drm/amdgpu/mn: fix documentation for amdgpu_mn_read_lock
[linux-2.6-block.git] / crypto / Kconfig
CommitLineData
b2441318 1# SPDX-License-Identifier: GPL-2.0
685784aa
DW
2#
3# Generic algorithms support
4#
5config XOR_BLOCKS
6 tristate
7
1da177e4 8#
9bc89cd8 9# async_tx api: hardware offloaded memory transfer/transform support
1da177e4 10#
9bc89cd8 11source "crypto/async_tx/Kconfig"
1da177e4 12
9bc89cd8
DW
13#
14# Cryptographic API Configuration
15#
2e290f43 16menuconfig CRYPTO
c3715cb9 17 tristate "Cryptographic API"
1da177e4
LT
18 help
19 This option provides the core Cryptographic API.
20
cce9e06d
HX
21if CRYPTO
22
584fffc8
SS
23comment "Crypto core or helper"
24
ccb778e1
NH
25config CRYPTO_FIPS
26 bool "FIPS 200 compliance"
f2c89a10 27 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
1f696097 28 depends on (MODULE_SIG || !MODULES)
ccb778e1 29 help
d99324c2
GU
30 This option enables the fips boot option which is
31 required if you want the system to operate in a FIPS 200
ccb778e1 32 certification. You should say no unless you know what
e84c5480 33 this is.
ccb778e1 34
cce9e06d
HX
35config CRYPTO_ALGAPI
36 tristate
6a0fcbb4 37 select CRYPTO_ALGAPI2
cce9e06d
HX
38 help
39 This option provides the API for cryptographic algorithms.
40
6a0fcbb4
HX
41config CRYPTO_ALGAPI2
42 tristate
43
1ae97820
HX
44config CRYPTO_AEAD
45 tristate
6a0fcbb4 46 select CRYPTO_AEAD2
1ae97820
HX
47 select CRYPTO_ALGAPI
48
6a0fcbb4
HX
49config CRYPTO_AEAD2
50 tristate
51 select CRYPTO_ALGAPI2
149a3971
HX
52 select CRYPTO_NULL2
53 select CRYPTO_RNG2
6a0fcbb4 54
5cde0af2
HX
55config CRYPTO_BLKCIPHER
56 tristate
6a0fcbb4 57 select CRYPTO_BLKCIPHER2
5cde0af2 58 select CRYPTO_ALGAPI
6a0fcbb4
HX
59
60config CRYPTO_BLKCIPHER2
61 tristate
62 select CRYPTO_ALGAPI2
63 select CRYPTO_RNG2
5cde0af2 64
055bcee3
HX
65config CRYPTO_HASH
66 tristate
6a0fcbb4 67 select CRYPTO_HASH2
055bcee3
HX
68 select CRYPTO_ALGAPI
69
6a0fcbb4
HX
70config CRYPTO_HASH2
71 tristate
72 select CRYPTO_ALGAPI2
73
17f0f4a4
NH
74config CRYPTO_RNG
75 tristate
6a0fcbb4 76 select CRYPTO_RNG2
17f0f4a4
NH
77 select CRYPTO_ALGAPI
78
6a0fcbb4
HX
79config CRYPTO_RNG2
80 tristate
81 select CRYPTO_ALGAPI2
82
401e4238
HX
83config CRYPTO_RNG_DEFAULT
84 tristate
85 select CRYPTO_DRBG_MENU
86
3c339ab8
TS
87config CRYPTO_AKCIPHER2
88 tristate
89 select CRYPTO_ALGAPI2
90
91config CRYPTO_AKCIPHER
92 tristate
93 select CRYPTO_AKCIPHER2
94 select CRYPTO_ALGAPI
95
4e5f2c40
SB
96config CRYPTO_KPP2
97 tristate
98 select CRYPTO_ALGAPI2
99
100config CRYPTO_KPP
101 tristate
102 select CRYPTO_ALGAPI
103 select CRYPTO_KPP2
104
2ebda74f
GC
105config CRYPTO_ACOMP2
106 tristate
107 select CRYPTO_ALGAPI2
8cd579d2 108 select SGL_ALLOC
2ebda74f
GC
109
110config CRYPTO_ACOMP
111 tristate
112 select CRYPTO_ALGAPI
113 select CRYPTO_ACOMP2
114
2b8c19db
HX
115config CRYPTO_MANAGER
116 tristate "Cryptographic algorithm manager"
6a0fcbb4 117 select CRYPTO_MANAGER2
2b8c19db
HX
118 help
119 Create default cryptographic template instantiations such as
120 cbc(aes).
121
6a0fcbb4
HX
122config CRYPTO_MANAGER2
123 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
124 select CRYPTO_AEAD2
125 select CRYPTO_HASH2
126 select CRYPTO_BLKCIPHER2
946cc463 127 select CRYPTO_AKCIPHER2
4e5f2c40 128 select CRYPTO_KPP2
2ebda74f 129 select CRYPTO_ACOMP2
6a0fcbb4 130
a38f7907
SK
131config CRYPTO_USER
132 tristate "Userspace cryptographic algorithm configuration"
5db017aa 133 depends on NET
a38f7907
SK
134 select CRYPTO_MANAGER
135 help
d19978f5 136 Userspace configuration for cryptographic instantiations such as
a38f7907
SK
137 cbc(aes).
138
929d34ca
EB
139if CRYPTO_MANAGER2
140
326a6346
HX
141config CRYPTO_MANAGER_DISABLE_TESTS
142 bool "Disable run-time self tests"
00ca28a5 143 default y
0b767f96 144 help
326a6346
HX
145 Disable run-time self tests that normally take place at
146 algorithm registration.
0b767f96 147
5b2706a4
EB
148config CRYPTO_MANAGER_EXTRA_TESTS
149 bool "Enable extra run-time crypto self tests"
150 depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS
151 help
152 Enable extra run-time self tests of registered crypto algorithms,
153 including randomized fuzz tests.
154
155 This is intended for developer use only, as these tests take much
156 longer to run than the normal self tests.
157
929d34ca
EB
158endif # if CRYPTO_MANAGER2
159
584fffc8 160config CRYPTO_GF128MUL
e590e132 161 tristate
333b0d7e 162
1da177e4
LT
163config CRYPTO_NULL
164 tristate "Null algorithms"
149a3971 165 select CRYPTO_NULL2
1da177e4
LT
166 help
167 These are 'Null' algorithms, used by IPsec, which do nothing.
168
149a3971 169config CRYPTO_NULL2
dd43c4e9 170 tristate
149a3971
HX
171 select CRYPTO_ALGAPI2
172 select CRYPTO_BLKCIPHER2
173 select CRYPTO_HASH2
174
5068c7a8 175config CRYPTO_PCRYPT
3b4afaf2
KC
176 tristate "Parallel crypto engine"
177 depends on SMP
5068c7a8
SK
178 select PADATA
179 select CRYPTO_MANAGER
180 select CRYPTO_AEAD
181 help
182 This converts an arbitrary crypto algorithm into a parallel
183 algorithm that executes in kernel threads.
184
584fffc8
SS
185config CRYPTO_CRYPTD
186 tristate "Software async crypto daemon"
187 select CRYPTO_BLKCIPHER
b8a28251 188 select CRYPTO_HASH
584fffc8 189 select CRYPTO_MANAGER
1da177e4 190 help
584fffc8
SS
191 This is a generic software asynchronous crypto daemon that
192 converts an arbitrary synchronous software crypto algorithm
193 into an asynchronous algorithm that executes in a kernel thread.
1da177e4 194
584fffc8
SS
195config CRYPTO_AUTHENC
196 tristate "Authenc support"
197 select CRYPTO_AEAD
198 select CRYPTO_BLKCIPHER
199 select CRYPTO_MANAGER
200 select CRYPTO_HASH
e94c6a7a 201 select CRYPTO_NULL
1da177e4 202 help
584fffc8
SS
203 Authenc: Combined mode wrapper for IPsec.
204 This is required for IPSec.
1da177e4 205
584fffc8
SS
206config CRYPTO_TEST
207 tristate "Testing module"
208 depends on m
da7f033d 209 select CRYPTO_MANAGER
1da177e4 210 help
584fffc8 211 Quick & dirty crypto test module.
1da177e4 212
266d0516
HX
213config CRYPTO_SIMD
214 tristate
ffaf9156
JK
215 select CRYPTO_CRYPTD
216
596d8750
JK
217config CRYPTO_GLUE_HELPER_X86
218 tristate
219 depends on X86
065ce327 220 select CRYPTO_BLKCIPHER
596d8750 221
735d37b5
BW
222config CRYPTO_ENGINE
223 tristate
224
3d6228a5
VC
225comment "Public-key cryptography"
226
227config CRYPTO_RSA
228 tristate "RSA algorithm"
229 select CRYPTO_AKCIPHER
230 select CRYPTO_MANAGER
231 select MPILIB
232 select ASN1
233 help
234 Generic implementation of the RSA public key algorithm.
235
236config CRYPTO_DH
237 tristate "Diffie-Hellman algorithm"
238 select CRYPTO_KPP
239 select MPILIB
240 help
241 Generic implementation of the Diffie-Hellman algorithm.
242
4a2289da
VC
243config CRYPTO_ECC
244 tristate
245
3d6228a5
VC
246config CRYPTO_ECDH
247 tristate "ECDH algorithm"
4a2289da 248 select CRYPTO_ECC
3d6228a5
VC
249 select CRYPTO_KPP
250 select CRYPTO_RNG_DEFAULT
251 help
252 Generic implementation of the ECDH algorithm
253
0d7a7864
VC
254config CRYPTO_ECRDSA
255 tristate "EC-RDSA (GOST 34.10) algorithm"
256 select CRYPTO_ECC
257 select CRYPTO_AKCIPHER
258 select CRYPTO_STREEBOG
1036633e
VC
259 select OID_REGISTRY
260 select ASN1
0d7a7864
VC
261 help
262 Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
263 RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic
264 standard algorithms (called GOST algorithms). Only signature verification
265 is implemented.
