1941
1942 if (class == ATA_DEV_ATA)
1943 class = ATA_DEV_ATAPI;
1944 else
1945 class = ATA_DEV_ATA;
1946 goto retry;
1947 }
1948
49016aca
TH
1949 rc = -EIO;
1950 reason = "I/O error";
1da177e4
LT
1951 goto err_out;
1952 }
1953
54936f8b
TH
1954 /* Falling back doesn't make sense if ID data was read
1955 * successfully at least once.
1956 */
1957 may_fallback = 0;
1958
49016aca 1959 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1960
49016aca 1961 /* sanity check */
a4f5749b 1962 rc = -EINVAL;
6070068b 1963 reason = "device reports invalid type";
a4f5749b
TH
1964
1965 if (class == ATA_DEV_ATA) {
1966 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1967 goto err_out;
1968 } else {
1969 if (ata_id_is_ata(id))
1970 goto err_out;
49016aca
TH
1971 }
1972
169439c2
ML
1973 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1974 tried_spinup = 1;
1975 /*
1976 * Drive powered-up in standby mode, and requires a specific
1977 * SET_FEATURES spin-up subcommand before it will accept
1978 * anything other than the original IDENTIFY command.
1979 */
218f3d30 1980 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
fb0582f9 1981 if (err_mask && id[2] != 0x738c) {
169439c2
ML
1982 rc = -EIO;
1983 reason = "SPINUP failed";
1984 goto err_out;
1985 }
1986 /*
1987 * If the drive initially returned incomplete IDENTIFY info,
1988 * we now must reissue the IDENTIFY command.
1989 */
1990 if (id[2] == 0x37c8)
1991 goto retry;
1992 }
1993
bff04647 1994 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
1995 /*
1996 * The exact sequence expected by certain pre-ATA4 drives is:
1997 * SRST RESET
50a99018
AC
1998 * IDENTIFY (optional in early ATA)
1999 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
49016aca
TH
2000 * anything else..
2001 * Some drives were very specific about that exact sequence.
50a99018
AC
2002 *
2003 * Note that ATA4 says lba is mandatory so the second check
2004 * shoud never trigger.
49016aca
TH
2005 */
2006 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 2007 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
2008 if (err_mask) {
2009 rc = -EIO;
2010 reason = "INIT_DEV_PARAMS failed";
2011 goto err_out;
2012 }
2013
2014 /* current CHS translation info (id[53-58]) might be
2015 * changed. reread the identify device info.
2016 */
bff04647 2017 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
2018 goto retry;
2019 }
2020 }
2021
2022 *p_class = class;
fe635c7e 2023
49016aca
TH
2024 return 0;
2025
2026 err_out:
88574551 2027 if (ata_msg_warn(ap))
0dd4b21f 2028 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 2029 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
2030 return rc;
2031}
2032
3373efd8 2033static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 2034{
9af5c9c9
TH
2035 struct ata_port *ap = dev->link->ap;
2036 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
2037}
2038
a6e6ce8e
TH
2039static void ata_dev_config_ncq(struct ata_device *dev,
2040 char *desc, size_t desc_sz)
2041{
9af5c9c9 2042 struct ata_port *ap = dev->link->ap;
a6e6ce8e
TH
2043 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2044
2045 if (!ata_id_has_ncq(dev->id)) {
2046 desc[0] = '\0';
2047 return;
2048 }
75683fe7 2049 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6
AC
2050 snprintf(desc, desc_sz, "NCQ (not used)");
2051 return;
2052 }
a6e6ce8e 2053 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 2054 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
2055 dev->flags |= ATA_DFLAG_NCQ;
2056 }
2057
2058 if (hdepth >= ddepth)
2059 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2060 else
2061 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2062}
2063
49016aca 2064/**
ffeae418 2065 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
2066 * @dev: Target device to configure
2067 *
2068 * Configure @dev according to @dev->id. Generic and low-level
2069 * driver specific fixups are also applied.
49016aca
TH
2070 *
2071 * LOCKING:
ffeae418
TH
2072 * Kernel thread context (may sleep)
2073 *
2074 * RETURNS:
2075 * 0 on success, -errno otherwise
49016aca 2076 */
efdaedc4 2077int ata_dev_configure(struct ata_device *dev)
49016aca 2078{
9af5c9c9
TH
2079 struct ata_port *ap = dev->link->ap;
2080 struct ata_eh_context *ehc = &dev->link->eh_context;
6746544c 2081 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 2082 const u16 *id = dev->id;
ff8854b2 2083 unsigned int xfer_mask;
b352e57d 2084 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
2085 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2086 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 2087 int rc;
49016aca 2088
0dd4b21f 2089 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e
TH
2090 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2091 __FUNCTION__);
ffeae418 2092 return 0;
49016aca
TH
2093 }
2094
0dd4b21f 2095 if (ata_msg_probe(ap))
44877b4e 2096 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 2097
75683fe7
TH
2098 /* set horkage */
2099 dev->horkage |= ata_dev_blacklisted(dev);
2100
6746544c
TH
2101 /* let ACPI work its magic */
2102 rc = ata_acpi_on_devcfg(dev);
2103 if (rc)
2104 return rc;
08573a86 2105
05027adc
TH
2106 /* massage HPA, do it early as it might change IDENTIFY data */
2107 rc = ata_hpa_resize(dev);
2108 if (rc)
2109 return rc;
2110
c39f5ebe 2111 /* print device capabilities */
0dd4b21f 2112 if (ata_msg_probe(ap))
88574551
TH
2113 ata_dev_printk(dev, KERN_DEBUG,
2114 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2115 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 2116 __FUNCTION__,
f15a1daf
TH
2117 id[49], id[82], id[83], id[84],
2118 id[85], id[86], id[87], id[88]);
c39f5ebe 2119
208a9933 2120 /* initialize to-be-configured parameters */
ea1dd4e1 2121 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
2122 dev->max_sectors = 0;
2123 dev->cdb_len = 0;
2124 dev->n_sectors = 0;
2125 dev->cylinders = 0;
2126 dev->heads = 0;
2127 dev->sectors = 0;
2128
1da177e4
LT
2129 /*
2130 * common ATA, ATAPI feature tests
2131 */
2132
ff8854b2 2133 /* find max transfer mode; for printk only */
1148c3a7 2134 xfer_mask = ata_id_xfermask(id);
1da177e4 2135
0dd4b21f
BP
2136 if (ata_msg_probe(ap))
2137 ata_dump_id(id);
1da177e4 2138
ef143d57
AL
2139 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2140 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2141 sizeof(fwrevbuf));
2142
2143 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2144 sizeof(modelbuf));
2145
1da177e4
LT
2146 /* ATA-specific feature tests */
2147 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
2148 if (ata_id_is_cfa(id)) {
2149 if (id[162] & 1) /* CPRM may make this media unusable */
44877b4e
TH
2150 ata_dev_printk(dev, KERN_WARNING,
2151 "supports DRM functions and may "
2152 "not be fully accessable.\n");
b352e57d 2153 snprintf(revbuf, 7, "CFA");
2dcb407e
JG
2154 } else
2155 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
b352e57d 2156
1148c3a7 2157 dev->n_sectors = ata_id_n_sectors(id);
2940740b 2158
3f64f565
EM
2159 if (dev->id[59] & 0x100)
2160 dev->multi_count = dev->id[59] & 0xff;
2161
1148c3a7 2162 if (ata_id_has_lba(id)) {
4c2d721a 2163 const char *lba_desc;
a6e6ce8e 2164 char ncq_desc[20];
8bf62ece 2165
4c2d721a
TH
2166 lba_desc = "LBA";
2167 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 2168 if (ata_id_has_lba48(id)) {
8bf62ece 2169 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 2170 lba_desc = "LBA48";
6fc49adb
TH
2171
2172 if (dev->n_sectors >= (1UL << 28) &&
2173 ata_id_has_flush_ext(id))
2174 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 2175 }
8bf62ece 2176
a6e6ce8e
TH
2177 /* config NCQ */
2178 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2179
8bf62ece 2180 /* print device info to dmesg */
3f64f565
EM
2181 if (ata_msg_drv(ap) && print_info) {
2182 ata_dev_printk(dev, KERN_INFO,
2183 "%s: %s, %s, max %s\n",
2184 revbuf, modelbuf, fwrevbuf,
2185 ata_mode_string(xfer_mask));
2186 ata_dev_printk(dev, KERN_INFO,
2187 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 2188 (unsigned long long)dev->n_sectors,
3f64f565
EM
2189 dev->multi_count, lba_desc, ncq_desc);
2190 }
ffeae418 2191 } else {
8bf62ece
AL
2192 /* CHS */
2193
2194 /* Default translation */
1148c3a7
TH
2195 dev->cylinders = id[1];
2196 dev->heads = id[3];
2197 dev->sectors = id[6];
8bf62ece 2198
1148c3a7 2199 if (ata_id_current_chs_valid(id)) {
8bf62ece 2200 /* Current CHS translation is valid. */
1148c3a7
TH
2201 dev->cylinders = id[54];
2202 dev->heads = id[55];
2203 dev->sectors = id[56];
8bf62ece
AL
2204 }
2205
2206 /* print device info to dmesg */
3f64f565 2207 if (ata_msg_drv(ap) && print_info) {
88574551 2208 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2209 "%s: %s, %s, max %s\n",
2210 revbuf, modelbuf, fwrevbuf,
2211 ata_mode_string(xfer_mask));
a84471fe 2212 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2213 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2214 (unsigned long long)dev->n_sectors,
2215 dev->multi_count, dev->cylinders,
2216 dev->heads, dev->sectors);
2217 }
07f6f7d0
AL
2218 }
2219
6e7846e9 2220 dev->cdb_len = 16;
1da177e4
LT
2221 }
2222
2223 /* ATAPI-specific feature tests */
2c13b7ce 2224 else if (dev->class == ATA_DEV_ATAPI) {
854c73a2
TH
2225 const char *cdb_intr_string = "";
2226 const char *atapi_an_string = "";
7d77b247 2227 u32 sntf;
08a556db 2228
1148c3a7 2229 rc = atapi_cdb_len(id);
1da177e4 2230 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 2231 if (ata_msg_warn(ap))
88574551
TH
2232 ata_dev_printk(dev, KERN_WARNING,
2233 "unsupported CDB len\n");
ffeae418 2234 rc = -EINVAL;
1da177e4
LT
2235 goto err_out_nosup;
2236 }
6e7846e9 2237 dev->cdb_len = (unsigned int) rc;
1da177e4 2238
7d77b247
TH
2239 /* Enable ATAPI AN if both the host and device have
2240 * the support. If PMP is attached, SNTF is required
2241 * to enable ATAPI AN to discern between PHY status
2242 * changed notifications and ATAPI ANs.
9f45cbd3 2243 */
7d77b247
TH
2244 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2245 (!ap->nr_pmp_links ||
2246 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
854c73a2
TH
2247 unsigned int err_mask;
2248
9f45cbd3 2249 /* issue SET feature command to turn this on */
218f3d30
JG
2250 err_mask = ata_dev_set_feature(dev,
2251 SETFEATURES_SATA_ENABLE, SATA_AN);
854c73a2 2252 if (err_mask)
9f45cbd3 2253 ata_dev_printk(dev, KERN_ERR,
854c73a2
TH
2254 "failed to enable ATAPI AN "
2255 "(err_mask=0x%x)\n", err_mask);
2256 else {
9f45cbd3 2257 dev->flags |= ATA_DFLAG_AN;
854c73a2
TH
2258 atapi_an_string = ", ATAPI AN";
2259 }
9f45cbd3
KCA
2260 }
2261
08a556db 2262 if (ata_id_cdb_intr(dev->id)) {
312f7da2 2263 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
2264 cdb_intr_string = ", CDB intr";
2265 }
312f7da2 2266
1da177e4 2267 /* print device info to dmesg */
5afc8142 2268 if (ata_msg_drv(ap) && print_info)
ef143d57 2269 ata_dev_printk(dev, KERN_INFO,
854c73a2 2270 "ATAPI: %s, %s, max %s%s%s\n",
ef143d57 2271 modelbuf, fwrevbuf,
12436c30 2272 ata_mode_string(xfer_mask),
854c73a2 2273 cdb_intr_string, atapi_an_string);
1da177e4
LT
2274 }
2275
914ed354
TH
2276 /* determine max_sectors */
2277 dev->max_sectors = ATA_MAX_SECTORS;
2278 if (dev->flags & ATA_DFLAG_LBA48)
2279 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2280
ca77329f
KCA
2281 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2282 if (ata_id_has_hipm(dev->id))
2283 dev->flags |= ATA_DFLAG_HIPM;
2284 if (ata_id_has_dipm(dev->id))
2285 dev->flags |= ATA_DFLAG_DIPM;
2286 }
2287
93590859
AC
2288 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2289 /* Let the user know. We don't want to disallow opens for
2290 rescue purposes, or in case the vendor is just a blithering
2291 idiot */
2dcb407e 2292 if (print_info) {
93590859
AC
2293 ata_dev_printk(dev, KERN_WARNING,
2294"Drive reports diagnostics failure. This may indicate a drive\n");
2295 ata_dev_printk(dev, KERN_WARNING,
2296"fault or invalid emulation. Contact drive vendor for information.\n");
2297 }
2298 }
2299
4b2f3ede 2300 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 2301 if (ata_dev_knobble(dev)) {
5afc8142 2302 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2303 ata_dev_printk(dev, KERN_INFO,
2304 "applying bridge limits\n");
5a529139 2305 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2306 dev->max_sectors = ATA_MAX_SECTORS;
2307 }
2308
f8d8e579
TB
2309 if ((dev->class == ATA_DEV_ATAPI) &&
2310 (atapi_command_packet_set(id) == TYPE_TAPE))
2311 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2312
75683fe7 2313 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2314 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2315 dev->max_sectors);
18d6e9d5 2316
ca77329f
KCA
2317 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2318 dev->horkage |= ATA_HORKAGE_IPM;
2319
2320 /* reset link pm_policy for this port to no pm */
2321 ap->pm_policy = MAX_PERFORMANCE;
2322 }
2323
4b2f3ede 2324 if (ap->ops->dev_config)
cd0d3bbc 2325 ap->ops->dev_config(dev);
4b2f3ede 2326
0dd4b21f
BP
2327 if (ata_msg_probe(ap))
2328 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2329 __FUNCTION__, ata_chk_status(ap));
ffeae418 2330 return 0;
1da177e4
LT
2331
2332err_out_nosup:
0dd4b21f 2333 if (ata_msg_probe(ap))
88574551
TH
2334 ata_dev_printk(dev, KERN_DEBUG,
2335 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 2336 return rc;
1da177e4
LT
2337}
2338
be0d18df 2339/**
2e41e8e6 2340 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2341 * @ap: port
2342 *
2e41e8e6 2343 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2344 * detection.
2345 */
2346
2347int ata_cable_40wire(struct ata_port *ap)
2348{
2349 return ATA_CBL_PATA40;
2350}
2351
2352/**
2e41e8e6 2353 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2354 * @ap: port
2355 *
2e41e8e6 2356 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2357 * detection.
2358 */
2359
2360int ata_cable_80wire(struct ata_port *ap)
2361{
2362 return ATA_CBL_PATA80;
2363}
2364
2365/**
2366 * ata_cable_unknown - return unknown PATA cable.
2367 * @ap: port
2368 *
2369 * Helper method for drivers which have no PATA cable detection.
2370 */
2371
2372int ata_cable_unknown(struct ata_port *ap)
2373{
2374 return ATA_CBL_PATA_UNK;
2375}
2376
2377/**
2378 * ata_cable_sata - return SATA cable type
2379 * @ap: port
2380 *
2381 * Helper method for drivers which have SATA cables
2382 */
2383
2384int ata_cable_sata(struct ata_port *ap)
2385{
2386 return ATA_CBL_SATA;
2387}
2388
1da177e4
LT
2389/**
2390 * ata_bus_probe - Reset and probe ATA bus
2391 * @ap: Bus to probe
2392 *
0cba632b
JG
2393 * Master ATA bus probing function. Initiates a hardware-dependent
2394 * bus reset, then attempts to identify any devices found on
2395 * the bus.
2396 *
1da177e4 2397 * LOCKING:
0cba632b 2398 * PCI/etc. bus probe sem.
1da177e4
LT
2399 *
2400 * RETURNS:
96072e69 2401 * Zero on success, negative errno otherwise.
1da177e4
LT
2402 */
2403
80289167 2404int ata_bus_probe(struct ata_port *ap)
1da177e4 2405{
28ca5c57 2406 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2407 int tries[ATA_MAX_DEVICES];
f58229f8 2408 int rc;
e82cbdb9 2409 struct ata_device *dev;
1da177e4 2410
28ca5c57 2411 ata_port_probe(ap);
c19ba8af 2412
f58229f8
TH
2413 ata_link_for_each_dev(dev, &ap->link)
2414 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
14d2bac1
TH
2415
2416 retry:
cdeab114
TH
2417 ata_link_for_each_dev(dev, &ap->link) {
2418 /* If we issue an SRST then an ATA drive (not ATAPI)
2419 * may change configuration and be in PIO0 timing. If
2420 * we do a hard reset (or are coming from power on)
2421 * this is true for ATA or ATAPI. Until we've set a
2422 * suitable controller mode we should not touch the
2423 * bus as we may be talking too fast.
2424 */
2425 dev->pio_mode = XFER_PIO_0;
2426
2427 /* If the controller has a pio mode setup function
2428 * then use it to set the chipset to rights. Don't
2429 * touch the DMA setup as that will be dealt with when
2430 * configuring devices.
2431 */
2432 if (ap->ops->set_piomode)
2433 ap->ops->set_piomode(ap, dev);
2434 }
2435
2044470c 2436 /* reset and determine device classes */
52783c5d 2437 ap->ops->phy_reset(ap);
2061a47a 2438
f58229f8 2439 ata_link_for_each_dev(dev, &ap->link) {
52783c5d
TH
2440 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2441 dev->class != ATA_DEV_UNKNOWN)
2442 classes[dev->devno] = dev->class;
2443 else
2444 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2445
52783c5d 2446 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2447 }
1da177e4 2448
52783c5d 2449 ata_port_probe(ap);
2044470c 2450
f31f0cc2
JG
2451 /* read IDENTIFY page and configure devices. We have to do the identify
2452 specific sequence bass-ackwards so that PDIAG- is released by
2453 the slave device */
2454
f58229f8
TH
2455 ata_link_for_each_dev(dev, &ap->link) {
2456 if (tries[dev->devno])
2457 dev->class = classes[dev->devno];
ffeae418 2458
14d2bac1 2459 if (!ata_dev_enabled(dev))
ffeae418 2460 continue;
ffeae418 2461
bff04647
TH
2462 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2463 dev->id);
14d2bac1
TH
2464 if (rc)
2465 goto fail;
f31f0cc2
JG
2466 }
2467
be0d18df
AC
2468 /* Now ask for the cable type as PDIAG- should have been released */
2469 if (ap->ops->cable_detect)
2470 ap->cbl = ap->ops->cable_detect(ap);
2471
614fe29b
AC
2472 /* We may have SATA bridge glue hiding here irrespective of the
2473 reported cable types and sensed types */
2474 ata_link_for_each_dev(dev, &ap->link) {
2475 if (!ata_dev_enabled(dev))
2476 continue;
2477 /* SATA drives indicate we have a bridge. We don't know which
2478 end of the link the bridge is which is a problem */
2479 if (ata_id_is_sata(dev->id))
2480 ap->cbl = ATA_CBL_SATA;
2481 }
2482
f31f0cc2
JG
2483 /* After the identify sequence we can now set up the devices. We do
2484 this in the normal order so that the user doesn't get confused */
2485
f58229f8 2486 ata_link_for_each_dev(dev, &ap->link) {
f31f0cc2
JG
2487 if (!ata_dev_enabled(dev))
2488 continue;
14d2bac1 2489
9af5c9c9 2490 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
efdaedc4 2491 rc = ata_dev_configure(dev);
9af5c9c9 2492 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2493 if (rc)
2494 goto fail;
1da177e4
LT
2495 }
2496
e82cbdb9 2497 /* configure transfer mode */
0260731f 2498 rc = ata_set_mode(&ap->link, &dev);
4ae72a1e 2499 if (rc)
51713d35 2500 goto fail;
1da177e4 2501
f58229f8
TH
2502 ata_link_for_each_dev(dev, &ap->link)
2503 if (ata_dev_enabled(dev))
e82cbdb9 2504 return 0;
1da177e4 2505
e82cbdb9
TH
2506 /* no device present, disable port */
2507 ata_port_disable(ap);
96072e69 2508 return -ENODEV;
14d2bac1
TH
2509
2510 fail:
4ae72a1e
TH
2511 tries[dev->devno]--;
2512
14d2bac1
TH
2513 switch (rc) {
2514 case -EINVAL:
4ae72a1e 2515 /* eeek, something went very wrong, give up */
14d2bac1
TH
2516 tries[dev->devno] = 0;
2517 break;
4ae72a1e
TH
2518
2519 case -ENODEV:
2520 /* give it just one more chance */
2521 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2522 case -EIO:
4ae72a1e
TH
2523 if (tries[dev->devno] == 1) {
2524 /* This is the last chance, better to slow
2525 * down than lose it.
2526 */
936fd732 2527 sata_down_spd_limit(&ap->link);
4ae72a1e
TH
2528 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2529 }
14d2bac1
TH
2530 }
2531
4ae72a1e 2532 if (!tries[dev->devno])
3373efd8 2533 ata_dev_disable(dev);
ec573755 2534
14d2bac1 2535 goto retry;
1da177e4
LT
2536}
2537
2538/**
0cba632b
JG
2539 * ata_port_probe - Mark port as enabled
2540 * @ap: Port for which we indicate enablement
1da177e4 2541 *
0cba632b
JG
2542 * Modify @ap data structure such that the system
2543 * thinks that the entire port is enabled.
2544 *
cca3974e 2545 * LOCKING: host lock, or some other form of
0cba632b 2546 * serialization.
1da177e4
LT
2547 */
2548
2549void ata_port_probe(struct ata_port *ap)
2550{
198e0fed 2551 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
2552}
2553
3be680b7
TH
2554/**
2555 * sata_print_link_status - Print SATA link status
936fd732 2556 * @link: SATA link to printk link status about
3be680b7
TH
2557 *
2558 * This function prints link speed and status of a SATA link.
2559 *
2560 * LOCKING:
2561 * None.
2562 */
936fd732 2563void sata_print_link_status(struct ata_link *link)
3be680b7 2564{
6d5f9732 2565 u32 sstatus, scontrol, tmp;
3be680b7 2566
936fd732 2567 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3be680b7 2568 return;
936fd732 2569 sata_scr_read(link, SCR_CONTROL, &scontrol);
3be680b7 2570
936fd732 2571 if (ata_link_online(link)) {
3be680b7 2572 tmp = (sstatus >> 4) & 0xf;
936fd732 2573 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2574 "SATA link up %s (SStatus %X SControl %X)\n",
2575 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2576 } else {
936fd732 2577 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2578 "SATA link down (SStatus %X SControl %X)\n",
2579 sstatus, scontrol);
3be680b7
TH
2580 }
2581}
2582
ebdfca6e
AC
2583/**
2584 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2585 * @adev: device
2586 *
2587 * Obtain the other device on the same cable, or if none is
2588 * present NULL is returned
2589 */
2e9edbf8 2590
3373efd8 2591struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2592{
9af5c9c9
TH
2593 struct ata_link *link = adev->link;
2594 struct ata_device *pair = &link->device[1 - adev->devno];
e1211e3f 2595 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2596 return NULL;
2597 return pair;
2598}
2599
1da177e4 2600/**
780a87f7
JG
2601 * ata_port_disable - Disable port.
2602 * @ap: Port to be disabled.
1da177e4 2603 *
780a87f7
JG
2604 * Modify @ap data structure such that the system
2605 * thinks that the entire port is disabled, and should
2606 * never attempt to probe or communicate with devices
2607 * on this port.
2608 *
cca3974e 2609 * LOCKING: host lock, or some other form of
780a87f7 2610 * serialization.
1da177e4
LT
2611 */
2612
2613void ata_port_disable(struct ata_port *ap)
2614{
9af5c9c9
TH
2615 ap->link.device[0].class = ATA_DEV_NONE;
2616 ap->link.device[1].class = ATA_DEV_NONE;
198e0fed 2617 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2618}
2619
1c3fae4d 2620/**
3c567b7d 2621 * sata_down_spd_limit - adjust SATA spd limit downward
936fd732 2622 * @link: Link to adjust SATA spd limit for
1c3fae4d 2623 *
936fd732 2624 * Adjust SATA spd limit of @link downward. Note that this
1c3fae4d 2625 * function only adjusts the limit. The change must be applied
3c567b7d 2626 * using sata_set_spd().
1c3fae4d
TH
2627 *
2628 * LOCKING:
2629 * Inherited from caller.
