Merge branch 'akpm' (patches from Andrew)
[linux-2.6-block.git] / crypto / jitterentropy.c
CommitLineData
bb5530e4
SM
1/*
2 * Non-physical true random number generator based on timing jitter.
3 *
4 * Copyright Stephan Mueller <smueller@chronox.de>, 2014
5 *
6 * Design
7 * ======
8 *
9 * See http://www.chronox.de/jent.html
10 *
11 * License
12 * =======
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, and the entire permission notice in its entirety,
19 * including the disclaimer of warranties.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in the
22 * documentation and/or other materials provided with the distribution.
23 * 3. The name of the author may not be used to endorse or promote
24 * products derived from this software without specific prior
25 * written permission.
26 *
27 * ALTERNATIVELY, this product may be distributed under the terms of
28 * the GNU General Public License, in which case the provisions of the GPL2 are
29 * required INSTEAD OF the above restrictions. (This clause is
30 * necessary due to a potential bad interaction between the GPL and
31 * the restrictions contained in a BSD-style copyright.)
32 *
33 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
34 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
35 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
36 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
37 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
38 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
39 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
40 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
41 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
42 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
43 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
44 * DAMAGE.
45 */
46
47/*
48 * This Jitterentropy RNG is based on the jitterentropy library
49 * version 1.1.0 provided at http://www.chronox.de/jent.html
50 */
51
52#include <linux/module.h>
53#include <linux/slab.h>
54#include <linux/module.h>
55#include <linux/fips.h>
56#include <linux/time.h>
57#include <linux/crypto.h>
58#include <crypto/internal/rng.h>
59
bb5530e4
SM
60/* The entropy pool */
61struct rand_data {
62 /* all data values that are vital to maintain the security
63 * of the RNG are marked as SENSITIVE. A user must not
64 * access that information while the RNG executes its loops to
65 * calculate the next random value. */
66 __u64 data; /* SENSITIVE Actual random number */
67 __u64 old_data; /* SENSITIVE Previous random number */
68 __u64 prev_time; /* SENSITIVE Previous time stamp */
69#define DATA_SIZE_BITS ((sizeof(__u64)) * 8)
70 __u64 last_delta; /* SENSITIVE stuck test */
71 __s64 last_delta2; /* SENSITIVE stuck test */
72 unsigned int stuck:1; /* Time measurement stuck */
73 unsigned int osr; /* Oversample rate */
74 unsigned int stir:1; /* Post-processing stirring */
75 unsigned int disable_unbias:1; /* Deactivate Von-Neuman unbias */
76#define JENT_MEMORY_BLOCKS 64
77#define JENT_MEMORY_BLOCKSIZE 32
78#define JENT_MEMORY_ACCESSLOOPS 128
79#define JENT_MEMORY_SIZE (JENT_MEMORY_BLOCKS*JENT_MEMORY_BLOCKSIZE)
80 unsigned char *mem; /* Memory access location with size of
81 * memblocks * memblocksize */
82 unsigned int memlocation; /* Pointer to byte in *mem */
83 unsigned int memblocks; /* Number of memory blocks in *mem */
84 unsigned int memblocksize; /* Size of one memory block in bytes */
85 unsigned int memaccessloops; /* Number of memory accesses per random
86 * bit generation */
87};
88
89/* Flags that can be used to initialize the RNG */
90#define JENT_DISABLE_STIR (1<<0) /* Disable stirring the entropy pool */
91#define JENT_DISABLE_UNBIAS (1<<1) /* Disable the Von-Neuman Unbiaser */
92#define JENT_DISABLE_MEMORY_ACCESS (1<<2) /* Disable memory access for more
93 * entropy, saves MEMORY_SIZE RAM for
94 * entropy collector */
95
96#define DRIVER_NAME "jitterentropy"
97
98/* -- error codes for init function -- */
99#define JENT_ENOTIME 1 /* Timer service not available */
100#define JENT_ECOARSETIME 2 /* Timer too coarse for RNG */
101#define JENT_ENOMONOTONIC 3 /* Timer is not monotonic increasing */
102#define JENT_EMINVARIATION 4 /* Timer variations too small for RNG */
103#define JENT_EVARVAR 5 /* Timer does not produce variations of
104 * variations (2nd derivation of time is
105 * zero). */
106#define JENT_EMINVARVAR 6 /* Timer variations of variations is tooi
107 * small. */
108
109/***************************************************************************
110 * Helper functions
111 ***************************************************************************/
112
113static inline void jent_get_nstime(__u64 *out)
114{
115 struct timespec ts;
116 __u64 tmp = 0;
117
118 tmp = random_get_entropy();
119
120 /*
121 * If random_get_entropy does not return a value (which is possible on,
122 * for example, MIPS), invoke __getnstimeofday
123 * hoping that there are timers we can work with.