266
584fffc8 267comment "Authenticated Encryption with Associated Data"
cd12fb90 268
584fffc8
SS
269config CRYPTO_CCM
270 tristate "CCM support"
271 select CRYPTO_CTR
f15f05b0 272 select CRYPTO_HASH
584fffc8 273 select CRYPTO_AEAD
c8a3315a 274 select CRYPTO_MANAGER
1da177e4 275 help
584fffc8 276 Support for Counter with CBC MAC. Required for IPsec.
1da177e4 277
584fffc8
SS
278config CRYPTO_GCM
279 tristate "GCM/GMAC support"
280 select CRYPTO_CTR
281 select CRYPTO_AEAD
9382d97a 282 select CRYPTO_GHASH
9489667d 283 select CRYPTO_NULL
c8a3315a 284 select CRYPTO_MANAGER
1da177e4 285 help
584fffc8
SS
286 Support for Galois/Counter Mode (GCM) and Galois Message
287 Authentication Code (GMAC). Required for IPSec.
1da177e4 288
71ebc4d1
MW
289config CRYPTO_CHACHA20POLY1305
290 tristate "ChaCha20-Poly1305 AEAD support"
291 select CRYPTO_CHACHA20
292 select CRYPTO_POLY1305
293 select CRYPTO_AEAD
c8a3315a 294 select CRYPTO_MANAGER
71ebc4d1
MW
295 help
296 ChaCha20-Poly1305 AEAD support, RFC7539.
297
298 Support for the AEAD wrapper using the ChaCha20 stream cipher combined
299 with the Poly1305 authenticator. It is defined in RFC7539 for use in
300 IETF protocols.
301
f606a88e
OM
302config CRYPTO_AEGIS128
303 tristate "AEGIS-128 AEAD algorithm"
304 select CRYPTO_AEAD
305 select CRYPTO_AES # for AES S-box tables
306 help
307 Support for the AEGIS-128 dedicated AEAD algorithm.
308
309config CRYPTO_AEGIS128L
310 tristate "AEGIS-128L AEAD algorithm"
311 select CRYPTO_AEAD
312 select CRYPTO_AES # for AES S-box tables
313 help
314 Support for the AEGIS-128L dedicated AEAD algorithm.
315
316config CRYPTO_AEGIS256
317 tristate "AEGIS-256 AEAD algorithm"
318 select CRYPTO_AEAD
319 select CRYPTO_AES # for AES S-box tables
320 help
321 Support for the AEGIS-256 dedicated AEAD algorithm.
322
1d373d4e
OM
323config CRYPTO_AEGIS128_AESNI_SSE2
324 tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
325 depends on X86 && 64BIT
326 select CRYPTO_AEAD
de272ca7 327 select CRYPTO_SIMD
1d373d4e 328 help
4e5180eb 329 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm.
1d373d4e
OM
330
331config CRYPTO_AEGIS128L_AESNI_SSE2
332 tristate "AEGIS-128L AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
333 depends on X86 && 64BIT
334 select CRYPTO_AEAD
d628132a 335 select CRYPTO_SIMD
1d373d4e 336 help
4e5180eb 337 AESNI+SSE2 implementation of the AEGIS-128L dedicated AEAD algorithm.
1d373d4e
OM
338
339config CRYPTO_AEGIS256_AESNI_SSE2
340 tristate "AEGIS-256 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
341 depends on X86 && 64BIT
342 select CRYPTO_AEAD
b6708c2d 343 select CRYPTO_SIMD
1d373d4e 344 help
4e5180eb 345 AESNI+SSE2 implementation of the AEGIS-256 dedicated AEAD algorithm.
1d373d4e 346
396be41f
OM
347config CRYPTO_MORUS640
348 tristate "MORUS-640 AEAD algorithm"
349 select CRYPTO_AEAD
350 help
351 Support for the MORUS-640 dedicated AEAD algorithm.
352
56e8e57f 353config CRYPTO_MORUS640_GLUE
2808f173
OM
354 tristate
355 depends on X86
56e8e57f 356 select CRYPTO_AEAD
47730958 357 select CRYPTO_SIMD
56e8e57f
OM
358 help
359 Common glue for SIMD optimizations of the MORUS-640 dedicated AEAD
360 algorithm.
361
6ecc9d9f
OM
362config CRYPTO_MORUS640_SSE2
363 tristate "MORUS-640 AEAD algorithm (x86_64 SSE2 implementation)"
364 depends on X86 && 64BIT
365 select CRYPTO_AEAD
366 select CRYPTO_MORUS640_GLUE
367 help
368 SSE2 implementation of the MORUS-640 dedicated AEAD algorithm.
369
396be41f
OM
370config CRYPTO_MORUS1280
371 tristate "MORUS-1280 AEAD algorithm"
372 select CRYPTO_AEAD
373 help
374 Support for the MORUS-1280 dedicated AEAD algorithm.
375
56e8e57f 376config CRYPTO_MORUS1280_GLUE
2808f173
OM
377 tristate
378 depends on X86
56e8e57f 379 select CRYPTO_AEAD
e151a8d2 380 select CRYPTO_SIMD
56e8e57f
OM
381 help
382 Common glue for SIMD optimizations of the MORUS-1280 dedicated AEAD
6ecc9d9f
OM
383 algorithm.
384
385config CRYPTO_MORUS1280_SSE2
386 tristate "MORUS-1280 AEAD algorithm (x86_64 SSE2 implementation)"
387 depends on X86 && 64BIT
388 select CRYPTO_AEAD
389 select CRYPTO_MORUS1280_GLUE
390 help
391 SSE2 optimizedimplementation of the MORUS-1280 dedicated AEAD
392 algorithm.
393
394config CRYPTO_MORUS1280_AVX2
395 tristate "MORUS-1280 AEAD algorithm (x86_64 AVX2 implementation)"
396 depends on X86 && 64BIT
397 select CRYPTO_AEAD
398 select CRYPTO_MORUS1280_GLUE
399 help
400 AVX2 optimized implementation of the MORUS-1280 dedicated AEAD
56e8e57f
OM
401 algorithm.
402
584fffc8
SS
403config CRYPTO_SEQIV
404 tristate "Sequence Number IV Generator"
405 select CRYPTO_AEAD
406 select CRYPTO_BLKCIPHER
856e3f40 407 select CRYPTO_NULL
401e4238 408 select CRYPTO_RNG_DEFAULT
c8a3315a 409 select CRYPTO_MANAGER
1da177e4 410 help
584fffc8
SS
411 This IV generator generates an IV based on a sequence number by
412 xoring it with a salt. This algorithm is mainly useful for CTR
1da177e4 413
a10f554f
HX
414config CRYPTO_ECHAINIV
415 tristate "Encrypted Chain IV Generator"
416 select CRYPTO_AEAD
417 select CRYPTO_NULL
401e4238 418 select CRYPTO_RNG_DEFAULT
c8a3315a 419 select CRYPTO_MANAGER
a10f554f
HX
420 help
421 This IV generator generates an IV based on the encryption of
422 a sequence number xored with a salt. This is the default
423 algorithm for CBC.
424
584fffc8 425comment "Block modes"
c494e070 426
584fffc8
SS
427config CRYPTO_CBC
428 tristate "CBC support"
db131ef9 429 select CRYPTO_BLKCIPHER
43518407 430 select CRYPTO_MANAGER
db131ef9 431 help
584fffc8
SS
432 CBC: Cipher Block Chaining mode
433 This block cipher algorithm is required for IPSec.
db131ef9 434
a7d85e06
JB
435config CRYPTO_CFB
436 tristate "CFB support"
437 select CRYPTO_BLKCIPHER
438 select CRYPTO_MANAGER
439 help
440 CFB: Cipher FeedBack mode
441 This block cipher algorithm is required for TPM2 Cryptography.
442
584fffc8
SS
443config CRYPTO_CTR
444 tristate "CTR support"
db131ef9 445 select CRYPTO_BLKCIPHER
584fffc8 446 select CRYPTO_SEQIV
43518407 447 select CRYPTO_MANAGER
db131ef9 448 help
584fffc8 449 CTR: Counter mode
db131ef9
HX
450 This block cipher algorithm is required for IPSec.
451
584fffc8
SS
452config CRYPTO_CTS
453 tristate "CTS support"
454 select CRYPTO_BLKCIPHER
c8a3315a 455 select CRYPTO_MANAGER
584fffc8
SS
456 help
457 CTS: Cipher Text Stealing
458 This is the Cipher Text Stealing mode as described by
ecd6d5c9
GBY
459 Section 8 of rfc2040 and referenced by rfc3962
460 (rfc3962 includes errata information in its Appendix A) or
461 CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
584fffc8
SS
462 This mode is required for Kerberos gss mechanism support
463 for AES encryption.
464
ecd6d5c9
GBY
465 See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final
466
584fffc8
SS
467config CRYPTO_ECB
468 tristate "ECB support"
91652be5
DH
469 select CRYPTO_BLKCIPHER
470 select CRYPTO_MANAGER
91652be5 471 help
584fffc8
SS
472 ECB: Electronic CodeBook mode
473 This is the simplest block cipher algorithm. It simply encrypts
474 the input block by block.
91652be5 475
64470f1b 476config CRYPTO_LRW
2470a2b2 477 tristate "LRW support"
64470f1b
RS
478 select CRYPTO_BLKCIPHER
479 select CRYPTO_MANAGER
480 select CRYPTO_GF128MUL
481 help
482 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
483 narrow block cipher mode for dm-crypt. Use it with cipher
484 specification string aes-lrw-benbi, the key must be 256, 320 or 384.
485 The first 128, 192 or 256 bits in the key are used for AES and the
486 rest is used to tie each cipher block to its logical position.
