Merge blk_recount_segments into blk_recalc_rq_segments
[linux-2.6-block.git] / block / ll_rw_blk.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
8 */
9
10/*
11 * This handles all read/write requests to block devices
12 */
1da177e4
LT
13#include <linux/kernel.h>
14#include <linux/module.h>
15#include <linux/backing-dev.h>
16#include <linux/bio.h>
17#include <linux/blkdev.h>
18#include <linux/highmem.h>
19#include <linux/mm.h>
20#include <linux/kernel_stat.h>
21#include <linux/string.h>
22#include <linux/init.h>
23#include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
ff856bad
JA
29#include <linux/interrupt.h>
30#include <linux/cpu.h>
2056a782 31#include <linux/blktrace_api.h>
c17bb495 32#include <linux/fault-inject.h>
1da177e4
LT
33
34/*
35 * for max sense size
36 */
37#include <scsi/scsi_cmnd.h>
38
65f27f38 39static void blk_unplug_work(struct work_struct *work);
1da177e4 40static void blk_unplug_timeout(unsigned long data);
93d17d3d 41static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
52d9e675 42static void init_request_from_bio(struct request *req, struct bio *bio);
165125e1 43static int __make_request(struct request_queue *q, struct bio *bio);
b5deef90 44static struct io_context *current_io_context(gfp_t gfp_flags, int node);
9dfa5283 45static void blk_recalc_rq_segments(struct request *rq);
1da177e4
LT
46
47/*
48 * For the allocated request tables
49 */
e18b890b 50static struct kmem_cache *request_cachep;
1da177e4
LT
51
52/*
53 * For queue allocation
54 */
e18b890b 55static struct kmem_cache *requestq_cachep;
1da177e4
LT
56
57/*
58 * For io context allocations
59 */
e18b890b 60static struct kmem_cache *iocontext_cachep;
1da177e4 61
1da177e4
LT
62/*
63 * Controlling structure to kblockd
64 */
ff856bad 65static struct workqueue_struct *kblockd_workqueue;
1da177e4
LT
66
67unsigned long blk_max_low_pfn, blk_max_pfn;
68
69EXPORT_SYMBOL(blk_max_low_pfn);
70EXPORT_SYMBOL(blk_max_pfn);
71
ff856bad
JA
72static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
73
1da177e4
LT
74/* Amount of time in which a process may batch requests */
75#define BLK_BATCH_TIME (HZ/50UL)
76
77/* Number of requests a "batching" process may submit */
78#define BLK_BATCH_REQ 32
79
80/*
81 * Return the threshold (number of used requests) at which the queue is
82 * considered to be congested. It include a little hysteresis to keep the
83 * context switch rate down.
84 */
85static inline int queue_congestion_on_threshold(struct request_queue *q)
86{
87 return q->nr_congestion_on;
88}
89
90/*
91 * The threshold at which a queue is considered to be uncongested
92 */
93static inline int queue_congestion_off_threshold(struct request_queue *q)
94{
95 return q->nr_congestion_off;
96}
97
98static void blk_queue_congestion_threshold(struct request_queue *q)
99{
100 int nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 if (nr > q->nr_requests)
104 nr = q->nr_requests;
105 q->nr_congestion_on = nr;
106
107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 if (nr < 1)
109 nr = 1;
110 q->nr_congestion_off = nr;
111}
112
1da177e4
LT
113/**
114 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
115 * @bdev: device
116 *
117 * Locates the passed device's request queue and returns the address of its
118 * backing_dev_info
119 *
120 * Will return NULL if the request queue cannot be located.
121 */
122struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
123{
124 struct backing_dev_info *ret = NULL;
165125e1 125 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
126
127 if (q)
128 ret = &q->backing_dev_info;
129 return ret;
130}
1da177e4
LT
131EXPORT_SYMBOL(blk_get_backing_dev_info);
132
1da177e4
LT
133/**
134 * blk_queue_prep_rq - set a prepare_request function for queue
135 * @q: queue
136 * @pfn: prepare_request function
137 *
138 * It's possible for a queue to register a prepare_request callback which
139 * is invoked before the request is handed to the request_fn. The goal of
140 * the function is to prepare a request for I/O, it can be used to build a
141 * cdb from the request data for instance.
142 *
143 */
165125e1 144void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
1da177e4
LT
145{
146 q->prep_rq_fn = pfn;
147}
148
149EXPORT_SYMBOL(blk_queue_prep_rq);
150
151/**
152 * blk_queue_merge_bvec - set a merge_bvec function for queue
153 * @q: queue
154 * @mbfn: merge_bvec_fn
155 *
156 * Usually queues have static limitations on the max sectors or segments that
157 * we can put in a request. Stacking drivers may have some settings that
158 * are dynamic, and thus we have to query the queue whether it is ok to
159 * add a new bio_vec to a bio at a given offset or not. If the block device
160 * has such limitations, it needs to register a merge_bvec_fn to control
161 * the size of bio's sent to it. Note that a block device *must* allow a
162 * single page to be added to an empty bio. The block device driver may want
163 * to use the bio_split() function to deal with these bio's. By default
164 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
165 * honored.
166 */
165125e1 167void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
1da177e4
LT
168{
169 q->merge_bvec_fn = mbfn;
170}
171
172EXPORT_SYMBOL(blk_queue_merge_bvec);
173
165125e1 174void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
ff856bad
JA
175{
176 q->softirq_done_fn = fn;
177}
178
179EXPORT_SYMBOL(blk_queue_softirq_done);
180
1da177e4
LT
181/**
182 * blk_queue_make_request - define an alternate make_request function for a device
183 * @q: the request queue for the device to be affected
184 * @mfn: the alternate make_request function
185 *
186 * Description:
187 * The normal way for &struct bios to be passed to a device
188 * driver is for them to be collected into requests on a request
189 * queue, and then to allow the device driver to select requests
190 * off that queue when it is ready. This works well for many block
191 * devices. However some block devices (typically virtual devices
192 * such as md or lvm) do not benefit from the processing on the
193 * request queue, and are served best by having the requests passed
194 * directly to them. This can be achieved by providing a function
195 * to blk_queue_make_request().
196 *
197 * Caveat:
198 * The driver that does this *must* be able to deal appropriately
199 * with buffers in "highmemory". This can be accomplished by either calling
200 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
201 * blk_queue_bounce() to create a buffer in normal memory.
202 **/
165125e1 203void blk_queue_make_request(struct request_queue * q, make_request_fn * mfn)
1da177e4
LT
204{
205 /*
206 * set defaults
207 */
208 q->nr_requests = BLKDEV_MAX_RQ;
309c0a1d
SM
209 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
210 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1da177e4
LT
211 q->make_request_fn = mfn;
212 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
213 q->backing_dev_info.state = 0;
214 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
defd94b7 215 blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
1da177e4
LT
216 blk_queue_hardsect_size(q, 512);
217 blk_queue_dma_alignment(q, 511);
218 blk_queue_congestion_threshold(q);
219 q->nr_batching = BLK_BATCH_REQ;
220
221 q->unplug_thresh = 4; /* hmm */
222 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
223 if (q->unplug_delay == 0)
224 q->unplug_delay = 1;
225
65f27f38 226 INIT_WORK(&q->unplug_work, blk_unplug_work);
1da177e4
LT
227
228 q->unplug_timer.function = blk_unplug_timeout;
229 q->unplug_timer.data = (unsigned long)q;
230
231 /*
232 * by default assume old behaviour and bounce for any highmem page
233 */
234 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
1da177e4
LT
235}
236
237EXPORT_SYMBOL(blk_queue_make_request);
238
165125e1 239static void rq_init(struct request_queue *q, struct request *rq)
1da177e4
LT
240{
241 INIT_LIST_HEAD(&rq->queuelist);
ff856bad 242 INIT_LIST_HEAD(&rq->donelist);
1da177e4
LT
243
244 rq->errors = 0;
1da177e4 245 rq->bio = rq->biotail = NULL;
2e662b65
JA
246 INIT_HLIST_NODE(&rq->hash);
247 RB_CLEAR_NODE(&rq->rb_node);
22e2c507 248 rq->ioprio = 0;
1da177e4
LT
249 rq->buffer = NULL;
250 rq->ref_count = 1;
251 rq->q = q;
1da177e4
LT
252 rq->special = NULL;
253 rq->data_len = 0;
254 rq->data = NULL;
df46b9a4 255 rq->nr_phys_segments = 0;
1da177e4
LT
256 rq->sense = NULL;
257 rq->end_io = NULL;
258 rq->end_io_data = NULL;
ff856bad 259 rq->completion_data = NULL;
abae1fde 260 rq->next_rq = NULL;
1da177e4
LT
261}
262
263/**
264 * blk_queue_ordered - does this queue support ordered writes
797e7dbb
TH
265 * @q: the request queue
266 * @ordered: one of QUEUE_ORDERED_*
fddfdeaf 267 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
1da177e4
LT
268 *
269 * Description:
270 * For journalled file systems, doing ordered writes on a commit
271 * block instead of explicitly doing wait_on_buffer (which is bad
272 * for performance) can be a big win. Block drivers supporting this
273 * feature should call this function and indicate so.
274 *
275 **/
165125e1 276int blk_queue_ordered(struct request_queue *q, unsigned ordered,
797e7dbb
TH
277 prepare_flush_fn *prepare_flush_fn)
278{
279 if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
280 prepare_flush_fn == NULL) {
281 printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
282 return -EINVAL;
283 }
284
285 if (ordered != QUEUE_ORDERED_NONE &&
286 ordered != QUEUE_ORDERED_DRAIN &&
287 ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
288 ordered != QUEUE_ORDERED_DRAIN_FUA &&
289 ordered != QUEUE_ORDERED_TAG &&
290 ordered != QUEUE_ORDERED_TAG_FLUSH &&
291 ordered != QUEUE_ORDERED_TAG_FUA) {
292 printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
293 return -EINVAL;
1da177e4 294 }
797e7dbb 295
60481b12 296 q->ordered = ordered;
797e7dbb
TH
297 q->next_ordered = ordered;
298 q->prepare_flush_fn = prepare_flush_fn;
299
300 return 0;
1da177e4
LT
301}
302
303EXPORT_SYMBOL(blk_queue_ordered);
304
305/**
306 * blk_queue_issue_flush_fn - set function for issuing a flush
307 * @q: the request queue
308 * @iff: the function to be called issuing the flush
309 *
310 * Description:
311 * If a driver supports issuing a flush command, the support is notified
312 * to the block layer by defining it through this call.
313 *
314 **/
165125e1 315void blk_queue_issue_flush_fn(struct request_queue *q, issue_flush_fn *iff)
1da177e4
LT
316{
317 q->issue_flush_fn = iff;
318}
319
320EXPORT_SYMBOL(blk_queue_issue_flush_fn);
321
322/*
323 * Cache flushing for ordered writes handling
324 */
165125e1 325inline unsigned blk_ordered_cur_seq(struct request_queue *q)
1da177e4 326{
797e7dbb
TH
327 if (!q->ordseq)
328 return 0;
329 return 1 << ffz(q->ordseq);
1da177e4
LT
330}
331
797e7dbb 332unsigned blk_ordered_req_seq(struct request *rq)
1da177e4 333{
165125e1 334 struct request_queue *q = rq->q;
1da177e4 335
797e7dbb 336 BUG_ON(q->ordseq == 0);
8922e16c 337
797e7dbb
TH
338 if (rq == &q->pre_flush_rq)
339 return QUEUE_ORDSEQ_PREFLUSH;
340 if (rq == &q->bar_rq)
341 return QUEUE_ORDSEQ_BAR;
342 if (rq == &q->post_flush_rq)
343 return QUEUE_ORDSEQ_POSTFLUSH;
1da177e4 344
bc90ba09
TH
345 /*
346 * !fs requests don't need to follow barrier ordering. Always
347 * put them at the front. This fixes the following deadlock.
348 *
349 * http://thread.gmane.org/gmane.linux.kernel/537473
350 */
351 if (!blk_fs_request(rq))
352 return QUEUE_ORDSEQ_DRAIN;
353
4aff5e23
JA
354 if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
355 (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
797e7dbb
TH
356 return QUEUE_ORDSEQ_DRAIN;
357 else
358 return QUEUE_ORDSEQ_DONE;
1da177e4
LT
359}
360
165125e1 361void blk_ordered_complete_seq(struct request_queue *q, unsigned seq, int error)
1da177e4 362{
797e7dbb
TH
363 struct request *rq;
364 int uptodate;
1da177e4 365
797e7dbb
TH
366 if (error && !q->orderr)
367 q->orderr = error;
1da177e4 368
797e7dbb
TH
369 BUG_ON(q->ordseq & seq);
370 q->ordseq |= seq;
1da177e4 371
797e7dbb
TH
372 if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
373 return;
1da177e4
LT
374
375 /*
797e7dbb 376 * Okay, sequence complete.
1da177e4 377 */
797e7dbb
TH
378 rq = q->orig_bar_rq;
379 uptodate = q->orderr ? q->orderr : 1;
1da177e4 380
797e7dbb 381 q->ordseq = 0;
1da177e4 382
797e7dbb
TH
383 end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
384 end_that_request_last(rq, uptodate);
1da177e4
LT
385}
386
797e7dbb 387static void pre_flush_end_io(struct request *rq, int error)
1da177e4 388{
797e7dbb
TH
389 elv_completed_request(rq->q, rq);
390 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
391}
1da177e4 392
797e7dbb
TH
393static void bar_end_io(struct request *rq, int error)
394{
395 elv_completed_request(rq->q, rq);
396 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
397}
1da177e4 398
797e7dbb
TH
399static void post_flush_end_io(struct request *rq, int error)
400{
401 elv_completed_request(rq->q, rq);
402 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
403}
1da177e4 404
165125e1 405static void queue_flush(struct request_queue *q, unsigned which)
797e7dbb
TH
406{
407 struct request *rq;
408 rq_end_io_fn *end_io;
1da177e4 409
797e7dbb
TH
410 if (which == QUEUE_ORDERED_PREFLUSH) {
411 rq = &q->pre_flush_rq;
412 end_io = pre_flush_end_io;
413 } else {
414 rq = &q->post_flush_rq;
415 end_io = post_flush_end_io;
1da177e4 416 }
797e7dbb 417
4aff5e23 418 rq->cmd_flags = REQ_HARDBARRIER;
797e7dbb 419 rq_init(q, rq);
797e7dbb 420 rq->elevator_private = NULL;
c00895ab 421 rq->elevator_private2 = NULL;
797e7dbb 422 rq->rq_disk = q->bar_rq.rq_disk;
797e7dbb
TH
423 rq->end_io = end_io;
424 q->prepare_flush_fn(q, rq);
425
30e9656c 426 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
1da177e4
LT
427}
428
165125e1 429static inline struct request *start_ordered(struct request_queue *q,
797e7dbb 430 struct request *rq)
1da177e4 431{
797e7dbb
TH
432 q->bi_size = 0;
433 q->orderr = 0;
434 q->ordered = q->next_ordered;
435 q->ordseq |= QUEUE_ORDSEQ_STARTED;
436
437 /*
438 * Prep proxy barrier request.