124 *
125 * The list of available timers can be obtained from
126 * /sys/devices/system/clocksource/clocksource0/available_clocksource
127 * and are registered with clocksource_register()
128 */
129 if ((0 == tmp) &&
bb5530e4
SM
130 (0 == __getnstimeofday(&ts))) {
131 tmp = ts.tv_sec;
132 tmp = tmp << 32;
133 tmp = tmp | ts.tv_nsec;
134 }
135
136 *out = tmp;
137}
138
139
140/**
141 * Update of the loop count used for the next round of
142 * an entropy collection.
143 *
144 * Input:
145 * @ec entropy collector struct -- may be NULL
146 * @bits is the number of low bits of the timer to consider
147 * @min is the number of bits we shift the timer value to the right at
148 * the end to make sure we have a guaranteed minimum value
149 *
150 * @return Newly calculated loop counter
151 */
152static __u64 jent_loop_shuffle(struct rand_data *ec,
153 unsigned int bits, unsigned int min)
154{
155 __u64 time = 0;
156 __u64 shuffle = 0;
157 unsigned int i = 0;
158 unsigned int mask = (1<<bits) - 1;
159
160 jent_get_nstime(&time);
161 /*
162 * mix the current state of the random number into the shuffle
163 * calculation to balance that shuffle a bit more
164 */
165 if (ec)
166 time ^= ec->data;
167 /*
168 * we fold the time value as much as possible to ensure that as many
169 * bits of the time stamp are included as possible
170 */
171 for (i = 0; (DATA_SIZE_BITS / bits) > i; i++) {
172 shuffle ^= time & mask;
173 time = time >> bits;
174 }
175
176 /*
177 * We add a lower boundary value to ensure we have a minimum
178 * RNG loop count.
179 */
180 return (shuffle + (1<<min));
181}
182
183/***************************************************************************
184 * Noise sources
185 ***************************************************************************/
186
fbb145bc
SM
187/*
188 * The disabling of the optimizations is performed as documented and assessed
189 * thoroughly in http://www.chronox.de/jent.html. However, instead of disabling
190 * the optimization of the entire C file, only the main functions the jitter is
191 * measured for are not optimized. These functions include the noise sources as
192 * well as the main functions triggering the noise sources. As the time
193 * measurement is done from one invocation of the jitter noise source to the
194 * next, even the execution jitter of the code invoking the noise sources
195 * contribute to the overall randomness as well. The behavior of the RNG and the
196 * statistical characteristics when only the mentioned functions are not
197 * optimized is almost equal to the a completely non-optimized RNG compilation
198 * as tested with the test tools provided at the initially mentioned web site.
199 */
200
bb5530e4
SM
201/**
202 * CPU Jitter noise source -- this is the noise source based on the CPU
203 * execution time jitter
204 *
205 * This function folds the time into one bit units by iterating
206 * through the DATA_SIZE_BITS bit time value as follows: assume our time value
207 * is 0xabcd
208 * 1st loop, 1st shift generates 0xd000
209 * 1st loop, 2nd shift generates 0x000d
210 * 2nd loop, 1st shift generates 0xcd00
211 * 2nd loop, 2nd shift generates 0x000c
212 * 3rd loop, 1st shift generates 0xbcd0
213 * 3rd loop, 2nd shift generates 0x000b
214 * 4th loop, 1st shift generates 0xabcd
215 * 4th loop, 2nd shift generates 0x000a
216 * Now, the values at the end of the 2nd shifts are XORed together.