487
e497c518
GBY
488config CRYPTO_OFB
489 tristate "OFB support"
490 select CRYPTO_BLKCIPHER
491 select CRYPTO_MANAGER
492 help
493 OFB: the Output Feedback mode makes a block cipher into a synchronous
494 stream cipher. It generates keystream blocks, which are then XORed
495 with the plaintext blocks to get the ciphertext. Flipping a bit in the
496 ciphertext produces a flipped bit in the plaintext at the same
497 location. This property allows many error correcting codes to function
498 normally even when applied before encryption.
499
584fffc8
SS
500config CRYPTO_PCBC
501 tristate "PCBC support"
502 select CRYPTO_BLKCIPHER
503 select CRYPTO_MANAGER
504 help
505 PCBC: Propagating Cipher Block Chaining mode
506 This block cipher algorithm is required for RxRPC.
507
f19f5111 508config CRYPTO_XTS
5bcf8e6d 509 tristate "XTS support"
f19f5111
RS
510 select CRYPTO_BLKCIPHER
511 select CRYPTO_MANAGER
12cb3a1c 512 select CRYPTO_ECB
f19f5111
RS
513 help
514 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
515 key size 256, 384 or 512 bits. This implementation currently
516 can't handle a sectorsize which is not a multiple of 16 bytes.
517
1c49678e
SM
518config CRYPTO_KEYWRAP
519 tristate "Key wrapping support"
520 select CRYPTO_BLKCIPHER
c8a3315a 521 select CRYPTO_MANAGER
1c49678e
SM
522 help
523 Support for key wrapping (NIST SP800-38F / RFC3394) without
524 padding.
525
26609a21
EB
526config CRYPTO_NHPOLY1305
527 tristate
528 select CRYPTO_HASH
529 select CRYPTO_POLY1305
530
012c8238
EB
531config CRYPTO_NHPOLY1305_SSE2
532 tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
533 depends on X86 && 64BIT
534 select CRYPTO_NHPOLY1305
535 help
536 SSE2 optimized implementation of the hash function used by the
537 Adiantum encryption mode.
538
0f961f9f
EB
539config CRYPTO_NHPOLY1305_AVX2
540 tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
541 depends on X86 && 64BIT
542 select CRYPTO_NHPOLY1305
543 help
544 AVX2 optimized implementation of the hash function used by the
545 Adiantum encryption mode.
546
059c2a4d
EB
547config CRYPTO_ADIANTUM
548 tristate "Adiantum support"
549 select CRYPTO_CHACHA20
550 select CRYPTO_POLY1305
551 select CRYPTO_NHPOLY1305
c8a3315a 552 select CRYPTO_MANAGER
059c2a4d
EB
553 help
554 Adiantum is a tweakable, length-preserving encryption mode
555 designed for fast and secure disk encryption, especially on
556 CPUs without dedicated crypto instructions. It encrypts
557 each sector using the XChaCha12 stream cipher, two passes of
558 an ε-almost-∆-universal hash function, and an invocation of
559 the AES-256 block cipher on a single 16-byte block. On CPUs
560 without AES instructions, Adiantum is much faster than
561 AES-XTS.
562
563 Adiantum's security is provably reducible to that of its
564 underlying stream and block ciphers, subject to a security
565 bound. Unlike XTS, Adiantum is a true wide-block encryption
566 mode, so it actually provides an even stronger notion of
567 security than XTS, subject to the security bound.
568
569 If unsure, say N.
570
584fffc8
SS
571comment "Hash modes"
572
93b5e86a
JK
573config CRYPTO_CMAC
574 tristate "CMAC support"
575 select CRYPTO_HASH
576 select CRYPTO_MANAGER
577 help
578 Cipher-based Message Authentication Code (CMAC) specified by
579 The National Institute of Standards and Technology (NIST).
580
581 https://tools.ietf.org/html/rfc4493
582 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
583
584fffc8
SS
584config CRYPTO_HMAC
585 tristate "HMAC support"
586 select CRYPTO_HASH
23e353c8 587 select CRYPTO_MANAGER
23e353c8 588 help
584fffc8
SS
589 HMAC: Keyed-Hashing for Message Authentication (RFC2104).
590 This is required for IPSec.
23e353c8 591
584fffc8
SS
592config CRYPTO_XCBC
593 tristate "XCBC support"
584fffc8
SS
594 select CRYPTO_HASH
595 select CRYPTO_MANAGER
76cb9521 596 help
584fffc8
SS
597 XCBC: Keyed-Hashing with encryption algorithm
598 http://www.ietf.org/rfc/rfc3566.txt
599 http://csrc.nist.gov/encryption/modes/proposedmodes/
600 xcbc-mac/xcbc-mac-spec.pdf
76cb9521 601
f1939f7c
SW
602config CRYPTO_VMAC
603 tristate "VMAC support"
f1939f7c
SW
604 select CRYPTO_HASH
605 select CRYPTO_MANAGER
606 help
607 VMAC is a message authentication algorithm designed for
608 very high speed on 64-bit architectures.
609
610 See also:
611 <http://fastcrypto.org/vmac>
612
584fffc8 613comment "Digest"
28db8e3e 614
584fffc8
SS
615config CRYPTO_CRC32C
616 tristate "CRC32c CRC algorithm"
5773a3e6 617 select CRYPTO_HASH
6a0962b2 618 select CRC32
4a49b499 619 help
584fffc8
SS
620 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used
621 by iSCSI for header and data digests and by others.
69c35efc 622 See Castagnoli93. Module will be crc32c.
4a49b499 623
8cb51ba8
AZ
624config CRYPTO_CRC32C_INTEL
625 tristate "CRC32c INTEL hardware acceleration"
626 depends on X86
627 select CRYPTO_HASH
628 help
629 In Intel processor with SSE4.2 supported, the processor will
630 support CRC32C implementation using hardware accelerated CRC32
631 instruction. This option will create 'crc32c-intel' module,
632 which will enable any routine to use the CRC32 instruction to
633 gain performance compared with software implementation.
634 Module will be crc32c-intel.
635
7cf31864 636config CRYPTO_CRC32C_VPMSUM
6dd7a82c 637 tristate "CRC32c CRC algorithm (powerpc64)"
c12abf34 638 depends on PPC64 && ALTIVEC
6dd7a82c
AB
639 select CRYPTO_HASH
640 select CRC32
641 help
642 CRC32c algorithm implemented using vector polynomial multiply-sum
643 (vpmsum) instructions, introduced in POWER8. Enable on POWER8
644 and newer processors for improved performance.
645
646
442a7c40
DM
647config CRYPTO_CRC32C_SPARC64
648 tristate "CRC32c CRC algorithm (SPARC64)"
649 depends on SPARC64
650 select CRYPTO_HASH
651 select CRC32
652 help
653 CRC32c CRC algorithm implemented using sparc64 crypto instructions,
654 when available.
655
78c37d19
AB
656config CRYPTO_CRC32
657 tristate "CRC32 CRC algorithm"
658 select CRYPTO_HASH
659 select CRC32
660 help
661 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
662 Shash crypto api wrappers to crc32_le function.
663
664config CRYPTO_CRC32_PCLMUL
665 tristate "CRC32 PCLMULQDQ hardware acceleration"
666 depends on X86
667 select CRYPTO_HASH
668 select CRC32
669 help
670 From Intel Westmere and AMD Bulldozer processor with SSE4.2
671 and PCLMULQDQ supported, the processor will support
672 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
af8cb01f 673 instruction. This option will create 'crc32-pclmul' module,
78c37d19
AB
674 which will enable any routine to use the CRC-32-IEEE 802.3 checksum
675 and gain better performance as compared with the table implementation.
676
4a5dc51e
MN
677config CRYPTO_CRC32_MIPS
678 tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
679 depends on MIPS_CRC_SUPPORT
680 select CRYPTO_HASH
681 help
682 CRC32c and CRC32 CRC algorithms implemented using mips crypto
683 instructions, when available.
684
685
67882e76
NB
686config CRYPTO_XXHASH
687 tristate "xxHash hash algorithm"
688 select CRYPTO_HASH
689 select XXHASH
690 help
691 xxHash non-cryptographic hash algorithm. Extremely fast, working at
692 speeds close to RAM limits.
693
68411521
HX
694config CRYPTO_CRCT10DIF
695 tristate "CRCT10DIF algorithm"
696 select CRYPTO_HASH
697 help
698 CRC T10 Data Integrity Field computation is being cast as
699 a crypto transform. This allows for faster crc t10 diff
700 transforms to be used if they are available.
701
702config CRYPTO_CRCT10DIF_PCLMUL
703 tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
704 depends on X86 && 64BIT && CRC_T10DIF
705 select CRYPTO_HASH
706 help
707 For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
708 CRC T10 DIF PCLMULQDQ computation can be hardware
709 accelerated PCLMULQDQ instruction. This option will create
af8cb01f 710 'crct10dif-pclmul' module, which is faster when computing the
68411521
HX
711 crct10dif checksum as compared with the generic table implementation.
712
b01df1c1
DA
713config CRYPTO_CRCT10DIF_VPMSUM
714 tristate "CRC32T10DIF powerpc64 hardware acceleration"
715 depends on PPC64 && ALTIVEC && CRC_T10DIF
716 select CRYPTO_HASH
717 help
718 CRC10T10DIF algorithm implemented using vector polynomial
719 multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
720 POWER8 and newer processors for improved performance.
721
146c8688
DA
722config CRYPTO_VPMSUM_TESTER
723 tristate "Powerpc64 vpmsum hardware acceleration tester"
724 depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
725 help
726 Stress test for CRC32c and CRC-T10DIF algorithms implemented with
727 POWER8 vpmsum instructions.
728 Unless you are testing these algorithms, you don't need this.
729
2cdc6899
HY
730config CRYPTO_GHASH
731 tristate "GHASH digest algorithm"
2cdc6899 732 select CRYPTO_GF128MUL
578c60fb 733 select CRYPTO_HASH
2cdc6899
HY
734 help
735 GHASH is message digest algorithm for GCM (Galois/Counter Mode).
736
f979e014
MW
737config CRYPTO_POLY1305
738 tristate "Poly1305 authenticator algorithm"
578c60fb 739 select CRYPTO_HASH
f979e014
MW
740 help
741 Poly1305 authenticator algorithm, RFC7539.
742
743 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
744 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
745 in IETF protocols. This is the portable C implementation of Poly1305.