2630 *
2631 * RETURNS:
2632 * 0 on success, negative errno on failure
2633 */
936fd732 2634int sata_down_spd_limit(struct ata_link *link)
1c3fae4d 2635{
81952c54
TH
2636 u32 sstatus, spd, mask;
2637 int rc, highbit;
1c3fae4d 2638
936fd732 2639 if (!sata_scr_valid(link))
008a7896
TH
2640 return -EOPNOTSUPP;
2641
2642 /* If SCR can be read, use it to determine the current SPD.
936fd732 2643 * If not, use cached value in link->sata_spd.
008a7896 2644 */
936fd732 2645 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
008a7896
TH
2646 if (rc == 0)
2647 spd = (sstatus >> 4) & 0xf;
2648 else
936fd732 2649 spd = link->sata_spd;
1c3fae4d 2650
936fd732 2651 mask = link->sata_spd_limit;
1c3fae4d
TH
2652 if (mask <= 1)
2653 return -EINVAL;
008a7896
TH
2654
2655 /* unconditionally mask off the highest bit */
1c3fae4d
TH
2656 highbit = fls(mask) - 1;
2657 mask &= ~(1 << highbit);
2658
008a7896
TH
2659 /* Mask off all speeds higher than or equal to the current
2660 * one. Force 1.5Gbps if current SPD is not available.
2661 */
2662 if (spd > 1)
2663 mask &= (1 << (spd - 1)) - 1;
2664 else
2665 mask &= 1;
2666
2667 /* were we already at the bottom? */
1c3fae4d
TH
2668 if (!mask)
2669 return -EINVAL;
2670
936fd732 2671 link->sata_spd_limit = mask;
1c3fae4d 2672
936fd732 2673 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
f15a1daf 2674 sata_spd_string(fls(mask)));
1c3fae4d
TH
2675
2676 return 0;
2677}
2678
936fd732 2679static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
1c3fae4d 2680{
5270222f
TH
2681 struct ata_link *host_link = &link->ap->link;
2682 u32 limit, target, spd;
1c3fae4d 2683
5270222f
TH
2684 limit = link->sata_spd_limit;
2685
2686 /* Don't configure downstream link faster than upstream link.
2687 * It doesn't speed up anything and some PMPs choke on such
2688 * configuration.
2689 */
2690 if (!ata_is_host_link(link) && host_link->sata_spd)
2691 limit &= (1 << host_link->sata_spd) - 1;
2692
2693 if (limit == UINT_MAX)
2694 target = 0;
1c3fae4d 2695 else
5270222f 2696 target = fls(limit);
1c3fae4d
TH
2697
2698 spd = (*scontrol >> 4) & 0xf;
5270222f 2699 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
1c3fae4d 2700
5270222f 2701 return spd != target;
1c3fae4d
TH
2702}
2703
2704/**
3c567b7d 2705 * sata_set_spd_needed - is SATA spd configuration needed
936fd732 2706 * @link: Link in question
1c3fae4d
TH
2707 *
2708 * Test whether the spd limit in SControl matches
936fd732 2709 * @link->sata_spd_limit. This function is used to determine
1c3fae4d
TH
2710 * whether hardreset is necessary to apply SATA spd
2711 * configuration.
2712 *
2713 * LOCKING:
2714 * Inherited from caller.
2715 *
2716 * RETURNS:
2717 * 1 if SATA spd configuration is needed, 0 otherwise.
2718 */
936fd732 2719int sata_set_spd_needed(struct ata_link *link)
1c3fae4d
TH
2720{
2721 u32 scontrol;
2722
936fd732 2723 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
db64bcf3 2724 return 1;
1c3fae4d 2725
936fd732 2726 return __sata_set_spd_needed(link, &scontrol);
1c3fae4d
TH
2727}
2728
2729/**
3c567b7d 2730 * sata_set_spd - set SATA spd according to spd limit
936fd732 2731 * @link: Link to set SATA spd for
1c3fae4d 2732 *
936fd732 2733 * Set SATA spd of @link according to sata_spd_limit.
1c3fae4d
TH
2734 *
2735 * LOCKING:
2736 * Inherited from caller.
2737 *
2738 * RETURNS:
2739 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2740 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2741 */
936fd732 2742int sata_set_spd(struct ata_link *link)
1c3fae4d
TH
2743{
2744 u32 scontrol;
81952c54 2745 int rc;
1c3fae4d 2746
936fd732 2747 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 2748 return rc;
1c3fae4d 2749
936fd732 2750 if (!__sata_set_spd_needed(link, &scontrol))
1c3fae4d
TH
2751 return 0;
2752
936fd732 2753 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54
TH
2754 return rc;
2755
1c3fae4d
TH
2756 return 1;
2757}
2758
452503f9
AC
2759/*
2760 * This mode timing computation functionality is ported over from
2761 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2762 */
2763/*
b352e57d 2764 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2765 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2766 * for UDMA6, which is currently supported only by Maxtor drives.
2767 *
2768 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2769 */
2770
2771static const struct ata_timing ata_timing[] = {
2772
2773 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2774 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2775 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2776 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2777
b352e57d
AC
2778 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2779 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
452503f9
AC
2780 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2781 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2782 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2783
2784/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 2785
452503f9
AC
2786 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2787 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2788 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 2789
452503f9
AC
2790 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2791 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2792 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2793
b352e57d
AC
2794 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2795 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
452503f9
AC
2796 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2797 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2798
2799 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2800 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2801 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2802
2803/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2804
2805 { 0xFF }
2806};
2807
2dcb407e
JG
2808#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2809#define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
452503f9
AC
2810
2811static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2812{
2813 q->setup = EZ(t->setup * 1000, T);
2814 q->act8b = EZ(t->act8b * 1000, T);
2815 q->rec8b = EZ(t->rec8b * 1000, T);
2816 q->cyc8b = EZ(t->cyc8b * 1000, T);
2817 q->active = EZ(t->active * 1000, T);
2818 q->recover = EZ(t->recover * 1000, T);
2819 q->cycle = EZ(t->cycle * 1000, T);
2820 q->udma = EZ(t->udma * 1000, UT);
2821}
2822
2823void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2824 struct ata_timing *m, unsigned int what)
2825{
2826 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2827 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2828 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2829 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2830 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2831 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2832 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2833 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2834}
2835
2dcb407e 2836static const struct ata_timing *ata_timing_find_mode(unsigned short speed)
452503f9
AC
2837{
2838 const struct ata_timing *t;
2839
2840 for (t = ata_timing; t->mode != speed; t++)
91190758 2841 if (t->mode == 0xFF)
452503f9 2842 return NULL;
2e9edbf8 2843 return t;
452503f9
AC
2844}
2845
2846int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2847 struct ata_timing *t, int T, int UT)
2848{
2849 const struct ata_timing *s;
2850 struct ata_timing p;
2851
2852 /*
2e9edbf8 2853 * Find the mode.
75b1f2f8 2854 */
452503f9
AC
2855
2856 if (!(s = ata_timing_find_mode(speed)))
2857 return -EINVAL;
2858
75b1f2f8
AL
2859 memcpy(t, s, sizeof(*s));
2860
452503f9
AC
2861 /*
2862 * If the drive is an EIDE drive, it can tell us it needs extended
2863 * PIO/MW_DMA cycle timing.
2864 */
2865
2866 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2867 memset(&p, 0, sizeof(p));
2dcb407e 2868 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
452503f9
AC
2869 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2870 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2dcb407e 2871 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
452503f9
AC
2872 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2873 }
2874 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2875 }
2876
2877 /*
2878 * Convert the timing to bus clock counts.
2879 */
2880
75b1f2f8 2881 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2882
2883 /*
c893a3ae
RD
2884 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2885 * S.M.A.R.T * and some other commands. We have to ensure that the
2886 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2887 */
2888
fd3367af 2889 if (speed > XFER_PIO_6) {
452503f9
AC
2890 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2891 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2892 }
2893
2894 /*
c893a3ae 2895 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2896 */
2897
2898 if (t->act8b + t->rec8b < t->cyc8b) {
2899 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2900 t->rec8b = t->cyc8b - t->act8b;
2901 }
2902
2903 if (t->active + t->recover < t->cycle) {
2904 t->active += (t->cycle - (t->active + t->recover)) / 2;
2905 t->recover = t->cycle - t->active;
2906 }
a617c09f 2907
4f701d1e
AC
2908 /* In a few cases quantisation may produce enough errors to
2909 leave t->cycle too low for the sum of active and recovery
2910 if so we must correct this */
2911 if (t->active + t->recover > t->cycle)
2912 t->cycle = t->active + t->recover;
452503f9
AC
2913
2914 return 0;
2915}
2916
cf176e1a
TH
2917/**
2918 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 2919 * @dev: Device to adjust xfer masks
458337db 2920 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
2921 *
2922 * Adjust xfer masks of @dev downward. Note that this function
2923 * does not apply the change. Invoking ata_set_mode() afterwards
2924 * will apply the limit.
2925 *
2926 * LOCKING:
2927 * Inherited from caller.
2928 *
2929 * RETURNS:
2930 * 0 on success, negative errno on failure
2931 */
458337db 2932int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 2933{
458337db
TH
2934 char buf[32];
2935 unsigned int orig_mask, xfer_mask;
2936 unsigned int pio_mask, mwdma_mask, udma_mask;
2937 int quiet, highbit;
cf176e1a 2938
458337db
TH
2939 quiet = !!(sel & ATA_DNXFER_QUIET);
2940 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 2941
458337db
TH
2942 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2943 dev->mwdma_mask,
2944 dev->udma_mask);
2945 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 2946
458337db
TH
2947 switch (sel) {
2948 case ATA_DNXFER_PIO:
2949 highbit = fls(pio_mask) - 1;
2950 pio_mask &= ~(1 << highbit);
2951 break;
2952
2953 case ATA_DNXFER_DMA:
2954 if (udma_mask) {
2955 highbit = fls(udma_mask) - 1;
2956 udma_mask &= ~(1 << highbit);
2957 if (!udma_mask)
2958 return -ENOENT;
2959 } else if (mwdma_mask) {
2960 highbit = fls(mwdma_mask) - 1;
2961 mwdma_mask &= ~(1 << highbit);
2962 if (!mwdma_mask)
2963 return -ENOENT;
2964 }
2965 break;
2966
2967 case ATA_DNXFER_40C:
2968 udma_mask &= ATA_UDMA_MASK_40C;
2969 break;
2970
2971 case ATA_DNXFER_FORCE_PIO0:
2972 pio_mask &= 1;
2973 case ATA_DNXFER_FORCE_PIO:
2974 mwdma_mask = 0;
2975 udma_mask = 0;
2976 break;
2977
458337db
TH
2978 default:
2979 BUG();
2980 }
2981
2982 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2983
2984 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2985 return -ENOENT;
2986
2987 if (!quiet) {
2988 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2989 snprintf(buf, sizeof(buf), "%s:%s",
2990 ata_mode_string(xfer_mask),
2991 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2992 else
2993 snprintf(buf, sizeof(buf), "%s",
2994 ata_mode_string(xfer_mask));
2995
2996 ata_dev_printk(dev, KERN_WARNING,
2997 "limiting speed to %s\n", buf);
2998 }
cf176e1a
TH
2999
3000 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3001 &dev->udma_mask);
3002
cf176e1a 3003 return 0;
cf176e1a
TH
3004}
3005
3373efd8 3006static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 3007{
9af5c9c9 3008 struct ata_eh_context *ehc = &dev->link->eh_context;
83206a29
TH
3009 unsigned int err_mask;
3010 int rc;
1da177e4 3011
e8384607 3012 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
3013 if (dev->xfer_shift == ATA_SHIFT_PIO)
3014 dev->flags |= ATA_DFLAG_PIO;
3015
3373efd8 3016 err_mask = ata_dev_set_xfermode(dev);
2dcb407e 3017
11750a40
A
3018 /* Old CFA may refuse this command, which is just fine */
3019 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2dcb407e
JG
3020 err_mask &= ~AC_ERR_DEV;
3021
0bc2a79a
AC
3022 /* Some very old devices and some bad newer ones fail any kind of
3023 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
3024 if (dev->xfer_shift == ATA_SHIFT_PIO && !ata_id_has_iordy(dev->id) &&
3025 dev->pio_mode <= XFER_PIO_2)
3026 err_mask &= ~AC_ERR_DEV;
2dcb407e 3027
3acaf94b
AC
3028 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3029 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3030 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3031 dev->dma_mode == XFER_MW_DMA_0 &&
3032 (dev->id[63] >> 8) & 1)
3033 err_mask &= ~AC_ERR_DEV;
3034
83206a29 3035 if (err_mask) {
f15a1daf
TH
3036 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3037 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
3038 return -EIO;
3039 }
1da177e4 3040
baa1e78a 3041 ehc->i.flags |= ATA_EHI_POST_SETMODE;
422c9daa 3042 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
baa1e78a 3043 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
5eb45c02 3044 if (rc)
83206a29 3045 return rc;
48a8a14f 3046
23e71c3d
TH
3047 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3048 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 3049
f15a1daf
TH
3050 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
3051 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 3052 return 0;
1da177e4
LT
3053}
3054
1da177e4 3055/**
04351821 3056 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 3057 * @link: link on which timings will be programmed
e82cbdb9 3058 * @r_failed_dev: out paramter for failed device
1da177e4 3059 *
04351821
A
3060 * Standard implementation of the function used to tune and set
3061 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3062 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 3063 * returned in @r_failed_dev.
780a87f7 3064 *
1da177e4 3065 * LOCKING:
0cba632b 3066 * PCI/etc. bus probe sem.
e82cbdb9
TH
3067 *
3068 * RETURNS:
3069 * 0 on success, negative errno otherwise
1da177e4 3070 */
04351821 3071
0260731f 3072int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
1da177e4 3073{
0260731f 3074 struct ata_port *ap = link->ap;
e8e0619f 3075 struct ata_device *dev;
f58229f8 3076 int rc = 0, used_dma = 0, found = 0;
3adcebb2 3077
a6d5a51c 3078 /* step 1: calculate xfer_mask */
f58229f8 3079 ata_link_for_each_dev(dev, link) {
acf356b1 3080 unsigned int pio_mask, dma_mask;
b3a70601 3081 unsigned int mode_mask;
a6d5a51c 3082
e1211e3f 3083 if (!ata_dev_enabled(dev))
a6d5a51c
TH
3084 continue;
3085
b3a70601
AC
3086 mode_mask = ATA_DMA_MASK_ATA;
3087 if (dev->class == ATA_DEV_ATAPI)
3088 mode_mask = ATA_DMA_MASK_ATAPI;
3089 else if (ata_id_is_cfa(dev->id))
3090 mode_mask = ATA_DMA_MASK_CFA;
3091
3373efd8 3092 ata_dev_xfermask(dev);
1da177e4 3093
acf356b1
TH
3094 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3095 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
b3a70601
AC
3096
3097 if (libata_dma_mask & mode_mask)
3098 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3099 else
3100 dma_mask = 0;
3101
acf356b1
TH
3102 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3103 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 3104
4f65977d 3105 found = 1;
5444a6f4
AC
3106 if (dev->dma_mode)
3107 used_dma = 1;
a6d5a51c 3108 }
4f65977d 3109 if (!found)
e82cbdb9 3110 goto out;
a6d5a51c
TH
3111
3112 /* step 2: always set host PIO timings */
f58229f8 3113 ata_link_for_each_dev(dev, link) {
e8e0619f
TH
3114 if (!ata_dev_enabled(dev))
3115 continue;
3116
3117 if (!dev->pio_mode) {
f15a1daf 3118 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 3119 rc = -EINVAL;
e82cbdb9 3120 goto out;
e8e0619f
TH
3121 }
3122
3123 dev->xfer_mode = dev->pio_mode;
3124 dev->xfer_shift = ATA_SHIFT_PIO;
3125 if (ap->ops->set_piomode)
3126 ap->ops->set_piomode(ap, dev);
3127 }
1da177e4 3128
a6d5a51c 3129 /* step 3: set host DMA timings */
f58229f8 3130 ata_link_for_each_dev(dev, link) {
e8e0619f
TH
3131 if (!ata_dev_enabled(dev) || !dev->dma_mode)
3132 continue;
3133
3134 dev->xfer_mode = dev->dma_mode;
3135 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3136 if (ap->ops->set_dmamode)
3137 ap->ops->set_dmamode(ap, dev);
3138 }
1da177e4
LT
3139
3140 /* step 4: update devices' xfer mode */
f58229f8 3141 ata_link_for_each_dev(dev, link) {
18d90deb 3142 /* don't update suspended devices' xfer mode */
9666f400 3143 if (!ata_dev_enabled(dev))
83206a29
TH
3144 continue;
3145
3373efd8 3146 rc = ata_dev_set_mode(dev);
5bbc53f4 3147 if (rc)
e82cbdb9 3148 goto out;
83206a29 3149 }
1da177e4 3150
e8e0619f
TH
3151 /* Record simplex status. If we selected DMA then the other
3152 * host channels are not permitted to do so.
5444a6f4 3153 */
cca3974e 3154 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 3155 ap->host->simplex_claimed = ap;
5444a6f4 3156
e82cbdb9
TH
3157 out:
3158 if (rc)
3159 *r_failed_dev = dev;
3160 return rc;
1da177e4
LT
3161}
3162
04351821
A
3163/**
3164 * ata_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 3165 * @link: link on which timings will be programmed
04351821
A
3166 * @r_failed_dev: out paramter for failed device
3167 *
3168 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3169 * ata_set_mode() fails, pointer to the failing device is
3170 * returned in @r_failed_dev.
3171 *
3172 * LOCKING:
3173 * PCI/etc. bus probe sem.
3174 *
3175 * RETURNS:
3176 * 0 on success, negative errno otherwise
3177 */
0260731f 3178int ata_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
04351821 3179{
0260731f
TH
3180 struct ata_port *ap = link->ap;
3181
04351821
A
3182 /* has private set_mode? */
3183 if (ap->ops->set_mode)
0260731f
TH
3184 return ap->ops->set_mode(link, r_failed_dev);
3185 return ata_do_set_mode(link, r_failed_dev);
04351821
A
3186}
3187
1fdffbce
JG
3188/**
3189 * ata_tf_to_host - issue ATA taskfile to host controller
3190 * @ap: port to which command is being issued
3191 * @tf: ATA taskfile register set
3192 *
3193 * Issues ATA taskfile register set to ATA host controller,
3194 * with proper synchronization with interrupt handler and
3195 * other threads.
3196 *
3197 * LOCKING:
cca3974e 3198 * spin_lock_irqsave(host lock)
1fdffbce
JG
3199 */
3200
3201static inline void ata_tf_to_host(struct ata_port *ap,
3202 const struct ata_taskfile *tf)
3203{
3204 ap->ops->tf_load(ap, tf);
3205 ap->ops->exec_command(ap, tf);
3206}
3207
1da177e4
LT
3208/**
3209 * ata_busy_sleep - sleep until BSY clears, or timeout
3210 * @ap: port containing status register to be polled
3211 * @tmout_pat: impatience timeout
3212 * @tmout: overall timeout
3213 *
780a87f7
JG
3214 * Sleep until ATA Status register bit BSY clears,
3215 * or a timeout occurs.
3216 *
d1adc1bb
TH
3217 * LOCKING:
3218 * Kernel thread context (may sleep).
3219 *
3220 * RETURNS:
3221 * 0 on success, -errno otherwise.
1da177e4 3222 */
d1adc1bb
TH
3223int ata_busy_sleep(struct ata_port *ap,
3224 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
3225{
3226 unsigned long timer_start, timeout;
3227 u8 status;
3228
3229 status = ata_busy_wait(ap, ATA_BUSY, 300);
3230 timer_start = jiffies;
3231 timeout = timer_start + tmout_pat;
d1adc1bb
TH
3232 while (status != 0xff && (status & ATA_BUSY) &&
3233 time_before(jiffies, timeout)) {
1da177e4
LT
3234 msleep(50);
3235 status = ata_busy_wait(ap, ATA_BUSY, 3);
3236 }
3237
d1adc1bb 3238 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 3239 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
3240 "port is slow to respond, please be patient "
3241 "(Status 0x%x)\n", status);
1da177e4
LT
3242
3243 timeout = timer_start + tmout;
d1adc1bb
TH
3244 while (status != 0xff && (status & ATA_BUSY) &&
3245 time_before(jiffies, timeout)) {
1da177e4
LT
3246 msleep(50);
3247 status = ata_chk_status(ap);
3248 }
3249
d1adc1bb
TH
3250 if (status == 0xff)
3251 return -ENODEV;
3252
1da177e4 3253 if (status & ATA_BUSY) {
f15a1daf 3254 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
3255 "(%lu secs, Status 0x%x)\n",
3256 tmout / HZ, status);
d1adc1bb 3257 return -EBUSY;
1da177e4
LT
3258 }
3259
3260 return 0;
3261}
3262
88ff6eaf
TH
3263/**
3264 * ata_wait_after_reset - wait before checking status after reset
3265 * @ap: port containing status register to be polled
3266 * @deadline: deadline jiffies for the operation
3267 *
3268 * After reset, we need to pause a while before reading status.
3269 * Also, certain combination of controller and device report 0xff
3270 * for some duration (e.g. until SATA PHY is up and running)
3271 * which is interpreted as empty port in ATA world. This
3272 * function also waits for such devices to get out of 0xff
3273 * status.
3274 *
3275 * LOCKING:
3276 * Kernel thread context (may sleep).
3277 */
3278void ata_wait_after_reset(struct ata_port *ap, unsigned long deadline)
3279{
3280 unsigned long until = jiffies + ATA_TMOUT_FF_WAIT;
3281
3282 if (time_before(until, deadline))
3283 deadline = until;
3284
3285 /* Spec mandates ">= 2ms" before checking status. We wait
3286 * 150ms, because that was the magic delay used for ATAPI
3287 * devices in Hale Landis's ATADRVR, for the period of time
3288 * between when the ATA command register is written, and then
3289 * status is checked. Because waiting for "a while" before
3290 * checking status is fine, post SRST, we perform this magic
3291 * delay here as well.
3292 *
3293 * Old drivers/ide uses the 2mS rule and then waits for ready.
3294 */
3295 msleep(150);
3296
3297 /* Wait for 0xff to clear. Some SATA devices take a long time
3298 * to clear 0xff after reset. For example, HHD424020F7SV00
3299 * iVDR needs >= 800ms while. Quantum GoVault needs even more
3300 * than that.
1974e201
TH
3301 *
3302 * Note that some PATA controllers (pata_ali) explode if
3303 * status register is read more than once when there's no
3304 * device attached.
88ff6eaf 3305 */
1974e201
TH
3306 if (ap->flags & ATA_FLAG_SATA) {
3307 while (1) {
3308 u8 status = ata_chk_status(ap);
88ff6eaf 3309
1974e201
TH
3310 if (status != 0xff || time_after(jiffies, deadline))
3311 return;
88ff6eaf 3312
1974e201
TH
3313 msleep(50);
3314 }
88ff6eaf
TH
3315 }
3316}
3317
d4b2bab4
TH
3318/**
3319 * ata_wait_ready - sleep until BSY clears, or timeout
3320 * @ap: port containing status register to be polled
3321 * @deadline: deadline jiffies for the operation
3322 *
3323 * Sleep until ATA Status register bit BSY clears, or timeout
3324 * occurs.
3325 *
3326 * LOCKING:
3327 * Kernel thread context (may sleep).
3328 *
3329 * RETURNS:
3330 * 0 on success, -errno otherwise.
3331 */
3332int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3333{
3334 unsigned long start = jiffies;
3335 int warned = 0;
3336
3337 while (1) {
3338 u8 status = ata_chk_status(ap);
3339 unsigned long now = jiffies;
3340
3341 if (!(status & ATA_BUSY))
3342 return 0;
936fd732 3343 if (!ata_link_online(&ap->link) && status == 0xff)
d4b2bab4
TH
3344 return -ENODEV;
3345 if (time_after(now, deadline))
3346 return -EBUSY;
3347
3348 if (!warned && time_after(now, start + 5 * HZ) &&
3349 (deadline - now > 3 * HZ)) {
3350 ata_port_printk(ap, KERN_WARNING,
3351 "port is slow to respond, please be patient "
3352 "(Status 0x%x)\n", status);
3353 warned = 1;
3354 }
3355
3356 msleep(50);
3357 }
3358}
3359
3360static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3361 unsigned long deadline)
1da177e4
LT
3362{
3363 struct ata_ioports *ioaddr = &ap->ioaddr;
3364 unsigned int dev0 = devmask & (1 << 0);
3365 unsigned int dev1 = devmask & (1 << 1);
9b89391c 3366 int rc, ret = 0;
1da177e4
LT
3367
3368 /* if device 0 was found in ata_devchk, wait for its
3369 * BSY bit to clear
3370 */
d4b2bab4
TH
3371 if (dev0) {
3372 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3373 if (rc) {
3374 if (rc != -ENODEV)
3375 return rc;
3376 ret = rc;
3377 }
d4b2bab4 3378 }
1da177e4 3379
e141d999
TH
3380 /* if device 1 was found in ata_devchk, wait for register
3381 * access briefly, then wait for BSY to clear.