217 *
218 * The code is deliberately inefficient and shall stay that way. This function
219 * is the root cause why the code shall be compiled without optimization. This
220 * function not only acts as folding operation, but this function's execution
221 * is used to measure the CPU execution time jitter. Any change to the loop in
222 * this function implies that careful retesting must be done.
223 *
224 * Input:
225 * @ec entropy collector struct -- may be NULL
226 * @time time stamp to be folded
227 * @loop_cnt if a value not equal to 0 is set, use the given value as number of
228 * loops to perform the folding
229 *
230 * Output:
231 * @folded result of folding operation
232 *
233 * @return Number of loops the folding operation is performed
234 */
fbb145bc
SM
235#pragma GCC push_options
236#pragma GCC optimize ("-O0")
bb5530e4
SM
237static __u64 jent_fold_time(struct rand_data *ec, __u64 time,
238 __u64 *folded, __u64 loop_cnt)
239{
240 unsigned int i;
241 __u64 j = 0;
242 __u64 new = 0;
243#define MAX_FOLD_LOOP_BIT 4
244#define MIN_FOLD_LOOP_BIT 0
245 __u64 fold_loop_cnt =
246 jent_loop_shuffle(ec, MAX_FOLD_LOOP_BIT, MIN_FOLD_LOOP_BIT);
247
248 /*
249 * testing purposes -- allow test app to set the counter, not
250 * needed during runtime
251 */
252 if (loop_cnt)
253 fold_loop_cnt = loop_cnt;
254 for (j = 0; j < fold_loop_cnt; j++) {
255 new = 0;
256 for (i = 1; (DATA_SIZE_BITS) >= i; i++) {
257 __u64 tmp = time << (DATA_SIZE_BITS - i);
258
259 tmp = tmp >> (DATA_SIZE_BITS - 1);
260 new ^= tmp;
261 }
262 }
263 *folded = new;
264 return fold_loop_cnt;
265}
fbb145bc 266#pragma GCC pop_options
bb5530e4
SM
267
268/**
269 * Memory Access noise source -- this is a noise source based on variations in
270 * memory access times
271 *
272 * This function performs memory accesses which will add to the timing
273 * variations due to an unknown amount of CPU wait states that need to be
274 * added when accessing memory. The memory size should be larger than the L1
275 * caches as outlined in the documentation and the associated testing.
276 *
277 * The L1 cache has a very high bandwidth, albeit its access rate is usually
278 * slower than accessing CPU registers. Therefore, L1 accesses only add minimal
279 * variations as the CPU has hardly to wait. Starting with L2, significant
280 * variations are added because L2 typically does not belong to the CPU any more
281 * and therefore a wider range of CPU wait states is necessary for accesses.
282 * L3 and real memory accesses have even a wider range of wait states. However,
283 * to reliably access either L3 or memory, the ec->mem memory must be quite
284 * large which is usually not desirable.