746
c70f4abe 747config CRYPTO_POLY1305_X86_64
b1ccc8f4 748 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
c70f4abe
MW
749 depends on X86 && 64BIT
750 select CRYPTO_POLY1305
751 help
752 Poly1305 authenticator algorithm, RFC7539.
753
754 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
755 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
756 in IETF protocols. This is the x86_64 assembler implementation using SIMD
757 instructions.
758
584fffc8
SS
759config CRYPTO_MD4
760 tristate "MD4 digest algorithm"
808a1763 761 select CRYPTO_HASH
124b53d0 762 help
584fffc8 763 MD4 message digest algorithm (RFC1320).
124b53d0 764
584fffc8
SS
765config CRYPTO_MD5
766 tristate "MD5 digest algorithm"
14b75ba7 767 select CRYPTO_HASH
1da177e4 768 help
584fffc8 769 MD5 message digest algorithm (RFC1321).
1da177e4 770
d69e75de
AK
771config CRYPTO_MD5_OCTEON
772 tristate "MD5 digest algorithm (OCTEON)"
773 depends on CPU_CAVIUM_OCTEON
774 select CRYPTO_MD5
775 select CRYPTO_HASH
776 help
777 MD5 message digest algorithm (RFC1321) implemented
778 using OCTEON crypto instructions, when available.
779
e8e59953
MS
780config CRYPTO_MD5_PPC
781 tristate "MD5 digest algorithm (PPC)"
782 depends on PPC
783 select CRYPTO_HASH
784 help
785 MD5 message digest algorithm (RFC1321) implemented
786 in PPC assembler.
787
fa4dfedc
DM
788config CRYPTO_MD5_SPARC64
789 tristate "MD5 digest algorithm (SPARC64)"
790 depends on SPARC64
791 select CRYPTO_MD5
792 select CRYPTO_HASH
793 help
794 MD5 message digest algorithm (RFC1321) implemented
795 using sparc64 crypto instructions, when available.
796
584fffc8
SS
797config CRYPTO_MICHAEL_MIC
798 tristate "Michael MIC keyed digest algorithm"
19e2bf14 799 select CRYPTO_HASH
90831639 800 help
584fffc8
SS
801 Michael MIC is used for message integrity protection in TKIP
802 (IEEE 802.11i). This algorithm is required for TKIP, but it
803 should not be used for other purposes because of the weakness
804 of the algorithm.
90831639 805
82798f90 806config CRYPTO_RMD128
b6d44341 807 tristate "RIPEMD-128 digest algorithm"
7c4468bc 808 select CRYPTO_HASH
b6d44341
AB
809 help
810 RIPEMD-128 (ISO/IEC 10118-3:2004).
82798f90 811
b6d44341 812 RIPEMD-128 is a 128-bit cryptographic hash function. It should only
35ed4b35 813 be used as a secure replacement for RIPEMD. For other use cases,
b6d44341 814 RIPEMD-160 should be used.
82798f90 815
b6d44341 816 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
6d8de74c 817 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
82798f90
AKR
818
819config CRYPTO_RMD160
b6d44341 820 tristate "RIPEMD-160 digest algorithm"
e5835fba 821 select CRYPTO_HASH
b6d44341
AB
822 help
823 RIPEMD-160 (ISO/IEC 10118-3:2004).
82798f90 824
b6d44341
AB
825 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
826 to be used as a secure replacement for the 128-bit hash functions
827 MD4, MD5 and it's predecessor RIPEMD
828 (not to be confused with RIPEMD-128).
82798f90 829
b6d44341
AB
830 It's speed is comparable to SHA1 and there are no known attacks
831 against RIPEMD-160.
534fe2c1 832
b6d44341 833 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
6d8de74c 834 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
534fe2c1
AKR
835
836config CRYPTO_RMD256
b6d44341 837 tristate "RIPEMD-256 digest algorithm"
d8a5e2e9 838 select CRYPTO_HASH
b6d44341
AB
839 help
840 RIPEMD-256 is an optional extension of RIPEMD-128 with a
841 256 bit hash. It is intended for applications that require
842 longer hash-results, without needing a larger security level
843 (than RIPEMD-128).
534fe2c1 844
b6d44341 845 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
6d8de74c 846 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
534fe2c1
AKR
847
848config CRYPTO_RMD320
b6d44341 849 tristate "RIPEMD-320 digest algorithm"
3b8efb4c 850 select CRYPTO_HASH
b6d44341
AB
851 help
852 RIPEMD-320 is an optional extension of RIPEMD-160 with a
853 320 bit hash. It is intended for applications that require
854 longer hash-results, without needing a larger security level
855 (than RIPEMD-160).
534fe2c1 856
b6d44341 857 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
6d8de74c 858 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
82798f90 859
584fffc8
SS
860config CRYPTO_SHA1
861 tristate "SHA1 digest algorithm"
54ccb367 862 select CRYPTO_HASH
1da177e4 863 help
584fffc8 864 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
1da177e4 865
66be8951 866config CRYPTO_SHA1_SSSE3
e38b6b7f 867 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
66be8951
MK
868 depends on X86 && 64BIT
869 select CRYPTO_SHA1
870 select CRYPTO_HASH
871 help
872 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
873 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
e38b6b7f 874 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
875 when available.
66be8951 876
8275d1aa 877config CRYPTO_SHA256_SSSE3
e38b6b7f 878 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
8275d1aa
TC
879 depends on X86 && 64BIT
880 select CRYPTO_SHA256
881 select CRYPTO_HASH
882 help
883 SHA-256 secure hash standard (DFIPS 180-2) implemented
884 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
885 Extensions version 1 (AVX1), or Advanced Vector Extensions
e38b6b7f 886 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
887 Instructions) when available.
87de4579
TC
888
889config CRYPTO_SHA512_SSSE3
890 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
891 depends on X86 && 64BIT
892 select CRYPTO_SHA512
893 select CRYPTO_HASH
894 help
895 SHA-512 secure hash standard (DFIPS 180-2) implemented
896 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
897 Extensions version 1 (AVX1), or Advanced Vector Extensions
8275d1aa
TC
898 version 2 (AVX2) instructions, when available.
899
efdb6f6e
AK
900config CRYPTO_SHA1_OCTEON
901 tristate "SHA1 digest algorithm (OCTEON)"
902 depends on CPU_CAVIUM_OCTEON
903 select CRYPTO_SHA1
904 select CRYPTO_HASH
905 help
906 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
907 using OCTEON crypto instructions, when available.
908
4ff28d4c
DM
909config CRYPTO_SHA1_SPARC64
910 tristate "SHA1 digest algorithm (SPARC64)"
911 depends on SPARC64
912 select CRYPTO_SHA1
913 select CRYPTO_HASH
914 help
915 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
916 using sparc64 crypto instructions, when available.
917
323a6bf1
ME
918config CRYPTO_SHA1_PPC
919 tristate "SHA1 digest algorithm (powerpc)"
920 depends on PPC
921 help
922 This is the powerpc hardware accelerated implementation of the
923 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
924
d9850fc5
MS
925config CRYPTO_SHA1_PPC_SPE
926 tristate "SHA1 digest algorithm (PPC SPE)"
927 depends on PPC && SPE
928 help
929 SHA-1 secure hash standard (DFIPS 180-4) implemented
930 using powerpc SPE SIMD instruction set.
931
584fffc8
SS
932config CRYPTO_SHA256
933 tristate "SHA224 and SHA256 digest algorithm"
50e109b5 934 select CRYPTO_HASH
1da177e4 935 help
584fffc8 936 SHA256 secure hash standard (DFIPS 180-2).
1da177e4 937
584fffc8
SS
938 This version of SHA implements a 256 bit hash with 128 bits of
939 security against collision attacks.
2729bb42 940
b6d44341
AB
941 This code also includes SHA-224, a 224 bit hash with 112 bits
942 of security against collision attacks.
584fffc8 943
2ecc1e95
MS
944config CRYPTO_SHA256_PPC_SPE
945 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
946 depends on PPC && SPE
947 select CRYPTO_SHA256
948 select CRYPTO_HASH
949 help
950 SHA224 and SHA256 secure hash standard (DFIPS 180-2)
951 implemented using powerpc SPE SIMD instruction set.
952
efdb6f6e
AK
953config CRYPTO_SHA256_OCTEON
954 tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
955 depends on CPU_CAVIUM_OCTEON
956 select CRYPTO_SHA256
957 select CRYPTO_HASH
958 help
959 SHA-256 secure hash standard (DFIPS 180-2) implemented
960 using OCTEON crypto instructions, when available.
961
86c93b24
DM
962config CRYPTO_SHA256_SPARC64
963 tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
964 depends on SPARC64
965 select CRYPTO_SHA256
966 select CRYPTO_HASH
967 help
968 SHA-256 secure hash standard (DFIPS 180-2) implemented
969 using sparc64 crypto instructions, when available.
970
584fffc8
SS
971config CRYPTO_SHA512
972 tristate "SHA384 and SHA512 digest algorithms"
bd9d20db 973 select CRYPTO_HASH
b9f535ff 974 help
584fffc8 975 SHA512 secure hash standard (DFIPS 180-2).
b9f535ff 976
584fffc8
SS
977 This version of SHA implements a 512 bit hash with 256 bits of
978 security against collision attacks.
b9f535ff 979
584fffc8
SS
980 This code also includes SHA-384, a 384 bit hash with 192 bits
981 of security against collision attacks.
b9f535ff 982
efdb6f6e
AK
983config CRYPTO_SHA512_OCTEON
984 tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
985 depends on CPU_CAVIUM_OCTEON
986 select CRYPTO_SHA512
987 select CRYPTO_HASH
988 help
989 SHA-512 secure hash standard (DFIPS 180-2) implemented
990 using OCTEON crypto instructions, when available.