1da177e4 3382 */
e141d999
TH
3383 if (dev1) {
3384 int i;
1da177e4
LT
3385
3386 ap->ops->dev_select(ap, 1);
e141d999
TH
3387
3388 /* Wait for register access. Some ATAPI devices fail
3389 * to set nsect/lbal after reset, so don't waste too
3390 * much time on it. We're gonna wait for !BSY anyway.
3391 */
3392 for (i = 0; i < 2; i++) {
3393 u8 nsect, lbal;
3394
3395 nsect = ioread8(ioaddr->nsect_addr);
3396 lbal = ioread8(ioaddr->lbal_addr);
3397 if ((nsect == 1) && (lbal == 1))
3398 break;
3399 msleep(50); /* give drive a breather */
3400 }
3401
d4b2bab4 3402 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3403 if (rc) {
3404 if (rc != -ENODEV)
3405 return rc;
3406 ret = rc;
3407 }
d4b2bab4 3408 }
1da177e4
LT
3409
3410 /* is all this really necessary? */
3411 ap->ops->dev_select(ap, 0);
3412 if (dev1)
3413 ap->ops->dev_select(ap, 1);
3414 if (dev0)
3415 ap->ops->dev_select(ap, 0);
d4b2bab4 3416
9b89391c 3417 return ret;
1da177e4
LT
3418}
3419
d4b2bab4
TH
3420static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3421 unsigned long deadline)
1da177e4
LT
3422{
3423 struct ata_ioports *ioaddr = &ap->ioaddr;
3424
44877b4e 3425 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1da177e4
LT
3426
3427 /* software reset. causes dev0 to be selected */
0d5ff566
TH
3428 iowrite8(ap->ctl, ioaddr->ctl_addr);
3429 udelay(20); /* FIXME: flush */
3430 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3431 udelay(20); /* FIXME: flush */
3432 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4 3433
88ff6eaf
TH
3434 /* wait a while before checking status */
3435 ata_wait_after_reset(ap, deadline);
1da177e4 3436
2e9edbf8 3437 /* Before we perform post reset processing we want to see if
298a41ca
TH
3438 * the bus shows 0xFF because the odd clown forgets the D7
3439 * pulldown resistor.
3440 */
150981b0 3441 if (ata_chk_status(ap) == 0xFF)
9b89391c 3442 return -ENODEV;
09c7ad79 3443
d4b2bab4 3444 return ata_bus_post_reset(ap, devmask, deadline);
1da177e4
LT
3445}
3446
3447/**
3448 * ata_bus_reset - reset host port and associated ATA channel
3449 * @ap: port to reset
3450 *
3451 * This is typically the first time we actually start issuing
3452 * commands to the ATA channel. We wait for BSY to clear, then
3453 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3454 * result. Determine what devices, if any, are on the channel
3455 * by looking at the device 0/1 error register. Look at the signature
3456 * stored in each device's taskfile registers, to determine if
3457 * the device is ATA or ATAPI.
3458 *
3459 * LOCKING:
0cba632b 3460 * PCI/etc. bus probe sem.
cca3974e 3461 * Obtains host lock.
1da177e4
LT
3462 *
3463 * SIDE EFFECTS:
198e0fed 3464 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
3465 */
3466
3467void ata_bus_reset(struct ata_port *ap)
3468{
9af5c9c9 3469 struct ata_device *device = ap->link.device;
1da177e4
LT
3470 struct ata_ioports *ioaddr = &ap->ioaddr;
3471 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3472 u8 err;
aec5c3c1 3473 unsigned int dev0, dev1 = 0, devmask = 0;
9b89391c 3474 int rc;
1da177e4 3475
44877b4e 3476 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
1da177e4
LT
3477
3478 /* determine if device 0/1 are present */
3479 if (ap->flags & ATA_FLAG_SATA_RESET)
3480 dev0 = 1;
3481 else {
3482 dev0 = ata_devchk(ap, 0);
3483 if (slave_possible)
3484 dev1 = ata_devchk(ap, 1);
3485 }
3486
3487 if (dev0)
3488 devmask |= (1 << 0);
3489 if (dev1)
3490 devmask |= (1 << 1);
3491
3492 /* select device 0 again */
3493 ap->ops->dev_select(ap, 0);
3494
3495 /* issue bus reset */
9b89391c
TH
3496 if (ap->flags & ATA_FLAG_SRST) {
3497 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3498 if (rc && rc != -ENODEV)
aec5c3c1 3499 goto err_out;
9b89391c 3500 }
1da177e4
LT
3501
3502 /*
3503 * determine by signature whether we have ATA or ATAPI devices
3504 */
3f19859e 3505 device[0].class = ata_dev_try_classify(&device[0], dev0, &err);
1da177e4 3506 if ((slave_possible) && (err != 0x81))
3f19859e 3507 device[1].class = ata_dev_try_classify(&device[1], dev1, &err);
1da177e4 3508
1da177e4 3509 /* is double-select really necessary? */
9af5c9c9 3510 if (device[1].class != ATA_DEV_NONE)
1da177e4 3511 ap->ops->dev_select(ap, 1);
9af5c9c9 3512 if (device[0].class != ATA_DEV_NONE)
1da177e4
LT
3513 ap->ops->dev_select(ap, 0);
3514
3515 /* if no devices were detected, disable this port */
9af5c9c9
TH
3516 if ((device[0].class == ATA_DEV_NONE) &&
3517 (device[1].class == ATA_DEV_NONE))
1da177e4
LT
3518 goto err_out;
3519
3520 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3521 /* set up device control for ATA_FLAG_SATA_RESET */
0d5ff566 3522 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3523 }
3524
3525 DPRINTK("EXIT\n");
3526 return;
3527
3528err_out:
f15a1daf 3529 ata_port_printk(ap, KERN_ERR, "disabling port\n");
ac8869d5 3530 ata_port_disable(ap);
1da177e4
LT
3531
3532 DPRINTK("EXIT\n");
3533}
3534
d7bb4cc7 3535/**
936fd732
TH
3536 * sata_link_debounce - debounce SATA phy status
3537 * @link: ATA link to debounce SATA phy status for
d7bb4cc7 3538 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3539 * @deadline: deadline jiffies for the operation
d7bb4cc7 3540 *
936fd732 3541* Make sure SStatus of @link reaches stable state, determined by
d7bb4cc7
TH
3542 * holding the same value where DET is not 1 for @duration polled
3543 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3544 * beginning of the stable state. Because DET gets stuck at 1 on
3545 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3546 * until timeout then returns 0 if DET is stable at 1.
3547 *
d4b2bab4
TH
3548 * @timeout is further limited by @deadline. The sooner of the
3549 * two is used.
3550 *
d7bb4cc7
TH
3551 * LOCKING:
3552 * Kernel thread context (may sleep)
3553 *
3554 * RETURNS:
3555 * 0 on success, -errno on failure.
3556 */
936fd732
TH
3557int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3558 unsigned long deadline)
7a7921e8 3559{
d7bb4cc7 3560 unsigned long interval_msec = params[0];
d4b2bab4
TH
3561 unsigned long duration = msecs_to_jiffies(params[1]);
3562 unsigned long last_jiffies, t;
d7bb4cc7
TH
3563 u32 last, cur;
3564 int rc;
3565
d4b2bab4
TH
3566 t = jiffies + msecs_to_jiffies(params[2]);
3567 if (time_before(t, deadline))
3568 deadline = t;
3569
936fd732 3570 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3571 return rc;
3572 cur &= 0xf;
3573
3574 last = cur;
3575 last_jiffies = jiffies;
3576
3577 while (1) {
3578 msleep(interval_msec);
936fd732 3579 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3580 return rc;
3581 cur &= 0xf;
3582
3583 /* DET stable? */
3584 if (cur == last) {
d4b2bab4 3585 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7
TH
3586 continue;
3587 if (time_after(jiffies, last_jiffies + duration))
3588 return 0;
3589 continue;
3590 }
3591
3592 /* unstable, start over */
3593 last = cur;
3594 last_jiffies = jiffies;
3595
f1545154
TH
3596 /* Check deadline. If debouncing failed, return
3597 * -EPIPE to tell upper layer to lower link speed.
3598 */
d4b2bab4 3599 if (time_after(jiffies, deadline))
f1545154 3600 return -EPIPE;
d7bb4cc7
TH
3601 }
3602}
3603
3604/**
936fd732
TH
3605 * sata_link_resume - resume SATA link
3606 * @link: ATA link to resume SATA
d7bb4cc7 3607 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3608 * @deadline: deadline jiffies for the operation
d7bb4cc7 3609 *
936fd732 3610 * Resume SATA phy @link and debounce it.
d7bb4cc7
TH
3611 *
3612 * LOCKING:
3613 * Kernel thread context (may sleep)
3614 *
3615 * RETURNS:
3616 * 0 on success, -errno on failure.
3617 */
936fd732
TH
3618int sata_link_resume(struct ata_link *link, const unsigned long *params,
3619 unsigned long deadline)
d7bb4cc7
TH
3620{
3621 u32 scontrol;
81952c54
TH
3622 int rc;
3623
936fd732 3624 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3625 return rc;
7a7921e8 3626
852ee16a 3627 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54 3628
936fd732 3629 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54 3630 return rc;
7a7921e8 3631
d7bb4cc7
TH
3632 /* Some PHYs react badly if SStatus is pounded immediately
3633 * after resuming. Delay 200ms before debouncing.
3634 */
3635 msleep(200);
7a7921e8 3636
936fd732 3637 return sata_link_debounce(link, params, deadline);
7a7921e8
TH
3638}
3639
f5914a46
TH
3640/**
3641 * ata_std_prereset - prepare for reset
cc0680a5 3642 * @link: ATA link to be reset
d4b2bab4 3643 * @deadline: deadline jiffies for the operation
f5914a46 3644 *
cc0680a5 3645 * @link is about to be reset. Initialize it. Failure from
b8cffc6a
TH
3646 * prereset makes libata abort whole reset sequence and give up
3647 * that port, so prereset should be best-effort. It does its
3648 * best to prepare for reset sequence but if things go wrong, it
3649 * should just whine, not fail.
f5914a46
TH
3650 *
3651 * LOCKING:
3652 * Kernel thread context (may sleep)
3653 *
3654 * RETURNS:
3655 * 0 on success, -errno otherwise.
3656 */
cc0680a5 3657int ata_std_prereset(struct ata_link *link, unsigned long deadline)
f5914a46 3658{
cc0680a5 3659 struct ata_port *ap = link->ap;
936fd732 3660 struct ata_eh_context *ehc = &link->eh_context;
e9c83914 3661 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3662 int rc;
3663
31daabda 3664 /* handle link resume */
28324304 3665 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
0c88758b 3666 (link->flags & ATA_LFLAG_HRST_TO_RESUME))
28324304
TH
3667 ehc->i.action |= ATA_EH_HARDRESET;
3668
633273a3
TH
3669 /* Some PMPs don't work with only SRST, force hardreset if PMP
3670 * is supported.
3671 */
3672 if (ap->flags & ATA_FLAG_PMP)
3673 ehc->i.action |= ATA_EH_HARDRESET;
3674
f5914a46
TH
3675 /* if we're about to do hardreset, nothing more to do */
3676 if (ehc->i.action & ATA_EH_HARDRESET)
3677 return 0;
3678
936fd732 3679 /* if SATA, resume link */
a16abc0b 3680 if (ap->flags & ATA_FLAG_SATA) {
936fd732 3681 rc = sata_link_resume(link, timing, deadline);
b8cffc6a
TH
3682 /* whine about phy resume failure but proceed */
3683 if (rc && rc != -EOPNOTSUPP)
cc0680a5 3684 ata_link_printk(link, KERN_WARNING, "failed to resume "
f5914a46 3685 "link for reset (errno=%d)\n", rc);
f5914a46
TH
3686 }
3687
3688 /* Wait for !BSY if the controller can wait for the first D2H
3689 * Reg FIS and we don't know that no device is attached.
3690 */
0c88758b 3691 if (!(link->flags & ATA_LFLAG_SKIP_D2H_BSY) && !ata_link_offline(link)) {
b8cffc6a 3692 rc = ata_wait_ready(ap, deadline);
6dffaf61 3693 if (rc && rc != -ENODEV) {
cc0680a5 3694 ata_link_printk(link, KERN_WARNING, "device not ready "
b8cffc6a
TH
3695 "(errno=%d), forcing hardreset\n", rc);
3696 ehc->i.action |= ATA_EH_HARDRESET;
3697 }
3698 }
f5914a46
TH
3699
3700 return 0;
3701}
3702
c2bd5804
TH
3703/**
3704 * ata_std_softreset - reset host port via ATA SRST
cc0680a5 3705 * @link: ATA link to reset
c2bd5804 3706 * @classes: resulting classes of attached devices
d4b2bab4 3707 * @deadline: deadline jiffies for the operation
c2bd5804 3708 *
52783c5d 3709 * Reset host port using ATA SRST.
c2bd5804
TH
3710 *
3711 * LOCKING:
3712 * Kernel thread context (may sleep)
3713 *
3714 * RETURNS:
3715 * 0 on success, -errno otherwise.
3716 */
cc0680a5 3717int ata_std_softreset(struct ata_link *link, unsigned int *classes,
d4b2bab4 3718 unsigned long deadline)
c2bd5804 3719{
cc0680a5 3720 struct ata_port *ap = link->ap;
c2bd5804 3721 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
d4b2bab4
TH
3722 unsigned int devmask = 0;
3723 int rc;
c2bd5804
TH
3724 u8 err;
3725
3726 DPRINTK("ENTER\n");
3727
936fd732 3728 if (ata_link_offline(link)) {
3a39746a
TH
3729 classes[0] = ATA_DEV_NONE;
3730 goto out;
3731 }
3732
c2bd5804
TH
3733 /* determine if device 0/1 are present */
3734 if (ata_devchk(ap, 0))
3735 devmask |= (1 << 0);
3736 if (slave_possible && ata_devchk(ap, 1))
3737 devmask |= (1 << 1);
3738
c2bd5804
TH
3739 /* select device 0 again */
3740 ap->ops->dev_select(ap, 0);
3741
3742 /* issue bus reset */
3743 DPRINTK("about to softreset, devmask=%x\n", devmask);
d4b2bab4 3744 rc = ata_bus_softreset(ap, devmask, deadline);
9b89391c 3745 /* if link is occupied, -ENODEV too is an error */
936fd732 3746 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
cc0680a5 3747 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
d4b2bab4 3748 return rc;
c2bd5804
TH
3749 }
3750
3751 /* determine by signature whether we have ATA or ATAPI devices */
3f19859e
TH
3752 classes[0] = ata_dev_try_classify(&link->device[0],
3753 devmask & (1 << 0), &err);
c2bd5804 3754 if (slave_possible && err != 0x81)
3f19859e
TH
3755 classes[1] = ata_dev_try_classify(&link->device[1],
3756 devmask & (1 << 1), &err);
c2bd5804 3757
3a39746a 3758 out:
c2bd5804
TH
3759 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3760 return 0;
3761}
3762
3763/**
cc0680a5
TH
3764 * sata_link_hardreset - reset link via SATA phy reset
3765 * @link: link to reset
b6103f6d 3766 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3767 * @deadline: deadline jiffies for the operation
c2bd5804 3768 *
cc0680a5 3769 * SATA phy-reset @link using DET bits of SControl register.
c2bd5804
TH
3770 *
3771 * LOCKING:
3772 * Kernel thread context (may sleep)
3773 *
3774 * RETURNS:
3775 * 0 on success, -errno otherwise.
3776 */
cc0680a5 3777int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
d4b2bab4 3778 unsigned long deadline)
c2bd5804 3779{
852ee16a 3780 u32 scontrol;
81952c54 3781 int rc;
852ee16a 3782
c2bd5804
TH
3783 DPRINTK("ENTER\n");
3784
936fd732 3785 if (sata_set_spd_needed(link)) {
1c3fae4d
TH
3786 /* SATA spec says nothing about how to reconfigure
3787 * spd. To be on the safe side, turn off phy during
3788 * reconfiguration. This works for at least ICH7 AHCI
3789 * and Sil3124.
3790 */
936fd732 3791 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3792 goto out;
81952c54 3793
a34b6fc0 3794 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54 3795
936fd732 3796 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
b6103f6d 3797 goto out;
1c3fae4d 3798
936fd732 3799 sata_set_spd(link);
1c3fae4d
TH
3800 }
3801
3802 /* issue phy wake/reset */
936fd732 3803 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3804 goto out;
81952c54 3805
852ee16a 3806 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54 3807
936fd732 3808 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
b6103f6d 3809 goto out;
c2bd5804 3810
1c3fae4d 3811 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3812 * 10.4.2 says at least 1 ms.
3813 */
3814 msleep(1);
3815
936fd732
TH
3816 /* bring link back */
3817 rc = sata_link_resume(link, timing, deadline);
b6103f6d
TH
3818 out:
3819 DPRINTK("EXIT, rc=%d\n", rc);
3820 return rc;
3821}
3822
3823/**
3824 * sata_std_hardreset - reset host port via SATA phy reset
cc0680a5 3825 * @link: link to reset
b6103f6d 3826 * @class: resulting class of attached device
d4b2bab4 3827 * @deadline: deadline jiffies for the operation
b6103f6d
TH
3828 *
3829 * SATA phy-reset host port using DET bits of SControl register,
3830 * wait for !BSY and classify the attached device.
3831 *
3832 * LOCKING:
3833 * Kernel thread context (may sleep)
3834 *
3835 * RETURNS:
3836 * 0 on success, -errno otherwise.
3837 */
cc0680a5 3838int sata_std_hardreset(struct ata_link *link, unsigned int *class,
d4b2bab4 3839 unsigned long deadline)
b6103f6d 3840{
cc0680a5 3841 struct ata_port *ap = link->ap;
936fd732 3842 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
b6103f6d
TH
3843 int rc;
3844
3845 DPRINTK("ENTER\n");
3846
3847 /* do hardreset */
cc0680a5 3848 rc = sata_link_hardreset(link, timing, deadline);
b6103f6d 3849 if (rc) {
cc0680a5 3850 ata_link_printk(link, KERN_ERR,
b6103f6d
TH
3851 "COMRESET failed (errno=%d)\n", rc);
3852 return rc;
3853 }
c2bd5804 3854
c2bd5804 3855 /* TODO: phy layer with polling, timeouts, etc. */
936fd732 3856 if (ata_link_offline(link)) {
c2bd5804
TH
3857 *class = ATA_DEV_NONE;
3858 DPRINTK("EXIT, link offline\n");
3859 return 0;
3860 }
3861
88ff6eaf
TH
3862 /* wait a while before checking status */
3863 ata_wait_after_reset(ap, deadline);
34fee227 3864
633273a3
TH
3865 /* If PMP is supported, we have to do follow-up SRST. Note
3866 * that some PMPs don't send D2H Reg FIS after hardreset at
3867 * all if the first port is empty. Wait for it just for a
3868 * second and request follow-up SRST.
3869 */
3870 if (ap->flags & ATA_FLAG_PMP) {
3871 ata_wait_ready(ap, jiffies + HZ);
3872 return -EAGAIN;
3873 }
3874
d4b2bab4 3875 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3876 /* link occupied, -ENODEV too is an error */
3877 if (rc) {
cc0680a5 3878 ata_link_printk(link, KERN_ERR,
d4b2bab4
TH
3879 "COMRESET failed (errno=%d)\n", rc);
3880 return rc;
c2bd5804
TH
3881 }
3882
3a39746a
TH
3883 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3884
3f19859e 3885 *class = ata_dev_try_classify(link->device, 1, NULL);
c2bd5804
TH
3886
3887 DPRINTK("EXIT, class=%u\n", *class);
3888 return 0;
3889}
3890
3891/**
3892 * ata_std_postreset - standard postreset callback
cc0680a5 3893 * @link: the target ata_link
c2bd5804
TH
3894 * @classes: classes of attached devices
3895 *
3896 * This function is invoked after a successful reset. Note that
3897 * the device might have been reset more than once using
3898 * different reset methods before postreset is invoked.
c2bd5804 3899 *
c2bd5804
TH
3900 * LOCKING:
3901 * Kernel thread context (may sleep)
3902 */
cc0680a5 3903void ata_std_postreset(struct ata_link *link, unsigned int *classes)
c2bd5804 3904{
cc0680a5 3905 struct ata_port *ap = link->ap;
dc2b3515
TH
3906 u32 serror;
3907
c2bd5804
TH
3908 DPRINTK("ENTER\n");
3909
c2bd5804 3910 /* print link status */
936fd732 3911 sata_print_link_status(link);
c2bd5804 3912
dc2b3515 3913 /* clear SError */
936fd732
TH
3914 if (sata_scr_read(link, SCR_ERROR, &serror) == 0)
3915 sata_scr_write(link, SCR_ERROR, serror);
dc2b3515 3916
c2bd5804
TH
3917 /* is double-select really necessary? */
3918 if (classes[0] != ATA_DEV_NONE)
3919 ap->ops->dev_select(ap, 1);
3920 if (classes[1] != ATA_DEV_NONE)
3921 ap->ops->dev_select(ap, 0);
3922
3a39746a
TH
3923 /* bail out if no device is present */
3924 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3925 DPRINTK("EXIT, no device\n");
3926 return;
3927 }
3928
3929 /* set up device control */
0d5ff566
TH
3930 if (ap->ioaddr.ctl_addr)
3931 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
c2bd5804
TH
3932
3933 DPRINTK("EXIT\n");
3934}
3935
623a3128
TH
3936/**
3937 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3938 * @dev: device to compare against
3939 * @new_class: class of the new device
3940 * @new_id: IDENTIFY page of the new device
3941 *
3942 * Compare @new_class and @new_id against @dev and determine
3943 * whether @dev is the device indicated by @new_class and
3944 * @new_id.
3945 *
3946 * LOCKING:
3947 * None.
3948 *
3949 * RETURNS:
3950 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3951 */
3373efd8
TH
3952static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3953 const u16 *new_id)
623a3128
TH
3954{
3955 const u16 *old_id = dev->id;
a0cf733b
TH
3956 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3957 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3958
3959 if (dev->class != new_class) {
f15a1daf
TH
3960 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3961 dev->class, new_class);
623a3128
TH
3962 return 0;
3963 }
3964
a0cf733b
TH
3965 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3966 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3967 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3968 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3969
3970 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3971 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3972 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3973 return 0;
3974 }
3975
3976 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
3977 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3978 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3979 return 0;
3980 }
3981
623a3128
TH
3982 return 1;
3983}
3984
3985/**
fe30911b 3986 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 3987 * @dev: target ATA device
bff04647 3988 * @readid_flags: read ID flags
623a3128
TH
3989 *
3990 * Re-read IDENTIFY page and make sure @dev is still attached to
3991 * the port.
3992 *
3993 * LOCKING:
3994 * Kernel thread context (may sleep)
3995 *
3996 * RETURNS:
3997 * 0 on success, negative errno otherwise
3998 */
fe30911b 3999int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 4000{
5eb45c02 4001 unsigned int class = dev->class;
9af5c9c9 4002 u16 *id = (void *)dev->link->ap->sector_buf;
623a3128
TH
4003 int rc;
4004
fe635c7e 4005 /* read ID data */
bff04647 4006 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 4007 if (rc)
fe30911b 4008 return rc;
623a3128
TH
4009
4010 /* is the device still there? */
fe30911b
TH
4011 if (!ata_dev_same_device(dev, class, id))
4012 return -ENODEV;
623a3128 4013
fe635c7e 4014 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
4015 return 0;
4016}
4017
4018/**
4019 * ata_dev_revalidate - Revalidate ATA device
4020 * @dev: device to revalidate
422c9daa 4021 * @new_class: new class code
fe30911b
TH
4022 * @readid_flags: read ID flags
4023 *
4024 * Re-read IDENTIFY page, make sure @dev is still attached to the
4025 * port and reconfigure it according to the new IDENTIFY page.