285 *
286 * Input:
287 * @ec Reference to the entropy collector with the memory access data -- if
288 * the reference to the memory block to be accessed is NULL, this noise
289 * source is disabled
290 * @loop_cnt if a value not equal to 0 is set, use the given value as number of
291 * loops to perform the folding
292 *
293 * @return Number of memory access operations
294 */
fbb145bc
SM
295#pragma GCC push_options
296#pragma GCC optimize ("-O0")
bb5530e4
SM
297static unsigned int jent_memaccess(struct rand_data *ec, __u64 loop_cnt)
298{
299 unsigned char *tmpval = NULL;
300 unsigned int wrap = 0;
301 __u64 i = 0;
302#define MAX_ACC_LOOP_BIT 7
303#define MIN_ACC_LOOP_BIT 0
304 __u64 acc_loop_cnt =
305 jent_loop_shuffle(ec, MAX_ACC_LOOP_BIT, MIN_ACC_LOOP_BIT);
306
307 if (NULL == ec || NULL == ec->mem)
308 return 0;
309 wrap = ec->memblocksize * ec->memblocks;
310
311 /*
312 * testing purposes -- allow test app to set the counter, not
313 * needed during runtime
314 */
315 if (loop_cnt)
316 acc_loop_cnt = loop_cnt;
317
318 for (i = 0; i < (ec->memaccessloops + acc_loop_cnt); i++) {
319 tmpval = ec->mem + ec->memlocation;
320 /*
321 * memory access: just add 1 to one byte,
322 * wrap at 255 -- memory access implies read
323 * from and write to memory location
324 */
325 *tmpval = (*tmpval + 1) & 0xff;
326 /*
327 * Addition of memblocksize - 1 to pointer
328 * with wrap around logic to ensure that every
329 * memory location is hit evenly
330 */
331 ec->memlocation = ec->memlocation + ec->memblocksize - 1;
332 ec->memlocation = ec->memlocation % wrap;
333 }
334 return i;
335}
fbb145bc 336#pragma GCC pop_options
bb5530e4
SM
337
338/***************************************************************************
339 * Start of entropy processing logic
340 ***************************************************************************/
341
342/**
343 * Stuck test by checking the:
344 * 1st derivation of the jitter measurement (time delta)
345 * 2nd derivation of the jitter measurement (delta of time deltas)
346 * 3rd derivation of the jitter measurement (delta of delta of time deltas)
347 *
348 * All values must always be non-zero.
349 *
350 * Input:
351 * @ec Reference to entropy collector
352 * @current_delta Jitter time delta
353 *
354 * @return
355 * 0 jitter measurement not stuck (good bit)
356 * 1 jitter measurement stuck (reject bit)
357 */
358static void jent_stuck(struct rand_data *ec, __u64 current_delta)
359{
360 __s64 delta2 = ec->last_delta - current_delta;
361 __s64 delta3 = delta2 - ec->last_delta2;
362
363 ec->last_delta = current_delta;
364 ec->last_delta2 = delta2;
365
366 if (!current_delta || !delta2 || !delta3)
367 ec->stuck = 1;
368}
369
370/**
371 * This is the heart of the entropy generation: calculate time deltas and
372 * use the CPU jitter in the time deltas. The jitter is folded into one
373 * bit. You can call this function the "random bit generator" as it
374 * produces one random bit per invocation.
375 *
376 * WARNING: ensure that ->prev_time is primed before using the output
377 * of this function! This can be done by calling this function
378 * and not using its result.
379 *
380 * Input:
381 * @entropy_collector Reference to entropy collector
382 *
383 * @return One random bit
384 */
fbb145bc
SM
385#pragma GCC push_options
386#pragma GCC optimize ("-O0")
bb5530e4
SM
387static __u64 jent_measure_jitter(struct rand_data *ec)
388{
389 __u64 time = 0;
390 __u64 data = 0;
391 __u64 current_delta = 0;
392
393 /* Invoke one noise source before time measurement to add variations */
394 jent_memaccess(ec, 0);
395
396 /*
397 * Get time stamp and calculate time delta to previous
398 * invocation to measure the timing variations
399 */
400 jent_get_nstime(&time);
401 current_delta = time - ec->prev_time;
402 ec->prev_time = time;
403
404 /* Now call the next noise sources which also folds the data */
405 jent_fold_time(ec, current_delta, &data, 0);
406
407 /*
408 * Check whether we have a stuck measurement. The enforcement
409 * is performed after the stuck value has been mixed into the
410 * entropy pool.
411 */
412 jent_stuck(ec, current_delta);
413
414 return data;
415}
fbb145bc 416#pragma GCC pop_options
bb5530e4
SM
417
418/**
419 * Von Neuman unbias as explained in RFC 4086 section 4.2. As shown in the
420 * documentation of that RNG, the bits from jent_measure_jitter are considered
421 * independent which implies that the Von Neuman unbias operation is applicable.
422 * A proof of the Von-Neumann unbias operation to remove skews is given in the
423 * document "A proposal for: Functionality classes for random number
424 * generators", version 2.0 by Werner Schindler, section 5.4.1.