991
775e0c69
DM
992config CRYPTO_SHA512_SPARC64
993 tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
994 depends on SPARC64
995 select CRYPTO_SHA512
996 select CRYPTO_HASH
997 help
998 SHA-512 secure hash standard (DFIPS 180-2) implemented
999 using sparc64 crypto instructions, when available.
1000
53964b9e
JG
1001config CRYPTO_SHA3
1002 tristate "SHA3 digest algorithm"
1003 select CRYPTO_HASH
1004 help
1005 SHA-3 secure hash standard (DFIPS 202). It's based on
1006 cryptographic sponge function family called Keccak.
1007
1008 References:
1009 http://keccak.noekeon.org/
1010
4f0fc160
GBY
1011config CRYPTO_SM3
1012 tristate "SM3 digest algorithm"
1013 select CRYPTO_HASH
1014 help
1015 SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
1016 It is part of the Chinese Commercial Cryptography suite.
1017
1018 References:
1019 http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
1020 https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
1021
fe18957e
VC
1022config CRYPTO_STREEBOG
1023 tristate "Streebog Hash Function"
1024 select CRYPTO_HASH
1025 help
1026 Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
1027 cryptographic standard algorithms (called GOST algorithms).
1028 This setting enables two hash algorithms with 256 and 512 bits output.
1029
1030 References:
1031 https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1032 https://tools.ietf.org/html/rfc6986
1033
584fffc8
SS
1034config CRYPTO_TGR192
1035 tristate "Tiger digest algorithms"
f63fbd3d 1036 select CRYPTO_HASH
eaf44088 1037 help
584fffc8 1038 Tiger hash algorithm 192, 160 and 128-bit hashes
eaf44088 1039
584fffc8
SS
1040 Tiger is a hash function optimized for 64-bit processors while
1041 still having decent performance on 32-bit processors.
1042 Tiger was developed by Ross Anderson and Eli Biham.
eaf44088
JF
1043
1044 See also:
584fffc8 1045 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
eaf44088 1046
584fffc8
SS
1047config CRYPTO_WP512
1048 tristate "Whirlpool digest algorithms"
4946510b 1049 select CRYPTO_HASH
1da177e4 1050 help
584fffc8 1051 Whirlpool hash algorithm 512, 384 and 256-bit hashes
1da177e4 1052
584fffc8
SS
1053 Whirlpool-512 is part of the NESSIE cryptographic primitives.
1054 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
1da177e4
LT
1055
1056 See also:
6d8de74c 1057 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
584fffc8 1058
0e1227d3
HY
1059config CRYPTO_GHASH_CLMUL_NI_INTEL
1060 tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
8af00860 1061 depends on X86 && 64BIT
0e1227d3
HY
1062 select CRYPTO_CRYPTD
1063 help
1064 GHASH is message digest algorithm for GCM (Galois/Counter Mode).
1065 The implementation is accelerated by CLMUL-NI of Intel.
1066
584fffc8 1067comment "Ciphers"
1da177e4
LT
1068
1069config CRYPTO_AES
1070 tristate "AES cipher algorithms"
cce9e06d 1071 select CRYPTO_ALGAPI
1da177e4 1072 help
584fffc8 1073 AES cipher algorithms (FIPS-197). AES uses the Rijndael
1da177e4
LT
1074 algorithm.
1075
1076 Rijndael appears to be consistently a very good performer in
584fffc8
SS
1077 both hardware and software across a wide range of computing
1078 environments regardless of its use in feedback or non-feedback
1079 modes. Its key setup time is excellent, and its key agility is
1080 good. Rijndael's very low memory requirements make it very well
1081 suited for restricted-space environments, in which it also
1082 demonstrates excellent performance. Rijndael's operations are
1083 among the easiest to defend against power and timing attacks.
1da177e4 1084
584fffc8 1085 The AES specifies three key sizes: 128, 192 and 256 bits
1da177e4
LT
1086
1087 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
1088
b5e0b032
AB
1089config CRYPTO_AES_TI
1090 tristate "Fixed time AES cipher"
1091 select CRYPTO_ALGAPI
1092 help
1093 This is a generic implementation of AES that attempts to eliminate
1094 data dependent latencies as much as possible without affecting
1095 performance too much. It is intended for use by the generic CCM
1096 and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
1097 solely on encryption (although decryption is supported as well, but
1098 with a more dramatic performance hit)
1099
1100 Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
1101 8 for decryption), this implementation only uses just two S-boxes of
1102 256 bytes each, and attempts to eliminate data dependent latencies by
1103 prefetching the entire table into the cache at the start of each
0a6a40c2
EB
1104 block. Interrupts are also disabled to avoid races where cachelines
1105 are evicted when the CPU is interrupted to do something else.
b5e0b032 1106
1da177e4
LT
1107config CRYPTO_AES_586
1108 tristate "AES cipher algorithms (i586)"
cce9e06d
HX
1109 depends on (X86 || UML_X86) && !64BIT
1110 select CRYPTO_ALGAPI
5157dea8 1111 select CRYPTO_AES
1da177e4 1112 help
584fffc8 1113 AES cipher algorithms (FIPS-197). AES uses the Rijndael
1da177e4
LT
1114 algorithm.
1115
1116 Rijndael appears to be consistently a very good performer in
584fffc8
SS
1117 both hardware and software across a wide range of computing
1118 environments regardless of its use in feedback or non-feedback
1119 modes. Its key setup time is excellent, and its key agility is
1120 good. Rijndael's very low memory requirements make it very well
1121 suited for restricted-space environments, in which it also
1122 demonstrates excellent performance. Rijndael's operations are
1123 among the easiest to defend against power and timing attacks.
1da177e4 1124
584fffc8 1125 The AES specifies three key sizes: 128, 192 and 256 bits
a2a892a2
AS
1126
1127 See <http://csrc.nist.gov/encryption/aes/> for more information.
1128
1129config CRYPTO_AES_X86_64
1130 tristate "AES cipher algorithms (x86_64)"
cce9e06d
HX
1131 depends on (X86 || UML_X86) && 64BIT
1132 select CRYPTO_ALGAPI
81190b32 1133 select CRYPTO_AES
a2a892a2 1134 help
584fffc8 1135 AES cipher algorithms (FIPS-197). AES uses the Rijndael
a2a892a2
AS
1136 algorithm.
1137
1138 Rijndael appears to be consistently a very good performer in
584fffc8
SS
1139 both hardware and software across a wide range of computing
1140 environments regardless of its use in feedback or non-feedback
1141 modes. Its key setup time is excellent, and its key agility is
54b6a1bd
HY
1142 good. Rijndael's very low memory requirements make it very well
1143 suited for restricted-space environments, in which it also
1144 demonstrates excellent performance. Rijndael's operations are
1145 among the easiest to defend against power and timing attacks.
1146
1147 The AES specifies three key sizes: 128, 192 and 256 bits
1148
1149 See <http://csrc.nist.gov/encryption/aes/> for more information.
1150
1151config CRYPTO_AES_NI_INTEL
1152 tristate "AES cipher algorithms (AES-NI)"
8af00860 1153 depends on X86
85671860 1154 select CRYPTO_AEAD
0d258efb
MK
1155 select CRYPTO_AES_X86_64 if 64BIT
1156 select CRYPTO_AES_586 if !64BIT
54b6a1bd 1157 select CRYPTO_ALGAPI
85671860 1158 select CRYPTO_BLKCIPHER
7643a11a 1159 select CRYPTO_GLUE_HELPER_X86 if 64BIT
85671860 1160 select CRYPTO_SIMD
54b6a1bd
HY
1161 help
1162 Use Intel AES-NI instructions for AES algorithm.
1163
1164 AES cipher algorithms (FIPS-197). AES uses the Rijndael
1165 algorithm.
1166
1167 Rijndael appears to be consistently a very good performer in
1168 both hardware and software across a wide range of computing
1169 environments regardless of its use in feedback or non-feedback
1170 modes. Its key setup time is excellent, and its key agility is
584fffc8
SS
1171 good. Rijndael's very low memory requirements make it very well
1172 suited for restricted-space environments, in which it also
1173 demonstrates excellent performance. Rijndael's operations are
1174 among the easiest to defend against power and timing attacks.
a2a892a2 1175
584fffc8 1176 The AES specifies three key sizes: 128, 192 and 256 bits
1da177e4
LT
1177
1178 See <http://csrc.nist.gov/encryption/aes/> for more information.
1179
0d258efb
MK
1180 In addition to AES cipher algorithm support, the acceleration
1181 for some popular block cipher mode is supported too, including
944585a6 1182 ECB, CBC, LRW, XTS. The 64 bit version has additional
0d258efb 1183 acceleration for CTR.
2cf4ac8b 1184
9bf4852d
DM
1185config CRYPTO_AES_SPARC64
1186 tristate "AES cipher algorithms (SPARC64)"
1187 depends on SPARC64
1188 select CRYPTO_CRYPTD
1189 select CRYPTO_ALGAPI
1190 help
1191 Use SPARC64 crypto opcodes for AES algorithm.
1192
1193 AES cipher algorithms (FIPS-197). AES uses the Rijndael
1194 algorithm.
1195
1196 Rijndael appears to be consistently a very good performer in
1197 both hardware and software across a wide range of computing
1198 environments regardless of its use in feedback or non-feedback
1199 modes. Its key setup time is excellent, and its key agility is
1200 good. Rijndael's very low memory requirements make it very well
1201 suited for restricted-space environments, in which it also
1202 demonstrates excellent performance. Rijndael's operations are
1203 among the easiest to defend against power and timing attacks.