4026 *
4027 * LOCKING:
4028 * Kernel thread context (may sleep)
4029 *
4030 * RETURNS:
4031 * 0 on success, negative errno otherwise
4032 */
422c9daa
TH
4033int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4034 unsigned int readid_flags)
fe30911b 4035{
6ddcd3b0 4036 u64 n_sectors = dev->n_sectors;
fe30911b
TH
4037 int rc;
4038
4039 if (!ata_dev_enabled(dev))
4040 return -ENODEV;
4041
422c9daa
TH
4042 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4043 if (ata_class_enabled(new_class) &&
4044 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
4045 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4046 dev->class, new_class);
4047 rc = -ENODEV;
4048 goto fail;
4049 }
4050
fe30911b
TH
4051 /* re-read ID */
4052 rc = ata_dev_reread_id(dev, readid_flags);
4053 if (rc)
4054 goto fail;
623a3128
TH
4055
4056 /* configure device according to the new ID */
efdaedc4 4057 rc = ata_dev_configure(dev);
6ddcd3b0
TH
4058 if (rc)
4059 goto fail;
4060
4061 /* verify n_sectors hasn't changed */
b54eebd6
TH
4062 if (dev->class == ATA_DEV_ATA && n_sectors &&
4063 dev->n_sectors != n_sectors) {
6ddcd3b0
TH
4064 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
4065 "%llu != %llu\n",
4066 (unsigned long long)n_sectors,
4067 (unsigned long long)dev->n_sectors);
8270bec4
TH
4068
4069 /* restore original n_sectors */
4070 dev->n_sectors = n_sectors;
4071
6ddcd3b0
TH
4072 rc = -ENODEV;
4073 goto fail;
4074 }
4075
4076 return 0;
623a3128
TH
4077
4078 fail:
f15a1daf 4079 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
4080 return rc;
4081}
4082
6919a0a6
AC
4083struct ata_blacklist_entry {
4084 const char *model_num;
4085 const char *model_rev;
4086 unsigned long horkage;
4087};
4088
4089static const struct ata_blacklist_entry ata_device_blacklist [] = {
4090 /* Devices with DMA related problems under Linux */
4091 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4092 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4093 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4094 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4095 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4096 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4097 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4098 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4099 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4100 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4101 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4102 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4103 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4104 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4105 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4106 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4107 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4108 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4109 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4110 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4111 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4112 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4113 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4114 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4115 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4116 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4117 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4118 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
2dcb407e 4119 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
39f19886 4120 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3af9a77a
TH
4121 /* Odd clown on sil3726/4726 PMPs */
4122 { "Config Disk", NULL, ATA_HORKAGE_NODMA |
4123 ATA_HORKAGE_SKIP_PM },
6919a0a6 4124
18d6e9d5 4125 /* Weird ATAPI devices */
40a1d531 4126 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
18d6e9d5 4127
6919a0a6
AC
4128 /* Devices we expect to fail diagnostics */
4129
4130 /* Devices where NCQ should be avoided */
4131 /* NCQ is slow */
2dcb407e 4132 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
09125ea6
TH
4133 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4134 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30 4135 /* NCQ is broken */
539cc7c7 4136 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
0e3dbc01 4137 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
0b0a43e0
DM
4138 { "HITACHI HDS7250SASUN500G*", NULL, ATA_HORKAGE_NONCQ },
4139 { "HITACHI HDS7225SBSUN250G*", NULL, ATA_HORKAGE_NONCQ },
da6f0ec2 4140 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
539cc7c7 4141
36e337d0
RH
4142 /* Blacklist entries taken from Silicon Image 3124/3132
4143 Windows driver .inf file - also several Linux problem reports */
4144 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4145 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4146 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
bd9c5a39
TH
4147 /* Drives which do spurious command completion */
4148 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
2f8fcebb 4149 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
70edb185 4150 { "HDT722516DLA380", "V43OA96A", ATA_HORKAGE_NONCQ, },
e14cbfa6 4151 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
0c173174 4152 { "Hitachi HTS542525K9SA00", "BBFOC31P", ATA_HORKAGE_NONCQ, },
2f8fcebb 4153 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
7f567620 4154 { "WDC WD3200AAJS-00RYA0", "12.01B01", ATA_HORKAGE_NONCQ, },
a520f261 4155 { "FUJITSU MHV2080BH", "00840028", ATA_HORKAGE_NONCQ, },
7f567620 4156 { "ST9120822AS", "3.CLF", ATA_HORKAGE_NONCQ, },
3fb6589c 4157 { "ST9160821AS", "3.CLF", ATA_HORKAGE_NONCQ, },
954bb005 4158 { "ST9160821AS", "3.ALD", ATA_HORKAGE_NONCQ, },
13587960 4159 { "ST9160821AS", "3.CCD", ATA_HORKAGE_NONCQ, },
7f567620
TH
4160 { "ST3160812AS", "3.ADJ", ATA_HORKAGE_NONCQ, },
4161 { "ST980813AS", "3.ADB", ATA_HORKAGE_NONCQ, },
5d6aca8d 4162 { "SAMSUNG HD401LJ", "ZZ100-15", ATA_HORKAGE_NONCQ, },
12850ffe 4163 { "Maxtor 7V300F0", "VA111900", ATA_HORKAGE_NONCQ, },
6919a0a6 4164
16c55b03
TH
4165 /* devices which puke on READ_NATIVE_MAX */
4166 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4167 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4168 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4169 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
6919a0a6 4170
93328e11
AC
4171 /* Devices which report 1 sector over size HPA */
4172 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4173 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4174
6bbfd53d
AC
4175 /* Devices which get the IVB wrong */
4176 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4177 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
4178
6919a0a6
AC
4179 /* End Marker */
4180 { }
1da177e4 4181};
2e9edbf8 4182
741b7763 4183static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
539cc7c7
JG
4184{
4185 const char *p;
4186 int len;
4187
4188 /*
4189 * check for trailing wildcard: *\0
4190 */
4191 p = strchr(patt, wildchar);
4192 if (p && ((*(p + 1)) == 0))
4193 len = p - patt;
317b50b8 4194 else {
539cc7c7 4195 len = strlen(name);
317b50b8
AP
4196 if (!len) {
4197 if (!*patt)
4198 return 0;
4199 return -1;
4200 }
4201 }
539cc7c7
JG
4202
4203 return strncmp(patt, name, len);
4204}
4205
75683fe7 4206static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 4207{
8bfa79fc
TH
4208 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4209 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 4210 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 4211
8bfa79fc
TH
4212 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4213 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 4214
6919a0a6 4215 while (ad->model_num) {
539cc7c7 4216 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
6919a0a6
AC
4217 if (ad->model_rev == NULL)
4218 return ad->horkage;
539cc7c7 4219 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
6919a0a6 4220 return ad->horkage;
f4b15fef 4221 }
6919a0a6 4222 ad++;
f4b15fef 4223 }
1da177e4
LT
4224 return 0;
4225}
4226
6919a0a6
AC
4227static int ata_dma_blacklisted(const struct ata_device *dev)
4228{
4229 /* We don't support polling DMA.
4230 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4231 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4232 */
9af5c9c9 4233 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
6919a0a6
AC
4234 (dev->flags & ATA_DFLAG_CDB_INTR))
4235 return 1;
75683fe7 4236 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
4237}
4238
6bbfd53d
AC
4239/**
4240 * ata_is_40wire - check drive side detection
4241 * @dev: device
4242 *
4243 * Perform drive side detection decoding, allowing for device vendors
4244 * who can't follow the documentation.
4245 */
4246
4247static int ata_is_40wire(struct ata_device *dev)
4248{
4249 if (dev->horkage & ATA_HORKAGE_IVB)
4250 return ata_drive_40wire_relaxed(dev->id);
4251 return ata_drive_40wire(dev->id);
4252}
4253
a6d5a51c
TH
4254/**
4255 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
4256 * @dev: Device to compute xfermask for
4257 *
acf356b1
TH
4258 * Compute supported xfermask of @dev and store it in
4259 * dev->*_mask. This function is responsible for applying all
4260 * known limits including host controller limits, device
4261 * blacklist, etc...
a6d5a51c
TH
4262 *
4263 * LOCKING:
4264 * None.
a6d5a51c 4265 */
3373efd8 4266static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 4267{
9af5c9c9
TH
4268 struct ata_link *link = dev->link;
4269 struct ata_port *ap = link->ap;
cca3974e 4270 struct ata_host *host = ap->host;
a6d5a51c 4271 unsigned long xfer_mask;
1da177e4 4272
37deecb5 4273 /* controller modes available */
565083e1
TH
4274 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4275 ap->mwdma_mask, ap->udma_mask);
4276
8343f889 4277 /* drive modes available */
37deecb5
TH
4278 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4279 dev->mwdma_mask, dev->udma_mask);
4280 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 4281
b352e57d
AC
4282 /*
4283 * CFA Advanced TrueIDE timings are not allowed on a shared
4284 * cable
4285 */
4286 if (ata_dev_pair(dev)) {
4287 /* No PIO5 or PIO6 */
4288 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4289 /* No MWDMA3 or MWDMA 4 */
4290 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4291 }
4292
37deecb5
TH
4293 if (ata_dma_blacklisted(dev)) {
4294 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
4295 ata_dev_printk(dev, KERN_WARNING,
4296 "device is on DMA blacklist, disabling DMA\n");
37deecb5 4297 }
a6d5a51c 4298
14d66ab7 4299 if ((host->flags & ATA_HOST_SIMPLEX) &&
2dcb407e 4300 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
4301 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4302 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4303 "other device, disabling DMA\n");
5444a6f4 4304 }
565083e1 4305
e424675f
JG
4306 if (ap->flags & ATA_FLAG_NO_IORDY)
4307 xfer_mask &= ata_pio_mask_no_iordy(dev);
4308
5444a6f4 4309 if (ap->ops->mode_filter)
a76b62ca 4310 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 4311
8343f889
RH
4312 /* Apply cable rule here. Don't apply it early because when
4313 * we handle hot plug the cable type can itself change.
4314 * Check this last so that we know if the transfer rate was
4315 * solely limited by the cable.
4316 * Unknown or 80 wire cables reported host side are checked
4317 * drive side as well. Cases where we know a 40wire cable
4318 * is used safely for 80 are not checked here.
4319 */
4320 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4321 /* UDMA/44 or higher would be available */
2dcb407e 4322 if ((ap->cbl == ATA_CBL_PATA40) ||
6bbfd53d 4323 (ata_is_40wire(dev) &&
2dcb407e
JG
4324 (ap->cbl == ATA_CBL_PATA_UNK ||
4325 ap->cbl == ATA_CBL_PATA80))) {
4326 ata_dev_printk(dev, KERN_WARNING,
8343f889
RH
4327 "limited to UDMA/33 due to 40-wire cable\n");
4328 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4329 }
4330
565083e1
TH
4331 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4332 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
4333}
4334
1da177e4
LT
4335/**
4336 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
4337 * @dev: Device to which command will be sent
4338 *
780a87f7
JG
4339 * Issue SET FEATURES - XFER MODE command to device @dev
4340 * on port @ap.
4341 *
1da177e4 4342 * LOCKING:
0cba632b 4343 * PCI/etc. bus probe sem.
83206a29
TH
4344 *
4345 * RETURNS:
4346 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
4347 */
4348
3373efd8 4349static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 4350{
a0123703 4351 struct ata_taskfile tf;
83206a29 4352 unsigned int err_mask;
1da177e4
LT
4353
4354 /* set up set-features taskfile */
4355 DPRINTK("set features - xfer mode\n");
4356
464cf177
TH
4357 /* Some controllers and ATAPI devices show flaky interrupt
4358 * behavior after setting xfer mode. Use polling instead.
4359 */
3373efd8 4360 ata_tf_init(dev, &tf);
a0123703
TH
4361 tf.command = ATA_CMD_SET_FEATURES;
4362 tf.feature = SETFEATURES_XFER;
464cf177 4363 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703
TH
4364 tf.protocol = ATA_PROT_NODATA;
4365 tf.nsect = dev->xfer_mode;
1da177e4 4366
2b789108 4367 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
9f45cbd3
KCA
4368
4369 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4370 return err_mask;
4371}
9f45cbd3 4372/**
218f3d30 4373 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
9f45cbd3
KCA
4374 * @dev: Device to which command will be sent
4375 * @enable: Whether to enable or disable the feature
218f3d30 4376 * @feature: The sector count represents the feature to set
9f45cbd3
KCA
4377 *
4378 * Issue SET FEATURES - SATA FEATURES command to device @dev
218f3d30 4379 * on port @ap with sector count
9f45cbd3
KCA
4380 *
4381 * LOCKING:
4382 * PCI/etc. bus probe sem.
4383 *
4384 * RETURNS:
4385 * 0 on success, AC_ERR_* mask otherwise.
4386 */
218f3d30
JG
4387static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4388 u8 feature)
9f45cbd3
KCA
4389{
4390 struct ata_taskfile tf;
4391 unsigned int err_mask;
4392
4393 /* set up set-features taskfile */
4394 DPRINTK("set features - SATA features\n");
4395
4396 ata_tf_init(dev, &tf);
4397 tf.command = ATA_CMD_SET_FEATURES;
4398 tf.feature = enable;
4399 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4400 tf.protocol = ATA_PROT_NODATA;
218f3d30 4401 tf.nsect = feature;
9f45cbd3 4402
2b789108 4403 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1da177e4 4404
83206a29
TH
4405 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4406 return err_mask;
1da177e4
LT
4407}
4408
8bf62ece
AL
4409/**
4410 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 4411 * @dev: Device to which command will be sent
e2a7f77a
RD
4412 * @heads: Number of heads (taskfile parameter)
4413 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
4414 *
4415 * LOCKING:
6aff8f1f
TH
4416 * Kernel thread context (may sleep)
4417 *
4418 * RETURNS:
4419 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 4420 */
3373efd8
TH
4421static unsigned int ata_dev_init_params(struct ata_device *dev,
4422 u16 heads, u16 sectors)
8bf62ece 4423{
a0123703 4424 struct ata_taskfile tf;
6aff8f1f 4425 unsigned int err_mask;
8bf62ece
AL
4426
4427 /* Number of sectors per track 1-255. Number of heads 1-16 */
4428 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 4429 return AC_ERR_INVALID;
8bf62ece
AL
4430
4431 /* set up init dev params taskfile */
4432 DPRINTK("init dev params \n");
4433
3373efd8 4434 ata_tf_init(dev, &tf);
a0123703
TH
4435 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4436 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4437 tf.protocol = ATA_PROT_NODATA;
4438 tf.nsect = sectors;
4439 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 4440
2b789108 4441 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
18b2466c
AC
4442 /* A clean abort indicates an original or just out of spec drive
4443 and we should continue as we issue the setup based on the
4444 drive reported working geometry */
4445 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4446 err_mask = 0;
8bf62ece 4447
6aff8f1f
TH
4448 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4449 return err_mask;
8bf62ece
AL
4450}
4451
1da177e4 4452/**
0cba632b
JG
4453 * ata_sg_clean - Unmap DMA memory associated with command
4454 * @qc: Command containing DMA memory to be released
4455 *
4456 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
4457 *
4458 * LOCKING:
cca3974e 4459 * spin_lock_irqsave(host lock)
1da177e4 4460 */
70e6ad0c 4461void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
4462{
4463 struct ata_port *ap = qc->ap;
cedc9a47 4464 struct scatterlist *sg = qc->__sg;
1da177e4 4465 int dir = qc->dma_dir;
cedc9a47 4466 void *pad_buf = NULL;
1da177e4 4467
a4631474
TH
4468 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4469 WARN_ON(sg == NULL);
1da177e4
LT
4470
4471 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 4472 WARN_ON(qc->n_elem > 1);
1da177e4 4473
2c13b7ce 4474 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 4475
cedc9a47
JG
4476 /* if we padded the buffer out to 32-bit bound, and data
4477 * xfer direction is from-device, we must copy from the
4478 * pad buffer back into the supplied buffer
4479 */
4480 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4481 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4482
4483 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 4484 if (qc->n_elem)
2f1f610b 4485 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47 4486 /* restore last sg */
87260216 4487 sg_last(sg, qc->orig_n_elem)->length += qc->pad_len;
cedc9a47
JG
4488 if (pad_buf) {
4489 struct scatterlist *psg = &qc->pad_sgent;
45711f1a 4490 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
cedc9a47 4491 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 4492 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4493 }
4494 } else {
2e242fa9 4495 if (qc->n_elem)
2f1f610b 4496 dma_unmap_single(ap->dev,
e1410f2d
JG
4497 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4498 dir);
cedc9a47
JG
4499 /* restore sg */
4500 sg->length += qc->pad_len;
4501 if (pad_buf)
4502 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4503 pad_buf, qc->pad_len);
4504 }
1da177e4
LT
4505
4506 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 4507 qc->__sg = NULL;
1da177e4
LT
4508}
4509
4510/**
4511 * ata_fill_sg - Fill PCI IDE PRD table
4512 * @qc: Metadata associated with taskfile to be transferred
4513 *
780a87f7
JG
4514 * Fill PCI IDE PRD (scatter-gather) table with segments
4515 * associated with the current disk command.
4516 *
1da177e4 4517 * LOCKING:
cca3974e 4518 * spin_lock_irqsave(host lock)
1da177e4
LT
4519 *
4520 */
4521static void ata_fill_sg(struct ata_queued_cmd *qc)
4522{
1da177e4 4523 struct ata_port *ap = qc->ap;
cedc9a47
JG
4524 struct scatterlist *sg;
4525 unsigned int idx;
1da177e4 4526
a4631474 4527 WARN_ON(qc->__sg == NULL);
f131883e 4528 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
4529
4530 idx = 0;
cedc9a47 4531 ata_for_each_sg(sg, qc) {
1da177e4
LT
4532 u32 addr, offset;
4533 u32 sg_len, len;
4534
4535 /* determine if physical DMA addr spans 64K boundary.
4536 * Note h/w doesn't support 64-bit, so we unconditionally
4537 * truncate dma_addr_t to u32.
4538 */
4539 addr = (u32) sg_dma_address(sg);
4540 sg_len = sg_dma_len(sg);
4541
4542 while (sg_len) {
4543 offset = addr & 0xffff;
4544 len = sg_len;
4545 if ((offset + sg_len) > 0x10000)
4546 len = 0x10000 - offset;
4547
4548 ap->prd[idx].addr = cpu_to_le32(addr);
4549 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4550 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4551
4552 idx++;
4553 sg_len -= len;
4554 addr += len;
4555 }
4556 }
4557
4558 if (idx)
4559 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4560}
b9a4197e 4561
d26fc955
AC
4562/**
4563 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4564 * @qc: Metadata associated with taskfile to be transferred
4565 *
4566 * Fill PCI IDE PRD (scatter-gather) table with segments
4567 * associated with the current disk command. Perform the fill
4568 * so that we avoid writing any length 64K records for
4569 * controllers that don't follow the spec.
4570 *
4571 * LOCKING:
4572 * spin_lock_irqsave(host lock)
4573 *
4574 */
4575static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4576{
4577 struct ata_port *ap = qc->ap;
4578 struct scatterlist *sg;
4579 unsigned int idx;
4580
4581 WARN_ON(qc->__sg == NULL);
4582 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4583
4584 idx = 0;
4585 ata_for_each_sg(sg, qc) {
4586 u32 addr, offset;
4587 u32 sg_len, len, blen;
4588
2dcb407e 4589 /* determine if physical DMA addr spans 64K boundary.
d26fc955
AC
4590 * Note h/w doesn't support 64-bit, so we unconditionally
4591 * truncate dma_addr_t to u32.
4592 */
4593 addr = (u32) sg_dma_address(sg);
4594 sg_len = sg_dma_len(sg);
4595
4596 while (sg_len) {
4597 offset = addr & 0xffff;
4598 len = sg_len;
4599 if ((offset + sg_len) > 0x10000)
4600 len = 0x10000 - offset;
4601
4602 blen = len & 0xffff;
4603 ap->prd[idx].addr = cpu_to_le32(addr);
4604 if (blen == 0) {
4605 /* Some PATA chipsets like the CS5530 can't
4606 cope with 0x0000 meaning 64K as the spec says */
4607 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4608 blen = 0x8000;
4609 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4610 }
4611 ap->prd[idx].flags_len = cpu_to_le32(blen);
4612 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4613
4614 idx++;
4615 sg_len -= len;
4616 addr += len;
4617 }
4618 }
4619
4620 if (idx)
4621 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4622}
4623
1da177e4
LT
4624/**
4625 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4626 * @qc: Metadata associated with taskfile to check
4627 *
780a87f7
JG
4628 * Allow low-level driver to filter ATA PACKET commands, returning
4629 * a status indicating whether or not it is OK to use DMA for the
4630 * supplied PACKET command.
4631 *
1da177e4 4632 * LOCKING:
cca3974e 4633 * spin_lock_irqsave(host lock)
0cba632b 4634 *
1da177e4
LT
4635 * RETURNS: 0 when ATAPI DMA can be used
4636 * nonzero otherwise
4637 */
4638int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4639{
4640 struct ata_port *ap = qc->ap;
b9a4197e
TH
4641
4642 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4643 * few ATAPI devices choke on such DMA requests.
4644 */
4645 if (unlikely(qc->nbytes & 15))
4646 return 1;
6f23a31d 4647
1da177e4 4648 if (ap->ops->check_atapi_dma)
b9a4197e 4649 return ap->ops->check_atapi_dma(qc);
1da177e4 4650
b9a4197e 4651 return 0;
1da177e4 4652}
b9a4197e 4653
31cc23b3
TH
4654/**
4655 * ata_std_qc_defer - Check whether a qc needs to be deferred
4656 * @qc: ATA command in question
4657 *
4658 * Non-NCQ commands cannot run with any other command, NCQ or
4659 * not. As upper layer only knows the queue depth, we are
4660 * responsible for maintaining exclusion. This function checks
4661 * whether a new command @qc can be issued.
4662 *
4663 * LOCKING:
4664 * spin_lock_irqsave(host lock)
4665 *
4666 * RETURNS:
4667 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4668 */
4669int ata_std_qc_defer(struct ata_queued_cmd *qc)
4670{
4671 struct ata_link *link = qc->dev->link;
4672
4673 if (qc->tf.protocol == ATA_PROT_NCQ) {
4674 if (!ata_tag_valid(link->active_tag))
4675 return 0;
4676 } else {
4677 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4678 return 0;
4679 }
4680
4681 return ATA_DEFER_LINK;
4682}
4683
1da177e4
LT
4684/**
4685 * ata_qc_prep - Prepare taskfile for submission
4686 * @qc: Metadata associated with taskfile to be prepared
4687 *
780a87f7
JG
4688 * Prepare ATA taskfile for submission.
4689 *
1da177e4 4690 * LOCKING:
cca3974e 4691 * spin_lock_irqsave(host lock)
1da177e4
LT
4692 */
4693void ata_qc_prep(struct ata_queued_cmd *qc)
4694{
4695 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4696 return;
4697
4698 ata_fill_sg(qc);
4699}
4700
d26fc955
AC
4701/**
4702 * ata_dumb_qc_prep - Prepare taskfile for submission
4703 * @qc: Metadata associated with taskfile to be prepared
4704 *
4705 * Prepare ATA taskfile for submission.
4706 *
4707 * LOCKING:
4708 * spin_lock_irqsave(host lock)
4709 */
4710void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4711{
4712 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4713 return;
4714
4715 ata_fill_sg_dumb(qc);
4716}
4717
e46834cd
BK
4718void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4719
0cba632b
JG
4720/**
4721 * ata_sg_init_one - Associate command with memory buffer
4722 * @qc: Command to be associated
4723 * @buf: Memory buffer
4724 * @buflen: Length of memory buffer, in bytes.
4725 *
4726 * Initialize the data-related elements of queued_cmd @qc
4727 * to point to a single memory buffer, @buf of byte length @buflen.
4728 *
4729 * LOCKING:
cca3974e 4730 * spin_lock_irqsave(host lock)
0cba632b
JG
4731 */
4732
1da177e4
LT
4733void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4734{
1da177e4
LT
4735 qc->flags |= ATA_QCFLAG_SINGLE;
4736
cedc9a47 4737 qc->__sg = &qc->sgent;
1da177e4 4738 qc->n_elem = 1;
cedc9a47 4739 qc->orig_n_elem = 1;
1da177e4 4740 qc->buf_virt = buf;
233277ca 4741 qc->nbytes = buflen;
87260216 4742 qc->cursg = qc->__sg;
1da177e4 4743
61c0596c 4744 sg_init_one(&qc->sgent, buf, buflen);
1da177e4
LT
4745}
4746
0cba632b
JG
4747/**
4748 * ata_sg_init - Associate command with scatter-gather table.
4749 * @qc: Command to be associated
4750 * @sg: Scatter-gather table.
4751 * @n_elem: Number of elements in s/g table.
4752 *
4753 * Initialize the data-related elements of queued_cmd @qc
4754 * to point to a scatter-gather table @sg, containing @n_elem
4755 * elements.
4756 *
4757 * LOCKING:
cca3974e 4758 * spin_lock_irqsave(host lock)
0cba632b
JG
4759 */
4760
1da177e4
LT
4761void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4762 unsigned int n_elem)
4763{
4764 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 4765 qc->__sg = sg;
1da177e4 4766 qc->n_elem = n_elem;
cedc9a47 4767 qc->orig_n_elem = n_elem;
87260216 4768 qc->cursg = qc->__sg;
1da177e4
LT
4769}
4770
4771/**
0cba632b
JG
4772 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4773 * @qc: Command with memory buffer to be mapped.
4774 *
4775 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
4776 *
4777 * LOCKING:
cca3974e 4778 * spin_lock_irqsave(host lock)
1da177e4
LT
4779 *
4780 * RETURNS:
0cba632b 4781 * Zero on success, negative on error.