425 *
426 * Input:
427 * @entropy_collector Reference to entropy collector
428 *
429 * @return One random bit
430 */
431static __u64 jent_unbiased_bit(struct rand_data *entropy_collector)
432{
433 do {
434 __u64 a = jent_measure_jitter(entropy_collector);
435 __u64 b = jent_measure_jitter(entropy_collector);
436
437 if (a == b)
438 continue;
439 if (1 == a)
440 return 1;
441 else
442 return 0;
443 } while (1);
444}
445
446/**
447 * Shuffle the pool a bit by mixing some value with a bijective function (XOR)
448 * into the pool.
449 *
450 * The function generates a mixer value that depends on the bits set and the
451 * location of the set bits in the random number generated by the entropy
452 * source. Therefore, based on the generated random number, this mixer value
453 * can have 2**64 different values. That mixer value is initialized with the
454 * first two SHA-1 constants. After obtaining the mixer value, it is XORed into
455 * the random number.
456 *
457 * The mixer value is not assumed to contain any entropy. But due to the XOR
458 * operation, it can also not destroy any entropy present in the entropy pool.
459 *
460 * Input:
461 * @entropy_collector Reference to entropy collector
462 */
463static void jent_stir_pool(struct rand_data *entropy_collector)
464{
465 /*
466 * to shut up GCC on 32 bit, we have to initialize the 64 variable
467 * with two 32 bit variables
468 */
469 union c {
470 __u64 u64;
471 __u32 u32[2];
472 };
473 /*
474 * This constant is derived from the first two 32 bit initialization
475 * vectors of SHA-1 as defined in FIPS 180-4 section 5.3.1
476 */
477 union c constant;
478 /*
479 * The start value of the mixer variable is derived from the third
480 * and fourth 32 bit initialization vector of SHA-1 as defined in
481 * FIPS 180-4 section 5.3.1
482 */
483 union c mixer;
484 unsigned int i = 0;
485
486 /*
487 * Store the SHA-1 constants in reverse order to make up the 64 bit
488 * value -- this applies to a little endian system, on a big endian
489 * system, it reverses as expected. But this really does not matter
490 * as we do not rely on the specific numbers. We just pick the SHA-1
491 * constants as they have a good mix of bit set and unset.
492 */
493 constant.u32[1] = 0x67452301;
494 constant.u32[0] = 0xefcdab89;
495 mixer.u32[1] = 0x98badcfe;
496 mixer.u32[0] = 0x10325476;
497
498 for (i = 0; i < DATA_SIZE_BITS; i++) {
499 /*
500 * get the i-th bit of the input random number and only XOR
501 * the constant into the mixer value when that bit is set
502 */
503 if ((entropy_collector->data >> i) & 1)
504 mixer.u64 ^= constant.u64;
505 mixer.u64 = rol64(mixer.u64, 1);
506 }
507 entropy_collector->data ^= mixer.u64;
508}
509
510/**
511 * Generator of one 64 bit random number
512 * Function fills rand_data->data
513 *
514 * Input:
515 * @ec Reference to entropy collector
516 */
fbb145bc
SM
517#pragma GCC push_options
518#pragma GCC optimize ("-O0")
bb5530e4
SM
519static void jent_gen_entropy(struct rand_data *ec)
520{
521 unsigned int k = 0;
522
523 /* priming of the ->prev_time value */
524 jent_measure_jitter(ec);
525
526 while (1) {
527 __u64 data = 0;
528
529 if (ec->disable_unbias == 1)
530 data = jent_measure_jitter(ec);
531 else
532 data = jent_unbiased_bit(ec);
533
534 /* enforcement of the jent_stuck test */
535 if (ec->stuck) {
536 /*
537 * We only mix in the bit considered not appropriate
538 * without the LSFR. The reason is that if we apply
539 * the LSFR and we do not rotate, the 2nd bit with LSFR
540 * will cancel out the first LSFR application on the
541 * bad bit.
542 *
543 * And we do not rotate as we apply the next bit to the
544 * current bit location again.