1204
1205 The AES specifies three key sizes: 128, 192 and 256 bits
1206
1207 See <http://csrc.nist.gov/encryption/aes/> for more information.
1208
1209 In addition to AES cipher algorithm support, the acceleration
1210 for some popular block cipher mode is supported too, including
1211 ECB and CBC.
1212
504c6143
MS
1213config CRYPTO_AES_PPC_SPE
1214 tristate "AES cipher algorithms (PPC SPE)"
1215 depends on PPC && SPE
1216 help
1217 AES cipher algorithms (FIPS-197). Additionally the acceleration
1218 for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1219 This module should only be used for low power (router) devices
1220 without hardware AES acceleration (e.g. caam crypto). It reduces the
1221 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1222 timining attacks. Nevertheless it might be not as secure as other
1223 architecture specific assembler implementations that work on 1KB
1224 tables or 256 bytes S-boxes.
1225
584fffc8
SS
1226config CRYPTO_ANUBIS
1227 tristate "Anubis cipher algorithm"
1228 select CRYPTO_ALGAPI
1229 help
1230 Anubis cipher algorithm.
1231
1232 Anubis is a variable key length cipher which can use keys from
1233 128 bits to 320 bits in length. It was evaluated as a entrant
1234 in the NESSIE competition.
1235
1236 See also:
6d8de74c
JM
1237 <https://www.cosic.esat.kuleuven.be/nessie/reports/>
1238 <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
584fffc8 1239
dc51f257
AB
1240config CRYPTO_LIB_ARC4
1241 tristate
1242
584fffc8
SS
1243config CRYPTO_ARC4
1244 tristate "ARC4 cipher algorithm"
b9b0f080 1245 select CRYPTO_BLKCIPHER
dc51f257 1246 select CRYPTO_LIB_ARC4
584fffc8
SS
1247 help
1248 ARC4 cipher algorithm.
1249
1250 ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1251 bits in length. This algorithm is required for driver-based
1252 WEP, but it should not be for other purposes because of the
1253 weakness of the algorithm.
1254
1255config CRYPTO_BLOWFISH
1256 tristate "Blowfish cipher algorithm"
1257 select CRYPTO_ALGAPI
52ba867c 1258 select CRYPTO_BLOWFISH_COMMON
584fffc8
SS
1259 help
1260 Blowfish cipher algorithm, by Bruce Schneier.
1261
1262 This is a variable key length cipher which can use keys from 32
1263 bits to 448 bits in length. It's fast, simple and specifically
1264 designed for use on "large microprocessors".
1265
1266 See also:
1267 <http://www.schneier.com/blowfish.html>
1268
52ba867c
JK
1269config CRYPTO_BLOWFISH_COMMON
1270 tristate
1271 help
1272 Common parts of the Blowfish cipher algorithm shared by the
1273 generic c and the assembler implementations.
1274
1275 See also:
1276 <http://www.schneier.com/blowfish.html>
1277
64b94cea
JK
1278config CRYPTO_BLOWFISH_X86_64
1279 tristate "Blowfish cipher algorithm (x86_64)"
f21a7c19 1280 depends on X86 && 64BIT
c1679171 1281 select CRYPTO_BLKCIPHER
64b94cea
JK
1282 select CRYPTO_BLOWFISH_COMMON
1283 help
1284 Blowfish cipher algorithm (x86_64), by Bruce Schneier.
1285
1286 This is a variable key length cipher which can use keys from 32
1287 bits to 448 bits in length. It's fast, simple and specifically
1288 designed for use on "large microprocessors".
1289
1290 See also:
1291 <http://www.schneier.com/blowfish.html>
1292
584fffc8
SS
1293config CRYPTO_CAMELLIA
1294 tristate "Camellia cipher algorithms"
1295 depends on CRYPTO
1296 select CRYPTO_ALGAPI
1297 help
1298 Camellia cipher algorithms module.
1299
1300 Camellia is a symmetric key block cipher developed jointly
1301 at NTT and Mitsubishi Electric Corporation.
1302
1303 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1304
1305 See also:
1306 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1307
0b95ec56
JK
1308config CRYPTO_CAMELLIA_X86_64
1309 tristate "Camellia cipher algorithm (x86_64)"
f21a7c19 1310 depends on X86 && 64BIT
0b95ec56 1311 depends on CRYPTO
1af6d037 1312 select CRYPTO_BLKCIPHER
964263af 1313 select CRYPTO_GLUE_HELPER_X86
0b95ec56
JK
1314 help
1315 Camellia cipher algorithm module (x86_64).
1316
1317 Camellia is a symmetric key block cipher developed jointly
1318 at NTT and Mitsubishi Electric Corporation.
1319
1320 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1321
1322 See also:
d9b1d2e7
JK
1323 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1324
1325config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1326 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1327 depends on X86 && 64BIT
1328 depends on CRYPTO
44893bc2 1329 select CRYPTO_BLKCIPHER
d9b1d2e7 1330 select CRYPTO_CAMELLIA_X86_64
44893bc2
EB
1331 select CRYPTO_GLUE_HELPER_X86
1332 select CRYPTO_SIMD
d9b1d2e7
JK
1333 select CRYPTO_XTS
1334 help
1335 Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1336
1337 Camellia is a symmetric key block cipher developed jointly
1338 at NTT and Mitsubishi Electric Corporation.
1339
1340 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1341
1342 See also:
0b95ec56
JK
1343 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1344
f3f935a7
JK
1345config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1346 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1347 depends on X86 && 64BIT
1348 depends on CRYPTO
f3f935a7 1349 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
f3f935a7
JK
1350 help
1351 Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1352
1353 Camellia is a symmetric key block cipher developed jointly
1354 at NTT and Mitsubishi Electric Corporation.
1355
1356 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1357
1358 See also:
1359 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1360
81658ad0
DM
1361config CRYPTO_CAMELLIA_SPARC64
1362 tristate "Camellia cipher algorithm (SPARC64)"
1363 depends on SPARC64
1364 depends on CRYPTO
1365 select CRYPTO_ALGAPI
1366 help
1367 Camellia cipher algorithm module (SPARC64).
1368
1369 Camellia is a symmetric key block cipher developed jointly
1370 at NTT and Mitsubishi Electric Corporation.
1371
1372 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1373
1374 See also:
1375 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1376
044ab525
JK
1377config CRYPTO_CAST_COMMON
1378 tristate
1379 help
1380 Common parts of the CAST cipher algorithms shared by the
1381 generic c and the assembler implementations.
1382
1da177e4
LT
1383config CRYPTO_CAST5
1384 tristate "CAST5 (CAST-128) cipher algorithm"
cce9e06d 1385 select CRYPTO_ALGAPI
044ab525 1386 select CRYPTO_CAST_COMMON
1da177e4
LT
1387 help
1388 The CAST5 encryption algorithm (synonymous with CAST-128) is
1389 described in RFC2144.
1390
4d6d6a2c
JG
1391config CRYPTO_CAST5_AVX_X86_64
1392 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1393 depends on X86 && 64BIT
1e63183a 1394 select CRYPTO_BLKCIPHER
4d6d6a2c 1395 select CRYPTO_CAST5
1e63183a
EB
1396 select CRYPTO_CAST_COMMON
1397 select CRYPTO_SIMD
4d6d6a2c
JG
1398 help
1399 The CAST5 encryption algorithm (synonymous with CAST-128) is
1400 described in RFC2144.
1401
1402 This module provides the Cast5 cipher algorithm that processes
1403 sixteen blocks parallel using the AVX instruction set.
1404
1da177e4
LT
1405config CRYPTO_CAST6
1406 tristate "CAST6 (CAST-256) cipher algorithm"
cce9e06d 1407 select CRYPTO_ALGAPI
044ab525 1408 select CRYPTO_CAST_COMMON
1da177e4
LT
1409 help
1410 The CAST6 encryption algorithm (synonymous with CAST-256) is
1411 described in RFC2612.
1412
4ea1277d
JG
1413config CRYPTO_CAST6_AVX_X86_64
1414 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1415 depends on X86 && 64BIT
4bd96924 1416 select CRYPTO_BLKCIPHER
4ea1277d 1417 select CRYPTO_CAST6
4bd96924
EB
1418 select CRYPTO_CAST_COMMON
1419 select CRYPTO_GLUE_HELPER_X86
1420 select CRYPTO_SIMD
4ea1277d
JG
1421 select CRYPTO_XTS
1422 help
1423 The CAST6 encryption algorithm (synonymous with CAST-256) is
1424 described in RFC2612.
1425
1426 This module provides the Cast6 cipher algorithm that processes
1427 eight blocks parallel using the AVX instruction set.
1428
584fffc8
SS
1429config CRYPTO_DES
1430 tristate "DES and Triple DES EDE cipher algorithms"
cce9e06d 1431 select CRYPTO_ALGAPI
1da177e4 1432 help
584fffc8 1433 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
fb4f10ed 1434
c5aac2df
DM
1435config CRYPTO_DES_SPARC64
1436 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
97da37b3 1437 depends on SPARC64
c5aac2df
DM
1438 select CRYPTO_ALGAPI
1439 select CRYPTO_DES
1440 help
1441 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1442 optimized using SPARC64 crypto opcodes.
1443
6574e6c6
JK
1444config CRYPTO_DES3_EDE_X86_64
1445 tristate "Triple DES EDE cipher algorithm (x86-64)"
1446 depends on X86 && 64BIT
09c0f03b 1447 select CRYPTO_BLKCIPHER
6574e6c6
JK
1448 select CRYPTO_DES
1449 help
1450 Triple DES EDE (FIPS 46-3) algorithm.
1451
1452 This module provides implementation of the Triple DES EDE cipher
1453 algorithm that is optimized for x86-64 processors. Two versions of
1454 algorithm are provided; regular processing one input block and
1455 one that processes three blocks parallel.
1456
584fffc8
SS
1457config CRYPTO_FCRYPT
1458 tristate "FCrypt cipher algorithm"
cce9e06d 1459 select CRYPTO_ALGAPI
584fffc8 1460 select CRYPTO_BLKCIPHER
1da177e4 1461 help
584fffc8 1462 FCrypt algorithm used by RxRPC.