1da177e4
LT
4782 */
4783
4784static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4785{
4786 struct ata_port *ap = qc->ap;
4787 int dir = qc->dma_dir;
cedc9a47 4788 struct scatterlist *sg = qc->__sg;
1da177e4 4789 dma_addr_t dma_address;
2e242fa9 4790 int trim_sg = 0;
1da177e4 4791
cedc9a47
JG
4792 /* we must lengthen transfers to end on a 32-bit boundary */
4793 qc->pad_len = sg->length & 3;
4794 if (qc->pad_len) {
4795 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4796 struct scatterlist *psg = &qc->pad_sgent;
4797
a4631474 4798 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4799
4800 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4801
4802 if (qc->tf.flags & ATA_TFLAG_WRITE)
4803 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4804 qc->pad_len);
4805
4806 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4807 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4808 /* trim sg */
4809 sg->length -= qc->pad_len;
2e242fa9
TH
4810 if (sg->length == 0)
4811 trim_sg = 1;
cedc9a47
JG
4812
4813 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4814 sg->length, qc->pad_len);
4815 }
4816
2e242fa9
TH
4817 if (trim_sg) {
4818 qc->n_elem--;
e1410f2d
JG
4819 goto skip_map;
4820 }
4821
2f1f610b 4822 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 4823 sg->length, dir);
537a95d9
TH
4824 if (dma_mapping_error(dma_address)) {
4825 /* restore sg */
4826 sg->length += qc->pad_len;
1da177e4 4827 return -1;
537a95d9 4828 }
1da177e4
LT
4829
4830 sg_dma_address(sg) = dma_address;
32529e01 4831 sg_dma_len(sg) = sg->length;
1da177e4 4832
2e242fa9 4833skip_map:
1da177e4
LT
4834 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4835 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4836
4837 return 0;
4838}
4839
4840/**
0cba632b
JG
4841 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4842 * @qc: Command with scatter-gather table to be mapped.
4843 *
4844 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
4845 *
4846 * LOCKING:
cca3974e 4847 * spin_lock_irqsave(host lock)
1da177e4
LT
4848 *
4849 * RETURNS:
0cba632b 4850 * Zero on success, negative on error.
1da177e4
LT
4851 *
4852 */
4853
4854static int ata_sg_setup(struct ata_queued_cmd *qc)
4855{
4856 struct ata_port *ap = qc->ap;
cedc9a47 4857 struct scatterlist *sg = qc->__sg;
87260216 4858 struct scatterlist *lsg = sg_last(qc->__sg, qc->n_elem);
e1410f2d 4859 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4 4860
44877b4e 4861 VPRINTK("ENTER, ata%u\n", ap->print_id);
a4631474 4862 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 4863
cedc9a47
JG
4864 /* we must lengthen transfers to end on a 32-bit boundary */
4865 qc->pad_len = lsg->length & 3;
4866 if (qc->pad_len) {
4867 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4868 struct scatterlist *psg = &qc->pad_sgent;
4869 unsigned int offset;
4870
a4631474 4871 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4872
4873 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4874
4875 /*
4876 * psg->page/offset are used to copy to-be-written
4877 * data in this function or read data in ata_sg_clean.
4878 */
4879 offset = lsg->offset + lsg->length - qc->pad_len;
acd054a5 4880 sg_init_table(psg, 1);
642f1490
JA
4881 sg_set_page(psg, nth_page(sg_page(lsg), offset >> PAGE_SHIFT),
4882 qc->pad_len, offset_in_page(offset));
cedc9a47
JG
4883
4884 if (qc->tf.flags & ATA_TFLAG_WRITE) {
45711f1a 4885 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
cedc9a47 4886 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 4887 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4888 }
4889
4890 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4891 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4892 /* trim last sg */
4893 lsg->length -= qc->pad_len;
e1410f2d
JG
4894 if (lsg->length == 0)
4895 trim_sg = 1;
cedc9a47
JG
4896
4897 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4898 qc->n_elem - 1, lsg->length, qc->pad_len);
4899 }
4900
e1410f2d
JG
4901 pre_n_elem = qc->n_elem;
4902 if (trim_sg && pre_n_elem)
4903 pre_n_elem--;
4904
4905 if (!pre_n_elem) {
4906 n_elem = 0;
4907 goto skip_map;
4908 }
4909
1da177e4 4910 dir = qc->dma_dir;
2f1f610b 4911 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
4912 if (n_elem < 1) {
4913 /* restore last sg */
4914 lsg->length += qc->pad_len;
1da177e4 4915 return -1;
537a95d9 4916 }
1da177e4
LT
4917
4918 DPRINTK("%d sg elements mapped\n", n_elem);
4919
e1410f2d 4920skip_map:
1da177e4
LT
4921 qc->n_elem = n_elem;
4922
4923 return 0;
4924}
4925
0baab86b 4926/**
c893a3ae 4927 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
4928 * @buf: Buffer to swap
4929 * @buf_words: Number of 16-bit words in buffer.
4930 *
4931 * Swap halves of 16-bit words if needed to convert from
4932 * little-endian byte order to native cpu byte order, or
4933 * vice-versa.
4934 *
4935 * LOCKING:
6f0ef4fa 4936 * Inherited from caller.
0baab86b 4937 */
1da177e4
LT
4938void swap_buf_le16(u16 *buf, unsigned int buf_words)
4939{
4940#ifdef __BIG_ENDIAN
4941 unsigned int i;
4942
4943 for (i = 0; i < buf_words; i++)
4944 buf[i] = le16_to_cpu(buf[i]);
4945#endif /* __BIG_ENDIAN */
4946}
4947
6ae4cfb5 4948/**
0d5ff566 4949 * ata_data_xfer - Transfer data by PIO
a6b2c5d4 4950 * @adev: device to target
6ae4cfb5
AL
4951 * @buf: data buffer
4952 * @buflen: buffer length
344babaa 4953 * @write_data: read/write
6ae4cfb5
AL
4954 *
4955 * Transfer data from/to the device data register by PIO.
4956 *
4957 * LOCKING:
4958 * Inherited from caller.
6ae4cfb5 4959 */
0d5ff566
TH
4960void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4961 unsigned int buflen, int write_data)
1da177e4 4962{
9af5c9c9 4963 struct ata_port *ap = adev->link->ap;
6ae4cfb5 4964 unsigned int words = buflen >> 1;
1da177e4 4965
6ae4cfb5 4966 /* Transfer multiple of 2 bytes */
1da177e4 4967 if (write_data)
0d5ff566 4968 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
1da177e4 4969 else
0d5ff566 4970 ioread16_rep(ap->ioaddr.data_addr, buf, words);
6ae4cfb5
AL
4971
4972 /* Transfer trailing 1 byte, if any. */
4973 if (unlikely(buflen & 0x01)) {
4974 u16 align_buf[1] = { 0 };
4975 unsigned char *trailing_buf = buf + buflen - 1;
4976
4977 if (write_data) {
4978 memcpy(align_buf, trailing_buf, 1);
0d5ff566 4979 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
6ae4cfb5 4980 } else {
0d5ff566 4981 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
6ae4cfb5
AL
4982 memcpy(trailing_buf, align_buf, 1);
4983 }
4984 }
1da177e4
LT
4985}
4986
75e99585 4987/**
0d5ff566 4988 * ata_data_xfer_noirq - Transfer data by PIO
75e99585
AC
4989 * @adev: device to target
4990 * @buf: data buffer
4991 * @buflen: buffer length
4992 * @write_data: read/write
4993 *
88574551 4994 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
4995 * transfer with interrupts disabled.
4996 *
4997 * LOCKING:
4998 * Inherited from caller.
4999 */
0d5ff566
TH
5000void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
5001 unsigned int buflen, int write_data)
75e99585
AC
5002{
5003 unsigned long flags;
5004 local_irq_save(flags);
0d5ff566 5005 ata_data_xfer(adev, buf, buflen, write_data);
75e99585
AC
5006 local_irq_restore(flags);
5007}
5008
5009
6ae4cfb5 5010/**
5a5dbd18 5011 * ata_pio_sector - Transfer a sector of data.
6ae4cfb5
AL
5012 * @qc: Command on going
5013 *
5a5dbd18 5014 * Transfer qc->sect_size bytes of data from/to the ATA device.
6ae4cfb5
AL
5015 *
5016 * LOCKING:
5017 * Inherited from caller.
5018 */
5019
1da177e4
LT
5020static void ata_pio_sector(struct ata_queued_cmd *qc)
5021{
5022 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
1da177e4
LT
5023 struct ata_port *ap = qc->ap;
5024 struct page *page;
5025 unsigned int offset;
5026 unsigned char *buf;
5027
5a5dbd18 5028 if (qc->curbytes == qc->nbytes - qc->sect_size)
14be71f4 5029 ap->hsm_task_state = HSM_ST_LAST;
1da177e4 5030
45711f1a 5031 page = sg_page(qc->cursg);
87260216 5032 offset = qc->cursg->offset + qc->cursg_ofs;
1da177e4
LT
5033
5034 /* get the current page and offset */
5035 page = nth_page(page, (offset >> PAGE_SHIFT));
5036 offset %= PAGE_SIZE;
5037
1da177e4
LT
5038 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5039
91b8b313
AL
5040 if (PageHighMem(page)) {
5041 unsigned long flags;
5042
a6b2c5d4 5043 /* FIXME: use a bounce buffer */
91b8b313
AL
5044 local_irq_save(flags);
5045 buf = kmap_atomic(page, KM_IRQ0);
083958d3 5046
91b8b313 5047 /* do the actual data transfer */
5a5dbd18 5048 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
1da177e4 5049
91b8b313
AL
5050 kunmap_atomic(buf, KM_IRQ0);
5051 local_irq_restore(flags);
5052 } else {
5053 buf = page_address(page);
5a5dbd18 5054 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
91b8b313 5055 }
1da177e4 5056
5a5dbd18
ML
5057 qc->curbytes += qc->sect_size;
5058 qc->cursg_ofs += qc->sect_size;
1da177e4 5059
87260216
JA
5060 if (qc->cursg_ofs == qc->cursg->length) {
5061 qc->cursg = sg_next(qc->cursg);
1da177e4
LT
5062 qc->cursg_ofs = 0;
5063 }
1da177e4 5064}
1da177e4 5065
07f6f7d0 5066/**
5a5dbd18 5067 * ata_pio_sectors - Transfer one or many sectors.
07f6f7d0
AL
5068 * @qc: Command on going
5069 *
5a5dbd18 5070 * Transfer one or many sectors of data from/to the
07f6f7d0
AL
5071 * ATA device for the DRQ request.
5072 *
5073 * LOCKING:
5074 * Inherited from caller.
5075 */
1da177e4 5076
07f6f7d0
AL
5077static void ata_pio_sectors(struct ata_queued_cmd *qc)
5078{
5079 if (is_multi_taskfile(&qc->tf)) {
5080 /* READ/WRITE MULTIPLE */
5081 unsigned int nsect;
5082
587005de 5083 WARN_ON(qc->dev->multi_count == 0);
1da177e4 5084
5a5dbd18 5085 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
726f0785 5086 qc->dev->multi_count);
07f6f7d0
AL
5087 while (nsect--)
5088 ata_pio_sector(qc);
5089 } else
5090 ata_pio_sector(qc);
4cc980b3
AL
5091
5092 ata_altstatus(qc->ap); /* flush */
07f6f7d0
AL
5093}
5094
c71c1857
AL
5095/**
5096 * atapi_send_cdb - Write CDB bytes to hardware
5097 * @ap: Port to which ATAPI device is attached.
5098 * @qc: Taskfile currently active
5099 *
5100 * When device has indicated its readiness to accept
5101 * a CDB, this function is called. Send the CDB.
5102 *
5103 * LOCKING:
5104 * caller.
5105 */
5106
5107static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
5108{
5109 /* send SCSI cdb */
5110 DPRINTK("send cdb\n");
db024d53 5111 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 5112
a6b2c5d4 5113 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
5114 ata_altstatus(ap); /* flush */
5115
5116 switch (qc->tf.protocol) {
5117 case ATA_PROT_ATAPI:
5118 ap->hsm_task_state = HSM_ST;
5119 break;
5120 case ATA_PROT_ATAPI_NODATA:
5121 ap->hsm_task_state = HSM_ST_LAST;
5122 break;
5123 case ATA_PROT_ATAPI_DMA:
5124 ap->hsm_task_state = HSM_ST_LAST;
5125 /* initiate bmdma */
5126 ap->ops->bmdma_start(qc);
5127 break;
5128 }
1da177e4
LT
5129}
5130
6ae4cfb5
AL
5131/**
5132 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
5133 * @qc: Command on going
5134 * @bytes: number of bytes
5135 *
5136 * Transfer Transfer data from/to the ATAPI device.
5137 *
5138 * LOCKING:
5139 * Inherited from caller.
5140 *
5141 */
5142
1da177e4
LT
5143static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
5144{
5145 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 5146 struct scatterlist *sg = qc->__sg;
0874ee76 5147 struct scatterlist *lsg = sg_last(qc->__sg, qc->n_elem);
1da177e4
LT
5148 struct ata_port *ap = qc->ap;
5149 struct page *page;
5150 unsigned char *buf;
5151 unsigned int offset, count;
0874ee76 5152 int no_more_sg = 0;
1da177e4 5153
563a6e1f 5154 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 5155 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
5156
5157next_sg:
0874ee76 5158 if (unlikely(no_more_sg)) {
7fb6ec28 5159 /*
563a6e1f
AL
5160 * The end of qc->sg is reached and the device expects
5161 * more data to transfer. In order not to overrun qc->sg
5162 * and fulfill length specified in the byte count register,
5163 * - for read case, discard trailing data from the device
5164 * - for write case, padding zero data to the device
5165 */
5166 u16 pad_buf[1] = { 0 };
5167 unsigned int words = bytes >> 1;
5168 unsigned int i;
5169
5170 if (words) /* warning if bytes > 1 */
f15a1daf
TH
5171 ata_dev_printk(qc->dev, KERN_WARNING,
5172 "%u bytes trailing data\n", bytes);
563a6e1f
AL
5173
5174 for (i = 0; i < words; i++)
2dcb407e 5175 ap->ops->data_xfer(qc->dev, (unsigned char *)pad_buf, 2, do_write);
563a6e1f 5176
14be71f4 5177 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
5178 return;
5179 }
5180
87260216 5181 sg = qc->cursg;
1da177e4 5182
45711f1a 5183 page = sg_page(sg);
1da177e4
LT
5184 offset = sg->offset + qc->cursg_ofs;
5185
5186 /* get the current page and offset */
5187 page = nth_page(page, (offset >> PAGE_SHIFT));
5188 offset %= PAGE_SIZE;
5189
6952df03 5190 /* don't overrun current sg */
32529e01 5191 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
5192
5193 /* don't cross page boundaries */
5194 count = min(count, (unsigned int)PAGE_SIZE - offset);
5195
7282aa4b
AL
5196 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5197
91b8b313
AL
5198 if (PageHighMem(page)) {
5199 unsigned long flags;
5200
a6b2c5d4 5201 /* FIXME: use bounce buffer */
91b8b313
AL
5202 local_irq_save(flags);
5203 buf = kmap_atomic(page, KM_IRQ0);
083958d3 5204
91b8b313 5205 /* do the actual data transfer */
a6b2c5d4 5206 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 5207
91b8b313
AL
5208 kunmap_atomic(buf, KM_IRQ0);
5209 local_irq_restore(flags);
5210 } else {
5211 buf = page_address(page);
a6b2c5d4 5212 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 5213 }
1da177e4
LT
5214
5215 bytes -= count;
5216 qc->curbytes += count;
5217 qc->cursg_ofs += count;
5218
32529e01 5219 if (qc->cursg_ofs == sg->length) {
0874ee76
FT
5220 if (qc->cursg == lsg)
5221 no_more_sg = 1;
5222
87260216 5223 qc->cursg = sg_next(qc->cursg);
1da177e4
LT
5224 qc->cursg_ofs = 0;
5225 }
5226
563a6e1f 5227 if (bytes)
1da177e4 5228 goto next_sg;
1da177e4
LT
5229}
5230
6ae4cfb5
AL
5231/**
5232 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
5233 * @qc: Command on going
5234 *
5235 * Transfer Transfer data from/to the ATAPI device.
5236 *
5237 * LOCKING:
5238 * Inherited from caller.
6ae4cfb5
AL
5239 */
5240
1da177e4
LT
5241static void atapi_pio_bytes(struct ata_queued_cmd *qc)
5242{
5243 struct ata_port *ap = qc->ap;
5244 struct ata_device *dev = qc->dev;
5245 unsigned int ireason, bc_lo, bc_hi, bytes;
5246 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
5247
eec4c3f3
AL
5248 /* Abuse qc->result_tf for temp storage of intermediate TF
5249 * here to save some kernel stack usage.
5250 * For normal completion, qc->result_tf is not relevant. For
5251 * error, qc->result_tf is later overwritten by ata_qc_complete().
5252 * So, the correctness of qc->result_tf is not affected.
5253 */
5254 ap->ops->tf_read(ap, &qc->result_tf);
5255 ireason = qc->result_tf.nsect;
5256 bc_lo = qc->result_tf.lbam;
5257 bc_hi = qc->result_tf.lbah;
1da177e4
LT
5258 bytes = (bc_hi << 8) | bc_lo;
5259
5260 /* shall be cleared to zero, indicating xfer of data */
5261 if (ireason & (1 << 0))
5262 goto err_out;
5263
5264 /* make sure transfer direction matches expected */
5265 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
5266 if (do_write != i_write)
5267 goto err_out;
5268
44877b4e 5269 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
312f7da2 5270
1da177e4 5271 __atapi_pio_bytes(qc, bytes);
4cc980b3 5272 ata_altstatus(ap); /* flush */
1da177e4
LT
5273
5274 return;
5275
5276err_out:
f15a1daf 5277 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 5278 qc->err_mask |= AC_ERR_HSM;
14be71f4 5279 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
5280}
5281
5282/**
c234fb00
AL
5283 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
5284 * @ap: the target ata_port
5285 * @qc: qc on going
1da177e4 5286 *
c234fb00
AL
5287 * RETURNS:
5288 * 1 if ok in workqueue, 0 otherwise.
1da177e4 5289 */
c234fb00
AL
5290
5291static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 5292{
c234fb00
AL
5293 if (qc->tf.flags & ATA_TFLAG_POLLING)
5294 return 1;
1da177e4 5295
c234fb00
AL
5296 if (ap->hsm_task_state == HSM_ST_FIRST) {
5297 if (qc->tf.protocol == ATA_PROT_PIO &&
5298 (qc->tf.flags & ATA_TFLAG_WRITE))
5299 return 1;
1da177e4 5300
c234fb00
AL
5301 if (is_atapi_taskfile(&qc->tf) &&
5302 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5303 return 1;
fe79e683
AL
5304 }
5305
c234fb00
AL
5306 return 0;
5307}
1da177e4 5308
c17ea20d
TH
5309/**
5310 * ata_hsm_qc_complete - finish a qc running on standard HSM
5311 * @qc: Command to complete
5312 * @in_wq: 1 if called from workqueue, 0 otherwise
5313 *
5314 * Finish @qc which is running on standard HSM.
5315 *
5316 * LOCKING:
cca3974e 5317 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
5318 * Otherwise, none on entry and grabs host lock.
5319 */
5320static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
5321{
5322 struct ata_port *ap = qc->ap;
5323 unsigned long flags;
5324
5325 if (ap->ops->error_handler) {
5326 if (in_wq) {
ba6a1308 5327 spin_lock_irqsave(ap->lock, flags);
c17ea20d 5328
cca3974e
JG
5329 /* EH might have kicked in while host lock is
5330 * released.
c17ea20d
TH
5331 */
5332 qc = ata_qc_from_tag(ap, qc->tag);
5333 if (qc) {
5334 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
83625006 5335 ap->ops->irq_on(ap);
c17ea20d
TH
5336 ata_qc_complete(qc);
5337 } else
5338 ata_port_freeze(ap);
5339 }
5340
ba6a1308 5341 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
5342 } else {
5343 if (likely(!(qc->err_mask & AC_ERR_HSM)))
5344 ata_qc_complete(qc);
5345 else
5346 ata_port_freeze(ap);
5347 }
5348 } else {
5349 if (in_wq) {
ba6a1308 5350 spin_lock_irqsave(ap->lock, flags);
83625006 5351 ap->ops->irq_on(ap);
c17ea20d 5352 ata_qc_complete(qc);
ba6a1308 5353 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
5354 } else
5355 ata_qc_complete(qc);
5356 }
5357}
5358
bb5cb290
AL
5359/**
5360 * ata_hsm_move - move the HSM to the next state.
5361 * @ap: the target ata_port
5362 * @qc: qc on going
5363 * @status: current device status
5364 * @in_wq: 1 if called from workqueue, 0 otherwise
5365 *
5366 * RETURNS:
5367 * 1 when poll next status needed, 0 otherwise.
5368 */
9a1004d0
TH
5369int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
5370 u8 status, int in_wq)
e2cec771 5371{
bb5cb290
AL
5372 unsigned long flags = 0;
5373 int poll_next;
5374
6912ccd5
AL
5375 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
5376
bb5cb290
AL
5377 /* Make sure ata_qc_issue_prot() does not throw things
5378 * like DMA polling into the workqueue. Notice that
5379 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
5380 */
c234fb00 5381 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 5382
e2cec771 5383fsm_start:
999bb6f4 5384 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
44877b4e 5385 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
999bb6f4 5386
e2cec771
AL
5387 switch (ap->hsm_task_state) {
5388 case HSM_ST_FIRST:
bb5cb290
AL
5389 /* Send first data block or PACKET CDB */
5390
5391 /* If polling, we will stay in the work queue after
5392 * sending the data. Otherwise, interrupt handler
5393 * takes over after sending the data.
5394 */
5395 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
5396
e2cec771 5397 /* check device status */
3655d1d3
AL
5398 if (unlikely((status & ATA_DRQ) == 0)) {
5399 /* handle BSY=0, DRQ=0 as error */
5400 if (likely(status & (ATA_ERR | ATA_DF)))
5401 /* device stops HSM for abort/error */
5402 qc->err_mask |= AC_ERR_DEV;
5403 else
5404 /* HSM violation. Let EH handle this */
5405 qc->err_mask |= AC_ERR_HSM;
5406
14be71f4 5407 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 5408 goto fsm_start;
1da177e4
LT
5409 }
5410
71601958
AL
5411 /* Device should not ask for data transfer (DRQ=1)
5412 * when it finds something wrong.
eee6c32f
AL
5413 * We ignore DRQ here and stop the HSM by
5414 * changing hsm_task_state to HSM_ST_ERR and
5415 * let the EH abort the command or reset the device.
71601958
AL
5416 */
5417 if (unlikely(status & (ATA_ERR | ATA_DF))) {
2d3b8eea
AL
5418 /* Some ATAPI tape drives forget to clear the ERR bit
5419 * when doing the next command (mostly request sense).
5420 * We ignore ERR here to workaround and proceed sending
5421 * the CDB.
5422 */
5423 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
5424 ata_port_printk(ap, KERN_WARNING,
5425 "DRQ=1 with device error, "
5426 "dev_stat 0x%X\n", status);
5427 qc->err_mask |= AC_ERR_HSM;
5428 ap->hsm_task_state = HSM_ST_ERR;
5429 goto fsm_start;
5430 }
71601958 5431 }
1da177e4 5432
bb5cb290
AL
5433 /* Send the CDB (atapi) or the first data block (ata pio out).
5434 * During the state transition, interrupt handler shouldn't
5435 * be invoked before the data transfer is complete and
5436 * hsm_task_state is changed. Hence, the following locking.
5437 */
5438 if (in_wq)
ba6a1308 5439 spin_lock_irqsave(ap->lock, flags);
1da177e4 5440
bb5cb290
AL
5441 if (qc->tf.protocol == ATA_PROT_PIO) {
5442 /* PIO data out protocol.
5443 * send first data block.
5444 */
0565c26d 5445
bb5cb290
AL
5446 /* ata_pio_sectors() might change the state
5447 * to HSM_ST_LAST. so, the state is changed here
5448 * before ata_pio_sectors().
5449 */
5450 ap->hsm_task_state = HSM_ST;
5451 ata_pio_sectors(qc);
bb5cb290
AL
5452 } else
5453 /* send CDB */
5454 atapi_send_cdb(ap, qc);
5455
5456 if (in_wq)
ba6a1308 5457 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
5458
5459 /* if polling, ata_pio_task() handles the rest.
5460 * otherwise, interrupt handler takes over from here.
5461 */
e2cec771 5462 break;
1c848984 5463
e2cec771
AL
5464 case HSM_ST:
5465 /* complete command or read/write the data register */
5466 if (qc->tf.protocol == ATA_PROT_ATAPI) {
5467 /* ATAPI PIO protocol */
5468 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
5469 /* No more data to transfer or device error.
5470 * Device error will be tagged in HSM_ST_LAST.
5471 */
e2cec771
AL
5472 ap->hsm_task_state = HSM_ST_LAST;
5473 goto fsm_start;
5474 }
1da177e4 5475
71601958
AL
5476 /* Device should not ask for data transfer (DRQ=1)
5477 * when it finds something wrong.
eee6c32f
AL
5478 * We ignore DRQ here and stop the HSM by
5479 * changing hsm_task_state to HSM_ST_ERR and
5480 * let the EH abort the command or reset the device.