439 */
440 blkdev_dequeue_request(rq);
441 q->orig_bar_rq = rq;
442 rq = &q->bar_rq;
4aff5e23 443 rq->cmd_flags = 0;
797e7dbb 444 rq_init(q, rq);
4aff5e23
JA
445 if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
446 rq->cmd_flags |= REQ_RW;
447 rq->cmd_flags |= q->ordered & QUEUE_ORDERED_FUA ? REQ_FUA : 0;
797e7dbb 448 rq->elevator_private = NULL;
c00895ab 449 rq->elevator_private2 = NULL;
797e7dbb
TH
450 init_request_from_bio(rq, q->orig_bar_rq->bio);
451 rq->end_io = bar_end_io;
452
453 /*
454 * Queue ordered sequence. As we stack them at the head, we
455 * need to queue in reverse order. Note that we rely on that
456 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
457 * request gets inbetween ordered sequence.
458 */
459 if (q->ordered & QUEUE_ORDERED_POSTFLUSH)
460 queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
461 else
462 q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
463
30e9656c 464 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
797e7dbb
TH
465
466 if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
467 queue_flush(q, QUEUE_ORDERED_PREFLUSH);
468 rq = &q->pre_flush_rq;
469 } else
470 q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
1da177e4 471
797e7dbb
TH
472 if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
473 q->ordseq |= QUEUE_ORDSEQ_DRAIN;
474 else
475 rq = NULL;
476
477 return rq;
1da177e4
LT
478}
479
165125e1 480int blk_do_ordered(struct request_queue *q, struct request **rqp)
1da177e4 481{
9a7a67af 482 struct request *rq = *rqp;
797e7dbb 483 int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
1da177e4 484
797e7dbb
TH
485 if (!q->ordseq) {
486 if (!is_barrier)
487 return 1;
1da177e4 488
797e7dbb
TH
489 if (q->next_ordered != QUEUE_ORDERED_NONE) {
490 *rqp = start_ordered(q, rq);
491 return 1;
492 } else {
493 /*
494 * This can happen when the queue switches to
495 * ORDERED_NONE while this request is on it.
496 */
497 blkdev_dequeue_request(rq);
498 end_that_request_first(rq, -EOPNOTSUPP,
499 rq->hard_nr_sectors);
500 end_that_request_last(rq, -EOPNOTSUPP);
501 *rqp = NULL;
502 return 0;
503 }
504 }
1da177e4 505
9a7a67af
JA
506 /*
507 * Ordered sequence in progress
508 */
509
510 /* Special requests are not subject to ordering rules. */
511 if (!blk_fs_request(rq) &&
512 rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
513 return 1;
514
797e7dbb 515 if (q->ordered & QUEUE_ORDERED_TAG) {
9a7a67af 516 /* Ordered by tag. Blocking the next barrier is enough. */
797e7dbb
TH
517 if (is_barrier && rq != &q->bar_rq)
518 *rqp = NULL;
9a7a67af
JA
519 } else {
520 /* Ordered by draining. Wait for turn. */
521 WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
522 if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
523 *rqp = NULL;
1da177e4
LT
524 }
525
526 return 1;
527}
528
797e7dbb 529static int flush_dry_bio_endio(struct bio *bio, unsigned int bytes, int error)
1da177e4 530{
165125e1 531 struct request_queue *q = bio->bi_private;
797e7dbb
TH
532
533 /*
534 * This is dry run, restore bio_sector and size. We'll finish
535 * this request again with the original bi_end_io after an
536 * error occurs or post flush is complete.
537 */
538 q->bi_size += bytes;
539
540 if (bio->bi_size)
541 return 1;
542
797e7dbb
TH
543 /* Reset bio */
544 set_bit(BIO_UPTODATE, &bio->bi_flags);
545 bio->bi_size = q->bi_size;
546 bio->bi_sector -= (q->bi_size >> 9);
547 q->bi_size = 0;
548
549 return 0;
1da177e4 550}
1da177e4 551
1ea25ecb
JA
552static int ordered_bio_endio(struct request *rq, struct bio *bio,
553 unsigned int nbytes, int error)
1da177e4 554{
165125e1 555 struct request_queue *q = rq->q;
797e7dbb
TH
556 bio_end_io_t *endio;
557 void *private;
558
559 if (&q->bar_rq != rq)
560 return 0;
561
562 /*
563 * Okay, this is the barrier request in progress, dry finish it.
564 */
565 if (error && !q->orderr)
566 q->orderr = error;
567
568 endio = bio->bi_end_io;
569 private = bio->bi_private;
570 bio->bi_end_io = flush_dry_bio_endio;
571 bio->bi_private = q;
572
573 bio_endio(bio, nbytes, error);
574
575 bio->bi_end_io = endio;
576 bio->bi_private = private;
577
578 return 1;
1da177e4 579}
1da177e4
LT
580
581/**
582 * blk_queue_bounce_limit - set bounce buffer limit for queue
583 * @q: the request queue for the device
584 * @dma_addr: bus address limit
585 *
586 * Description:
587 * Different hardware can have different requirements as to what pages
588 * it can do I/O directly to. A low level driver can call
589 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
5ee1af9f 590 * buffers for doing I/O to pages residing above @page.
1da177e4 591 **/
165125e1 592void blk_queue_bounce_limit(struct request_queue *q, u64 dma_addr)
1da177e4
LT
593{
594 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
5ee1af9f
AK
595 int dma = 0;
596
597 q->bounce_gfp = GFP_NOIO;
598#if BITS_PER_LONG == 64
599 /* Assume anything <= 4GB can be handled by IOMMU.
600 Actually some IOMMUs can handle everything, but I don't
601 know of a way to test this here. */
8269730b 602 if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
5ee1af9f
AK
603 dma = 1;
604 q->bounce_pfn = max_low_pfn;
605#else
606 if (bounce_pfn < blk_max_low_pfn)
607 dma = 1;
608 q->bounce_pfn = bounce_pfn;
609#endif
610 if (dma) {
1da177e4
LT
611 init_emergency_isa_pool();
612 q->bounce_gfp = GFP_NOIO | GFP_DMA;
5ee1af9f
AK
613 q->bounce_pfn = bounce_pfn;
614 }
1da177e4
LT
615}
616
617EXPORT_SYMBOL(blk_queue_bounce_limit);
618
619/**
620 * blk_queue_max_sectors - set max sectors for a request for this queue
621 * @q: the request queue for the device
622 * @max_sectors: max sectors in the usual 512b unit
623 *
624 * Description:
625 * Enables a low level driver to set an upper limit on the size of
626 * received requests.
627 **/
165125e1 628void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors)
1da177e4
LT
629{
630 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
631 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
632 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
633 }
634
defd94b7
MC
635 if (BLK_DEF_MAX_SECTORS > max_sectors)
636 q->max_hw_sectors = q->max_sectors = max_sectors;
637 else {
638 q->max_sectors = BLK_DEF_MAX_SECTORS;
639 q->max_hw_sectors = max_sectors;
640 }
1da177e4
LT
641}
642
643EXPORT_SYMBOL(blk_queue_max_sectors);
644
645/**
646 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
647 * @q: the request queue for the device
648 * @max_segments: max number of segments
649 *
650 * Description:
651 * Enables a low level driver to set an upper limit on the number of
652 * physical data segments in a request. This would be the largest sized
653 * scatter list the driver could handle.
654 **/
165125e1
JA
655void blk_queue_max_phys_segments(struct request_queue *q,
656 unsigned short max_segments)
1da177e4
LT
657{
658 if (!max_segments) {
659 max_segments = 1;
660 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
661 }
662
663 q->max_phys_segments = max_segments;
664}
665
666EXPORT_SYMBOL(blk_queue_max_phys_segments);
667
668/**
669 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
670 * @q: the request queue for the device
671 * @max_segments: max number of segments
672 *
673 * Description:
674 * Enables a low level driver to set an upper limit on the number of
675 * hw data segments in a request. This would be the largest number of
676 * address/length pairs the host adapter can actually give as once
677 * to the device.
678 **/
165125e1
JA
679void blk_queue_max_hw_segments(struct request_queue *q,
680 unsigned short max_segments)
1da177e4
LT
681{
682 if (!max_segments) {
683 max_segments = 1;
684 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
685 }
686
687 q->max_hw_segments = max_segments;
688}
689
690EXPORT_SYMBOL(blk_queue_max_hw_segments);
691
692/**
693 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
694 * @q: the request queue for the device
695 * @max_size: max size of segment in bytes
696 *
697 * Description:
698 * Enables a low level driver to set an upper limit on the size of a
699 * coalesced segment
700 **/
165125e1 701void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
1da177e4
LT
702{
703 if (max_size < PAGE_CACHE_SIZE) {
704 max_size = PAGE_CACHE_SIZE;
705 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
706 }
707
708 q->max_segment_size = max_size;
709}
710
711EXPORT_SYMBOL(blk_queue_max_segment_size);
712
713/**
714 * blk_queue_hardsect_size - set hardware sector size for the queue
715 * @q: the request queue for the device
716 * @size: the hardware sector size, in bytes
717 *
718 * Description:
719 * This should typically be set to the lowest possible sector size
720 * that the hardware can operate on (possible without reverting to
721 * even internal read-modify-write operations). Usually the default
722 * of 512 covers most hardware.
723 **/
165125e1 724void blk_queue_hardsect_size(struct request_queue *q, unsigned short size)
1da177e4
LT
725{
726 q->hardsect_size = size;
727}
728
729EXPORT_SYMBOL(blk_queue_hardsect_size);
730
731/*
732 * Returns the minimum that is _not_ zero, unless both are zero.
733 */
734#define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
735
736/**
737 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
738 * @t: the stacking driver (top)
739 * @b: the underlying device (bottom)
740 **/
165125e1 741void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
1da177e4
LT
742{
743 /* zero is "infinity" */
defd94b7
MC
744 t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
745 t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
1da177e4
LT
746
747 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
748 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
749 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
750 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
89e5c8b5
N
751 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
752 clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
1da177e4
LT
753}
754
755EXPORT_SYMBOL(blk_queue_stack_limits);
756
757/**
758 * blk_queue_segment_boundary - set boundary rules for segment merging
759 * @q: the request queue for the device
760 * @mask: the memory boundary mask
761 **/
165125e1 762void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
1da177e4
LT
763{
764 if (mask < PAGE_CACHE_SIZE - 1) {
765 mask = PAGE_CACHE_SIZE - 1;
766 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
767 }
768
769 q->seg_boundary_mask = mask;
770}
771
772EXPORT_SYMBOL(blk_queue_segment_boundary);
773
774/**
775 * blk_queue_dma_alignment - set dma length and memory alignment
776 * @q: the request queue for the device
777 * @mask: alignment mask
778 *
779 * description:
780 * set required memory and length aligment for direct dma transactions.
781 * this is used when buiding direct io requests for the queue.
782 *
783 **/
165125e1 784void blk_queue_dma_alignment(struct request_queue *q, int mask)
1da177e4
LT
785{
786 q->dma_alignment = mask;
787}
788
789EXPORT_SYMBOL(blk_queue_dma_alignment);
790
791/**
792 * blk_queue_find_tag - find a request by its tag and queue
1da177e4
LT
793 * @q: The request queue for the device
794 * @tag: The tag of the request
795 *
796 * Notes:
797 * Should be used when a device returns a tag and you want to match
798 * it with a request.
799 *
800 * no locks need be held.
801 **/
165125e1 802struct request *blk_queue_find_tag(struct request_queue *q, int tag)
1da177e4 803{
f583f492 804 return blk_map_queue_find_tag(q->queue_tags, tag);
1da177e4
LT
805}
806
807EXPORT_SYMBOL(blk_queue_find_tag);
808
809/**
492dfb48
JB
810 * __blk_free_tags - release a given set of tag maintenance info
811 * @bqt: the tag map to free
1da177e4 812 *
492dfb48
JB
813 * Tries to free the specified @bqt@. Returns true if it was
814 * actually freed and false if there are still references using it
815 */
816static int __blk_free_tags(struct blk_queue_tag *bqt)
1da177e4 817{
492dfb48 818 int retval;
1da177e4 819
492dfb48
JB
820 retval = atomic_dec_and_test(&bqt->refcnt);
821 if (retval) {
1da177e4
LT
822 BUG_ON(bqt->busy);
823 BUG_ON(!list_empty(&bqt->busy_list));
824
825 kfree(bqt->tag_index);
826 bqt->tag_index = NULL;
827
828 kfree(bqt->tag_map);
829 bqt->tag_map = NULL;
830
831 kfree(bqt);
492dfb48 832
1da177e4
LT
833 }
834
492dfb48
JB
835 return retval;
836}
837
838/**
839 * __blk_queue_free_tags - release tag maintenance info
840 * @q: the request queue for the device
841 *
842 * Notes:
843 * blk_cleanup_queue() will take care of calling this function, if tagging
844 * has been used. So there's no need to call this directly.
845 **/
165125e1 846static void __blk_queue_free_tags(struct request_queue *q)
492dfb48
JB
847{
848 struct blk_queue_tag *bqt = q->queue_tags;
849
850 if (!bqt)
851 return;
852
853 __blk_free_tags(bqt);
854
1da177e4
LT
855 q->queue_tags = NULL;
856 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
857}
858
492dfb48
JB
859
860/**
861 * blk_free_tags - release a given set of tag maintenance info
862 * @bqt: the tag map to free
863 *
864 * For externally managed @bqt@ frees the map. Callers of this
865 * function must guarantee to have released all the queues that
866 * might have been using this tag map.
867 */
868void blk_free_tags(struct blk_queue_tag *bqt)
869{
870 if (unlikely(!__blk_free_tags(bqt)))
871 BUG();
872}
873EXPORT_SYMBOL(blk_free_tags);
874
1da177e4
LT
875/**
876 * blk_queue_free_tags - release tag maintenance info
877 * @q: the request queue for the device
878 *
879 * Notes:
880 * This is used to disabled tagged queuing to a device, yet leave
881 * queue in function.