1da177e4
LT
1463
1464config CRYPTO_KHAZAD
1465 tristate "Khazad cipher algorithm"
cce9e06d 1466 select CRYPTO_ALGAPI
1da177e4
LT
1467 help
1468 Khazad cipher algorithm.
1469
1470 Khazad was a finalist in the initial NESSIE competition. It is
1471 an algorithm optimized for 64-bit processors with good performance
1472 on 32-bit processors. Khazad uses an 128 bit key size.
1473
1474 See also:
6d8de74c 1475 <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1da177e4 1476
2407d608 1477config CRYPTO_SALSA20
3b4afaf2 1478 tristate "Salsa20 stream cipher algorithm"
2407d608
TSH
1479 select CRYPTO_BLKCIPHER
1480 help
1481 Salsa20 stream cipher algorithm.
1482
1483 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1484 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
974e4b75
TSH
1485
1486 The Salsa20 stream cipher algorithm is designed by Daniel J.
1487 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1488
c08d0e64 1489config CRYPTO_CHACHA20
aa762409 1490 tristate "ChaCha stream cipher algorithms"
c08d0e64
MW
1491 select CRYPTO_BLKCIPHER
1492 help
aa762409 1493 The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
c08d0e64
MW
1494
1495 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1496 Bernstein and further specified in RFC7539 for use in IETF protocols.
de61d7ae 1497 This is the portable C implementation of ChaCha20. See also:
c08d0e64
MW
1498 <http://cr.yp.to/chacha/chacha-20080128.pdf>
1499
de61d7ae
EB
1500 XChaCha20 is the application of the XSalsa20 construction to ChaCha20
1501 rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length
1502 from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
1503 while provably retaining ChaCha20's security. See also:
1504 <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>
1505
aa762409
EB
1506 XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
1507 reduced security margin but increased performance. It can be needed
1508 in some performance-sensitive scenarios.
1509
c9320b6d 1510config CRYPTO_CHACHA20_X86_64
4af78261 1511 tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
c9320b6d
MW
1512 depends on X86 && 64BIT
1513 select CRYPTO_BLKCIPHER
1514 select CRYPTO_CHACHA20
1515 help
7a507d62
EB
1516 SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
1517 XChaCha20, and XChaCha12 stream ciphers.
c9320b6d 1518
584fffc8
SS
1519config CRYPTO_SEED
1520 tristate "SEED cipher algorithm"
cce9e06d 1521 select CRYPTO_ALGAPI
1da177e4 1522 help
584fffc8 1523 SEED cipher algorithm (RFC4269).
1da177e4 1524
584fffc8
SS
1525 SEED is a 128-bit symmetric key block cipher that has been
1526 developed by KISA (Korea Information Security Agency) as a
1527 national standard encryption algorithm of the Republic of Korea.
1528 It is a 16 round block cipher with the key size of 128 bit.
1529
1530 See also:
1531 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1532
1533config CRYPTO_SERPENT
1534 tristate "Serpent cipher algorithm"
cce9e06d 1535 select CRYPTO_ALGAPI
1da177e4 1536 help
584fffc8 1537 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1da177e4 1538
584fffc8
SS
1539 Keys are allowed to be from 0 to 256 bits in length, in steps
1540 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed
1541 variant of Serpent for compatibility with old kerneli.org code.
1542
1543 See also:
1544 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1545
937c30d7
JK
1546config CRYPTO_SERPENT_SSE2_X86_64
1547 tristate "Serpent cipher algorithm (x86_64/SSE2)"
1548 depends on X86 && 64BIT
e0f409dc 1549 select CRYPTO_BLKCIPHER
596d8750 1550 select CRYPTO_GLUE_HELPER_X86
937c30d7 1551 select CRYPTO_SERPENT
e0f409dc 1552 select CRYPTO_SIMD
937c30d7
JK
1553 help
1554 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1555
1556 Keys are allowed to be from 0 to 256 bits in length, in steps
1557 of 8 bits.
1558
1e6232f8 1559 This module provides Serpent cipher algorithm that processes eight
937c30d7
JK
1560 blocks parallel using SSE2 instruction set.
1561
1562 See also:
1563 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1564
251496db
JK
1565config CRYPTO_SERPENT_SSE2_586
1566 tristate "Serpent cipher algorithm (i586/SSE2)"
1567 depends on X86 && !64BIT
e0f409dc 1568 select CRYPTO_BLKCIPHER
596d8750 1569 select CRYPTO_GLUE_HELPER_X86
251496db 1570 select CRYPTO_SERPENT
e0f409dc 1571 select CRYPTO_SIMD
251496db
JK
1572 help
1573 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1574
1575 Keys are allowed to be from 0 to 256 bits in length, in steps
1576 of 8 bits.
1577
1578 This module provides Serpent cipher algorithm that processes four
1579 blocks parallel using SSE2 instruction set.
1580
1581 See also:
1582 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
7efe4076
JG
1583
1584config CRYPTO_SERPENT_AVX_X86_64
1585 tristate "Serpent cipher algorithm (x86_64/AVX)"
1586 depends on X86 && 64BIT
e16bf974 1587 select CRYPTO_BLKCIPHER
1d0debbd 1588 select CRYPTO_GLUE_HELPER_X86
7efe4076 1589 select CRYPTO_SERPENT
e16bf974 1590 select CRYPTO_SIMD
7efe4076
JG
1591 select CRYPTO_XTS
1592 help
1593 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1594
1595 Keys are allowed to be from 0 to 256 bits in length, in steps
1596 of 8 bits.
1597
1598 This module provides the Serpent cipher algorithm that processes
1599 eight blocks parallel using the AVX instruction set.
1600
1601 See also:
1602 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
251496db 1603
56d76c96
JK
1604config CRYPTO_SERPENT_AVX2_X86_64
1605 tristate "Serpent cipher algorithm (x86_64/AVX2)"
1606 depends on X86 && 64BIT
56d76c96 1607 select CRYPTO_SERPENT_AVX_X86_64
56d76c96
JK
1608 help
1609 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1610
1611 Keys are allowed to be from 0 to 256 bits in length, in steps
1612 of 8 bits.
1613
1614 This module provides Serpent cipher algorithm that processes 16
1615 blocks parallel using AVX2 instruction set.
1616
1617 See also:
1618 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1619
747c8ce4
GBY
1620config CRYPTO_SM4
1621 tristate "SM4 cipher algorithm"
1622 select CRYPTO_ALGAPI
1623 help
1624 SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1625
1626 SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1627 Organization of State Commercial Administration of China (OSCCA)
1628 as an authorized cryptographic algorithms for the use within China.
1629
1630 SMS4 was originally created for use in protecting wireless
1631 networks, and is mandated in the Chinese National Standard for
1632 Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1633 (GB.15629.11-2003).
1634
1635 The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1636 standardized through TC 260 of the Standardization Administration
1637 of the People's Republic of China (SAC).
1638
1639 The input, output, and key of SMS4 are each 128 bits.
1640
1641 See also: <https://eprint.iacr.org/2008/329.pdf>
1642
1643 If unsure, say N.
1644
584fffc8
SS
1645config CRYPTO_TEA
1646 tristate "TEA, XTEA and XETA cipher algorithms"
cce9e06d 1647 select CRYPTO_ALGAPI
1da177e4 1648 help
584fffc8 1649 TEA cipher algorithm.
1da177e4 1650
584fffc8
SS
1651 Tiny Encryption Algorithm is a simple cipher that uses
1652 many rounds for security. It is very fast and uses
1653 little memory.
1654
1655 Xtendend Tiny Encryption Algorithm is a modification to
1656 the TEA algorithm to address a potential key weakness
1657 in the TEA algorithm.
1658
1659 Xtendend Encryption Tiny Algorithm is a mis-implementation
1660 of the XTEA algorithm for compatibility purposes.
1661
1662config CRYPTO_TWOFISH
1663 tristate "Twofish cipher algorithm"
04ac7db3 1664 select CRYPTO_ALGAPI
584fffc8 1665 select CRYPTO_TWOFISH_COMMON
04ac7db3 1666 help
584fffc8 1667 Twofish cipher algorithm.
04ac7db3 1668
584fffc8
SS
1669 Twofish was submitted as an AES (Advanced Encryption Standard)
1670 candidate cipher by researchers at CounterPane Systems. It is a
1671 16 round block cipher supporting key sizes of 128, 192, and 256
1672 bits.
04ac7db3 1673
584fffc8
SS
1674 See also:
1675 <http://www.schneier.com/twofish.html>
1676
1677config CRYPTO_TWOFISH_COMMON
1678 tristate
1679 help
1680 Common parts of the Twofish cipher algorithm shared by the
1681 generic c and the assembler implementations.
1682
1683config CRYPTO_TWOFISH_586
1684 tristate "Twofish cipher algorithms (i586)"
1685 depends on (X86 || UML_X86) && !64BIT
1686 select CRYPTO_ALGAPI
1687 select CRYPTO_TWOFISH_COMMON
1688 help
1689 Twofish cipher algorithm.
1690
1691 Twofish was submitted as an AES (Advanced Encryption Standard)
1692 candidate cipher by researchers at CounterPane Systems. It is a
1693 16 round block cipher supporting key sizes of 128, 192, and 256
1694 bits.
04ac7db3
NT
1695
1696 See also:
584fffc8 1697 <http://www.schneier.com/twofish.html>
04ac7db3 1698
584fffc8
SS
1699config CRYPTO_TWOFISH_X86_64
1700 tristate "Twofish cipher algorithm (x86_64)"
1701 depends on (X86 || UML_X86) && 64BIT
cce9e06d 1702 select CRYPTO_ALGAPI
584fffc8 1703 select CRYPTO_TWOFISH_COMMON
1da177e4 1704 help
584fffc8 1705 Twofish cipher algorithm (x86_64).
1da177e4 1706
584fffc8
SS
1707 Twofish was submitted as an AES (Advanced Encryption Standard)
1708 candidate cipher by researchers at CounterPane Systems. It is a
1709 16 round block cipher supporting key sizes of 128, 192, and 256
1710 bits.