545 */
546 ec->data ^= data;
547 ec->stuck = 0;
548 continue;
549 }
550
551 /*
552 * Fibonacci LSFR with polynom of
553 * x^64 + x^61 + x^56 + x^31 + x^28 + x^23 + 1 which is
554 * primitive according to
555 * http://poincare.matf.bg.ac.rs/~ezivkovm/publications/primpol1.pdf
556 * (the shift values are the polynom values minus one
557 * due to counting bits from 0 to 63). As the current
558 * position is always the LSB, the polynom only needs
559 * to shift data in from the left without wrap.
560 */
561 ec->data ^= data;
562 ec->data ^= ((ec->data >> 63) & 1);
563 ec->data ^= ((ec->data >> 60) & 1);
564 ec->data ^= ((ec->data >> 55) & 1);
565 ec->data ^= ((ec->data >> 30) & 1);
566 ec->data ^= ((ec->data >> 27) & 1);
567 ec->data ^= ((ec->data >> 22) & 1);
568 ec->data = rol64(ec->data, 1);
569
570 /*
571 * We multiply the loop value with ->osr to obtain the
572 * oversampling rate requested by the caller
573 */
574 if (++k >= (DATA_SIZE_BITS * ec->osr))
575 break;
576 }
577 if (ec->stir)
578 jent_stir_pool(ec);
579}
fbb145bc 580#pragma GCC pop_options
bb5530e4
SM
581
582/**
583 * The continuous test required by FIPS 140-2 -- the function automatically
584 * primes the test if needed.
585 *
586 * Return:
587 * 0 if FIPS test passed
588 * < 0 if FIPS test failed
589 */
590static void jent_fips_test(struct rand_data *ec)
591{
592 if (!fips_enabled)
593 return;
594
595 /* prime the FIPS test */
596 if (!ec->old_data) {
597 ec->old_data = ec->data;
598 jent_gen_entropy(ec);
599 }
600
601 if (ec->data == ec->old_data)
602 panic(DRIVER_NAME ": Duplicate output detected\n");
603
604 ec->old_data = ec->data;
605}
606
607
608/**
609 * Entry function: Obtain entropy for the caller.
610 *
611 * This function invokes the entropy gathering logic as often to generate
612 * as many bytes as requested by the caller. The entropy gathering logic
613 * creates 64 bit per invocation.
614 *
615 * This function truncates the last 64 bit entropy value output to the exact
616 * size specified by the caller.
617 *
618 * Input:
619 * @ec Reference to entropy collector
620 * @data pointer to buffer for storing random data -- buffer must already
621 * exist
622 * @len size of the buffer, specifying also the requested number of random
623 * in bytes
624 *
625 * @return 0 when request is fulfilled or an error
626 *
627 * The following error codes can occur:
628 * -1 entropy_collector is NULL
629 */
630static ssize_t jent_read_entropy(struct rand_data *ec, u8 *data, size_t len)
631{
632 u8 *p = data;
633
634 if (!ec)
635 return -EINVAL;
636
637 while (0 < len) {
638 size_t tocopy;
639
640 jent_gen_entropy(ec);
641 jent_fips_test(ec);
642 if ((DATA_SIZE_BITS / 8) < len)
643 tocopy = (DATA_SIZE_BITS / 8);
644 else
645 tocopy = len;
646 memcpy(p, &ec->data, tocopy);
647
648 len -= tocopy;
649 p += tocopy;
650 }
651
652 return 0;
653}
654
655/***************************************************************************
656 * Initialization logic
657 ***************************************************************************/
658
659static struct rand_data *jent_entropy_collector_alloc(unsigned int osr,
660 unsigned int flags)
661{
662 struct rand_data *entropy_collector;
663
664 entropy_collector = kzalloc(sizeof(struct rand_data), GFP_KERNEL);
665 if (!entropy_collector)
666 return NULL;
667
668 if (!(flags & JENT_DISABLE_MEMORY_ACCESS)) {
669 /* Allocate memory for adding variations based on memory
670 * access
671 */
672 entropy_collector->mem = kzalloc(JENT_MEMORY_SIZE, GFP_KERNEL);
673 if (!entropy_collector->mem) {
674 kfree(entropy_collector);
675 return NULL;
676 }
677 entropy_collector->memblocksize = JENT_MEMORY_BLOCKSIZE;
678 entropy_collector->memblocks = JENT_MEMORY_BLOCKS;