882 **/
165125e1 883void blk_queue_free_tags(struct request_queue *q)
1da177e4
LT
884{
885 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
886}
887
888EXPORT_SYMBOL(blk_queue_free_tags);
889
890static int
165125e1 891init_tag_map(struct request_queue *q, struct blk_queue_tag *tags, int depth)
1da177e4 892{
1da177e4
LT
893 struct request **tag_index;
894 unsigned long *tag_map;
fa72b903 895 int nr_ulongs;
1da177e4 896
492dfb48 897 if (q && depth > q->nr_requests * 2) {
1da177e4
LT
898 depth = q->nr_requests * 2;
899 printk(KERN_ERR "%s: adjusted depth to %d\n",
900 __FUNCTION__, depth);
901 }
902
f68110fc 903 tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
1da177e4
LT
904 if (!tag_index)
905 goto fail;
906
f7d37d02 907 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
f68110fc 908 tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
1da177e4
LT
909 if (!tag_map)
910 goto fail;
911
ba025082 912 tags->real_max_depth = depth;
1da177e4 913 tags->max_depth = depth;
1da177e4
LT
914 tags->tag_index = tag_index;
915 tags->tag_map = tag_map;
916
1da177e4
LT
917 return 0;
918fail:
919 kfree(tag_index);
920 return -ENOMEM;
921}
922
492dfb48
JB
923static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
924 int depth)
925{
926 struct blk_queue_tag *tags;
927
928 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
929 if (!tags)
930 goto fail;
931
932 if (init_tag_map(q, tags, depth))
933 goto fail;
934
935 INIT_LIST_HEAD(&tags->busy_list);
936 tags->busy = 0;
937 atomic_set(&tags->refcnt, 1);
938 return tags;
939fail:
940 kfree(tags);
941 return NULL;
942}
943
944/**
945 * blk_init_tags - initialize the tag info for an external tag map
946 * @depth: the maximum queue depth supported
947 * @tags: the tag to use
948 **/
949struct blk_queue_tag *blk_init_tags(int depth)
950{
951 return __blk_queue_init_tags(NULL, depth);
952}
953EXPORT_SYMBOL(blk_init_tags);
954
1da177e4
LT
955/**
956 * blk_queue_init_tags - initialize the queue tag info
957 * @q: the request queue for the device
958 * @depth: the maximum queue depth supported
959 * @tags: the tag to use
960 **/
165125e1 961int blk_queue_init_tags(struct request_queue *q, int depth,
1da177e4
LT
962 struct blk_queue_tag *tags)
963{
964 int rc;
965
966 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
967
968 if (!tags && !q->queue_tags) {
492dfb48 969 tags = __blk_queue_init_tags(q, depth);
1da177e4 970
492dfb48 971 if (!tags)
1da177e4 972 goto fail;
1da177e4
LT
973 } else if (q->queue_tags) {
974 if ((rc = blk_queue_resize_tags(q, depth)))
975 return rc;
976 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
977 return 0;
978 } else
979 atomic_inc(&tags->refcnt);
980
981 /*
982 * assign it, all done
983 */
984 q->queue_tags = tags;
985 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
986 return 0;
987fail:
988 kfree(tags);
989 return -ENOMEM;
990}
991
992EXPORT_SYMBOL(blk_queue_init_tags);
993
994/**
995 * blk_queue_resize_tags - change the queueing depth
996 * @q: the request queue for the device
997 * @new_depth: the new max command queueing depth
998 *
999 * Notes:
1000 * Must be called with the queue lock held.
1001 **/
165125e1 1002int blk_queue_resize_tags(struct request_queue *q, int new_depth)
1da177e4
LT
1003{
1004 struct blk_queue_tag *bqt = q->queue_tags;
1005 struct request **tag_index;
1006 unsigned long *tag_map;
fa72b903 1007 int max_depth, nr_ulongs;
1da177e4
LT
1008
1009 if (!bqt)
1010 return -ENXIO;
1011
ba025082
TH
1012 /*
1013 * if we already have large enough real_max_depth. just
1014 * adjust max_depth. *NOTE* as requests with tag value
1015 * between new_depth and real_max_depth can be in-flight, tag
1016 * map can not be shrunk blindly here.
1017 */
1018 if (new_depth <= bqt->real_max_depth) {
1019 bqt->max_depth = new_depth;
1020 return 0;
1021 }
1022
492dfb48
JB
1023 /*
1024 * Currently cannot replace a shared tag map with a new
1025 * one, so error out if this is the case
1026 */
1027 if (atomic_read(&bqt->refcnt) != 1)
1028 return -EBUSY;
1029
1da177e4
LT
1030 /*
1031 * save the old state info, so we can copy it back
1032 */
1033 tag_index = bqt->tag_index;
1034 tag_map = bqt->tag_map;
ba025082 1035 max_depth = bqt->real_max_depth;
1da177e4
LT
1036
1037 if (init_tag_map(q, bqt, new_depth))
1038 return -ENOMEM;
1039
1040 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
f7d37d02 1041 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
fa72b903 1042 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
1da177e4
LT
1043
1044 kfree(tag_index);
1045 kfree(tag_map);
1046 return 0;
1047}
1048
1049EXPORT_SYMBOL(blk_queue_resize_tags);
1050
1051/**
1052 * blk_queue_end_tag - end tag operations for a request
1053 * @q: the request queue for the device
1054 * @rq: the request that has completed
1055 *
1056 * Description:
1057 * Typically called when end_that_request_first() returns 0, meaning
1058 * all transfers have been done for a request. It's important to call
1059 * this function before end_that_request_last(), as that will put the
1060 * request back on the free list thus corrupting the internal tag list.
1061 *
1062 * Notes:
1063 * queue lock must be held.
1064 **/
165125e1 1065void blk_queue_end_tag(struct request_queue *q, struct request *rq)
1da177e4
LT
1066{
1067 struct blk_queue_tag *bqt = q->queue_tags;
1068 int tag = rq->tag;
1069
1070 BUG_ON(tag == -1);
1071
ba025082 1072 if (unlikely(tag >= bqt->real_max_depth))
040c928c
TH
1073 /*
1074 * This can happen after tag depth has been reduced.
1075 * FIXME: how about a warning or info message here?
1076 */
1da177e4
LT
1077 return;
1078
1da177e4 1079 list_del_init(&rq->queuelist);
4aff5e23 1080 rq->cmd_flags &= ~REQ_QUEUED;
1da177e4
LT
1081 rq->tag = -1;
1082
1083 if (unlikely(bqt->tag_index[tag] == NULL))
040c928c
TH
1084 printk(KERN_ERR "%s: tag %d is missing\n",
1085 __FUNCTION__, tag);
1da177e4
LT
1086
1087 bqt->tag_index[tag] = NULL;
f3da54ba 1088
dd941252
NP
1089 /*
1090 * We use test_and_clear_bit's memory ordering properties here.
1091 * The tag_map bit acts as a lock for tag_index[bit], so we need
1092 * a barrer before clearing the bit (precisely: release semantics).
1093 * Could use clear_bit_unlock when it is merged.
1094 */
f3da54ba
JA
1095 if (unlikely(!test_and_clear_bit(tag, bqt->tag_map))) {
1096 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
1097 __FUNCTION__, tag);
1098 return;
1099 }
1100
1da177e4
LT
1101 bqt->busy--;
1102}
1103
1104EXPORT_SYMBOL(blk_queue_end_tag);
1105
1106/**
1107 * blk_queue_start_tag - find a free tag and assign it
1108 * @q: the request queue for the device
1109 * @rq: the block request that needs tagging
1110 *
1111 * Description:
1112 * This can either be used as a stand-alone helper, or possibly be
1113 * assigned as the queue &prep_rq_fn (in which case &struct request
1114 * automagically gets a tag assigned). Note that this function
1115 * assumes that any type of request can be queued! if this is not
1116 * true for your device, you must check the request type before
1117 * calling this function. The request will also be removed from
1118 * the request queue, so it's the drivers responsibility to readd
1119 * it if it should need to be restarted for some reason.
1120 *
1121 * Notes:
1122 * queue lock must be held.
1123 **/
165125e1 1124int blk_queue_start_tag(struct request_queue *q, struct request *rq)
1da177e4
LT
1125{
1126 struct blk_queue_tag *bqt = q->queue_tags;
2bf0fdad 1127 int tag;
1da177e4 1128
4aff5e23 1129 if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
1da177e4 1130 printk(KERN_ERR
040c928c
TH
1131 "%s: request %p for device [%s] already tagged %d",
1132 __FUNCTION__, rq,
1133 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
1da177e4
LT
1134 BUG();
1135 }
1136
059af497
JA
1137 /*
1138 * Protect against shared tag maps, as we may not have exclusive
1139 * access to the tag map.
1140 */
1141 do {
1142 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
1143 if (tag >= bqt->max_depth)
1144 return 1;
1da177e4 1145
059af497 1146 } while (test_and_set_bit(tag, bqt->tag_map));
dd941252
NP
1147 /*
1148 * We rely on test_and_set_bit providing lock memory ordering semantics
1149 * (could use test_and_set_bit_lock when it is merged).
1150 */
1da177e4 1151
4aff5e23 1152 rq->cmd_flags |= REQ_QUEUED;
1da177e4
LT
1153 rq->tag = tag;
1154 bqt->tag_index[tag] = rq;
1155 blkdev_dequeue_request(rq);
1156 list_add(&rq->queuelist, &bqt->busy_list);
1157 bqt->busy++;
1158 return 0;
1159}
1160
1161EXPORT_SYMBOL(blk_queue_start_tag);
1162
1163/**
1164 * blk_queue_invalidate_tags - invalidate all pending tags
1165 * @q: the request queue for the device
1166 *
1167 * Description:
1168 * Hardware conditions may dictate a need to stop all pending requests.
1169 * In this case, we will safely clear the block side of the tag queue and
1170 * readd all requests to the request queue in the right order.
1171 *
1172 * Notes:
1173 * queue lock must be held.
1174 **/
165125e1 1175void blk_queue_invalidate_tags(struct request_queue *q)
1da177e4
LT
1176{
1177 struct blk_queue_tag *bqt = q->queue_tags;
1178 struct list_head *tmp, *n;
1179 struct request *rq;
1180
1181 list_for_each_safe(tmp, n, &bqt->busy_list) {
1182 rq = list_entry_rq(tmp);
1183
1184 if (rq->tag == -1) {
040c928c
TH
1185 printk(KERN_ERR
1186 "%s: bad tag found on list\n", __FUNCTION__);
1da177e4 1187 list_del_init(&rq->queuelist);
4aff5e23 1188 rq->cmd_flags &= ~REQ_QUEUED;
1da177e4
LT
1189 } else
1190 blk_queue_end_tag(q, rq);
1191
4aff5e23 1192 rq->cmd_flags &= ~REQ_STARTED;
1da177e4
LT
1193 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1194 }
1195}
1196
1197EXPORT_SYMBOL(blk_queue_invalidate_tags);
1198
1da177e4
LT
1199void blk_dump_rq_flags(struct request *rq, char *msg)
1200{
1201 int bit;
1202
4aff5e23
JA
1203 printk("%s: dev %s: type=%x, flags=%x\n", msg,
1204 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
1205 rq->cmd_flags);
1da177e4
LT
1206
1207 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1208 rq->nr_sectors,
1209 rq->current_nr_sectors);
1210 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1211
4aff5e23 1212 if (blk_pc_request(rq)) {
1da177e4
LT
1213 printk("cdb: ");
1214 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1215 printk("%02x ", rq->cmd[bit]);
1216 printk("\n");
1217 }
1218}
1219
1220EXPORT_SYMBOL(blk_dump_rq_flags);
1221
165125e1 1222void blk_recount_segments(struct request_queue *q, struct bio *bio)
1da177e4 1223{
9dfa5283
N
1224 struct request rq;
1225 struct bio *nxt = bio->bi_next;
1226 rq.q = q;
1227 rq.bio = rq.biotail = bio;
1228 bio->bi_next = NULL;
1229 blk_recalc_rq_segments(&rq);
1230 bio->bi_next = nxt;
1231 bio->bi_phys_segments = rq.nr_phys_segments;
1232 bio->bi_hw_segments = rq.nr_hw_segments;
1233 bio->bi_flags |= (1 << BIO_SEG_VALID);
1234}
1235EXPORT_SYMBOL(blk_recount_segments);
1236
1237static void blk_recalc_rq_segments(struct request *rq)
1238{
1239 int nr_phys_segs;
1240 int nr_hw_segs;
1241 unsigned int phys_size;
1242 unsigned int hw_size;
1da177e4 1243 struct bio_vec *bv, *bvprv = NULL;
9dfa5283
N
1244 int seg_size;
1245 int hw_seg_size;
1246 int cluster;
1247 struct bio *bio;
1248 int i;
1da177e4 1249 int high, highprv = 1;
9dfa5283 1250 struct request_queue *q = rq->q;
1da177e4 1251
9dfa5283 1252 if (!rq->bio)
1da177e4
LT
1253 return;
1254
1255 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
9dfa5283
N
1256 hw_seg_size = seg_size = 0;
1257 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
1258 rq_for_each_bio(bio, rq)
1259 bio_for_each_segment(bv, bio, i) {
1da177e4
LT
1260 /*
1261 * the trick here is making sure that a high page is never
1262 * considered part of another segment, since that might
1263 * change with the bounce page.
1264 */
f772b3d9 1265 high = page_to_pfn(bv->bv_page) > q->bounce_pfn;
1da177e4
LT
1266 if (high || highprv)
1267 goto new_hw_segment;
1268 if (cluster) {
1269 if (seg_size + bv->bv_len > q->max_segment_size)
1270 goto new_segment;
1271 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1272 goto new_segment;
1273 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1274 goto new_segment;
1275 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1276 goto new_hw_segment;
1277
1278 seg_size += bv->bv_len;
1279 hw_seg_size += bv->bv_len;
1280 bvprv = bv;
1281 continue;
1282 }
1283new_segment:
1284 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
9dfa5283 1285 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1da177e4 1286 hw_seg_size += bv->bv_len;
9dfa5283 1287 else {
1da177e4 1288new_hw_segment:
9dfa5283
N
1289 if (nr_hw_segs == 1 &&
1290 hw_seg_size > rq->bio->bi_hw_front_size)
1291 rq->bio->bi_hw_front_size = hw_seg_size;
1da177e4
LT
1292 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1293 nr_hw_segs++;
1294 }
1295
1296 nr_phys_segs++;
1297 bvprv = bv;
1298 seg_size = bv->bv_len;
1299 highprv = high;
1300 }
9dfa5283
N
1301
1302 if (nr_hw_segs == 1 &&
1303 hw_seg_size > rq->bio->bi_hw_front_size)
1304 rq->bio->bi_hw_front_size = hw_seg_size;
1305 if (hw_seg_size > rq->biotail->bi_hw_back_size)
1306 rq->biotail->bi_hw_back_size = hw_seg_size;
1307 rq->nr_phys_segments = nr_phys_segs;
1308 rq->nr_hw_segments = nr_hw_segs;
1da177e4 1309}
1da177e4 1310
165125e1 1311static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
1da177e4
LT
1312 struct bio *nxt)
1313{
1314 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1315 return 0;
1316
1317 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1318 return 0;
1319 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1320 return 0;
1321
1322 /*
1323 * bio and nxt are contigous in memory, check if the queue allows
1324 * these two to be merged into one
1325 */
1326 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1327 return 1;
1328
1329 return 0;
1330}
1331
165125e1 1332static int blk_hw_contig_segment(struct request_queue *q, struct bio *bio,
1da177e4
LT
1333 struct bio *nxt)
1334{
1335 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1336 blk_recount_segments(q, bio);
1337 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1338 blk_recount_segments(q, nxt);
1339 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
32eef964 1340 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_back_size + nxt->bi_hw_front_size))
1da177e4 1341 return 0;
32eef964 1342 if (bio->bi_hw_back_size + nxt->bi_hw_front_size > q->max_segment_size)
1da177e4
LT
1343 return 0;
1344
1345 return 1;
1346}
1347
1da177e4
LT
1348/*
1349 * map a request to scatterlist, return number of sg entries setup. Caller
1350 * must make sure sg can hold rq->nr_phys_segments entries
1351 */
165125e1
JA
1352int blk_rq_map_sg(struct request_queue *q, struct request *rq,
1353 struct scatterlist *sg)
1da177e4
LT
1354{
1355 struct bio_vec *bvec, *bvprv;
1356 struct bio *bio;
1357 int nsegs, i, cluster;
1358
1359 nsegs = 0;
1360 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1361
1362 /*
1363 * for each bio in rq
1364 */
1365 bvprv = NULL;
1366 rq_for_each_bio(bio, rq) {
1367 /*
1368 * for each segment in bio
1369 */
1370 bio_for_each_segment(bvec, bio, i) {
1371 int nbytes = bvec->bv_len;
1372
1373 if (bvprv && cluster) {
1374 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1375 goto new_segment;
1376
1377 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1378 goto new_segment;
1379 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1380 goto new_segment;
1381
1382 sg[nsegs - 1].length += nbytes;
1383 } else {
1384new_segment:
1385 memset(&sg[nsegs],0,sizeof(struct scatterlist));
1386 sg[nsegs].page = bvec->bv_page;
1387 sg[nsegs].length = nbytes;
1388 sg[nsegs].offset = bvec->bv_offset;
1389
1390 nsegs++;
1391 }
1392 bvprv = bvec;
1393 } /* segments in bio */
1394 } /* bios in rq */
1395
1396 return nsegs;
1397}
1398
1399EXPORT_SYMBOL(blk_rq_map_sg);
1400
1401/*
1402 * the standard queue merge functions, can be overridden with device
1403 * specific ones if so desired
1404 */
1405
165125e1 1406static inline int ll_new_mergeable(struct request_queue *q,
1da177e4
LT
1407 struct request *req,
1408 struct bio *bio)
1409{
1410 int nr_phys_segs = bio_phys_segments(q, bio);
1411
1412 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
4aff5e23 1413 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1414 if (req == q->last_merge)
1415 q->last_merge = NULL;
1416 return 0;
1417 }
1418
1419 /*
1420 * A hw segment is just getting larger, bump just the phys
1421 * counter.