1711
1712 See also:
1713 <http://www.schneier.com/twofish.html>
1714
8280daad
JK
1715config CRYPTO_TWOFISH_X86_64_3WAY
1716 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
f21a7c19 1717 depends on X86 && 64BIT
37992fa4 1718 select CRYPTO_BLKCIPHER
8280daad
JK
1719 select CRYPTO_TWOFISH_COMMON
1720 select CRYPTO_TWOFISH_X86_64
414cb5e7 1721 select CRYPTO_GLUE_HELPER_X86
8280daad
JK
1722 help
1723 Twofish cipher algorithm (x86_64, 3-way parallel).
1724
1725 Twofish was submitted as an AES (Advanced Encryption Standard)
1726 candidate cipher by researchers at CounterPane Systems. It is a
1727 16 round block cipher supporting key sizes of 128, 192, and 256
1728 bits.
1729
1730 This module provides Twofish cipher algorithm that processes three
1731 blocks parallel, utilizing resources of out-of-order CPUs better.
1732
1733 See also:
1734 <http://www.schneier.com/twofish.html>
1735
107778b5
JG
1736config CRYPTO_TWOFISH_AVX_X86_64
1737 tristate "Twofish cipher algorithm (x86_64/AVX)"
1738 depends on X86 && 64BIT
0e6ab46d 1739 select CRYPTO_BLKCIPHER
a7378d4e 1740 select CRYPTO_GLUE_HELPER_X86
0e6ab46d 1741 select CRYPTO_SIMD
107778b5
JG
1742 select CRYPTO_TWOFISH_COMMON
1743 select CRYPTO_TWOFISH_X86_64
1744 select CRYPTO_TWOFISH_X86_64_3WAY
107778b5
JG
1745 help
1746 Twofish cipher algorithm (x86_64/AVX).
1747
1748 Twofish was submitted as an AES (Advanced Encryption Standard)
1749 candidate cipher by researchers at CounterPane Systems. It is a
1750 16 round block cipher supporting key sizes of 128, 192, and 256
1751 bits.
1752
1753 This module provides the Twofish cipher algorithm that processes
1754 eight blocks parallel using the AVX Instruction Set.
1755
1756 See also:
1757 <http://www.schneier.com/twofish.html>
1758
584fffc8
SS
1759comment "Compression"
1760
1761config CRYPTO_DEFLATE
1762 tristate "Deflate compression algorithm"
1763 select CRYPTO_ALGAPI
f6ded09d 1764 select CRYPTO_ACOMP2
584fffc8
SS
1765 select ZLIB_INFLATE
1766 select ZLIB_DEFLATE
3c09f17c 1767 help
584fffc8
SS
1768 This is the Deflate algorithm (RFC1951), specified for use in
1769 IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1770
1771 You will most probably want this if using IPSec.
3c09f17c 1772
0b77abb3
ZS
1773config CRYPTO_LZO
1774 tristate "LZO compression algorithm"
1775 select CRYPTO_ALGAPI
ac9d2c4b 1776 select CRYPTO_ACOMP2
0b77abb3
ZS
1777 select LZO_COMPRESS
1778 select LZO_DECOMPRESS
1779 help
1780 This is the LZO algorithm.
1781
35a1fc18
SJ
1782config CRYPTO_842
1783 tristate "842 compression algorithm"
2062c5b6 1784 select CRYPTO_ALGAPI
6a8de3ae 1785 select CRYPTO_ACOMP2
2062c5b6
DS
1786 select 842_COMPRESS
1787 select 842_DECOMPRESS
35a1fc18
SJ
1788 help
1789 This is the 842 algorithm.
0ea8530d
CM
1790
1791config CRYPTO_LZ4
1792 tristate "LZ4 compression algorithm"
1793 select CRYPTO_ALGAPI
8cd9330e 1794 select CRYPTO_ACOMP2
0ea8530d
CM
1795 select LZ4_COMPRESS
1796 select LZ4_DECOMPRESS
1797 help
1798 This is the LZ4 algorithm.
1799
1800config CRYPTO_LZ4HC
1801 tristate "LZ4HC compression algorithm"
1802 select CRYPTO_ALGAPI
91d53d96 1803 select CRYPTO_ACOMP2
0ea8530d
CM
1804 select LZ4HC_COMPRESS
1805 select LZ4_DECOMPRESS
1806 help
1807 This is the LZ4 high compression mode algorithm.
35a1fc18 1808
d28fc3db
NT
1809config CRYPTO_ZSTD
1810 tristate "Zstd compression algorithm"
1811 select CRYPTO_ALGAPI
1812 select CRYPTO_ACOMP2
1813 select ZSTD_COMPRESS
1814 select ZSTD_DECOMPRESS
1815 help
1816 This is the zstd algorithm.
1817
17f0f4a4
NH
1818comment "Random Number Generation"
1819
1820config CRYPTO_ANSI_CPRNG
1821 tristate "Pseudo Random Number Generation for Cryptographic modules"
1822 select CRYPTO_AES
1823 select CRYPTO_RNG
17f0f4a4
NH
1824 help
1825 This option enables the generic pseudo random number generator
1826 for cryptographic modules. Uses the Algorithm specified in
7dd607e8
JK
1827 ANSI X9.31 A.2.4. Note that this option must be enabled if
1828 CRYPTO_FIPS is selected
17f0f4a4 1829
f2c89a10 1830menuconfig CRYPTO_DRBG_MENU
419090c6 1831 tristate "NIST SP800-90A DRBG"
419090c6
SM
1832 help
1833 NIST SP800-90A compliant DRBG. In the following submenu, one or
1834 more of the DRBG types must be selected.
1835
f2c89a10 1836if CRYPTO_DRBG_MENU
419090c6
SM
1837
1838config CRYPTO_DRBG_HMAC
401e4238 1839 bool
419090c6 1840 default y
419090c6 1841 select CRYPTO_HMAC
826775bb 1842 select CRYPTO_SHA256
419090c6
SM
1843
1844config CRYPTO_DRBG_HASH
1845 bool "Enable Hash DRBG"
826775bb 1846 select CRYPTO_SHA256
419090c6
SM
1847 help
1848 Enable the Hash DRBG variant as defined in NIST SP800-90A.
1849
1850config CRYPTO_DRBG_CTR
1851 bool "Enable CTR DRBG"
419090c6 1852 select CRYPTO_AES
35591285 1853 depends on CRYPTO_CTR
419090c6
SM
1854 help
1855 Enable the CTR DRBG variant as defined in NIST SP800-90A.
1856
f2c89a10
HX
1857config CRYPTO_DRBG
1858 tristate
401e4238 1859 default CRYPTO_DRBG_MENU
f2c89a10 1860 select CRYPTO_RNG
bb5530e4 1861 select CRYPTO_JITTERENTROPY
f2c89a10
HX
1862
1863endif # if CRYPTO_DRBG_MENU
419090c6 1864
bb5530e4
SM
1865config CRYPTO_JITTERENTROPY
1866 tristate "Jitterentropy Non-Deterministic Random Number Generator"
2f313e02 1867 select CRYPTO_RNG
bb5530e4
SM
1868 help
1869 The Jitterentropy RNG is a noise that is intended
1870 to provide seed to another RNG. The RNG does not
1871 perform any cryptographic whitening of the generated
1872 random numbers. This Jitterentropy RNG registers with
1873 the kernel crypto API and can be used by any caller.
1874
03c8efc1
HX
1875config CRYPTO_USER_API
1876 tristate
1877
fe869cdb
HX
1878config CRYPTO_USER_API_HASH
1879 tristate "User-space interface for hash algorithms"
7451708f 1880 depends on NET
fe869cdb
HX
1881 select CRYPTO_HASH
1882 select CRYPTO_USER_API
1883 help
1884 This option enables the user-spaces interface for hash
1885 algorithms.
1886
8ff59090
HX
1887config CRYPTO_USER_API_SKCIPHER
1888 tristate "User-space interface for symmetric key cipher algorithms"
7451708f 1889 depends on NET
8ff59090
HX
1890 select CRYPTO_BLKCIPHER
1891 select CRYPTO_USER_API
1892 help
1893 This option enables the user-spaces interface for symmetric
1894 key cipher algorithms.
1895
2f375538
SM
1896config CRYPTO_USER_API_RNG
1897 tristate "User-space interface for random number generator algorithms"
1898 depends on NET
1899 select CRYPTO_RNG
1900 select CRYPTO_USER_API
1901 help
1902 This option enables the user-spaces interface for random
1903 number generator algorithms.
1904
b64a2d95
HX
1905config CRYPTO_USER_API_AEAD
1906 tristate "User-space interface for AEAD cipher algorithms"
1907 depends on NET
1908 select CRYPTO_AEAD
72548b09
SM
1909 select CRYPTO_BLKCIPHER
1910 select CRYPTO_NULL
b64a2d95
HX
1911 select CRYPTO_USER_API
1912 help
1913 This option enables the user-spaces interface for AEAD
1914 cipher algorithms.
1915
cac5818c
CL
1916config CRYPTO_STATS
1917 bool "Crypto usage statistics for User-space"
a6a31385 1918 depends on CRYPTO_USER
cac5818c
CL
1919 help
1920 This option enables the gathering of crypto stats.
1921 This will collect:
1922 - encrypt/decrypt size and numbers of symmeric operations
1923 - compress/decompress size and numbers of compress operations
1924 - size and numbers of hash operations
1925 - encrypt/decrypt/sign/verify numbers for asymmetric operations
1926 - generate/seed numbers for rng operations
1927
ee08997f
DK
1928config CRYPTO_HASH_INFO
1929 bool
1930
1da177e4 1931source "drivers/crypto/Kconfig"
8636a1f9
MY
1932source "crypto/asymmetric_keys/Kconfig"
1933source "certs/Kconfig"
1da177e4 1934
cce9e06d 1935endif # if CRYPTO