71601958
AL
5481 */
5482 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
5483 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
5484 "device error, dev_stat 0x%X\n",
5485 status);
3655d1d3 5486 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
5487 ap->hsm_task_state = HSM_ST_ERR;
5488 goto fsm_start;
71601958 5489 }
1da177e4 5490
e2cec771 5491 atapi_pio_bytes(qc);
7fb6ec28 5492
e2cec771
AL
5493 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5494 /* bad ireason reported by device */
5495 goto fsm_start;
1da177e4 5496
e2cec771
AL
5497 } else {
5498 /* ATA PIO protocol */
5499 if (unlikely((status & ATA_DRQ) == 0)) {
5500 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
5501 if (likely(status & (ATA_ERR | ATA_DF)))
5502 /* device stops HSM for abort/error */
5503 qc->err_mask |= AC_ERR_DEV;
5504 else
55a8e2c8
TH
5505 /* HSM violation. Let EH handle this.
5506 * Phantom devices also trigger this
5507 * condition. Mark hint.
5508 */
5509 qc->err_mask |= AC_ERR_HSM |
5510 AC_ERR_NODEV_HINT;
3655d1d3 5511
e2cec771
AL
5512 ap->hsm_task_state = HSM_ST_ERR;
5513 goto fsm_start;
5514 }
1da177e4 5515
eee6c32f
AL
5516 /* For PIO reads, some devices may ask for
5517 * data transfer (DRQ=1) alone with ERR=1.
5518 * We respect DRQ here and transfer one
5519 * block of junk data before changing the
5520 * hsm_task_state to HSM_ST_ERR.
5521 *
5522 * For PIO writes, ERR=1 DRQ=1 doesn't make
5523 * sense since the data block has been
5524 * transferred to the device.
71601958
AL
5525 */
5526 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
5527 /* data might be corrputed */
5528 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
5529
5530 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5531 ata_pio_sectors(qc);
eee6c32f
AL
5532 status = ata_wait_idle(ap);
5533 }
5534
3655d1d3
AL
5535 if (status & (ATA_BUSY | ATA_DRQ))
5536 qc->err_mask |= AC_ERR_HSM;
5537
eee6c32f
AL
5538 /* ata_pio_sectors() might change the
5539 * state to HSM_ST_LAST. so, the state
5540 * is changed after ata_pio_sectors().
5541 */
5542 ap->hsm_task_state = HSM_ST_ERR;
5543 goto fsm_start;
71601958
AL
5544 }
5545
e2cec771
AL
5546 ata_pio_sectors(qc);
5547
5548 if (ap->hsm_task_state == HSM_ST_LAST &&
5549 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5550 /* all data read */
52a32205 5551 status = ata_wait_idle(ap);
e2cec771
AL
5552 goto fsm_start;
5553 }
5554 }
5555
bb5cb290 5556 poll_next = 1;
1da177e4
LT
5557 break;
5558
14be71f4 5559 case HSM_ST_LAST:
6912ccd5
AL
5560 if (unlikely(!ata_ok(status))) {
5561 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
5562 ap->hsm_task_state = HSM_ST_ERR;
5563 goto fsm_start;
5564 }
5565
5566 /* no more data to transfer */
4332a771 5567 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
44877b4e 5568 ap->print_id, qc->dev->devno, status);
e2cec771 5569
6912ccd5
AL
5570 WARN_ON(qc->err_mask);
5571
e2cec771 5572 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 5573
e2cec771 5574 /* complete taskfile transaction */
c17ea20d 5575 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5576
5577 poll_next = 0;
1da177e4
LT
5578 break;
5579
14be71f4 5580 case HSM_ST_ERR:
e2cec771
AL
5581 /* make sure qc->err_mask is available to
5582 * know what's wrong and recover
5583 */
5584 WARN_ON(qc->err_mask == 0);
5585
5586 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 5587
999bb6f4 5588 /* complete taskfile transaction */
c17ea20d 5589 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5590
5591 poll_next = 0;
e2cec771
AL
5592 break;
5593 default:
bb5cb290 5594 poll_next = 0;
6912ccd5 5595 BUG();
1da177e4
LT
5596 }
5597
bb5cb290 5598 return poll_next;
1da177e4
LT
5599}
5600
65f27f38 5601static void ata_pio_task(struct work_struct *work)
8061f5f0 5602{
65f27f38
DH
5603 struct ata_port *ap =
5604 container_of(work, struct ata_port, port_task.work);
5605 struct ata_queued_cmd *qc = ap->port_task_data;
8061f5f0 5606 u8 status;
a1af3734 5607 int poll_next;
8061f5f0 5608
7fb6ec28 5609fsm_start:
a1af3734 5610 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 5611
a1af3734
AL
5612 /*
5613 * This is purely heuristic. This is a fast path.
5614 * Sometimes when we enter, BSY will be cleared in
5615 * a chk-status or two. If not, the drive is probably seeking
5616 * or something. Snooze for a couple msecs, then
5617 * chk-status again. If still busy, queue delayed work.
5618 */
5619 status = ata_busy_wait(ap, ATA_BUSY, 5);
5620 if (status & ATA_BUSY) {
5621 msleep(2);
5622 status = ata_busy_wait(ap, ATA_BUSY, 10);
5623 if (status & ATA_BUSY) {
31ce6dae 5624 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
5625 return;
5626 }
8061f5f0
TH
5627 }
5628
a1af3734
AL
5629 /* move the HSM */
5630 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 5631
a1af3734
AL
5632 /* another command or interrupt handler
5633 * may be running at this point.
5634 */
5635 if (poll_next)
7fb6ec28 5636 goto fsm_start;
8061f5f0
TH
5637}
5638
1da177e4
LT
5639/**
5640 * ata_qc_new - Request an available ATA command, for queueing
5641 * @ap: Port associated with device @dev
5642 * @dev: Device from whom we request an available command structure
5643 *
5644 * LOCKING:
0cba632b 5645 * None.
1da177e4
LT
5646 */
5647
5648static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5649{
5650 struct ata_queued_cmd *qc = NULL;
5651 unsigned int i;
5652
e3180499 5653 /* no command while frozen */
b51e9e5d 5654 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
5655 return NULL;
5656
2ab7db1f
TH
5657 /* the last tag is reserved for internal command. */
5658 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 5659 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 5660 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
5661 break;
5662 }
5663
5664 if (qc)
5665 qc->tag = i;
5666
5667 return qc;
5668}
5669
5670/**
5671 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
5672 * @dev: Device from whom we request an available command structure
5673 *
5674 * LOCKING:
0cba632b 5675 * None.
1da177e4
LT
5676 */
5677
3373efd8 5678struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 5679{
9af5c9c9 5680 struct ata_port *ap = dev->link->ap;
1da177e4
LT
5681 struct ata_queued_cmd *qc;
5682
5683 qc = ata_qc_new(ap);
5684 if (qc) {
1da177e4
LT
5685 qc->scsicmd = NULL;
5686 qc->ap = ap;
5687 qc->dev = dev;
1da177e4 5688
2c13b7ce 5689 ata_qc_reinit(qc);
1da177e4
LT
5690 }
5691
5692 return qc;
5693}
5694
1da177e4
LT
5695/**
5696 * ata_qc_free - free unused ata_queued_cmd
5697 * @qc: Command to complete
5698 *
5699 * Designed to free unused ata_queued_cmd object
5700 * in case something prevents using it.
5701 *
5702 * LOCKING:
cca3974e 5703 * spin_lock_irqsave(host lock)
1da177e4
LT
5704 */
5705void ata_qc_free(struct ata_queued_cmd *qc)
5706{
4ba946e9
TH
5707 struct ata_port *ap = qc->ap;
5708 unsigned int tag;
5709
a4631474 5710 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 5711
4ba946e9
TH
5712 qc->flags = 0;
5713 tag = qc->tag;
5714 if (likely(ata_tag_valid(tag))) {
4ba946e9 5715 qc->tag = ATA_TAG_POISON;
6cec4a39 5716 clear_bit(tag, &ap->qc_allocated);
4ba946e9 5717 }
1da177e4
LT
5718}
5719
76014427 5720void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 5721{
dedaf2b0 5722 struct ata_port *ap = qc->ap;
9af5c9c9 5723 struct ata_link *link = qc->dev->link;
dedaf2b0 5724
a4631474
TH
5725 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5726 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
5727
5728 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5729 ata_sg_clean(qc);
5730
7401abf2 5731 /* command should be marked inactive atomically with qc completion */
da917d69 5732 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 5733 link->sactive &= ~(1 << qc->tag);
da917d69
TH
5734 if (!link->sactive)
5735 ap->nr_active_links--;
5736 } else {
9af5c9c9 5737 link->active_tag = ATA_TAG_POISON;
da917d69
TH
5738 ap->nr_active_links--;
5739 }
5740
5741 /* clear exclusive status */
5742 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5743 ap->excl_link == link))
5744 ap->excl_link = NULL;
7401abf2 5745
3f3791d3
AL
5746 /* atapi: mark qc as inactive to prevent the interrupt handler
5747 * from completing the command twice later, before the error handler
5748 * is called. (when rc != 0 and atapi request sense is needed)
5749 */
5750 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 5751 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 5752
1da177e4 5753 /* call completion callback */
77853bf2 5754 qc->complete_fn(qc);
1da177e4
LT
5755}
5756
39599a53
TH
5757static void fill_result_tf(struct ata_queued_cmd *qc)
5758{
5759 struct ata_port *ap = qc->ap;
5760
39599a53 5761 qc->result_tf.flags = qc->tf.flags;
4742d54f 5762 ap->ops->tf_read(ap, &qc->result_tf);
39599a53
TH
5763}
5764
f686bcb8
TH
5765/**
5766 * ata_qc_complete - Complete an active ATA command
5767 * @qc: Command to complete
5768 * @err_mask: ATA Status register contents
5769 *
5770 * Indicate to the mid and upper layers that an ATA
5771 * command has completed, with either an ok or not-ok status.
5772 *
5773 * LOCKING:
cca3974e 5774 * spin_lock_irqsave(host lock)
f686bcb8
TH
5775 */
5776void ata_qc_complete(struct ata_queued_cmd *qc)
5777{
5778 struct ata_port *ap = qc->ap;
5779
5780 /* XXX: New EH and old EH use different mechanisms to
5781 * synchronize EH with regular execution path.
5782 *
5783 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5784 * Normal execution path is responsible for not accessing a
5785 * failed qc. libata core enforces the rule by returning NULL
5786 * from ata_qc_from_tag() for failed qcs.
5787 *
5788 * Old EH depends on ata_qc_complete() nullifying completion
5789 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5790 * not synchronize with interrupt handler. Only PIO task is
5791 * taken care of.
5792 */
5793 if (ap->ops->error_handler) {
4dbfa39b
TH
5794 struct ata_device *dev = qc->dev;
5795 struct ata_eh_info *ehi = &dev->link->eh_info;
5796
b51e9e5d 5797 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
5798
5799 if (unlikely(qc->err_mask))
5800 qc->flags |= ATA_QCFLAG_FAILED;
5801
5802 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5803 if (!ata_tag_internal(qc->tag)) {
5804 /* always fill result TF for failed qc */
39599a53 5805 fill_result_tf(qc);
f686bcb8
TH
5806 ata_qc_schedule_eh(qc);
5807 return;
5808 }
5809 }
5810
5811 /* read result TF if requested */
5812 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5813 fill_result_tf(qc);
f686bcb8 5814
4dbfa39b
TH
5815 /* Some commands need post-processing after successful
5816 * completion.
5817 */
5818 switch (qc->tf.command) {
5819 case ATA_CMD_SET_FEATURES:
5820 if (qc->tf.feature != SETFEATURES_WC_ON &&
5821 qc->tf.feature != SETFEATURES_WC_OFF)
5822 break;
5823 /* fall through */
5824 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5825 case ATA_CMD_SET_MULTI: /* multi_count changed */
5826 /* revalidate device */
5827 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5828 ata_port_schedule_eh(ap);
5829 break;
054a5fba
TH
5830
5831 case ATA_CMD_SLEEP:
5832 dev->flags |= ATA_DFLAG_SLEEPING;
5833 break;
4dbfa39b
TH
5834 }
5835
f686bcb8
TH
5836 __ata_qc_complete(qc);
5837 } else {
5838 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5839 return;
5840
5841 /* read result TF if failed or requested */
5842 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5843 fill_result_tf(qc);
f686bcb8
TH
5844
5845 __ata_qc_complete(qc);
5846 }
5847}
5848
dedaf2b0
TH
5849/**
5850 * ata_qc_complete_multiple - Complete multiple qcs successfully
5851 * @ap: port in question
5852 * @qc_active: new qc_active mask
5853 * @finish_qc: LLDD callback invoked before completing a qc
5854 *
5855 * Complete in-flight commands. This functions is meant to be
5856 * called from low-level driver's interrupt routine to complete
5857 * requests normally. ap->qc_active and @qc_active is compared
5858 * and commands are completed accordingly.
5859 *
5860 * LOCKING:
cca3974e 5861 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5862 *
5863 * RETURNS:
5864 * Number of completed commands on success, -errno otherwise.
5865 */
5866int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5867 void (*finish_qc)(struct ata_queued_cmd *))
5868{
5869 int nr_done = 0;
5870 u32 done_mask;
5871 int i;
5872
5873 done_mask = ap->qc_active ^ qc_active;
5874
5875 if (unlikely(done_mask & qc_active)) {
5876 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5877 "(%08x->%08x)\n", ap->qc_active, qc_active);
5878 return -EINVAL;
5879 }
5880
5881 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5882 struct ata_queued_cmd *qc;
5883
5884 if (!(done_mask & (1 << i)))
5885 continue;
5886
5887 if ((qc = ata_qc_from_tag(ap, i))) {
5888 if (finish_qc)
5889 finish_qc(qc);
5890 ata_qc_complete(qc);
5891 nr_done++;
5892 }
5893 }
5894
5895 return nr_done;
5896}
5897
1da177e4
LT
5898static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5899{
5900 struct ata_port *ap = qc->ap;
5901
5902 switch (qc->tf.protocol) {
3dc1d881 5903 case ATA_PROT_NCQ:
1da177e4
LT
5904 case ATA_PROT_DMA:
5905 case ATA_PROT_ATAPI_DMA:
5906 return 1;
5907
5908 case ATA_PROT_ATAPI:
5909 case ATA_PROT_PIO:
1da177e4
LT
5910 if (ap->flags & ATA_FLAG_PIO_DMA)
5911 return 1;
5912
5913 /* fall through */
5914
5915 default:
5916 return 0;
5917 }
5918
5919 /* never reached */
5920}
5921
5922/**
5923 * ata_qc_issue - issue taskfile to device
5924 * @qc: command to issue to device
5925 *
5926 * Prepare an ATA command to submission to device.
5927 * This includes mapping the data into a DMA-able
5928 * area, filling in the S/G table, and finally
5929 * writing the taskfile to hardware, starting the command.
5930 *
5931 * LOCKING:
cca3974e 5932 * spin_lock_irqsave(host lock)
1da177e4 5933 */
8e0e694a 5934void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5935{
5936 struct ata_port *ap = qc->ap;
9af5c9c9 5937 struct ata_link *link = qc->dev->link;
1da177e4 5938
dedaf2b0
TH
5939 /* Make sure only one non-NCQ command is outstanding. The
5940 * check is skipped for old EH because it reuses active qc to
5941 * request ATAPI sense.
5942 */
9af5c9c9 5943 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
dedaf2b0
TH
5944
5945 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 5946 WARN_ON(link->sactive & (1 << qc->tag));
da917d69
TH
5947
5948 if (!link->sactive)
5949 ap->nr_active_links++;
9af5c9c9 5950 link->sactive |= 1 << qc->tag;
dedaf2b0 5951 } else {
9af5c9c9 5952 WARN_ON(link->sactive);
da917d69
TH
5953
5954 ap->nr_active_links++;
9af5c9c9 5955 link->active_tag = qc->tag;
dedaf2b0
TH
5956 }
5957
e4a70e76 5958 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5959 ap->qc_active |= 1 << qc->tag;
e4a70e76 5960
1da177e4
LT
5961 if (ata_should_dma_map(qc)) {
5962 if (qc->flags & ATA_QCFLAG_SG) {
5963 if (ata_sg_setup(qc))
8e436af9 5964 goto sg_err;
1da177e4
LT
5965 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5966 if (ata_sg_setup_one(qc))
8e436af9 5967 goto sg_err;
1da177e4
LT
5968 }
5969 } else {
5970 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5971 }
5972
054a5fba
TH
5973 /* if device is sleeping, schedule softreset and abort the link */
5974 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5975 link->eh_info.action |= ATA_EH_SOFTRESET;
5976 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5977 ata_link_abort(link);
5978 return;
5979 }
5980
1da177e4
LT
5981 ap->ops->qc_prep(qc);
5982
8e0e694a
TH
5983 qc->err_mask |= ap->ops->qc_issue(qc);
5984 if (unlikely(qc->err_mask))
5985 goto err;
5986 return;
1da177e4 5987
8e436af9
TH
5988sg_err:
5989 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
5990 qc->err_mask |= AC_ERR_SYSTEM;
5991err:
5992 ata_qc_complete(qc);
1da177e4
LT
5993}
5994
5995/**
5996 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5997 * @qc: command to issue to device
5998 *
5999 * Using various libata functions and hooks, this function
6000 * starts an ATA command. ATA commands are grouped into
6001 * classes called "protocols", and issuing each type of protocol
6002 * is slightly different.
6003 *
0baab86b
EF
6004 * May be used as the qc_issue() entry in ata_port_operations.
6005 *
1da177e4 6006 * LOCKING:
cca3974e 6007 * spin_lock_irqsave(host lock)
1da177e4
LT
6008 *
6009 * RETURNS:
9a3d9eb0 6010 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
6011 */
6012
9a3d9eb0 6013unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
6014{
6015 struct ata_port *ap = qc->ap;
6016
e50362ec
AL
6017 /* Use polling pio if the LLD doesn't handle
6018 * interrupt driven pio and atapi CDB interrupt.
6019 */
6020 if (ap->flags & ATA_FLAG_PIO_POLLING) {
6021 switch (qc->tf.protocol) {
6022 case ATA_PROT_PIO:
e3472cbe 6023 case ATA_PROT_NODATA:
e50362ec
AL
6024 case ATA_PROT_ATAPI:
6025 case ATA_PROT_ATAPI_NODATA:
6026 qc->tf.flags |= ATA_TFLAG_POLLING;
6027 break;
6028 case ATA_PROT_ATAPI_DMA:
6029 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 6030 /* see ata_dma_blacklisted() */
e50362ec
AL
6031 BUG();
6032 break;
6033 default:
6034 break;
6035 }
6036 }
6037
312f7da2 6038 /* select the device */
1da177e4
LT
6039 ata_dev_select(ap, qc->dev->devno, 1, 0);
6040
312f7da2 6041 /* start the command */
1da177e4
LT
6042 switch (qc->tf.protocol) {
6043 case ATA_PROT_NODATA:
312f7da2
AL
6044 if (qc->tf.flags & ATA_TFLAG_POLLING)
6045 ata_qc_set_polling(qc);
6046
e5338254 6047 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
6048 ap->hsm_task_state = HSM_ST_LAST;
6049
6050 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 6051 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 6052
1da177e4
LT
6053 break;
6054
6055 case ATA_PROT_DMA:
587005de 6056 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 6057
1da177e4
LT
6058 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6059 ap->ops->bmdma_setup(qc); /* set up bmdma */
6060 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 6061 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
6062 break;
6063
312f7da2
AL
6064 case ATA_PROT_PIO:
6065 if (qc->tf.flags & ATA_TFLAG_POLLING)
6066 ata_qc_set_polling(qc);
1da177e4 6067
e5338254 6068 ata_tf_to_host(ap, &qc->tf);
312f7da2 6069
54f00389
AL
6070 if (qc->tf.flags & ATA_TFLAG_WRITE) {
6071 /* PIO data out protocol */
6072 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 6073 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
6074
6075 /* always send first data block using
e27486db 6076 * the ata_pio_task() codepath.
54f00389 6077 */
312f7da2 6078 } else {
54f00389
AL
6079 /* PIO data in protocol */
6080 ap->hsm_task_state = HSM_ST;
6081
6082 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 6083 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
6084
6085 /* if polling, ata_pio_task() handles the rest.
6086 * otherwise, interrupt handler takes over from here.
6087 */
312f7da2
AL
6088 }
6089
1da177e4
LT
6090 break;
6091
1da177e4 6092 case ATA_PROT_ATAPI:
1da177e4 6093 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
6094 if (qc->tf.flags & ATA_TFLAG_POLLING)
6095 ata_qc_set_polling(qc);
6096
e5338254 6097 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 6098
312f7da2
AL
6099 ap->hsm_task_state = HSM_ST_FIRST;
6100
6101 /* send cdb by polling if no cdb interrupt */
6102 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
6103 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 6104 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
6105 break;
6106
6107 case ATA_PROT_ATAPI_DMA:
587005de 6108 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 6109
1da177e4
LT
6110 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6111 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
6112 ap->hsm_task_state = HSM_ST_FIRST;
6113
6114 /* send cdb by polling if no cdb interrupt */
6115 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 6116 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
6117 break;
6118
6119 default:
6120 WARN_ON(1);
9a3d9eb0 6121 return AC_ERR_SYSTEM;
1da177e4
LT
6122 }
6123
6124 return 0;
6125}
6126
1da177e4
LT
6127/**
6128 * ata_host_intr - Handle host interrupt for given (port, task)
6129 * @ap: Port on which interrupt arrived (possibly...)
6130 * @qc: Taskfile currently active in engine
6131 *
6132 * Handle host interrupt for given queued command. Currently,
6133 * only DMA interrupts are handled. All other commands are
6134 * handled via polling with interrupts disabled (nIEN bit).
6135 *
6136 * LOCKING:
cca3974e 6137 * spin_lock_irqsave(host lock)
1da177e4
LT
6138 *
6139 * RETURNS:
6140 * One if interrupt was handled, zero if not (shared irq).
6141 */
6142
2dcb407e
JG
6143inline unsigned int ata_host_intr(struct ata_port *ap,
6144 struct ata_queued_cmd *qc)
1da177e4 6145{
9af5c9c9 6146 struct ata_eh_info *ehi = &ap->link.eh_info;
312f7da2 6147 u8 status, host_stat = 0;
1da177e4 6148
312f7da2 6149 VPRINTK("ata%u: protocol %d task_state %d\n",
44877b4e 6150 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 6151
312f7da2
AL
6152 /* Check whether we are expecting interrupt in this state */
6153 switch (ap->hsm_task_state) {
6154 case HSM_ST_FIRST:
6912ccd5
AL
6155 /* Some pre-ATAPI-4 devices assert INTRQ
6156 * at this state when ready to receive CDB.
6157 */
1da177e4 6158
312f7da2
AL
6159 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
6160 * The flag was turned on only for atapi devices.
6161 * No need to check is_atapi_taskfile(&qc->tf) again.
6162 */
6163 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 6164 goto idle_irq;
1da177e4 6165 break;
312f7da2
AL
6166 case HSM_ST_LAST:
6167 if (qc->tf.protocol == ATA_PROT_DMA ||
6168 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
6169 /* check status of DMA engine */
6170 host_stat = ap->ops->bmdma_status(ap);
44877b4e
TH
6171 VPRINTK("ata%u: host_stat 0x%X\n",
6172 ap->print_id, host_stat);
312f7da2
AL
6173
6174 /* if it's not our irq... */
6175 if (!(host_stat & ATA_DMA_INTR))
6176 goto idle_irq;
6177
6178 /* before we do anything else, clear DMA-Start bit */
6179 ap->ops->bmdma_stop(qc);
a4f16610
AL
6180
6181 if (unlikely(host_stat & ATA_DMA_ERR)) {
6182 /* error when transfering data to/from memory */
6183 qc->err_mask |= AC_ERR_HOST_BUS;
6184 ap->hsm_task_state = HSM_ST_ERR;
6185 }
312f7da2
AL
6186 }
6187 break;
6188 case HSM_ST:
6189 break;
1da177e4
LT
6190 default:
6191 goto idle_irq;
6192 }
6193
312f7da2
AL
6194 /* check altstatus */
6195 status = ata_altstatus(ap);
6196 if (status & ATA_BUSY)
6197 goto idle_irq;
1da177e4 6198
312f7da2
AL
6199 /* check main status, clearing INTRQ */
6200 status = ata_chk_status(ap);
6201 if (unlikely(status & ATA_BUSY))
6202 goto idle_irq;
1da177e4 6203
312f7da2
AL
6204 /* ack bmdma irq events */
6205 ap->ops->irq_clear(ap);
1da177e4 6206
bb5cb290 6207 ata_hsm_move(ap, qc, status, 0);
ea54763f
TH
6208
6209 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
6210 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
6211 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
6212
1da177e4
LT
6213 return 1; /* irq handled */
6214
6215idle_irq:
6216 ap->stats.idle_irq++;
6217
6218#ifdef ATA_IRQ_TRAP
6219 if ((ap->stats.idle_irq % 1000) == 0) {
6d32d30f
JG
6220 ata_chk_status(ap);
6221 ap->ops->irq_clear(ap);
f15a1daf 6222 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 6223 return 1;
1da177e4
LT
6224 }
6225#endif
6226 return 0; /* irq not handled */
6227}
6228
6229/**
6230 * ata_interrupt - Default ATA host interrupt handler
0cba632b 6231 * @irq: irq line (unused)
cca3974e 6232 * @dev_instance: pointer to our ata_host information structure
1da177e4 6233 *
0cba632b
JG
6234 * Default interrupt handler for PCI IDE devices. Calls
6235 * ata_host_intr() for each port that is not disabled.