679 entropy_collector->memaccessloops = JENT_MEMORY_ACCESSLOOPS;
680 }
681
682 /* verify and set the oversampling rate */
683 if (0 == osr)
684 osr = 1; /* minimum sampling rate is 1 */
685 entropy_collector->osr = osr;
686
687 entropy_collector->stir = 1;
688 if (flags & JENT_DISABLE_STIR)
689 entropy_collector->stir = 0;
690 if (flags & JENT_DISABLE_UNBIAS)
691 entropy_collector->disable_unbias = 1;
692
693 /* fill the data pad with non-zero values */
694 jent_gen_entropy(entropy_collector);
695
696 return entropy_collector;
697}
698
699static void jent_entropy_collector_free(struct rand_data *entropy_collector)
700{
701 if (entropy_collector->mem)
702 kzfree(entropy_collector->mem);
703 entropy_collector->mem = NULL;
704 if (entropy_collector)
705 kzfree(entropy_collector);
706 entropy_collector = NULL;
707}
708
709static int jent_entropy_init(void)
710{
711 int i;
712 __u64 delta_sum = 0;
713 __u64 old_delta = 0;
714 int time_backwards = 0;
715 int count_var = 0;
716 int count_mod = 0;
717
718 /* We could perform statistical tests here, but the problem is
719 * that we only have a few loop counts to do testing. These
720 * loop counts may show some slight skew and we produce
721 * false positives.
722 *
723 * Moreover, only old systems show potentially problematic
724 * jitter entropy that could potentially be caught here. But
725 * the RNG is intended for hardware that is available or widely
726 * used, but not old systems that are long out of favor. Thus,
727 * no statistical tests.
728 */
729
730 /*
731 * We could add a check for system capabilities such as clock_getres or
732 * check for CONFIG_X86_TSC, but it does not make much sense as the
733 * following sanity checks verify that we have a high-resolution
734 * timer.
735 */
736 /*
737 * TESTLOOPCOUNT needs some loops to identify edge systems. 100 is
738 * definitely too little.
739 */
740#define TESTLOOPCOUNT 300
741#define CLEARCACHE 100
742 for (i = 0; (TESTLOOPCOUNT + CLEARCACHE) > i; i++) {
743 __u64 time = 0;
744 __u64 time2 = 0;
745 __u64 folded = 0;
746 __u64 delta = 0;
747 unsigned int lowdelta = 0;
748
749 jent_get_nstime(&time);
750 jent_fold_time(NULL, time, &folded, 1<<MIN_FOLD_LOOP_BIT);
751 jent_get_nstime(&time2);
752
753 /* test whether timer works */
754 if (!time || !time2)
755 return JENT_ENOTIME;
756 delta = time2 - time;
757 /*
758 * test whether timer is fine grained enough to provide
759 * delta even when called shortly after each other -- this
760 * implies that we also have a high resolution timer
761 */
762 if (!delta)
763 return JENT_ECOARSETIME;
764
765 /*
766 * up to here we did not modify any variable that will be
767 * evaluated later, but we already performed some work. Thus we
768 * already have had an impact on the caches, branch prediction,
769 * etc. with the goal to clear it to get the worst case
770 * measurements.
771 */
772 if (CLEARCACHE > i)
773 continue;
774
775 /* test whether we have an increasing timer */
776 if (!(time2 > time))
777 time_backwards++;
778
779 /*
780 * Avoid modulo of 64 bit integer to allow code to compile
781 * on 32 bit architectures.
782 */
783 lowdelta = time2 - time;
784 if (!(lowdelta % 100))
785 count_mod++;
786
787 /*
788 * ensure that we have a varying delta timer which is necessary
789 * for the calculation of entropy -- perform this check
790 * only after the first loop is executed as we need to prime
791 * the old_data value
792 */
793 if (i) {
794 if (delta != old_delta)
795 count_var++;
796 if (delta > old_delta)
797 delta_sum += (delta - old_delta);
798 else
799 delta_sum += (old_delta - delta);
800 }
801 old_delta = delta;
802 }
803
804 /*
805 * we allow up to three times the time running backwards.