1422 */
1423 req->nr_phys_segments += nr_phys_segs;
1424 return 1;
1425}
1426
165125e1 1427static inline int ll_new_hw_segment(struct request_queue *q,
1da177e4
LT
1428 struct request *req,
1429 struct bio *bio)
1430{
1431 int nr_hw_segs = bio_hw_segments(q, bio);
1432 int nr_phys_segs = bio_phys_segments(q, bio);
1433
1434 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1435 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
4aff5e23 1436 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1437 if (req == q->last_merge)
1438 q->last_merge = NULL;
1439 return 0;
1440 }
1441
1442 /*
1443 * This will form the start of a new hw segment. Bump both
1444 * counters.
1445 */
1446 req->nr_hw_segments += nr_hw_segs;
1447 req->nr_phys_segments += nr_phys_segs;
1448 return 1;
1449}
1450
165125e1 1451int ll_back_merge_fn(struct request_queue *q, struct request *req, struct bio *bio)
1da177e4 1452{
defd94b7 1453 unsigned short max_sectors;
1da177e4
LT
1454 int len;
1455
defd94b7
MC
1456 if (unlikely(blk_pc_request(req)))
1457 max_sectors = q->max_hw_sectors;
1458 else
1459 max_sectors = q->max_sectors;
1460
1461 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
4aff5e23 1462 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1463 if (req == q->last_merge)
1464 q->last_merge = NULL;
1465 return 0;
1466 }
1467 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1468 blk_recount_segments(q, req->biotail);
1469 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1470 blk_recount_segments(q, bio);
1471 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1472 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1473 !BIOVEC_VIRT_OVERSIZE(len)) {
1474 int mergeable = ll_new_mergeable(q, req, bio);
1475
1476 if (mergeable) {
1477 if (req->nr_hw_segments == 1)
1478 req->bio->bi_hw_front_size = len;
1479 if (bio->bi_hw_segments == 1)
1480 bio->bi_hw_back_size = len;
1481 }
1482 return mergeable;
1483 }
1484
1485 return ll_new_hw_segment(q, req, bio);
1486}
1aa4f24f 1487EXPORT_SYMBOL(ll_back_merge_fn);
1da177e4 1488
165125e1 1489static int ll_front_merge_fn(struct request_queue *q, struct request *req,
1da177e4
LT
1490 struct bio *bio)
1491{
defd94b7 1492 unsigned short max_sectors;
1da177e4
LT
1493 int len;
1494
defd94b7
MC
1495 if (unlikely(blk_pc_request(req)))
1496 max_sectors = q->max_hw_sectors;
1497 else
1498 max_sectors = q->max_sectors;
1499
1500
1501 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
4aff5e23 1502 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1503 if (req == q->last_merge)
1504 q->last_merge = NULL;
1505 return 0;
1506 }
1507 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1508 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1509 blk_recount_segments(q, bio);
1510 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1511 blk_recount_segments(q, req->bio);
1512 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1513 !BIOVEC_VIRT_OVERSIZE(len)) {
1514 int mergeable = ll_new_mergeable(q, req, bio);
1515
1516 if (mergeable) {
1517 if (bio->bi_hw_segments == 1)
1518 bio->bi_hw_front_size = len;
1519 if (req->nr_hw_segments == 1)
1520 req->biotail->bi_hw_back_size = len;
1521 }
1522 return mergeable;
1523 }
1524
1525 return ll_new_hw_segment(q, req, bio);
1526}
1527
165125e1 1528static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
1da177e4
LT
1529 struct request *next)
1530{
dfa1a553
ND
1531 int total_phys_segments;
1532 int total_hw_segments;
1da177e4
LT
1533
1534 /*
1535 * First check if the either of the requests are re-queued
1536 * requests. Can't merge them if they are.
1537 */
1538 if (req->special || next->special)
1539 return 0;
1540
1541 /*
dfa1a553 1542 * Will it become too large?
1da177e4
LT
1543 */
1544 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1545 return 0;
1546
1547 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1548 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1549 total_phys_segments--;
1550
1551 if (total_phys_segments > q->max_phys_segments)
1552 return 0;
1553
1554 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1555 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1556 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1557 /*
1558 * propagate the combined length to the end of the requests
1559 */
1560 if (req->nr_hw_segments == 1)
1561 req->bio->bi_hw_front_size = len;
1562 if (next->nr_hw_segments == 1)
1563 next->biotail->bi_hw_back_size = len;
1564 total_hw_segments--;
1565 }
1566
1567 if (total_hw_segments > q->max_hw_segments)
1568 return 0;
1569
1570 /* Merge is OK... */
1571 req->nr_phys_segments = total_phys_segments;
1572 req->nr_hw_segments = total_hw_segments;
1573 return 1;
1574}
1575
1576/*
1577 * "plug" the device if there are no outstanding requests: this will
1578 * force the transfer to start only after we have put all the requests
1579 * on the list.
1580 *
1581 * This is called with interrupts off and no requests on the queue and
1582 * with the queue lock held.
1583 */
165125e1 1584void blk_plug_device(struct request_queue *q)
1da177e4
LT
1585{
1586 WARN_ON(!irqs_disabled());
1587
1588 /*
1589 * don't plug a stopped queue, it must be paired with blk_start_queue()
1590 * which will restart the queueing
1591 */
7daac490 1592 if (blk_queue_stopped(q))
1da177e4
LT
1593 return;
1594
2056a782 1595 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
1da177e4 1596 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
2056a782
JA
1597 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
1598 }
1da177e4
LT
1599}
1600
1601EXPORT_SYMBOL(blk_plug_device);
1602
1603/*
1604 * remove the queue from the plugged list, if present. called with
1605 * queue lock held and interrupts disabled.
1606 */
165125e1 1607int blk_remove_plug(struct request_queue *q)
1da177e4
LT
1608{
1609 WARN_ON(!irqs_disabled());
1610
1611 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1612 return 0;
1613
1614 del_timer(&q->unplug_timer);
1615 return 1;
1616}
1617
1618EXPORT_SYMBOL(blk_remove_plug);
1619
1620/*
1621 * remove the plug and let it rip..
1622 */
165125e1 1623void __generic_unplug_device(struct request_queue *q)
1da177e4 1624{
7daac490 1625 if (unlikely(blk_queue_stopped(q)))
1da177e4
LT
1626 return;
1627
1628 if (!blk_remove_plug(q))
1629 return;
1630
22e2c507 1631 q->request_fn(q);
1da177e4
LT
1632}
1633EXPORT_SYMBOL(__generic_unplug_device);
1634
1635/**
1636 * generic_unplug_device - fire a request queue
165125e1 1637 * @q: The &struct request_queue in question
1da177e4
LT
1638 *
1639 * Description:
1640 * Linux uses plugging to build bigger requests queues before letting
1641 * the device have at them. If a queue is plugged, the I/O scheduler
1642 * is still adding and merging requests on the queue. Once the queue
1643 * gets unplugged, the request_fn defined for the queue is invoked and
1644 * transfers started.
1645 **/
165125e1 1646void generic_unplug_device(struct request_queue *q)
1da177e4
LT
1647{
1648 spin_lock_irq(q->queue_lock);
1649 __generic_unplug_device(q);
1650 spin_unlock_irq(q->queue_lock);
1651}
1652EXPORT_SYMBOL(generic_unplug_device);
1653
1654static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1655 struct page *page)
1656{
165125e1 1657 struct request_queue *q = bdi->unplug_io_data;
1da177e4
LT
1658
1659 /*
1660 * devices don't necessarily have an ->unplug_fn defined
1661 */
2056a782
JA
1662 if (q->unplug_fn) {
1663 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1664 q->rq.count[READ] + q->rq.count[WRITE]);
1665
1da177e4 1666 q->unplug_fn(q);
2056a782 1667 }
1da177e4
LT
1668}
1669
65f27f38 1670static void blk_unplug_work(struct work_struct *work)
1da177e4 1671{
165125e1
JA
1672 struct request_queue *q =
1673 container_of(work, struct request_queue, unplug_work);
1da177e4 1674
2056a782
JA
1675 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1676 q->rq.count[READ] + q->rq.count[WRITE]);
1677
1da177e4
LT
1678 q->unplug_fn(q);
1679}
1680
1681static void blk_unplug_timeout(unsigned long data)
1682{
165125e1 1683 struct request_queue *q = (struct request_queue *)data;
1da177e4 1684
2056a782
JA
1685 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
1686 q->rq.count[READ] + q->rq.count[WRITE]);
1687
1da177e4
LT
1688 kblockd_schedule_work(&q->unplug_work);
1689}
1690
1691/**
1692 * blk_start_queue - restart a previously stopped queue
165125e1 1693 * @q: The &struct request_queue in question
1da177e4
LT
1694 *
1695 * Description:
1696 * blk_start_queue() will clear the stop flag on the queue, and call
1697 * the request_fn for the queue if it was in a stopped state when
1698 * entered. Also see blk_stop_queue(). Queue lock must be held.
1699 **/
165125e1 1700void blk_start_queue(struct request_queue *q)
1da177e4 1701{
a038e253
PBG
1702 WARN_ON(!irqs_disabled());
1703
1da177e4
LT
1704 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1705
1706 /*
1707 * one level of recursion is ok and is much faster than kicking
1708 * the unplug handling
1709 */
1710 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1711 q->request_fn(q);
1712 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1713 } else {
1714 blk_plug_device(q);
1715 kblockd_schedule_work(&q->unplug_work);
1716 }
1717}
1718
1719EXPORT_SYMBOL(blk_start_queue);
1720
1721/**
1722 * blk_stop_queue - stop a queue
165125e1 1723 * @q: The &struct request_queue in question
1da177e4
LT
1724 *
1725 * Description:
1726 * The Linux block layer assumes that a block driver will consume all
1727 * entries on the request queue when the request_fn strategy is called.
1728 * Often this will not happen, because of hardware limitations (queue
1729 * depth settings). If a device driver gets a 'queue full' response,
1730 * or if it simply chooses not to queue more I/O at one point, it can
1731 * call this function to prevent the request_fn from being called until
1732 * the driver has signalled it's ready to go again. This happens by calling
1733 * blk_start_queue() to restart queue operations. Queue lock must be held.
1734 **/
165125e1 1735void blk_stop_queue(struct request_queue *q)
1da177e4
LT
1736{
1737 blk_remove_plug(q);
1738 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1739}
1740EXPORT_SYMBOL(blk_stop_queue);
1741
1742/**
1743 * blk_sync_queue - cancel any pending callbacks on a queue
1744 * @q: the queue
1745 *
1746 * Description:
1747 * The block layer may perform asynchronous callback activity
1748 * on a queue, such as calling the unplug function after a timeout.
1749 * A block device may call blk_sync_queue to ensure that any
1750 * such activity is cancelled, thus allowing it to release resources
59c51591 1751 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
1752 * that its ->make_request_fn will not re-add plugging prior to calling
1753 * this function.
1754 *
1755 */
1756void blk_sync_queue(struct request_queue *q)
1757{
1758 del_timer_sync(&q->unplug_timer);
1da177e4
LT
1759}
1760EXPORT_SYMBOL(blk_sync_queue);
1761
1762/**
1763 * blk_run_queue - run a single device queue
1764 * @q: The queue to run
1765 */
1766void blk_run_queue(struct request_queue *q)
1767{
1768 unsigned long flags;
1769
1770 spin_lock_irqsave(q->queue_lock, flags);
1771 blk_remove_plug(q);
dac07ec1
JA
1772
1773 /*
1774 * Only recurse once to avoid overrunning the stack, let the unplug
1775 * handling reinvoke the handler shortly if we already got there.
1776 */
1777 if (!elv_queue_empty(q)) {
1778 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1779 q->request_fn(q);
1780 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1781 } else {
1782 blk_plug_device(q);
1783 kblockd_schedule_work(&q->unplug_work);
1784 }
1785 }
1786
1da177e4
LT
1787 spin_unlock_irqrestore(q->queue_lock, flags);
1788}
1789EXPORT_SYMBOL(blk_run_queue);
1790
1791/**
165125e1 1792 * blk_cleanup_queue: - release a &struct request_queue when it is no longer needed
a580290c 1793 * @kobj: the kobj belonging of the request queue to be released
1da177e4
LT
1794 *
1795 * Description:
1796 * blk_cleanup_queue is the pair to blk_init_queue() or
1797 * blk_queue_make_request(). It should be called when a request queue is
1798 * being released; typically when a block device is being de-registered.
1799 * Currently, its primary task it to free all the &struct request
1800 * structures that were allocated to the queue and the queue itself.
1801 *
1802 * Caveat:
1803 * Hopefully the low level driver will have finished any
1804 * outstanding requests first...