6236 *
1da177e4 6237 * LOCKING:
cca3974e 6238 * Obtains host lock during operation.
1da177e4
LT
6239 *
6240 * RETURNS:
0cba632b 6241 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
6242 */
6243
2dcb407e 6244irqreturn_t ata_interrupt(int irq, void *dev_instance)
1da177e4 6245{
cca3974e 6246 struct ata_host *host = dev_instance;
1da177e4
LT
6247 unsigned int i;
6248 unsigned int handled = 0;
6249 unsigned long flags;
6250
6251 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 6252 spin_lock_irqsave(&host->lock, flags);
1da177e4 6253
cca3974e 6254 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
6255 struct ata_port *ap;
6256
cca3974e 6257 ap = host->ports[i];
c1389503 6258 if (ap &&
029f5468 6259 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
6260 struct ata_queued_cmd *qc;
6261
9af5c9c9 6262 qc = ata_qc_from_tag(ap, ap->link.active_tag);
312f7da2 6263 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 6264 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
6265 handled |= ata_host_intr(ap, qc);
6266 }
6267 }
6268
cca3974e 6269 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
6270
6271 return IRQ_RETVAL(handled);
6272}
6273
34bf2170
TH
6274/**
6275 * sata_scr_valid - test whether SCRs are accessible
936fd732 6276 * @link: ATA link to test SCR accessibility for
34bf2170 6277 *
936fd732 6278 * Test whether SCRs are accessible for @link.
34bf2170
TH
6279 *
6280 * LOCKING:
6281 * None.
6282 *
6283 * RETURNS:
6284 * 1 if SCRs are accessible, 0 otherwise.
6285 */
936fd732 6286int sata_scr_valid(struct ata_link *link)
34bf2170 6287{
936fd732
TH
6288 struct ata_port *ap = link->ap;
6289
a16abc0b 6290 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
6291}
6292
6293/**
6294 * sata_scr_read - read SCR register of the specified port
936fd732 6295 * @link: ATA link to read SCR for
34bf2170
TH
6296 * @reg: SCR to read
6297 * @val: Place to store read value
6298 *
936fd732 6299 * Read SCR register @reg of @link into *@val. This function is
633273a3
TH
6300 * guaranteed to succeed if @link is ap->link, the cable type of
6301 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
6302 *
6303 * LOCKING:
633273a3 6304 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6305 *
6306 * RETURNS:
6307 * 0 on success, negative errno on failure.
6308 */
936fd732 6309int sata_scr_read(struct ata_link *link, int reg, u32 *val)
34bf2170 6310{
633273a3
TH
6311 if (ata_is_host_link(link)) {
6312 struct ata_port *ap = link->ap;
936fd732 6313
633273a3
TH
6314 if (sata_scr_valid(link))
6315 return ap->ops->scr_read(ap, reg, val);
6316 return -EOPNOTSUPP;
6317 }
6318
6319 return sata_pmp_scr_read(link, reg, val);
34bf2170
TH
6320}
6321
6322/**
6323 * sata_scr_write - write SCR register of the specified port
936fd732 6324 * @link: ATA link to write SCR for
34bf2170
TH
6325 * @reg: SCR to write
6326 * @val: value to write
6327 *
936fd732 6328 * Write @val to SCR register @reg of @link. This function is
633273a3
TH
6329 * guaranteed to succeed if @link is ap->link, the cable type of
6330 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
6331 *
6332 * LOCKING:
633273a3 6333 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6334 *
6335 * RETURNS:
6336 * 0 on success, negative errno on failure.
6337 */
936fd732 6338int sata_scr_write(struct ata_link *link, int reg, u32 val)
34bf2170 6339{
633273a3
TH
6340 if (ata_is_host_link(link)) {
6341 struct ata_port *ap = link->ap;
6342
6343 if (sata_scr_valid(link))
6344 return ap->ops->scr_write(ap, reg, val);
6345 return -EOPNOTSUPP;
6346 }
936fd732 6347
633273a3 6348 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
6349}
6350
6351/**
6352 * sata_scr_write_flush - write SCR register of the specified port and flush
936fd732 6353 * @link: ATA link to write SCR for
34bf2170
TH
6354 * @reg: SCR to write
6355 * @val: value to write
6356 *
6357 * This function is identical to sata_scr_write() except that this
6358 * function performs flush after writing to the register.
6359 *
6360 * LOCKING:
633273a3 6361 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6362 *
6363 * RETURNS:
6364 * 0 on success, negative errno on failure.
6365 */
936fd732 6366int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
34bf2170 6367{
633273a3
TH
6368 if (ata_is_host_link(link)) {
6369 struct ata_port *ap = link->ap;
6370 int rc;
da3dbb17 6371
633273a3
TH
6372 if (sata_scr_valid(link)) {
6373 rc = ap->ops->scr_write(ap, reg, val);
6374 if (rc == 0)
6375 rc = ap->ops->scr_read(ap, reg, &val);
6376 return rc;
6377 }
6378 return -EOPNOTSUPP;
34bf2170 6379 }
633273a3
TH
6380
6381 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
6382}
6383
6384/**
936fd732
TH
6385 * ata_link_online - test whether the given link is online
6386 * @link: ATA link to test
34bf2170 6387 *
936fd732
TH
6388 * Test whether @link is online. Note that this function returns
6389 * 0 if online status of @link cannot be obtained, so
6390 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
6391 *
6392 * LOCKING:
6393 * None.
6394 *
6395 * RETURNS:
6396 * 1 if the port online status is available and online.
6397 */
936fd732 6398int ata_link_online(struct ata_link *link)
34bf2170
TH
6399{
6400 u32 sstatus;
6401
936fd732
TH
6402 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6403 (sstatus & 0xf) == 0x3)
34bf2170
TH
6404 return 1;
6405 return 0;
6406}
6407
6408/**
936fd732
TH
6409 * ata_link_offline - test whether the given link is offline
6410 * @link: ATA link to test
34bf2170 6411 *
936fd732
TH
6412 * Test whether @link is offline. Note that this function
6413 * returns 0 if offline status of @link cannot be obtained, so
6414 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
6415 *
6416 * LOCKING:
6417 * None.
6418 *
6419 * RETURNS:
6420 * 1 if the port offline status is available and offline.
6421 */
936fd732 6422int ata_link_offline(struct ata_link *link)
34bf2170
TH
6423{
6424 u32 sstatus;
6425
936fd732
TH
6426 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6427 (sstatus & 0xf) != 0x3)
34bf2170
TH
6428 return 1;
6429 return 0;
6430}
0baab86b 6431
77b08fb5 6432int ata_flush_cache(struct ata_device *dev)
9b847548 6433{
977e6b9f 6434 unsigned int err_mask;
9b847548
JA
6435 u8 cmd;
6436
6437 if (!ata_try_flush_cache(dev))
6438 return 0;
6439
6fc49adb 6440 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
9b847548
JA
6441 cmd = ATA_CMD_FLUSH_EXT;
6442 else
6443 cmd = ATA_CMD_FLUSH;
6444
4f34337b
AC
6445 /* This is wrong. On a failed flush we get back the LBA of the lost
6446 sector and we should (assuming it wasn't aborted as unknown) issue
2dcb407e 6447 a further flush command to continue the writeback until it
4f34337b 6448 does not error */
977e6b9f
TH
6449 err_mask = ata_do_simple_cmd(dev, cmd);
6450 if (err_mask) {
6451 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
6452 return -EIO;
6453 }
6454
6455 return 0;
9b847548
JA
6456}
6457
6ffa01d8 6458#ifdef CONFIG_PM
cca3974e
JG
6459static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
6460 unsigned int action, unsigned int ehi_flags,
6461 int wait)
500530f6
TH
6462{
6463 unsigned long flags;
6464 int i, rc;
6465
cca3974e
JG
6466 for (i = 0; i < host->n_ports; i++) {
6467 struct ata_port *ap = host->ports[i];
e3667ebf 6468 struct ata_link *link;
500530f6
TH
6469
6470 /* Previous resume operation might still be in
6471 * progress. Wait for PM_PENDING to clear.
6472 */
6473 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
6474 ata_port_wait_eh(ap);
6475 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6476 }
6477
6478 /* request PM ops to EH */
6479 spin_lock_irqsave(ap->lock, flags);
6480
6481 ap->pm_mesg = mesg;
6482 if (wait) {
6483 rc = 0;
6484 ap->pm_result = &rc;
6485 }
6486
6487 ap->pflags |= ATA_PFLAG_PM_PENDING;
e3667ebf
TH
6488 __ata_port_for_each_link(link, ap) {
6489 link->eh_info.action |= action;
6490 link->eh_info.flags |= ehi_flags;
6491 }
500530f6
TH
6492
6493 ata_port_schedule_eh(ap);
6494
6495 spin_unlock_irqrestore(ap->lock, flags);
6496
6497 /* wait and check result */
6498 if (wait) {
6499 ata_port_wait_eh(ap);
6500 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6501 if (rc)
6502 return rc;
6503 }
6504 }
6505
6506 return 0;
6507}
6508
6509/**
cca3974e
JG
6510 * ata_host_suspend - suspend host
6511 * @host: host to suspend
500530f6
TH
6512 * @mesg: PM message
6513 *
cca3974e 6514 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
6515 * function requests EH to perform PM operations and waits for EH
6516 * to finish.
6517 *
6518 * LOCKING:
6519 * Kernel thread context (may sleep).
6520 *
6521 * RETURNS:
6522 * 0 on success, -errno on failure.
6523 */
cca3974e 6524int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 6525{
9666f400 6526 int rc;
500530f6 6527
ca77329f
KCA
6528 /*
6529 * disable link pm on all ports before requesting
6530 * any pm activity
6531 */
6532 ata_lpm_enable(host);
6533
cca3974e 6534 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
9666f400
TH
6535 if (rc == 0)
6536 host->dev->power.power_state = mesg;
500530f6
TH
6537 return rc;
6538}
6539
6540/**
cca3974e
JG
6541 * ata_host_resume - resume host
6542 * @host: host to resume
500530f6 6543 *
cca3974e 6544 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
6545 * function requests EH to perform PM operations and returns.
6546 * Note that all resume operations are performed parallely.
6547 *
6548 * LOCKING:
6549 * Kernel thread context (may sleep).
6550 */
cca3974e 6551void ata_host_resume(struct ata_host *host)
500530f6 6552{
cca3974e
JG
6553 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
6554 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
6555 host->dev->power.power_state = PMSG_ON;
ca77329f
KCA
6556
6557 /* reenable link pm */
6558 ata_lpm_disable(host);
500530f6 6559}
6ffa01d8 6560#endif
500530f6 6561
c893a3ae
RD
6562/**
6563 * ata_port_start - Set port up for dma.
6564 * @ap: Port to initialize
6565 *
6566 * Called just after data structures for each port are
6567 * initialized. Allocates space for PRD table.
6568 *
6569 * May be used as the port_start() entry in ata_port_operations.
6570 *
6571 * LOCKING:
6572 * Inherited from caller.
6573 */
f0d36efd 6574int ata_port_start(struct ata_port *ap)
1da177e4 6575{
2f1f610b 6576 struct device *dev = ap->dev;
6037d6bb 6577 int rc;
1da177e4 6578
f0d36efd
TH
6579 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6580 GFP_KERNEL);
1da177e4
LT
6581 if (!ap->prd)
6582 return -ENOMEM;
6583
6037d6bb 6584 rc = ata_pad_alloc(ap, dev);
f0d36efd 6585 if (rc)
6037d6bb 6586 return rc;
1da177e4 6587
f0d36efd
TH
6588 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6589 (unsigned long long)ap->prd_dma);
1da177e4
LT
6590 return 0;
6591}
6592
3ef3b43d
TH
6593/**
6594 * ata_dev_init - Initialize an ata_device structure
6595 * @dev: Device structure to initialize
6596 *
6597 * Initialize @dev in preparation for probing.
6598 *
6599 * LOCKING:
6600 * Inherited from caller.
6601 */
6602void ata_dev_init(struct ata_device *dev)
6603{
9af5c9c9
TH
6604 struct ata_link *link = dev->link;
6605 struct ata_port *ap = link->ap;
72fa4b74
TH
6606 unsigned long flags;
6607
5a04bf4b 6608 /* SATA spd limit is bound to the first device */
9af5c9c9
TH
6609 link->sata_spd_limit = link->hw_sata_spd_limit;
6610 link->sata_spd = 0;
5a04bf4b 6611
72fa4b74
TH
6612 /* High bits of dev->flags are used to record warm plug
6613 * requests which occur asynchronously. Synchronize using
cca3974e 6614 * host lock.
72fa4b74 6615 */
ba6a1308 6616 spin_lock_irqsave(ap->lock, flags);
72fa4b74 6617 dev->flags &= ~ATA_DFLAG_INIT_MASK;
3dcc323f 6618 dev->horkage = 0;
ba6a1308 6619 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 6620
72fa4b74
TH
6621 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6622 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
6623 dev->pio_mask = UINT_MAX;
6624 dev->mwdma_mask = UINT_MAX;
6625 dev->udma_mask = UINT_MAX;
6626}
6627
4fb37a25
TH
6628/**
6629 * ata_link_init - Initialize an ata_link structure
6630 * @ap: ATA port link is attached to
6631 * @link: Link structure to initialize
8989805d 6632 * @pmp: Port multiplier port number
4fb37a25
TH
6633 *
6634 * Initialize @link.
6635 *
6636 * LOCKING:
6637 * Kernel thread context (may sleep)
6638 */
fb7fd614 6639void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
4fb37a25
TH
6640{
6641 int i;
6642
6643 /* clear everything except for devices */
6644 memset(link, 0, offsetof(struct ata_link, device[0]));
6645
6646 link->ap = ap;
8989805d 6647 link->pmp = pmp;
4fb37a25
TH
6648 link->active_tag = ATA_TAG_POISON;
6649 link->hw_sata_spd_limit = UINT_MAX;
6650
6651 /* can't use iterator, ap isn't initialized yet */
6652 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6653 struct ata_device *dev = &link->device[i];
6654
6655 dev->link = link;
6656 dev->devno = dev - link->device;
6657 ata_dev_init(dev);
6658 }
6659}
6660
6661/**
6662 * sata_link_init_spd - Initialize link->sata_spd_limit
6663 * @link: Link to configure sata_spd_limit for
6664 *
6665 * Initialize @link->[hw_]sata_spd_limit to the currently
6666 * configured value.
6667 *
6668 * LOCKING:
6669 * Kernel thread context (may sleep).
6670 *
6671 * RETURNS:
6672 * 0 on success, -errno on failure.
6673 */
fb7fd614 6674int sata_link_init_spd(struct ata_link *link)
4fb37a25
TH
6675{
6676 u32 scontrol, spd;
6677 int rc;
6678
6679 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
6680 if (rc)
6681 return rc;
6682
6683 spd = (scontrol >> 4) & 0xf;
6684 if (spd)
6685 link->hw_sata_spd_limit &= (1 << spd) - 1;
6686
6687 link->sata_spd_limit = link->hw_sata_spd_limit;
6688
6689 return 0;
6690}
6691
1da177e4 6692/**
f3187195
TH
6693 * ata_port_alloc - allocate and initialize basic ATA port resources
6694 * @host: ATA host this allocated port belongs to
1da177e4 6695 *
f3187195
TH
6696 * Allocate and initialize basic ATA port resources.
6697 *
6698 * RETURNS:
6699 * Allocate ATA port on success, NULL on failure.
0cba632b 6700 *
1da177e4 6701 * LOCKING:
f3187195 6702 * Inherited from calling layer (may sleep).
1da177e4 6703 */
f3187195 6704struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 6705{
f3187195 6706 struct ata_port *ap;
1da177e4 6707
f3187195
TH
6708 DPRINTK("ENTER\n");
6709
6710 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6711 if (!ap)
6712 return NULL;
6713
f4d6d004 6714 ap->pflags |= ATA_PFLAG_INITIALIZING;
cca3974e 6715 ap->lock = &host->lock;
198e0fed 6716 ap->flags = ATA_FLAG_DISABLED;
f3187195 6717 ap->print_id = -1;
1da177e4 6718 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 6719 ap->host = host;
f3187195 6720 ap->dev = host->dev;
1da177e4 6721 ap->last_ctl = 0xFF;
bd5d825c
BP
6722
6723#if defined(ATA_VERBOSE_DEBUG)
6724 /* turn on all debugging levels */
6725 ap->msg_enable = 0x00FF;
6726#elif defined(ATA_DEBUG)
6727 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 6728#else
0dd4b21f 6729 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 6730#endif
1da177e4 6731
65f27f38
DH
6732 INIT_DELAYED_WORK(&ap->port_task, NULL);
6733 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6734 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 6735 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 6736 init_waitqueue_head(&ap->eh_wait_q);
5ddf24c5
TH
6737 init_timer_deferrable(&ap->fastdrain_timer);
6738 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6739 ap->fastdrain_timer.data = (unsigned long)ap;
1da177e4 6740
838df628 6741 ap->cbl = ATA_CBL_NONE;
838df628 6742
8989805d 6743 ata_link_init(ap, &ap->link, 0);
1da177e4
LT
6744
6745#ifdef ATA_IRQ_TRAP
6746 ap->stats.unhandled_irq = 1;
6747 ap->stats.idle_irq = 1;
6748#endif
1da177e4 6749 return ap;
1da177e4
LT
6750}
6751
f0d36efd
TH
6752static void ata_host_release(struct device *gendev, void *res)
6753{
6754 struct ata_host *host = dev_get_drvdata(gendev);
6755 int i;
6756
1aa506e4
TH
6757 for (i = 0; i < host->n_ports; i++) {
6758 struct ata_port *ap = host->ports[i];
6759
4911487a
TH
6760 if (!ap)
6761 continue;
6762
6763 if (ap->scsi_host)
1aa506e4
TH
6764 scsi_host_put(ap->scsi_host);
6765
633273a3 6766 kfree(ap->pmp_link);
4911487a 6767 kfree(ap);
1aa506e4
TH
6768 host->ports[i] = NULL;
6769 }
6770
1aa56cca 6771 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
6772}
6773
f3187195
TH
6774/**
6775 * ata_host_alloc - allocate and init basic ATA host resources
6776 * @dev: generic device this host is associated with
6777 * @max_ports: maximum number of ATA ports associated with this host
6778 *
6779 * Allocate and initialize basic ATA host resources. LLD calls
6780 * this function to allocate a host, initializes it fully and
6781 * attaches it using ata_host_register().
6782 *
6783 * @max_ports ports are allocated and host->n_ports is
6784 * initialized to @max_ports. The caller is allowed to decrease
6785 * host->n_ports before calling ata_host_register(). The unused
6786 * ports will be automatically freed on registration.
6787 *
6788 * RETURNS:
6789 * Allocate ATA host on success, NULL on failure.
6790 *
6791 * LOCKING:
6792 * Inherited from calling layer (may sleep).
6793 */
6794struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6795{
6796 struct ata_host *host;
6797 size_t sz;
6798 int i;
6799
6800 DPRINTK("ENTER\n");
6801
6802 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6803 return NULL;
6804
6805 /* alloc a container for our list of ATA ports (buses) */
6806 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6807 /* alloc a container for our list of ATA ports (buses) */
6808 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6809 if (!host)
6810 goto err_out;
6811
6812 devres_add(dev, host);
6813 dev_set_drvdata(dev, host);
6814
6815 spin_lock_init(&host->lock);
6816 host->dev = dev;
6817 host->n_ports = max_ports;
6818
6819 /* allocate ports bound to this host */
6820 for (i = 0; i < max_ports; i++) {
6821 struct ata_port *ap;
6822
6823 ap = ata_port_alloc(host);
6824 if (!ap)
6825 goto err_out;
6826
6827 ap->port_no = i;
6828 host->ports[i] = ap;
6829 }
6830
6831 devres_remove_group(dev, NULL);
6832 return host;
6833
6834 err_out:
6835 devres_release_group(dev, NULL);
6836 return NULL;
6837}
6838
f5cda257
TH
6839/**
6840 * ata_host_alloc_pinfo - alloc host and init with port_info array
6841 * @dev: generic device this host is associated with
6842 * @ppi: array of ATA port_info to initialize host with
6843 * @n_ports: number of ATA ports attached to this host
6844 *
6845 * Allocate ATA host and initialize with info from @ppi. If NULL
6846 * terminated, @ppi may contain fewer entries than @n_ports. The
6847 * last entry will be used for the remaining ports.
6848 *
6849 * RETURNS:
6850 * Allocate ATA host on success, NULL on failure.
6851 *
6852 * LOCKING:
6853 * Inherited from calling layer (may sleep).
6854 */
6855struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6856 const struct ata_port_info * const * ppi,
6857 int n_ports)
6858{
6859 const struct ata_port_info *pi;
6860 struct ata_host *host;
6861 int i, j;
6862
6863 host = ata_host_alloc(dev, n_ports);
6864 if (!host)
6865 return NULL;
6866
6867 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6868 struct ata_port *ap = host->ports[i];
6869
6870 if (ppi[j])
6871 pi = ppi[j++];
6872
6873 ap->pio_mask = pi->pio_mask;
6874 ap->mwdma_mask = pi->mwdma_mask;
6875 ap->udma_mask = pi->udma_mask;
6876 ap->flags |= pi->flags;
0c88758b 6877 ap->link.flags |= pi->link_flags;
f5cda257
TH
6878 ap->ops = pi->port_ops;
6879
6880 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6881 host->ops = pi->port_ops;
6882 if (!host->private_data && pi->private_data)
6883 host->private_data = pi->private_data;
6884 }
6885
6886 return host;
6887}
6888
32ebbc0c
TH
6889static void ata_host_stop(struct device *gendev, void *res)
6890{
6891 struct ata_host *host = dev_get_drvdata(gendev);
6892 int i;
6893
6894 WARN_ON(!(host->flags & ATA_HOST_STARTED));
6895
6896 for (i = 0; i < host->n_ports; i++) {
6897 struct ata_port *ap = host->ports[i];
6898
6899 if (ap->ops->port_stop)
6900 ap->ops->port_stop(ap);
6901 }
6902
6903 if (host->ops->host_stop)
6904 host->ops->host_stop(host);
6905}
6906
ecef7253
TH
6907/**
6908 * ata_host_start - start and freeze ports of an ATA host
6909 * @host: ATA host to start ports for
6910 *
6911 * Start and then freeze ports of @host. Started status is
6912 * recorded in host->flags, so this function can be called
6913 * multiple times. Ports are guaranteed to get started only
f3187195
TH
6914 * once. If host->ops isn't initialized yet, its set to the
6915 * first non-dummy port ops.
ecef7253
TH
6916 *
6917 * LOCKING:
6918 * Inherited from calling layer (may sleep).
6919 *
6920 * RETURNS:
6921 * 0 if all ports are started successfully, -errno otherwise.
6922 */
6923int ata_host_start(struct ata_host *host)
6924{
32ebbc0c
TH
6925 int have_stop = 0;
6926 void *start_dr = NULL;
ecef7253
TH
6927 int i, rc;
6928
6929 if (host->flags & ATA_HOST_STARTED)
6930 return 0;
6931
6932 for (i = 0; i < host->n_ports; i++) {
6933 struct ata_port *ap = host->ports[i];
6934
f3187195
TH
6935 if (!host->ops && !ata_port_is_dummy(ap))
6936 host->ops = ap->ops;
6937
32ebbc0c
TH
6938 if (ap->ops->port_stop)
6939 have_stop = 1;
6940 }
6941
6942 if (host->ops->host_stop)
6943 have_stop = 1;
6944
6945 if (have_stop) {
6946 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6947 if (!start_dr)
6948 return -ENOMEM;
6949 }
6950
6951 for (i = 0; i < host->n_ports; i++) {
6952 struct ata_port *ap = host->ports[i];
6953
ecef7253
TH
6954 if (ap->ops->port_start) {
6955 rc = ap->ops->port_start(ap);
6956 if (rc) {
6957 ata_port_printk(ap, KERN_ERR, "failed to "
6958 "start port (errno=%d)\n", rc);
6959 goto err_out;
6960 }
6961 }
6962
6963 ata_eh_freeze_port(ap);
6964 }
6965
32ebbc0c
TH
6966 if (start_dr)
6967 devres_add(host->dev, start_dr);
ecef7253
TH
6968 host->flags |= ATA_HOST_STARTED;
6969 return 0;
6970
6971 err_out:
6972 while (--i >= 0) {
6973 struct ata_port *ap = host->ports[i];
6974
6975 if (ap->ops->port_stop)
6976 ap->ops->port_stop(ap);
6977 }
32ebbc0c 6978 devres_free(start_dr);
ecef7253
TH
6979 return rc;
6980}
6981
b03732f0 6982/**
cca3974e
JG
6983 * ata_sas_host_init - Initialize a host struct
6984 * @host: host to initialize
6985 * @dev: device host is attached to
6986 * @flags: host flags
6987 * @ops: port_ops
b03732f0
BK
6988 *
6989 * LOCKING:
6990 * PCI/etc. bus probe sem.