806 * CLOCK_REALTIME is affected by adjtime and NTP operations. Thus,
807 * if such an operation just happens to interfere with our test, it
808 * should not fail. The value of 3 should cover the NTP case being
809 * performed during our test run.
810 */
811 if (3 < time_backwards)
812 return JENT_ENOMONOTONIC;
813 /* Error if the time variances are always identical */
814 if (!delta_sum)
815 return JENT_EVARVAR;
816
817 /*
818 * Variations of deltas of time must on average be larger
819 * than 1 to ensure the entropy estimation
820 * implied with 1 is preserved
821 */
822 if (delta_sum <= 1)
823 return JENT_EMINVARVAR;
824
825 /*
826 * Ensure that we have variations in the time stamp below 10 for at
827 * least 10% of all checks -- on some platforms, the counter
828 * increments in multiples of 100, but not always
829 */
830 if ((TESTLOOPCOUNT/10 * 9) < count_mod)
831 return JENT_ECOARSETIME;
832
833 return 0;
834}
835
836/***************************************************************************
837 * Kernel crypto API interface
838 ***************************************************************************/
839
840struct jitterentropy {
841 spinlock_t jent_lock;
842 struct rand_data *entropy_collector;
843};
844
845static int jent_kcapi_init(struct crypto_tfm *tfm)
846{
847 struct jitterentropy *rng = crypto_tfm_ctx(tfm);
848 int ret = 0;
849
850 rng->entropy_collector = jent_entropy_collector_alloc(1, 0);
851 if (!rng->entropy_collector)
852 ret = -ENOMEM;
853
854 spin_lock_init(&rng->jent_lock);
855 return ret;
856}
857
858static void jent_kcapi_cleanup(struct crypto_tfm *tfm)
859{
860 struct jitterentropy *rng = crypto_tfm_ctx(tfm);
861
862 spin_lock(&rng->jent_lock);
863 if (rng->entropy_collector)
864 jent_entropy_collector_free(rng->entropy_collector);
865 rng->entropy_collector = NULL;
866 spin_unlock(&rng->jent_lock);
867}
868
869static int jent_kcapi_random(struct crypto_rng *tfm,
870 const u8 *src, unsigned int slen,
871 u8 *rdata, unsigned int dlen)
872{
873 struct jitterentropy *rng = crypto_rng_ctx(tfm);
874 int ret = 0;
875
876 spin_lock(&rng->jent_lock);
877 ret = jent_read_entropy(rng->entropy_collector, rdata, dlen);
878 spin_unlock(&rng->jent_lock);
879
880 return ret;
881}
882
883static int jent_kcapi_reset(struct crypto_rng *tfm,
884 const u8 *seed, unsigned int slen)
885{
886 return 0;
887}
888
889static struct rng_alg jent_alg = {
890 .generate = jent_kcapi_random,
891 .seed = jent_kcapi_reset,
892 .seedsize = 0,
893 .base = {
894 .cra_name = "jitterentropy_rng",
895 .cra_driver_name = "jitterentropy_rng",
896 .cra_priority = 100,
897 .cra_ctxsize = sizeof(struct jitterentropy),
898 .cra_module = THIS_MODULE,
899 .cra_init = jent_kcapi_init,
900 .cra_exit = jent_kcapi_cleanup,
901
902 }
903};
904
905static int __init jent_mod_init(void)
906{
907 int ret = 0;
908
909 ret = jent_entropy_init();
910 if (ret) {
911 pr_info(DRIVER_NAME ": Initialization failed with host not compliant with requirements: %d\n", ret);
912 return -EFAULT;
913 }
914 return crypto_register_rng(&jent_alg);
915}
916
917static void __exit jent_mod_exit(void)
918{
919 crypto_unregister_rng(&jent_alg);
920}
921
922module_init(jent_mod_init);
923module_exit(jent_mod_exit);
924
925MODULE_LICENSE("Dual BSD/GPL");
926MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
927MODULE_DESCRIPTION("Non-physical True Random Number Generator based on CPU Jitter");
928MODULE_ALIAS_CRYPTO("jitterentropy_rng");