1805 **/
483f4afc 1806static void blk_release_queue(struct kobject *kobj)
1da177e4 1807{
165125e1
JA
1808 struct request_queue *q =
1809 container_of(kobj, struct request_queue, kobj);
1da177e4
LT
1810 struct request_list *rl = &q->rq;
1811
1da177e4
LT
1812 blk_sync_queue(q);
1813
1814 if (rl->rq_pool)
1815 mempool_destroy(rl->rq_pool);
1816
1817 if (q->queue_tags)
1818 __blk_queue_free_tags(q);
1819
6c5c9341 1820 blk_trace_shutdown(q);
2056a782 1821
1da177e4
LT
1822 kmem_cache_free(requestq_cachep, q);
1823}
1824
165125e1 1825void blk_put_queue(struct request_queue *q)
483f4afc
AV
1826{
1827 kobject_put(&q->kobj);
1828}
1829EXPORT_SYMBOL(blk_put_queue);
1830
165125e1 1831void blk_cleanup_queue(struct request_queue * q)
483f4afc
AV
1832{
1833 mutex_lock(&q->sysfs_lock);
1834 set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
1835 mutex_unlock(&q->sysfs_lock);
1836
1837 if (q->elevator)
1838 elevator_exit(q->elevator);
1839
1840 blk_put_queue(q);
1841}
1842
1da177e4
LT
1843EXPORT_SYMBOL(blk_cleanup_queue);
1844
165125e1 1845static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
1846{
1847 struct request_list *rl = &q->rq;
1848
1849 rl->count[READ] = rl->count[WRITE] = 0;
1850 rl->starved[READ] = rl->starved[WRITE] = 0;
cb98fc8b 1851 rl->elvpriv = 0;
1da177e4
LT
1852 init_waitqueue_head(&rl->wait[READ]);
1853 init_waitqueue_head(&rl->wait[WRITE]);
1da177e4 1854
1946089a
CL
1855 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1856 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
1857
1858 if (!rl->rq_pool)
1859 return -ENOMEM;
1860
1861 return 0;
1862}
1863
165125e1 1864struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 1865{
1946089a
CL
1866 return blk_alloc_queue_node(gfp_mask, -1);
1867}
1868EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 1869
483f4afc
AV
1870static struct kobj_type queue_ktype;
1871
165125e1 1872struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 1873{
165125e1 1874 struct request_queue *q;
1946089a 1875
94f6030c
CL
1876 q = kmem_cache_alloc_node(requestq_cachep,
1877 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
1878 if (!q)
1879 return NULL;
1880
1da177e4 1881 init_timer(&q->unplug_timer);
483f4afc
AV
1882
1883 snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
1884 q->kobj.ktype = &queue_ktype;
1885 kobject_init(&q->kobj);
1da177e4
LT
1886
1887 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1888 q->backing_dev_info.unplug_io_data = q;
1889
483f4afc
AV
1890 mutex_init(&q->sysfs_lock);
1891
1da177e4
LT
1892 return q;
1893}
1946089a 1894EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
1895
1896/**
1897 * blk_init_queue - prepare a request queue for use with a block device
1898 * @rfn: The function to be called to process requests that have been
1899 * placed on the queue.
1900 * @lock: Request queue spin lock
1901 *
1902 * Description:
1903 * If a block device wishes to use the standard request handling procedures,
1904 * which sorts requests and coalesces adjacent requests, then it must
1905 * call blk_init_queue(). The function @rfn will be called when there
1906 * are requests on the queue that need to be processed. If the device
1907 * supports plugging, then @rfn may not be called immediately when requests
1908 * are available on the queue, but may be called at some time later instead.
1909 * Plugged queues are generally unplugged when a buffer belonging to one
1910 * of the requests on the queue is needed, or due to memory pressure.
1911 *
1912 * @rfn is not required, or even expected, to remove all requests off the
1913 * queue, but only as many as it can handle at a time. If it does leave
1914 * requests on the queue, it is responsible for arranging that the requests
1915 * get dealt with eventually.
1916 *
1917 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
1918 * request queue; this lock will be taken also from interrupt context, so irq
1919 * disabling is needed for it.
1da177e4
LT
1920 *
1921 * Function returns a pointer to the initialized request queue, or NULL if
1922 * it didn't succeed.
1923 *
1924 * Note:
1925 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1926 * when the block device is deactivated (such as at module unload).
1927 **/
1946089a 1928
165125e1 1929struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 1930{
1946089a
CL
1931 return blk_init_queue_node(rfn, lock, -1);
1932}
1933EXPORT_SYMBOL(blk_init_queue);
1934
165125e1 1935struct request_queue *
1946089a
CL
1936blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1937{
165125e1 1938 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1da177e4
LT
1939
1940 if (!q)
1941 return NULL;
1942
1946089a 1943 q->node = node_id;
8669aafd
AV
1944 if (blk_init_free_list(q)) {
1945 kmem_cache_free(requestq_cachep, q);
1946 return NULL;
1947 }
1da177e4 1948
152587de 1949 /*
1950 * if caller didn't supply a lock, they get per-queue locking with
1951 * our embedded lock
1952 */
1953 if (!lock) {
1954 spin_lock_init(&q->__queue_lock);
1955 lock = &q->__queue_lock;
1956 }
1957
1da177e4 1958 q->request_fn = rfn;
1da177e4
LT
1959 q->prep_rq_fn = NULL;
1960 q->unplug_fn = generic_unplug_device;
1961 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1962 q->queue_lock = lock;
1963
1964 blk_queue_segment_boundary(q, 0xffffffff);
1965
1966 blk_queue_make_request(q, __make_request);
1967 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1968
1969 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1970 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1971
44ec9542
AS
1972 q->sg_reserved_size = INT_MAX;
1973
1da177e4
LT
1974 /*
1975 * all done
1976 */
1977 if (!elevator_init(q, NULL)) {
1978 blk_queue_congestion_threshold(q);
1979 return q;
1980 }
1981
8669aafd 1982 blk_put_queue(q);
1da177e4
LT
1983 return NULL;
1984}
1946089a 1985EXPORT_SYMBOL(blk_init_queue_node);
1da177e4 1986
165125e1 1987int blk_get_queue(struct request_queue *q)
1da177e4 1988{
fde6ad22 1989 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 1990 kobject_get(&q->kobj);
1da177e4
LT
1991 return 0;
1992 }
1993
1994 return 1;
1995}
1996
1997EXPORT_SYMBOL(blk_get_queue);
1998
165125e1 1999static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 2000{
4aff5e23 2001 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 2002 elv_put_request(q, rq);
1da177e4
LT
2003 mempool_free(rq, q->rq.rq_pool);
2004}
2005
1ea25ecb 2006static struct request *
165125e1 2007blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
1da177e4
LT
2008{
2009 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
2010
2011 if (!rq)
2012 return NULL;
2013
2014 /*
4aff5e23 2015 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
1da177e4
LT
2016 * see bio.h and blkdev.h
2017 */
49171e5c 2018 rq->cmd_flags = rw | REQ_ALLOCED;
1da177e4 2019
cb98fc8b 2020 if (priv) {
cb78b285 2021 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
cb98fc8b
TH
2022 mempool_free(rq, q->rq.rq_pool);
2023 return NULL;
2024 }
4aff5e23 2025 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 2026 }
1da177e4 2027
cb98fc8b 2028 return rq;
1da177e4
LT
2029}
2030
2031/*
2032 * ioc_batching returns true if the ioc is a valid batching request and
2033 * should be given priority access to a request.
2034 */
165125e1 2035static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
2036{
2037 if (!ioc)
2038 return 0;
2039
2040 /*
2041 * Make sure the process is able to allocate at least 1 request
2042 * even if the batch times out, otherwise we could theoretically
2043 * lose wakeups.
2044 */
2045 return ioc->nr_batch_requests == q->nr_batching ||
2046 (ioc->nr_batch_requests > 0
2047 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
2048}
2049
2050/*
2051 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2052 * will cause the process to be a "batcher" on all queues in the system. This
2053 * is the behaviour we want though - once it gets a wakeup it should be given
2054 * a nice run.
2055 */
165125e1 2056static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
2057{
2058 if (!ioc || ioc_batching(q, ioc))
2059 return;
2060
2061 ioc->nr_batch_requests = q->nr_batching;
2062 ioc->last_waited = jiffies;
2063}
2064
165125e1 2065static void __freed_request(struct request_queue *q, int rw)
1da177e4
LT
2066{
2067 struct request_list *rl = &q->rq;
2068
2069 if (rl->count[rw] < queue_congestion_off_threshold(q))
79e2de4b 2070 blk_clear_queue_congested(q, rw);
1da177e4
LT
2071
2072 if (rl->count[rw] + 1 <= q->nr_requests) {
1da177e4
LT
2073 if (waitqueue_active(&rl->wait[rw]))
2074 wake_up(&rl->wait[rw]);
2075
2076 blk_clear_queue_full(q, rw);
2077 }
2078}
2079
2080/*
2081 * A request has just been released. Account for it, update the full and
2082 * congestion status, wake up any waiters. Called under q->queue_lock.
2083 */
165125e1 2084static void freed_request(struct request_queue *q, int rw, int priv)
1da177e4
LT
2085{
2086 struct request_list *rl = &q->rq;
2087
2088 rl->count[rw]--;
cb98fc8b
TH
2089 if (priv)
2090 rl->elvpriv--;
1da177e4
LT
2091
2092 __freed_request(q, rw);
2093
2094 if (unlikely(rl->starved[rw ^ 1]))
2095 __freed_request(q, rw ^ 1);
1da177e4
LT
2096}
2097
2098#define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2099/*
d6344532
NP
2100 * Get a free request, queue_lock must be held.
2101 * Returns NULL on failure, with queue_lock held.
2102 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 2103 */
165125e1 2104static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 2105 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
2106{
2107 struct request *rq = NULL;
2108 struct request_list *rl = &q->rq;
88ee5ef1 2109 struct io_context *ioc = NULL;
7749a8d4 2110 const int rw = rw_flags & 0x01;
88ee5ef1
JA
2111 int may_queue, priv;
2112
7749a8d4 2113 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
2114 if (may_queue == ELV_MQUEUE_NO)
2115 goto rq_starved;
2116
2117 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
2118 if (rl->count[rw]+1 >= q->nr_requests) {
b5deef90 2119 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
2120 /*
2121 * The queue will fill after this allocation, so set
2122 * it as full, and mark this process as "batching".
2123 * This process will be allowed to complete a batch of
2124 * requests, others will be blocked.
2125 */
2126 if (!blk_queue_full(q, rw)) {
2127 ioc_set_batching(q, ioc);
2128 blk_set_queue_full(q, rw);
2129 } else {
2130 if (may_queue != ELV_MQUEUE_MUST
2131 && !ioc_batching(q, ioc)) {
2132 /*
2133 * The queue is full and the allocating
2134 * process is not a "batcher", and not
2135 * exempted by the IO scheduler
2136 */
2137 goto out;
2138 }
2139 }
1da177e4 2140 }
79e2de4b 2141 blk_set_queue_congested(q, rw);
1da177e4
LT
2142 }
2143
082cf69e
JA
2144 /*
2145 * Only allow batching queuers to allocate up to 50% over the defined
2146 * limit of requests, otherwise we could have thousands of requests
2147 * allocated with any setting of ->nr_requests
2148 */
fd782a4a 2149 if (rl->count[rw] >= (3 * q->nr_requests / 2))
082cf69e 2150 goto out;
fd782a4a 2151
1da177e4
LT
2152 rl->count[rw]++;
2153 rl->starved[rw] = 0;
cb98fc8b 2154
64521d1a 2155 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
cb98fc8b
TH
2156 if (priv)
2157 rl->elvpriv++;
2158
1da177e4
LT
2159 spin_unlock_irq(q->queue_lock);
2160
7749a8d4 2161 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
88ee5ef1 2162 if (unlikely(!rq)) {
1da177e4
LT
2163 /*
2164 * Allocation failed presumably due to memory. Undo anything
2165 * we might have messed up.
2166 *
2167 * Allocating task should really be put onto the front of the
2168 * wait queue, but this is pretty rare.
2169 */
2170 spin_lock_irq(q->queue_lock);
cb98fc8b 2171 freed_request(q, rw, priv);
1da177e4
LT
2172
2173 /*
2174 * in the very unlikely event that allocation failed and no
2175 * requests for this direction was pending, mark us starved
2176 * so that freeing of a request in the other direction will
2177 * notice us. another possible fix would be to split the
2178 * rq mempool into READ and WRITE
2179 */
2180rq_starved:
2181 if (unlikely(rl->count[rw] == 0))
2182 rl->starved[rw] = 1;
2183
1da177e4
LT
2184 goto out;
2185 }
2186
88ee5ef1
JA
2187 /*
2188 * ioc may be NULL here, and ioc_batching will be false. That's
2189 * OK, if the queue is under the request limit then requests need
2190 * not count toward the nr_batch_requests limit. There will always
2191 * be some limit enforced by BLK_BATCH_TIME.
2192 */
1da177e4
LT
2193 if (ioc_batching(q, ioc))
2194 ioc->nr_batch_requests--;
2195
2196 rq_init(q, rq);
2056a782
JA
2197
2198 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
1da177e4 2199out:
1da177e4
LT
2200 return rq;
2201}
2202
2203/*
2204 * No available requests for this queue, unplug the device and wait for some
2205 * requests to become available.
d6344532
NP
2206 *
2207 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 2208 */
165125e1 2209static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 2210 struct bio *bio)
1da177e4 2211{
7749a8d4 2212 const int rw = rw_flags & 0x01;
1da177e4
LT
2213 struct request *rq;
2214
7749a8d4 2215 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
2216 while (!rq) {
2217 DEFINE_WAIT(wait);
1da177e4
LT
2218 struct request_list *rl = &q->rq;
2219
2220 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
2221 TASK_UNINTERRUPTIBLE);
2222
7749a8d4 2223 rq = get_request(q, rw_flags, bio, GFP_NOIO);
1da177e4
LT
2224
2225 if (!rq) {
2226 struct io_context *ioc;
2227
2056a782
JA
2228 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
2229
d6344532
NP
2230 __generic_unplug_device(q);
2231 spin_unlock_irq(q->queue_lock);
1da177e4
LT
2232 io_schedule();
2233
2234 /*
2235 * After sleeping, we become a "batching" process and
2236 * will be able to allocate at least one request, and
2237 * up to a big batch of them for a small period time.
2238 * See ioc_batching, ioc_set_batching
2239 */
b5deef90 2240 ioc = current_io_context(GFP_NOIO, q->node);
1da177e4 2241 ioc_set_batching(q, ioc);
d6344532
NP
2242
2243 spin_lock_irq(q->queue_lock);
1da177e4
LT
2244 }
2245 finish_wait(&rl->wait[rw], &wait);
450991bc 2246 }
1da177e4
LT
2247
2248 return rq;
2249}
2250
165125e1 2251struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
2252{
2253 struct request *rq;
2254
2255 BUG_ON(rw != READ && rw != WRITE);
2256
d6344532
NP
2257 spin_lock_irq(q->queue_lock);
2258 if (gfp_mask & __GFP_WAIT) {
22e2c507 2259 rq = get_request_wait(q, rw, NULL);
d6344532 2260 } else {
22e2c507 2261 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
2262 if (!rq)
2263 spin_unlock_irq(q->queue_lock);
2264 }
2265 /* q->queue_lock is unlocked at this point */
1da177e4
LT
2266
2267 return rq;
2268}
1da177e4
LT
2269EXPORT_SYMBOL(blk_get_request);
2270
dc72ef4a
JA
2271/**
2272 * blk_start_queueing - initiate dispatch of requests to device
2273 * @q: request queue to kick into gear
2274 *
2275 * This is basically a helper to remove the need to know whether a queue
2276 * is plugged or not if someone just wants to initiate dispatch of requests
2277 * for this queue.