6991 *
6992 */
f3187195 6993/* KILLME - the only user left is ipr */
cca3974e
JG
6994void ata_host_init(struct ata_host *host, struct device *dev,
6995 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 6996{
cca3974e
JG
6997 spin_lock_init(&host->lock);
6998 host->dev = dev;
6999 host->flags = flags;
7000 host->ops = ops;
b03732f0
BK
7001}
7002
f3187195
TH
7003/**
7004 * ata_host_register - register initialized ATA host
7005 * @host: ATA host to register
7006 * @sht: template for SCSI host
7007 *
7008 * Register initialized ATA host. @host is allocated using
7009 * ata_host_alloc() and fully initialized by LLD. This function
7010 * starts ports, registers @host with ATA and SCSI layers and
7011 * probe registered devices.
7012 *
7013 * LOCKING:
7014 * Inherited from calling layer (may sleep).
7015 *
7016 * RETURNS:
7017 * 0 on success, -errno otherwise.
7018 */
7019int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
7020{
7021 int i, rc;
7022
7023 /* host must have been started */
7024 if (!(host->flags & ATA_HOST_STARTED)) {
7025 dev_printk(KERN_ERR, host->dev,
7026 "BUG: trying to register unstarted host\n");
7027 WARN_ON(1);
7028 return -EINVAL;
7029 }
7030
7031 /* Blow away unused ports. This happens when LLD can't
7032 * determine the exact number of ports to allocate at
7033 * allocation time.
7034 */
7035 for (i = host->n_ports; host->ports[i]; i++)
7036 kfree(host->ports[i]);
7037
7038 /* give ports names and add SCSI hosts */
7039 for (i = 0; i < host->n_ports; i++)
7040 host->ports[i]->print_id = ata_print_id++;
7041
7042 rc = ata_scsi_add_hosts(host, sht);
7043 if (rc)
7044 return rc;
7045
fafbae87
TH
7046 /* associate with ACPI nodes */
7047 ata_acpi_associate(host);
7048
f3187195
TH
7049 /* set cable, sata_spd_limit and report */
7050 for (i = 0; i < host->n_ports; i++) {
7051 struct ata_port *ap = host->ports[i];
f3187195
TH
7052 unsigned long xfer_mask;
7053
7054 /* set SATA cable type if still unset */
7055 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
7056 ap->cbl = ATA_CBL_SATA;
7057
7058 /* init sata_spd_limit to the current value */
4fb37a25 7059 sata_link_init_spd(&ap->link);
f3187195 7060
cbcdd875 7061 /* print per-port info to dmesg */
f3187195
TH
7062 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
7063 ap->udma_mask);
7064
abf6e8ed 7065 if (!ata_port_is_dummy(ap)) {
cbcdd875
TH
7066 ata_port_printk(ap, KERN_INFO,
7067 "%cATA max %s %s\n",
a16abc0b 7068 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
f3187195 7069 ata_mode_string(xfer_mask),
cbcdd875 7070 ap->link.eh_info.desc);
abf6e8ed
TH
7071 ata_ehi_clear_desc(&ap->link.eh_info);
7072 } else
f3187195
TH
7073 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
7074 }
7075
7076 /* perform each probe synchronously */
7077 DPRINTK("probe begin\n");
7078 for (i = 0; i < host->n_ports; i++) {
7079 struct ata_port *ap = host->ports[i];
7080 int rc;
7081
7082 /* probe */
7083 if (ap->ops->error_handler) {
9af5c9c9 7084 struct ata_eh_info *ehi = &ap->link.eh_info;
f3187195
TH
7085 unsigned long flags;
7086
7087 ata_port_probe(ap);
7088
7089 /* kick EH for boot probing */
7090 spin_lock_irqsave(ap->lock, flags);
7091
f58229f8
TH
7092 ehi->probe_mask =
7093 (1 << ata_link_max_devices(&ap->link)) - 1;
f3187195
TH
7094 ehi->action |= ATA_EH_SOFTRESET;
7095 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
7096
f4d6d004 7097 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
f3187195
TH
7098 ap->pflags |= ATA_PFLAG_LOADING;
7099 ata_port_schedule_eh(ap);
7100
7101 spin_unlock_irqrestore(ap->lock, flags);
7102
7103 /* wait for EH to finish */
7104 ata_port_wait_eh(ap);
7105 } else {
7106 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
7107 rc = ata_bus_probe(ap);
7108 DPRINTK("ata%u: bus probe end\n", ap->print_id);
7109
7110 if (rc) {
7111 /* FIXME: do something useful here?
7112 * Current libata behavior will
7113 * tear down everything when
7114 * the module is removed
7115 * or the h/w is unplugged.
7116 */
7117 }
7118 }
7119 }
7120
7121 /* probes are done, now scan each port's disk(s) */
7122 DPRINTK("host probe begin\n");
7123 for (i = 0; i < host->n_ports; i++) {
7124 struct ata_port *ap = host->ports[i];
7125
1ae46317 7126 ata_scsi_scan_host(ap, 1);
ca77329f 7127 ata_lpm_schedule(ap, ap->pm_policy);
f3187195
TH
7128 }
7129
7130 return 0;
7131}
7132
f5cda257
TH
7133/**
7134 * ata_host_activate - start host, request IRQ and register it
7135 * @host: target ATA host
7136 * @irq: IRQ to request
7137 * @irq_handler: irq_handler used when requesting IRQ
7138 * @irq_flags: irq_flags used when requesting IRQ
7139 * @sht: scsi_host_template to use when registering the host
7140 *
7141 * After allocating an ATA host and initializing it, most libata
7142 * LLDs perform three steps to activate the host - start host,
7143 * request IRQ and register it. This helper takes necessasry
7144 * arguments and performs the three steps in one go.
7145 *
3d46b2e2
PM
7146 * An invalid IRQ skips the IRQ registration and expects the host to
7147 * have set polling mode on the port. In this case, @irq_handler
7148 * should be NULL.
7149 *
f5cda257
TH
7150 * LOCKING:
7151 * Inherited from calling layer (may sleep).
7152 *
7153 * RETURNS:
7154 * 0 on success, -errno otherwise.
7155 */
7156int ata_host_activate(struct ata_host *host, int irq,
7157 irq_handler_t irq_handler, unsigned long irq_flags,
7158 struct scsi_host_template *sht)
7159{
cbcdd875 7160 int i, rc;
f5cda257
TH
7161
7162 rc = ata_host_start(host);
7163 if (rc)
7164 return rc;
7165
3d46b2e2
PM
7166 /* Special case for polling mode */
7167 if (!irq) {
7168 WARN_ON(irq_handler);
7169 return ata_host_register(host, sht);
7170 }
7171
f5cda257
TH
7172 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
7173 dev_driver_string(host->dev), host);
7174 if (rc)
7175 return rc;
7176
cbcdd875
TH
7177 for (i = 0; i < host->n_ports; i++)
7178 ata_port_desc(host->ports[i], "irq %d", irq);
4031826b 7179
f5cda257
TH
7180 rc = ata_host_register(host, sht);
7181 /* if failed, just free the IRQ and leave ports alone */
7182 if (rc)
7183 devm_free_irq(host->dev, irq, host);
7184
7185 return rc;
7186}
7187
720ba126
TH
7188/**
7189 * ata_port_detach - Detach ATA port in prepration of device removal
7190 * @ap: ATA port to be detached
7191 *
7192 * Detach all ATA devices and the associated SCSI devices of @ap;
7193 * then, remove the associated SCSI host. @ap is guaranteed to
7194 * be quiescent on return from this function.
7195 *
7196 * LOCKING:
7197 * Kernel thread context (may sleep).
7198 */
741b7763 7199static void ata_port_detach(struct ata_port *ap)
720ba126
TH
7200{
7201 unsigned long flags;
41bda9c9 7202 struct ata_link *link;
f58229f8 7203 struct ata_device *dev;
720ba126
TH
7204
7205 if (!ap->ops->error_handler)
c3cf30a9 7206 goto skip_eh;
720ba126
TH
7207
7208 /* tell EH we're leaving & flush EH */
ba6a1308 7209 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 7210 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 7211 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
7212
7213 ata_port_wait_eh(ap);
7214
7215 /* EH is now guaranteed to see UNLOADING, so no new device
7216 * will be attached. Disable all existing devices.
7217 */
ba6a1308 7218 spin_lock_irqsave(ap->lock, flags);
720ba126 7219
41bda9c9
TH
7220 ata_port_for_each_link(link, ap) {
7221 ata_link_for_each_dev(dev, link)
7222 ata_dev_disable(dev);
7223 }
720ba126 7224
ba6a1308 7225 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
7226
7227 /* Final freeze & EH. All in-flight commands are aborted. EH
7228 * will be skipped and retrials will be terminated with bad
7229 * target.
7230 */
ba6a1308 7231 spin_lock_irqsave(ap->lock, flags);
720ba126 7232 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 7233 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
7234
7235 ata_port_wait_eh(ap);
45a66c1c 7236 cancel_rearming_delayed_work(&ap->hotplug_task);
720ba126 7237
c3cf30a9 7238 skip_eh:
720ba126 7239 /* remove the associated SCSI host */
cca3974e 7240 scsi_remove_host(ap->scsi_host);
720ba126
TH
7241}
7242
0529c159
TH
7243/**
7244 * ata_host_detach - Detach all ports of an ATA host
7245 * @host: Host to detach
7246 *
7247 * Detach all ports of @host.
7248 *
7249 * LOCKING:
7250 * Kernel thread context (may sleep).
7251 */
7252void ata_host_detach(struct ata_host *host)
7253{
7254 int i;
7255
7256 for (i = 0; i < host->n_ports; i++)
7257 ata_port_detach(host->ports[i]);
7258}
7259
1da177e4
LT
7260/**
7261 * ata_std_ports - initialize ioaddr with standard port offsets.
7262 * @ioaddr: IO address structure to be initialized
0baab86b
EF
7263 *
7264 * Utility function which initializes data_addr, error_addr,
7265 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
7266 * device_addr, status_addr, and command_addr to standard offsets
7267 * relative to cmd_addr.
7268 *
7269 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 7270 */
0baab86b 7271
1da177e4
LT
7272void ata_std_ports(struct ata_ioports *ioaddr)
7273{
7274 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
7275 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
7276 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
7277 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
7278 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
7279 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
7280 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
7281 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
7282 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
7283 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
7284}
7285
0baab86b 7286
374b1873
JG
7287#ifdef CONFIG_PCI
7288
1da177e4
LT
7289/**
7290 * ata_pci_remove_one - PCI layer callback for device removal
7291 * @pdev: PCI device that was removed
7292 *
b878ca5d
TH
7293 * PCI layer indicates to libata via this hook that hot-unplug or
7294 * module unload event has occurred. Detach all ports. Resource
7295 * release is handled via devres.
1da177e4
LT
7296 *
7297 * LOCKING:
7298 * Inherited from PCI layer (may sleep).
7299 */
f0d36efd 7300void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4 7301{
2855568b 7302 struct device *dev = &pdev->dev;
cca3974e 7303 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 7304
b878ca5d 7305 ata_host_detach(host);
1da177e4
LT
7306}
7307
7308/* move to PCI subsystem */
057ace5e 7309int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
7310{
7311 unsigned long tmp = 0;
7312
7313 switch (bits->width) {
7314 case 1: {
7315 u8 tmp8 = 0;
7316 pci_read_config_byte(pdev, bits->reg, &tmp8);
7317 tmp = tmp8;
7318 break;
7319 }
7320 case 2: {
7321 u16 tmp16 = 0;
7322 pci_read_config_word(pdev, bits->reg, &tmp16);
7323 tmp = tmp16;
7324 break;
7325 }
7326 case 4: {
7327 u32 tmp32 = 0;
7328 pci_read_config_dword(pdev, bits->reg, &tmp32);
7329 tmp = tmp32;
7330 break;
7331 }
7332
7333 default:
7334 return -EINVAL;
7335 }
7336
7337 tmp &= bits->mask;
7338
7339 return (tmp == bits->val) ? 1 : 0;
7340}
9b847548 7341
6ffa01d8 7342#ifdef CONFIG_PM
3c5100c1 7343void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
7344{
7345 pci_save_state(pdev);
4c90d971 7346 pci_disable_device(pdev);
500530f6 7347
4c90d971 7348 if (mesg.event == PM_EVENT_SUSPEND)
500530f6 7349 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
7350}
7351
553c4aa6 7352int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 7353{
553c4aa6
TH
7354 int rc;
7355
9b847548
JA
7356 pci_set_power_state(pdev, PCI_D0);
7357 pci_restore_state(pdev);
553c4aa6 7358
b878ca5d 7359 rc = pcim_enable_device(pdev);
553c4aa6
TH
7360 if (rc) {
7361 dev_printk(KERN_ERR, &pdev->dev,
7362 "failed to enable device after resume (%d)\n", rc);
7363 return rc;
7364 }
7365
9b847548 7366 pci_set_master(pdev);
553c4aa6 7367 return 0;
500530f6
TH
7368}
7369
3c5100c1 7370int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 7371{
cca3974e 7372 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
7373 int rc = 0;
7374
cca3974e 7375 rc = ata_host_suspend(host, mesg);
500530f6
TH
7376 if (rc)
7377 return rc;
7378
3c5100c1 7379 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
7380
7381 return 0;
7382}
7383
7384int ata_pci_device_resume(struct pci_dev *pdev)
7385{
cca3974e 7386 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 7387 int rc;
500530f6 7388
553c4aa6
TH
7389 rc = ata_pci_device_do_resume(pdev);
7390 if (rc == 0)
7391 ata_host_resume(host);
7392 return rc;
9b847548 7393}
6ffa01d8
TH
7394#endif /* CONFIG_PM */
7395
1da177e4
LT
7396#endif /* CONFIG_PCI */
7397
7398
1da177e4
LT
7399static int __init ata_init(void)
7400{
a8601e5f 7401 ata_probe_timeout *= HZ;
1da177e4
LT
7402 ata_wq = create_workqueue("ata");
7403 if (!ata_wq)
7404 return -ENOMEM;
7405
453b07ac
TH
7406 ata_aux_wq = create_singlethread_workqueue("ata_aux");
7407 if (!ata_aux_wq) {
7408 destroy_workqueue(ata_wq);
7409 return -ENOMEM;
7410 }
7411
1da177e4
LT
7412 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7413 return 0;
7414}
7415
7416static void __exit ata_exit(void)
7417{
7418 destroy_workqueue(ata_wq);
453b07ac 7419 destroy_workqueue(ata_aux_wq);
1da177e4
LT
7420}
7421
a4625085 7422subsys_initcall(ata_init);
1da177e4
LT
7423module_exit(ata_exit);
7424
67846b30 7425static unsigned long ratelimit_time;
34af946a 7426static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
7427
7428int ata_ratelimit(void)
7429{
7430 int rc;
7431 unsigned long flags;
7432
7433 spin_lock_irqsave(&ata_ratelimit_lock, flags);
7434
7435 if (time_after(jiffies, ratelimit_time)) {
7436 rc = 1;
7437 ratelimit_time = jiffies + (HZ/5);
7438 } else
7439 rc = 0;
7440
7441 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
7442
7443 return rc;
7444}
7445
c22daff4
TH
7446/**
7447 * ata_wait_register - wait until register value changes
7448 * @reg: IO-mapped register
7449 * @mask: Mask to apply to read register value
7450 * @val: Wait condition
7451 * @interval_msec: polling interval in milliseconds
7452 * @timeout_msec: timeout in milliseconds
7453 *
7454 * Waiting for some bits of register to change is a common
7455 * operation for ATA controllers. This function reads 32bit LE
7456 * IO-mapped register @reg and tests for the following condition.
7457 *
7458 * (*@reg & mask) != val
7459 *
7460 * If the condition is met, it returns; otherwise, the process is
7461 * repeated after @interval_msec until timeout.
7462 *
7463 * LOCKING:
7464 * Kernel thread context (may sleep)
7465 *
7466 * RETURNS:
7467 * The final register value.
7468 */
7469u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
7470 unsigned long interval_msec,
7471 unsigned long timeout_msec)
7472{
7473 unsigned long timeout;
7474 u32 tmp;
7475
7476 tmp = ioread32(reg);
7477
7478 /* Calculate timeout _after_ the first read to make sure
7479 * preceding writes reach the controller before starting to
7480 * eat away the timeout.
7481 */
7482 timeout = jiffies + (timeout_msec * HZ) / 1000;
7483
7484 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
7485 msleep(interval_msec);
7486 tmp = ioread32(reg);
7487 }
7488
7489 return tmp;
7490}
7491
dd5b06c4
TH
7492/*
7493 * Dummy port_ops
7494 */
7495static void ata_dummy_noret(struct ata_port *ap) { }
7496static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
7497static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
7498
7499static u8 ata_dummy_check_status(struct ata_port *ap)
7500{
7501 return ATA_DRDY;
7502}
7503
7504static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7505{
7506 return AC_ERR_SYSTEM;
7507}
7508
7509const struct ata_port_operations ata_dummy_port_ops = {
dd5b06c4
TH
7510 .check_status = ata_dummy_check_status,
7511 .check_altstatus = ata_dummy_check_status,
7512 .dev_select = ata_noop_dev_select,
7513 .qc_prep = ata_noop_qc_prep,
7514 .qc_issue = ata_dummy_qc_issue,
7515 .freeze = ata_dummy_noret,
7516 .thaw = ata_dummy_noret,
7517 .error_handler = ata_dummy_noret,
7518 .post_internal_cmd = ata_dummy_qc_noret,
7519 .irq_clear = ata_dummy_noret,
7520 .port_start = ata_dummy_ret0,
7521 .port_stop = ata_dummy_noret,
7522};
7523
21b0ad4f
TH
7524const struct ata_port_info ata_dummy_port_info = {
7525 .port_ops = &ata_dummy_port_ops,
7526};
7527
1da177e4
LT
7528/*
7529 * libata is essentially a library of internal helper functions for
7530 * low-level ATA host controller drivers. As such, the API/ABI is
7531 * likely to change as new drivers are added and updated.
7532 * Do not depend on ABI/API stability.
7533 */
e9c83914
TH
7534EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7535EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7536EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 7537EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 7538EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1da177e4
LT
7539EXPORT_SYMBOL_GPL(ata_std_bios_param);
7540EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 7541EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 7542EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 7543EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
ecef7253 7544EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 7545EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 7546EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 7547EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4
LT
7548EXPORT_SYMBOL_GPL(ata_sg_init);
7549EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 7550EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 7551EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 7552EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 7553EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
7554EXPORT_SYMBOL_GPL(ata_tf_load);
7555EXPORT_SYMBOL_GPL(ata_tf_read);
7556EXPORT_SYMBOL_GPL(ata_noop_dev_select);
7557EXPORT_SYMBOL_GPL(ata_std_dev_select);
43727fbc 7558EXPORT_SYMBOL_GPL(sata_print_link_status);
1da177e4
LT
7559EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7560EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7561EXPORT_SYMBOL_GPL(ata_check_status);
7562EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
7563EXPORT_SYMBOL_GPL(ata_exec_command);
7564EXPORT_SYMBOL_GPL(ata_port_start);
d92e74d3 7565EXPORT_SYMBOL_GPL(ata_sff_port_start);
1da177e4 7566EXPORT_SYMBOL_GPL(ata_interrupt);
04351821 7567EXPORT_SYMBOL_GPL(ata_do_set_mode);
0d5ff566
TH
7568EXPORT_SYMBOL_GPL(ata_data_xfer);
7569EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
31cc23b3 7570EXPORT_SYMBOL_GPL(ata_std_qc_defer);
1da177e4 7571EXPORT_SYMBOL_GPL(ata_qc_prep);
d26fc955 7572EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
e46834cd 7573EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
7574EXPORT_SYMBOL_GPL(ata_bmdma_setup);
7575EXPORT_SYMBOL_GPL(ata_bmdma_start);
7576EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
7577EXPORT_SYMBOL_GPL(ata_bmdma_status);
7578EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
7579EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
7580EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
7581EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
7582EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
7583EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 7584EXPORT_SYMBOL_GPL(ata_port_probe);
10305f0f 7585EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 7586EXPORT_SYMBOL_GPL(sata_set_spd);
936fd732
TH
7587EXPORT_SYMBOL_GPL(sata_link_debounce);
7588EXPORT_SYMBOL_GPL(sata_link_resume);
1da177e4 7589EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 7590EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 7591EXPORT_SYMBOL_GPL(ata_std_softreset);
cc0680a5 7592EXPORT_SYMBOL_GPL(sata_link_hardreset);
c2bd5804
TH
7593EXPORT_SYMBOL_GPL(sata_std_hardreset);
7594EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
7595EXPORT_SYMBOL_GPL(ata_dev_classify);
7596EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 7597EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 7598EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 7599EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 7600EXPORT_SYMBOL_GPL(ata_busy_sleep);
88ff6eaf 7601EXPORT_SYMBOL_GPL(ata_wait_after_reset);
d4b2bab4 7602EXPORT_SYMBOL_GPL(ata_wait_ready);
86e45b6b 7603EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
7604EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
7605EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 7606EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 7607EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 7608EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4 7609EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
7610EXPORT_SYMBOL_GPL(sata_scr_valid);
7611EXPORT_SYMBOL_GPL(sata_scr_read);
7612EXPORT_SYMBOL_GPL(sata_scr_write);
7613EXPORT_SYMBOL_GPL(sata_scr_write_flush);
936fd732
TH
7614EXPORT_SYMBOL_GPL(ata_link_online);
7615EXPORT_SYMBOL_GPL(ata_link_offline);
6ffa01d8 7616#ifdef CONFIG_PM
cca3974e
JG
7617EXPORT_SYMBOL_GPL(ata_host_suspend);
7618EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 7619#endif /* CONFIG_PM */
6a62a04d
TH
7620EXPORT_SYMBOL_GPL(ata_id_string);
7621EXPORT_SYMBOL_GPL(ata_id_c_string);
10305f0f 7622EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
1da177e4
LT
7623EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7624
1bc4ccff 7625EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
7626EXPORT_SYMBOL_GPL(ata_timing_compute);
7627EXPORT_SYMBOL_GPL(ata_timing_merge);
7628
1da177e4
LT
7629#ifdef CONFIG_PCI
7630EXPORT_SYMBOL_GPL(pci_test_config_bits);
d583bc18 7631EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
1626aeb8 7632EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
d583bc18 7633EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
1da177e4
LT
7634EXPORT_SYMBOL_GPL(ata_pci_init_one);
7635EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 7636#ifdef CONFIG_PM
500530f6
TH
7637EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7638EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
7639EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7640EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 7641#endif /* CONFIG_PM */
67951ade
AC
7642EXPORT_SYMBOL_GPL(ata_pci_default_filter);
7643EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 7644#endif /* CONFIG_PCI */
9b847548 7645
31f88384 7646EXPORT_SYMBOL_GPL(sata_pmp_qc_defer_cmd_switch);
3af9a77a
TH
7647EXPORT_SYMBOL_GPL(sata_pmp_std_prereset);
7648EXPORT_SYMBOL_GPL(sata_pmp_std_hardreset);
7649EXPORT_SYMBOL_GPL(sata_pmp_std_postreset);
7650EXPORT_SYMBOL_GPL(sata_pmp_do_eh);
7651
b64bbc39
TH
7652EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7653EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7654EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
cbcdd875
TH
7655EXPORT_SYMBOL_GPL(ata_port_desc);
7656#ifdef CONFIG_PCI
7657EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7658#endif /* CONFIG_PCI */
7b70fc03 7659EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
dbd82616 7660EXPORT_SYMBOL_GPL(ata_link_abort);
7b70fc03 7661EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499 7662EXPORT_SYMBOL_GPL(ata_port_freeze);
7d77b247 7663EXPORT_SYMBOL_GPL(sata_async_notification);
e3180499
TH
7664EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7665EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
7666EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7667EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 7668EXPORT_SYMBOL_GPL(ata_do_eh);
83625006 7669EXPORT_SYMBOL_GPL(ata_irq_on);
a619f981 7670EXPORT_SYMBOL_GPL(ata_dev_try_classify);
be0d18df
AC
7671
7672EXPORT_SYMBOL_GPL(ata_cable_40wire);
7673EXPORT_SYMBOL_GPL(ata_cable_80wire);
7674EXPORT_SYMBOL_GPL(ata_cable_unknown);
7675EXPORT_SYMBOL_GPL(ata_cable_sata);