2278 *
2279 * The queue lock must be held with interrupts disabled.
2280 */
165125e1 2281void blk_start_queueing(struct request_queue *q)
dc72ef4a
JA
2282{
2283 if (!blk_queue_plugged(q))
2284 q->request_fn(q);
2285 else
2286 __generic_unplug_device(q);
2287}
2288EXPORT_SYMBOL(blk_start_queueing);
2289
1da177e4
LT
2290/**
2291 * blk_requeue_request - put a request back on queue
2292 * @q: request queue where request should be inserted
2293 * @rq: request to be inserted
2294 *
2295 * Description:
2296 * Drivers often keep queueing requests until the hardware cannot accept
2297 * more, when that condition happens we need to put the request back
2298 * on the queue. Must be called with queue lock held.
2299 */
165125e1 2300void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 2301{
2056a782
JA
2302 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
2303
1da177e4
LT
2304 if (blk_rq_tagged(rq))
2305 blk_queue_end_tag(q, rq);
2306
2307 elv_requeue_request(q, rq);
2308}
2309
2310EXPORT_SYMBOL(blk_requeue_request);
2311
2312/**
2313 * blk_insert_request - insert a special request in to a request queue
2314 * @q: request queue where request should be inserted
2315 * @rq: request to be inserted
2316 * @at_head: insert request at head or tail of queue
2317 * @data: private data
1da177e4
LT
2318 *
2319 * Description:
2320 * Many block devices need to execute commands asynchronously, so they don't
2321 * block the whole kernel from preemption during request execution. This is
2322 * accomplished normally by inserting aritficial requests tagged as
2323 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2324 * scheduled for actual execution by the request queue.
2325 *
2326 * We have the option of inserting the head or the tail of the queue.
2327 * Typically we use the tail for new ioctls and so forth. We use the head
2328 * of the queue for things like a QUEUE_FULL message from a device, or a
2329 * host that is unable to accept a particular command.
2330 */
165125e1 2331void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 2332 int at_head, void *data)
1da177e4 2333{
867d1191 2334 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
2335 unsigned long flags;
2336
2337 /*
2338 * tell I/O scheduler that this isn't a regular read/write (ie it
2339 * must not attempt merges on this) and that it acts as a soft
2340 * barrier
2341 */
4aff5e23
JA
2342 rq->cmd_type = REQ_TYPE_SPECIAL;
2343 rq->cmd_flags |= REQ_SOFTBARRIER;
1da177e4
LT
2344
2345 rq->special = data;
2346
2347 spin_lock_irqsave(q->queue_lock, flags);
2348
2349 /*
2350 * If command is tagged, release the tag
2351 */
867d1191
TH
2352 if (blk_rq_tagged(rq))
2353 blk_queue_end_tag(q, rq);
1da177e4 2354
867d1191
TH
2355 drive_stat_acct(rq, rq->nr_sectors, 1);
2356 __elv_add_request(q, rq, where, 0);
dc72ef4a 2357 blk_start_queueing(q);
1da177e4
LT
2358 spin_unlock_irqrestore(q->queue_lock, flags);
2359}
2360
2361EXPORT_SYMBOL(blk_insert_request);
2362
0e75f906
MC
2363static int __blk_rq_unmap_user(struct bio *bio)
2364{
2365 int ret = 0;
2366
2367 if (bio) {
2368 if (bio_flagged(bio, BIO_USER_MAPPED))
2369 bio_unmap_user(bio);
2370 else
2371 ret = bio_uncopy_user(bio);
2372 }
2373
2374 return ret;
2375}
2376
165125e1 2377static int __blk_rq_map_user(struct request_queue *q, struct request *rq,
0e75f906
MC
2378 void __user *ubuf, unsigned int len)
2379{
2380 unsigned long uaddr;
2381 struct bio *bio, *orig_bio;
2382 int reading, ret;
2383
2384 reading = rq_data_dir(rq) == READ;
2385
2386 /*
2387 * if alignment requirement is satisfied, map in user pages for
2388 * direct dma. else, set up kernel bounce buffers
2389 */
2390 uaddr = (unsigned long) ubuf;
2391 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2392 bio = bio_map_user(q, NULL, uaddr, len, reading);
2393 else
2394 bio = bio_copy_user(q, uaddr, len, reading);
2395
2985259b 2396 if (IS_ERR(bio))
0e75f906 2397 return PTR_ERR(bio);
0e75f906
MC
2398
2399 orig_bio = bio;
2400 blk_queue_bounce(q, &bio);
2985259b 2401
0e75f906
MC
2402 /*
2403 * We link the bounce buffer in and could have to traverse it
2404 * later so we have to get a ref to prevent it from being freed
2405 */
2406 bio_get(bio);
2407
0e75f906
MC
2408 if (!rq->bio)
2409 blk_rq_bio_prep(q, rq, bio);
1aa4f24f 2410 else if (!ll_back_merge_fn(q, rq, bio)) {
0e75f906 2411 ret = -EINVAL;
0e75f906
MC
2412 goto unmap_bio;
2413 } else {
2414 rq->biotail->bi_next = bio;
2415 rq->biotail = bio;
2416
0e75f906
MC
2417 rq->data_len += bio->bi_size;
2418 }
0e75f906
MC
2419
2420 return bio->bi_size;
2421
2422unmap_bio:
2423 /* if it was boucned we must call the end io function */
2424 bio_endio(bio, bio->bi_size, 0);
2425 __blk_rq_unmap_user(orig_bio);
2426 bio_put(bio);
2427 return ret;
2428}
2429
1da177e4
LT
2430/**
2431 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2432 * @q: request queue where request should be inserted
73747aed 2433 * @rq: request structure to fill
1da177e4
LT
2434 * @ubuf: the user buffer
2435 * @len: length of user data
2436 *
2437 * Description:
2438 * Data will be mapped directly for zero copy io, if possible. Otherwise
2439 * a kernel bounce buffer is used.
2440 *
2441 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2442 * still in process context.
2443 *
2444 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2445 * before being submitted to the device, as pages mapped may be out of
2446 * reach. It's the callers responsibility to make sure this happens. The
2447 * original bio must be passed back in to blk_rq_unmap_user() for proper
2448 * unmapping.
2449 */
165125e1
JA
2450int blk_rq_map_user(struct request_queue *q, struct request *rq,
2451 void __user *ubuf, unsigned long len)
1da177e4 2452{
0e75f906 2453 unsigned long bytes_read = 0;
8e5cfc45 2454 struct bio *bio = NULL;
0e75f906 2455 int ret;
1da177e4 2456
defd94b7 2457 if (len > (q->max_hw_sectors << 9))
dd1cab95
JA
2458 return -EINVAL;
2459 if (!len || !ubuf)
2460 return -EINVAL;
1da177e4 2461
0e75f906
MC
2462 while (bytes_read != len) {
2463 unsigned long map_len, end, start;
1da177e4 2464
0e75f906
MC
2465 map_len = min_t(unsigned long, len - bytes_read, BIO_MAX_SIZE);
2466 end = ((unsigned long)ubuf + map_len + PAGE_SIZE - 1)
2467 >> PAGE_SHIFT;
2468 start = (unsigned long)ubuf >> PAGE_SHIFT;
1da177e4 2469
0e75f906
MC
2470 /*
2471 * A bad offset could cause us to require BIO_MAX_PAGES + 1
2472 * pages. If this happens we just lower the requested
2473 * mapping len by a page so that we can fit
2474 */
2475 if (end - start > BIO_MAX_PAGES)
2476 map_len -= PAGE_SIZE;
1da177e4 2477
0e75f906
MC
2478 ret = __blk_rq_map_user(q, rq, ubuf, map_len);
2479 if (ret < 0)
2480 goto unmap_rq;
8e5cfc45
JA
2481 if (!bio)
2482 bio = rq->bio;
0e75f906
MC
2483 bytes_read += ret;
2484 ubuf += ret;
1da177e4
LT
2485 }
2486
0e75f906
MC
2487 rq->buffer = rq->data = NULL;
2488 return 0;
2489unmap_rq:
8e5cfc45 2490 blk_rq_unmap_user(bio);
0e75f906 2491 return ret;
1da177e4
LT
2492}
2493
2494EXPORT_SYMBOL(blk_rq_map_user);
2495
f1970baf
JB
2496/**
2497 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2498 * @q: request queue where request should be inserted
2499 * @rq: request to map data to
2500 * @iov: pointer to the iovec
2501 * @iov_count: number of elements in the iovec
af9997e4 2502 * @len: I/O byte count
f1970baf
JB
2503 *
2504 * Description:
2505 * Data will be mapped directly for zero copy io, if possible. Otherwise
2506 * a kernel bounce buffer is used.
2507 *
2508 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2509 * still in process context.
2510 *
2511 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2512 * before being submitted to the device, as pages mapped may be out of
2513 * reach. It's the callers responsibility to make sure this happens. The
2514 * original bio must be passed back in to blk_rq_unmap_user() for proper
2515 * unmapping.
2516 */
165125e1 2517int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
0e75f906 2518 struct sg_iovec *iov, int iov_count, unsigned int len)
f1970baf
JB
2519{
2520 struct bio *bio;
2521
2522 if (!iov || iov_count <= 0)
2523 return -EINVAL;
2524
2525 /* we don't allow misaligned data like bio_map_user() does. If the
2526 * user is using sg, they're expected to know the alignment constraints
2527 * and respect them accordingly */
2528 bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2529 if (IS_ERR(bio))
2530 return PTR_ERR(bio);
2531
0e75f906
MC
2532 if (bio->bi_size != len) {
2533 bio_endio(bio, bio->bi_size, 0);
2534 bio_unmap_user(bio);
2535 return -EINVAL;
2536 }
2537
2538 bio_get(bio);
f1970baf
JB
2539 blk_rq_bio_prep(q, rq, bio);
2540 rq->buffer = rq->data = NULL;
f1970baf
JB
2541 return 0;
2542}
2543
2544EXPORT_SYMBOL(blk_rq_map_user_iov);
2545
1da177e4
LT
2546/**
2547 * blk_rq_unmap_user - unmap a request with user data
8e5cfc45 2548 * @bio: start of bio list
1da177e4
LT
2549 *
2550 * Description:
8e5cfc45
JA
2551 * Unmap a rq previously mapped by blk_rq_map_user(). The caller must
2552 * supply the original rq->bio from the blk_rq_map_user() return, since
2553 * the io completion may have changed rq->bio.
1da177e4 2554 */
8e5cfc45 2555int blk_rq_unmap_user(struct bio *bio)
1da177e4 2556{
8e5cfc45 2557 struct bio *mapped_bio;
48785bb9 2558 int ret = 0, ret2;
1da177e4 2559
8e5cfc45
JA
2560 while (bio) {
2561 mapped_bio = bio;
2562 if (unlikely(bio_flagged(bio, BIO_BOUNCED)))
0e75f906 2563 mapped_bio = bio->bi_private;
1da177e4 2564
48785bb9
JA
2565 ret2 = __blk_rq_unmap_user(mapped_bio);
2566 if (ret2 && !ret)
2567 ret = ret2;
2568
8e5cfc45
JA
2569 mapped_bio = bio;
2570 bio = bio->bi_next;
2571 bio_put(mapped_bio);
0e75f906 2572 }
48785bb9
JA
2573
2574 return ret;
1da177e4
LT
2575}
2576
2577EXPORT_SYMBOL(blk_rq_unmap_user);
2578
df46b9a4
MC
2579/**
2580 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2581 * @q: request queue where request should be inserted
73747aed 2582 * @rq: request to fill
df46b9a4
MC
2583 * @kbuf: the kernel buffer
2584 * @len: length of user data
73747aed 2585 * @gfp_mask: memory allocation flags
df46b9a4 2586 */
165125e1 2587int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
8267e268 2588 unsigned int len, gfp_t gfp_mask)
df46b9a4 2589{
df46b9a4
MC
2590 struct bio *bio;
2591
defd94b7 2592 if (len > (q->max_hw_sectors << 9))
dd1cab95
JA
2593 return -EINVAL;
2594 if (!len || !kbuf)
2595 return -EINVAL;
df46b9a4
MC
2596
2597 bio = bio_map_kern(q, kbuf, len, gfp_mask);
dd1cab95
JA
2598 if (IS_ERR(bio))
2599 return PTR_ERR(bio);
df46b9a4 2600
dd1cab95
JA
2601 if (rq_data_dir(rq) == WRITE)
2602 bio->bi_rw |= (1 << BIO_RW);
df46b9a4 2603
dd1cab95 2604 blk_rq_bio_prep(q, rq, bio);
821de3a2 2605 blk_queue_bounce(q, &rq->bio);
dd1cab95 2606 rq->buffer = rq->data = NULL;
dd1cab95 2607 return 0;
df46b9a4
MC
2608}
2609
2610EXPORT_SYMBOL(blk_rq_map_kern);
2611
73747aed
CH
2612/**
2613 * blk_execute_rq_nowait - insert a request into queue for execution
2614 * @q: queue to insert the request in
2615 * @bd_disk: matching gendisk
2616 * @rq: request to insert
2617 * @at_head: insert request at head or tail of queue
2618 * @done: I/O completion handler
2619 *
2620 * Description:
2621 * Insert a fully prepared request at the back of the io scheduler queue
2622 * for execution. Don't wait for completion.
2623 */
165125e1 2624void blk_execute_rq_nowait(struct request_queue *q, struct gendisk *bd_disk,
f1970baf 2625 struct request *rq, int at_head,
8ffdc655 2626 rq_end_io_fn *done)
f1970baf
JB
2627{
2628 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2629
2630 rq->rq_disk = bd_disk;
4aff5e23 2631 rq->cmd_flags |= REQ_NOMERGE;
f1970baf 2632 rq->end_io = done;
4c5d0bbd
AM
2633 WARN_ON(irqs_disabled());
2634 spin_lock_irq(q->queue_lock);
2635 __elv_add_request(q, rq, where, 1);
2636 __generic_unplug_device(q);
2637 spin_unlock_irq(q->queue_lock);
f1970baf 2638}
6e39b69e
MC
2639EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
2640
1da177e4
LT
2641/**
2642 * blk_execute_rq - insert a request into queue for execution
2643 * @q: queue to insert the request in
2644 * @bd_disk: matching gendisk
2645 * @rq: request to insert
994ca9a1 2646 * @at_head: insert request at head or tail of queue
1da177e4
LT
2647 *
2648 * Description:
2649 * Insert a fully prepared request at the back of the io scheduler queue
73747aed 2650 * for execution and wait for completion.
1da177e4 2651 */
165125e1 2652int blk_execute_rq(struct request_queue *q, struct gendisk *bd_disk,
994ca9a1 2653 struct request *rq, int at_head)
1da177e4 2654{
60be6b9a 2655 DECLARE_COMPLETION_ONSTACK(wait);
1da177e4
LT
2656 char sense[SCSI_SENSE_BUFFERSIZE];
2657 int err = 0;
2658
1da177e4
LT
2659 /*
2660 * we need an extra reference to the request, so we can look at
2661 * it after io completion
2662 */
2663 rq->ref_count++;
2664
2665 if (!rq->sense) {
2666 memset(sense, 0, sizeof(sense));
2667 rq->sense = sense;
2668 rq->sense_len = 0;
2669 }
2670
c00895ab 2671 rq->end_io_data = &wait;
994ca9a1 2672 blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
1da177e4 2673 wait_for_completion(&wait);
1da177e4
LT
2674
2675 if (rq->errors)
2676 err = -EIO;
2677
2678 return err;
2679}
2680
2681EXPORT_SYMBOL(blk_execute_rq);
2682
2683/**
2684 * blkdev_issue_flush - queue a flush
2685 * @bdev: blockdev to issue flush for
2686 * @error_sector: error sector
2687 *
2688 * Description:
2689 * Issue a flush for the block device in question. Caller can supply
2690 * room for storing the error offset in case of a flush error, if they
2691 * wish to. Caller must run wait_for_completion() on its own.
2692 */
2693int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2694{
165125e1 2695 struct request_queue *q;
1da177e4
LT
2696
2697 if (bdev->bd_disk == NULL)
2698 return -ENXIO;
2699
2700 q = bdev_get_queue(bdev);
2701 if (!q)
2702 return -ENXIO;
2703 if (!q->issue_flush_fn)
2704 return -EOPNOTSUPP;
2705
2706 return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
2707}
2708
2709EXPORT_SYMBOL(blkdev_issue_flush);
2710
93d17d3d 2711static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
1da177e4
LT
2712{
2713 int rw = rq_data_dir(rq);
2714
2715 if (!blk_fs_request(rq) || !rq->rq_disk)
2716 return;
2717
d72d904a 2718 if (!new_io) {
a362357b 2719 __disk_stat_inc(rq->rq_disk, merges[rw]);
d72d904a 2720 } else {
1da177e4
LT
2721 disk_round_stats(rq->rq_disk);
2722 rq->rq_disk->in_flight++;
2723 }
2724}
2725
2726/*
2727 * add-request adds a request to the linked list.
2728 * queue lock is held and interrupts disabled, as we muck with the
2729 * request queue list.
2730 */
165125e1 2731static inline void add_request(struct request_queue * q, struct request * req)
1da177e4
LT
2732{
2733 drive_stat_acct(req, req->nr_sectors, 1);
2734
1da177e4
LT
2735 /*
2736 * elevator indicated where it wants this request to be
2737 * inserted at elevator_merge time
2738 */
2739 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2740}
2741
2742/*
2743 * disk_round_stats() - Round off the performance stats on a struct
2744 * disk_stats.
2745 *
2746 * The average IO queue length and utilisation statistics are maintained
2747 * by observing the current state of the queue length and the amount of
2748 * time it has been in this state for.
2749 *
2750 * Normally, that accounting is done on IO completion, but that can result
2751 * in more than a second's worth of IO being accounted for within any one
2752 * second, leading to >100% utilisation. To deal with that, we call this
2753 * function to do a round-off before returning the results when reading
2754 * /proc/diskstats. This accounts immediately for all queue usage up to
2755 * the current jiffies and restarts the counters again.
2756 */
2757void disk_round_stats(struct gendisk *disk)
2758{
2759 unsigned long now = jiffies;
2760
b2982649
CK
2761 if (now == disk->stamp)
2762 return;
1da177e4 2763
20e5c81f
CK
2764 if (disk->in_flight) {
2765 __disk_stat_add(disk, time_in_queue,
2766 disk->in_flight * (now - disk->stamp));
2767 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
2768 }
1da177e4 2769 disk->stamp = now;
1da177e4
LT
2770}
2771
3eaf840e
JNN
2772EXPORT_SYMBOL_GPL(disk_round_stats);
2773
1da177e4
LT
2774/*
2775 * queue lock must be held
2776 */
165125e1 2777void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 2778{
1da177e4
LT
2779 if (unlikely(!q))
2780 return;
2781 if (unlikely(--req->ref_count))
2782 return;
2783
8922e16c
TH
2784 elv_completed_request(q, req);
2785
1da177e4
LT
2786 /*
2787 * Request may not have originated from ll_rw_blk. if not,
2788 * it didn't come out of our reserved rq pools
2789 */
49171e5c 2790 if (req->cmd_flags & REQ_ALLOCED) {
1da177e4 2791 int rw = rq_data_dir(req);
4aff5e23 2792 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 2793
1da177e4 2794 BUG_ON(!list_empty(&req->queuelist));
9817064b 2795 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
2796
2797 blk_free_request(q, req);
cb98fc8b 2798 freed_request(q, rw, priv);
1da177e4
LT
2799 }
2800}
2801
6e39b69e
MC
2802EXPORT_SYMBOL_GPL(__blk_put_request);
2803
1da177e4
LT
2804void blk_put_request(struct request *req)
2805{
8922e16c 2806 unsigned long flags;
165125e1 2807 struct request_queue *q = req->q;
8922e16c 2808
1da177e4 2809 /*
8922e16c
TH
2810 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2811 * following if (q) test.
1da177e4 2812 */
8922e16c 2813 if (q) {
1da177e4
LT
2814 spin_lock_irqsave(q->queue_lock, flags);
2815 __blk_put_request(q, req);
2816 spin_unlock_irqrestore(q->queue_lock, flags);
2817 }
2818}
2819
2820EXPORT_SYMBOL(blk_put_request);
2821
2822/**
2823 * blk_end_sync_rq - executes a completion event on a request
2824 * @rq: request to complete
fddfdeaf 2825 * @error: end io status of the request
1da177e4 2826 */
8ffdc655 2827void blk_end_sync_rq(struct request *rq, int error)
1da177e4 2828{
c00895ab 2829 struct completion *waiting = rq->end_io_data;
1da177e4 2830
c00895ab 2831 rq->end_io_data = NULL;
1da177e4
LT
2832 __blk_put_request(rq->q, rq);
2833
2834 /*
2835 * complete last, if this is a stack request the process (and thus
2836 * the rq pointer) could be invalid right after this complete()
2837 */
2838 complete(waiting);
2839}
2840EXPORT_SYMBOL(blk_end_sync_rq);
2841
1da177e4
LT
2842/*
2843 * Has to be called with the request spinlock acquired
2844 */
165125e1 2845static int attempt_merge(struct request_queue *q, struct request *req,
1da177e4
LT
2846 struct request *next)
2847{
2848 if (!rq_mergeable(req) || !rq_mergeable(next))
2849 return 0;
2850
2851 /*
d6e05edc 2852 * not contiguous
1da177e4
LT
2853 */
2854 if (req->sector + req->nr_sectors != next->sector)
2855 return 0;
2856
2857 if (rq_data_dir(req) != rq_data_dir(next)
2858 || req->rq_disk != next->rq_disk
c00895ab 2859 || next->special)
1da177e4
LT
2860 return 0;
2861
2862 /*
2863 * If we are allowed to merge, then append bio list
2864 * from next to rq and release next. merge_requests_fn
2865 * will have updated segment counts, update sector
2866 * counts here.
2867 */
1aa4f24f 2868 if (!ll_merge_requests_fn(q, req, next))
1da177e4
LT
2869 return 0;
2870
2871 /*
2872 * At this point we have either done a back merge
2873 * or front merge. We need the smaller start_time of
2874 * the merged requests to be the current request
2875 * for accounting purposes.
2876 */
2877 if (time_after(req->start_time, next->start_time))
2878 req->start_time = next->start_time;
2879
2880 req->biotail->bi_next = next->bio;
2881 req->biotail = next->biotail;
2882
2883 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2884
2885 elv_merge_requests(q, req, next);
2886
2887 if (req->rq_disk) {
2888 disk_round_stats(req->rq_disk);
2889 req->rq_disk->in_flight--;
2890 }
2891
22e2c507
JA
2892 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2893
1da177e4
LT
2894 __blk_put_request(q, next);
2895 return 1;
2896}
2897
165125e1
JA
2898static inline int attempt_back_merge(struct request_queue *q,
2899 struct request *rq)
1da177e4
LT
2900{
2901 struct request *next = elv_latter_request(q, rq);
2902
2903 if (next)
2904 return attempt_merge(q, rq, next);
2905
2906 return 0;
2907}
2908
165125e1
JA
2909static inline int attempt_front_merge(struct request_queue *q,
2910 struct request *rq)
1da177e4
LT
2911{
2912 struct request *prev = elv_former_request(q, rq);
2913
2914 if (prev)
2915 return attempt_merge(q, prev, rq);
2916
2917 return 0;
2918}
2919
52d9e675
TH
2920static void init_request_from_bio(struct request *req, struct bio *bio)
2921{
4aff5e23 2922 req->cmd_type = REQ_TYPE_FS;
52d9e675
TH
2923
2924 /*
2925 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2926 */
2927 if (bio_rw_ahead(bio) || bio_failfast(bio))
4aff5e23 2928 req->cmd_flags |= REQ_FAILFAST;
52d9e675
TH
2929
2930 /*
2931 * REQ_BARRIER implies no merging, but lets make it explicit
2932 */
2933 if (unlikely(bio_barrier(bio)))
4aff5e23 2934 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
52d9e675 2935
b31dc66a 2936 if (bio_sync(bio))
4aff5e23 2937 req->cmd_flags |= REQ_RW_SYNC;
5404bc7a
JA
2938 if (bio_rw_meta(bio))
2939 req->cmd_flags |= REQ_RW_META;
b31dc66a 2940
52d9e675
TH
2941 req->errors = 0;
2942 req->hard_sector = req->sector = bio->bi_sector;
2943 req->hard_nr_sectors = req->nr_sectors = bio_sectors(bio);
2944 req->current_nr_sectors = req->hard_cur_sectors = bio_cur_sectors(bio);
2945 req->nr_phys_segments = bio_phys_segments(req->q, bio);
2946 req->nr_hw_segments = bio_hw_segments(req->q, bio);
2947 req->buffer = bio_data(bio); /* see ->buffer comment above */
52d9e675
TH
2948 req->bio = req->biotail = bio;
2949 req->ioprio = bio_prio(bio);
2950 req->rq_disk = bio->bi_bdev->bd_disk;
2951 req->start_time = jiffies;
2952}
2953
165125e1 2954static int __make_request(struct request_queue *q, struct bio *bio)
1da177e4 2955{
450991bc 2956 struct request *req;
51da90fc
JA
2957 int el_ret, nr_sectors, barrier, err;
2958 const unsigned short prio = bio_prio(bio);
2959 const int sync = bio_sync(bio);
7749a8d4 2960 int rw_flags;
1da177e4 2961
1da177e4 2962 nr_sectors = bio_sectors(bio);
1da177e4
LT
2963
2964 /*
2965 * low level driver can indicate that it wants pages above a
2966 * certain limit bounced to low memory (ie for highmem, or even
2967 * ISA dma in theory)
2968 */
2969 blk_queue_bounce(q, &bio);
2970
1da177e4 2971 barrier = bio_barrier(bio);
797e7dbb 2972 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
1da177e4
LT
2973 err = -EOPNOTSUPP;
2974 goto end_io;
2975 }
2976
1da177e4
LT
2977 spin_lock_irq(q->queue_lock);
2978
450991bc 2979 if (unlikely(barrier) || elv_queue_empty(q))
1da177e4
LT
2980 goto get_rq;
2981
2982 el_ret = elv_merge(q, &req, bio);
2983 switch (el_ret) {
2984 case ELEVATOR_BACK_MERGE:
2985 BUG_ON(!rq_mergeable(req));
2986
1aa4f24f 2987 if (!ll_back_merge_fn(q, req, bio))
1da177e4
LT
2988 break;
2989
2056a782
JA
2990 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
2991
1da177e4
LT
2992 req->biotail->bi_next = bio;
2993 req->biotail = bio;
2994 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
22e2c507 2995 req->ioprio = ioprio_best(req->ioprio, prio);
1da177e4
LT
2996 drive_stat_acct(req, nr_sectors, 0);
2997 if (!attempt_back_merge(q, req))
2e662b65 2998 elv_merged_request(q, req, el_ret);
1da177e4
LT
2999 goto out;
3000
3001 case ELEVATOR_FRONT_MERGE:
3002 BUG_ON(!rq_mergeable(req));
3003
1aa4f24f 3004 if (!ll_front_merge_fn(q, req, bio))
1da177e4
LT
3005 break;
3006
2056a782
JA
3007 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
3008
1da177e4
LT
3009 bio->bi_next = req->bio;
3010 req->bio = bio;
3011
3012 /*
3013 * may not be valid. if the low level driver said
3014 * it didn't need a bounce buffer then it better
3015 * not touch req->buffer either...
3016 */
3017 req->buffer = bio_data(bio);
51da90fc
JA
3018 req->current_nr_sectors = bio_cur_sectors(bio);
3019 req->hard_cur_sectors = req->current_nr_sectors;
3020 req->sector = req->hard_sector = bio->bi_sector;
1da177e4 3021 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
22e2c507 3022 req->ioprio = ioprio_best(req->ioprio, prio);
1da177e4
LT
3023 drive_stat_acct(req, nr_sectors, 0);
3024 if (!attempt_front_merge(q, req))
2e662b65 3025 elv_merged_request(q, req, el_ret);
1da177e4
LT
3026 goto out;
3027
450991bc 3028 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1da177e4 3029 default:
450991bc 3030 ;
1da177e4
LT
3031 }
3032
450991bc 3033get_rq:
7749a8d4
JA
3034 /*
3035 * This sync check and mask will be re-done in init_request_from_bio(),
3036 * but we need to set it earlier to expose the sync flag to the
3037 * rq allocator and io schedulers.
3038 */
3039 rw_flags = bio_data_dir(bio);
3040 if (sync)
3041 rw_flags |= REQ_RW_SYNC;
3042
1da177e4 3043 /*
450991bc 3044 * Grab a free request. This is might sleep but can not fail.
d6344532 3045 * Returns with the queue unlocked.
450991bc 3046 */
7749a8d4 3047 req = get_request_wait(q, rw_flags, bio);
d6344532 3048
450991bc
NP
3049 /*
3050 * After dropping the lock and possibly sleeping here, our request
3051 * may now be mergeable after it had proven unmergeable (above).
3052 * We don't worry about that case for efficiency. It won't happen
3053 * often, and the elevators are able to handle it.
1da177e4 3054 */
52d9e675 3055 init_request_from_bio(req, bio);
1da177e4 3056
450991bc
NP
3057 spin_lock_irq(q->queue_lock);
3058 if (elv_queue_empty(q))
3059 blk_plug_device(q);
1da177e4
LT
3060 add_request(q, req);
3061out:
4a534f93 3062 if (sync)
1da177e4
LT
3063 __generic_unplug_device(q);
3064
3065 spin_unlock_irq(q->queue_lock);
3066 return 0;
3067
3068end_io:
3069 bio_endio(bio, nr_sectors << 9, err);
3070 return 0;
3071}
3072
3073/*
3074 * If bio->bi_dev is a partition, remap the location
3075 */
3076static inline void blk_partition_remap(struct bio *bio)
3077{
3078 struct block_device *bdev = bio->bi_bdev;
3079
3080 if (bdev != bdev->bd_contains) {
3081 struct hd_struct *p = bdev->bd_part;
a362357b
JA
3082 const int rw = bio_data_dir(bio);
3083
3084 p->sectors[rw] += bio_sectors(bio);
3085 p->ios[rw]++;
1da177e4 3086
1da177e4
LT
3087 bio->bi_sector += p->start_sect;
3088 bio->bi_bdev = bdev->bd_contains;
c7149d6b
AB
3089
3090 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
3091 bdev->bd_dev, bio->bi_sector,
3092 bio->bi_sector - p->start_sect);
1da177e4
LT
3093 }
3094}
3095
1da177e4
LT
3096static void handle_bad_sector(struct bio *bio)
3097{
3098 char b[BDEVNAME_SIZE];
3099
3100 printk(KERN_INFO "attempt to access beyond end of device\n");
3101 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
3102 bdevname(bio->bi_bdev, b),
3103 bio->bi_rw,
3104 (unsigned long long)bio->bi_sector + bio_sectors(bio),
3105 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
3106
3107 set_bit(BIO_EOF, &bio->bi_flags);
3108}
3109
c17bb495
AM
3110#ifdef CONFIG_FAIL_MAKE_REQUEST
3111
3112static DECLARE_FAULT_ATTR(fail_make_request);
3113
3114static int __init setup_fail_make_request(char *str)
3115{
3116 return setup_fault_attr(&fail_make_request, str);
3117}
3118__setup("fail_make_request=", setup_fail_make_request);
3119
3120static int should_fail_request(struct bio *bio)
3121{
3122 if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
3123 (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
3124 return should_fail(&fail_make_request, bio->bi_size);
3125
3126 return 0;
3127}
3128
3129static int __init fail_make_request_debugfs(void)
3130{
3131 return init_fault_attr_dentries(&fail_make_request,
3132 "fail_make_request");
3133}
3134
3135late_initcall(fail_make_request_debugfs);
3136
3137#else /* CONFIG_FAIL_MAKE_REQUEST */
3138
3139static inline int should_fail_request(struct bio *bio)
3140{
3141 return 0;
3142}
3143
3144#endif /* CONFIG_FAIL_MAKE_REQUEST */
3145
1da177e4
LT
3146/**
3147 * generic_make_request: hand a buffer to its device driver for I/O
3148 * @bio: The bio describing the location in memory and on the device.
3149 *
3150 * generic_make_request() is used to make I/O requests of block
3151 * devices. It is passed a &struct bio, which describes the I/O that needs
3152 * to be done.
3153 *
3154 * generic_make_request() does not return any status. The
3155 * success/failure status of the request, along with notification of
3156 * completion, is delivered asynchronously through the bio->bi_end_io
3157 * function described (one day) else where.
3158 *
3159 * The caller of generic_make_request must make sure that bi_io_vec
3160 * are set to describe the memory buffer, and that bi_dev and bi_sector are
3161 * set to describe the device address, and the
3162 * bi_end_io and optionally bi_private are set to describe how
3163 * completion notification should be signaled.
3164 *
3165 * generic_make_request and the drivers it calls may use bi_next if this
3166 * bio happens to be merged with someone else, and may change bi_dev and
3167 * bi_sector for remaps as it sees fit. So the values of these fields
3168 * should NOT be depended on after the call to generic_make_request.
3169 */
d89d8796 3170static inline void __generic_make_request(struct bio *bio)
1da177e4 3171{
165125e1 3172 struct request_queue *q;
1da177e4 3173 sector_t maxsector;
5ddfe969 3174 sector_t old_sector;
1da177e4 3175 int ret, nr_sectors = bio_sectors(bio);
2056a782 3176 dev_t old_dev;
1da177e4
LT
3177
3178 might_sleep();
3179 /* Test device or partition size, when known. */
3180 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3181 if (maxsector) {
3182 sector_t sector = bio->bi_sector;
3183
3184 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
3185 /*
3186 * This may well happen - the kernel calls bread()
3187 * without checking the size of the device, e.g., when
3188 * mounting a device.
3189 */
3190 handle_bad_sector(bio);
3191 goto end_io;
3192 }
3193 }
3194
3195 /*
3196 * Resolve the mapping until finished. (drivers are
3197 * still free to implement/resolve their own stacking
3198 * by explicitly returning 0)
3199 *
3200 * NOTE: we don't repeat the blk_size check for each new device.
3201 * Stacking drivers are expected to know what they are doing.
3202 */
5ddfe969 3203 old_sector = -1;
2056a782 3204 old_dev = 0;
1da177e4
LT
3205 do {
3206 char b[BDEVNAME_SIZE];
3207
3208 q = bdev_get_queue(bio->bi_bdev);
3209 if (!q) {
3210 printk(KERN_ERR
3211 "generic_make_request: Trying to access "
3212 "nonexistent block-device %s (%Lu)\n",
3213 bdevname(bio->bi_bdev, b),
3214 (long long) bio->bi_sector);
3215end_io:
3216 bio_endio(bio, bio->bi_size, -EIO);
3217 break;
3218 }
3219
3220 if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
3221 printk("bio too big device %s (%u > %u)\n",
3222 bdevname(bio->bi_bdev, b),
3223 bio_sectors(bio),
3224 q->max_hw_sectors);
3225 goto end_io;
3226 }
3227
fde6ad22 3228 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
3229 goto end_io;
3230
c17bb495
AM
3231 if (should_fail_request(bio))
3232 goto end_io;
3233
1da177e4
LT
3234 /*
3235 * If this device has partitions, remap block n
3236 * of partition p to block n+start(p) of the disk.
3237 */
3238 blk_partition_remap(bio);
3239
5ddfe969 3240 if (old_sector != -1)
2056a782 3241 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
5ddfe969 3242 old_sector);
2056a782
JA
3243
3244 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
3245
5ddfe969 3246 old_sector = bio->bi_sector;
2056a782
JA
3247 old_dev = bio->bi_bdev->bd_dev;
3248
5ddfe969
N
3249 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3250 if (maxsector) {
3251 sector_t sector = bio->bi_sector;
3252
df66b855
AM
3253 if (maxsector < nr_sectors ||
3254 maxsector - nr_sectors < sector) {
5ddfe969 3255 /*
df66b855
AM
3256 * This may well happen - partitions are not
3257 * checked to make sure they are within the size
3258 * of the whole device.
5ddfe969
N
3259 */
3260 handle_bad_sector(bio);
3261 goto end_io;
3262 }
3263 }
3264
1da177e4
LT
3265 ret = q->make_request_fn(q, bio);
3266 } while (ret);
3267}
3268
d89d8796
NB
3269/*
3270 * We only want one ->make_request_fn to be active at a time,
3271 * else stack usage with stacked devices could be a problem.
3272 * So use current->bio_{list,tail} to keep a list of requests
3273 * submited by a make_request_fn function.
3274 * current->bio_tail is also used as a flag to say if
3275 * generic_make_request is currently active in this task or not.
3276 * If it is NULL, then no make_request is active. If it is non-NULL,
3277 * then a make_request is active, and new requests should be added
3278 * at the tail
3279 */
3280void generic_make_request(struct bio *bio)
3281{
3282 if (current->bio_tail) {
3283 /* make_request is active */
3284 *(current->bio_tail) = bio;
3285 bio->bi_next = NULL;
3286 current->bio_tail = &bio->bi_next;
3287 return;
3288 }
3289 /* following loop may be a bit non-obvious, and so deserves some
3290 * explanation.
3291 * Before entering the loop, bio->bi_next is NULL (as all callers
3292 * ensure that) so we have a list with a single bio.
3293 * We pretend that we have just taken it off a longer list, so
3294 * we assign bio_list to the next (which is NULL) and bio_tail
3295 * to &bio_list, thus initialising the bio_list of new bios to be
3296 * added. __generic_make_request may indeed add some more bios
3297 * through a recursive call to generic_make_request. If it
3298 * did, we find a non-NULL value in bio_list and re-enter the loop
3299 * from the top. In this case we really did just take the bio
3300 * of the top of the list (no pretending) and so fixup bio_list and
3301 * bio_tail or bi_next, and call into __generic_make_request again.
3302 *
3303 * The loop was structured like this to make only one call to
3304 * __generic_make_request (which is important as it is large and
3305 * inlined) and to keep the structure simple.
3306 */
3307 BUG_ON(bio->bi_next);
3308 do {
3309 current->bio_list = bio->bi_next;
3310 if (bio->bi_next == NULL)
3311 current->bio_tail = &current->bio_list;
3312 else
3313 bio->bi_next = NULL;
3314 __generic_make_request(bio);
3315 bio = current->bio_list;
3316 } while (bio);
3317 current->bio_tail = NULL; /* deactivate */
3318}
3319
1da177e4
LT
3320EXPORT_SYMBOL(generic_make_request);
3321
3322/**
3323 * submit_bio: submit a bio to the block device layer for I/O
3324 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3325 * @bio: The &struct bio which describes the I/O
3326 *
3327 * submit_bio() is very similar in purpose to generic_make_request(), and
3328 * uses that function to do most of the work. Both are fairly rough
3329 * interfaces, @bio must be presetup and ready for I/O.
3330 *
3331 */
3332void submit_bio(int rw, struct bio *bio)
3333{
3334 int count = bio_sectors(bio);
3335
3336 BIO_BUG_ON(!bio->bi_size);
3337 BIO_BUG_ON(!bio->bi_io_vec);
22e2c507 3338 bio->bi_rw |= rw;
faccbd4b 3339 if (rw & WRITE) {
f8891e5e 3340 count_vm_events(PGPGOUT, count);
faccbd4b
AM
3341 } else {
3342 task_io_account_read(bio->bi_size);
f8891e5e 3343 count_vm_events(PGPGIN, count);
faccbd4b 3344 }
1da177e4
LT
3345
3346 if (unlikely(block_dump)) {
3347 char b[BDEVNAME_SIZE];
3348 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
3349 current->comm, current->pid,
3350 (rw & WRITE) ? "WRITE" : "READ",
3351 (unsigned long long)bio->bi_sector,
3352 bdevname(bio->bi_bdev,b));
3353 }
3354
3355 generic_make_request(bio);
3356}
3357
3358EXPORT_SYMBOL(submit_bio);
3359
93d17d3d 3360static void blk_recalc_rq_sectors(struct request *rq, int nsect)
1da177e4
LT
3361{
3362 if (blk_fs_request(rq)) {
3363 rq->hard_sector += nsect;
3364 rq->hard_nr_sectors -= nsect;
3365
3366 /*
3367 * Move the I/O submission pointers ahead if required.
3368 */
3369 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3370 (rq->sector <= rq->hard_sector)) {
3371 rq->sector = rq->hard_sector;
3372 rq->nr_sectors = rq->hard_nr_sectors;
3373 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3374 rq->current_nr_sectors = rq->hard_cur_sectors;
3375 rq->buffer = bio_data(rq->bio);
3376 }
3377
3378 /*
3379 * if total number of sectors is less than the first segment
3380 * size, something has gone terribly wrong
3381 */
3382 if (rq->nr_sectors < rq->current_nr_sectors) {
3383 printk("blk: request botched\n");
3384 rq->nr_sectors = rq->current_nr_sectors;
3385 }
3386 }
3387}
3388
3389static int __end_that_request_first(struct request *req, int uptodate,
3390 int nr_bytes)
3391{
3392 int total_bytes, bio_nbytes, error, next_idx = 0;
3393 struct bio *bio;
3394
2056a782
JA
3395 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
3396
1da177e4
LT
3397 /*
3398 * extend uptodate bool to allow < 0 value to be direct io error
3399 */
3400 error = 0;
3401 if (end_io_error(uptodate))
3402 error = !uptodate ? -EIO : uptodate;
3403
3404 /*
3405 * for a REQ_BLOCK_PC request, we want to carry any eventual
3406 * sense key with us all the way through
3407 */
3408 if (!blk_pc_request(req))
3409 req->errors = 0;
3410
3411 if (!uptodate) {
4aff5e23 3412 if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
1da177e4
LT
3413 printk("end_request: I/O error, dev %s, sector %llu\n",
3414 req->rq_disk ? req->rq_disk->disk_name : "?",
3415 (unsigned long long)req->sector);
3416 }
3417
d72d904a 3418 if (blk_fs_request(req) && req->rq_disk) {
a362357b
JA
3419 const int rw = rq_data_dir(req);
3420
53e86061 3421 disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
d72d904a
JA
3422 }
3423
1da177e4
LT
3424 total_bytes = bio_nbytes = 0;
3425 while ((bio = req->bio) != NULL) {
3426 int nbytes;
3427
3428 if (nr_bytes >= bio->bi_size) {
3429 req->bio = bio->bi_next;
3430 nbytes = bio->bi_size;
797e7dbb
TH
3431 if (!ordered_bio_endio(req, bio, nbytes, error))
3432 bio_endio(bio, nbytes, error);
1da177e4
LT
3433 next_idx = 0;
3434 bio_nbytes = 0;
3435 } else {
3436 int idx = bio->bi_idx + next_idx;
3437
3438 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3439 blk_dump_rq_flags(req, "__end_that");
3440 printk("%s: bio idx %d >= vcnt %d\n",
3441 __FUNCTION__,
3442 bio->bi_idx, bio->bi_vcnt);
3443 break;
3444 }
3445
3446 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3447 BIO_BUG_ON(nbytes > bio->bi_size);
3448
3449 /*
3450 * not a complete bvec done
3451 */
3452 if (unlikely(nbytes > nr_bytes)) {
3453 bio_nbytes += nr_bytes;
3454 total_bytes += nr_bytes;
3455 break;
3456 }
3457
3458 /*
3459 * advance to the next vector
3460 */
3461 next_idx++;
3462 bio_nbytes += nbytes;
3463 }
3464
3465 total_bytes += nbytes;
3466 nr_bytes -= nbytes;
3467
3468 if ((bio = req->bio)) {
3469 /*
3470 * end more in this run, or just return 'not-done'
3471 */
3472 if (unlikely(nr_bytes <= 0))
3473 break;
3474 }
3475 }
3476
3477 /*
3478 * completely done
3479 */
3480 if (!req->bio)
3481 return 0;
3482
3483 /*
3484 * if the request wasn't completed, update state
3485 */
3486 if (bio_nbytes) {
797e7dbb
TH
3487 if (!ordered_bio_endio(req, bio, bio_nbytes, error))
3488 bio_endio(bio, bio_nbytes, error);
1da177e4
LT
3489 bio->bi_idx += next_idx;
3490 bio_iovec(bio)->bv_offset += nr_bytes;
3491 bio_iovec(bio)->bv_len -= nr_bytes;
3492 }
3493
3494 blk_recalc_rq_sectors(req, total_bytes >> 9);
3495 blk_recalc_rq_segments(req);
3496 return 1;
3497}
3498
3499/**
3500 * end_that_request_first - end I/O on a request
3501 * @req: the request being processed
3502 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3503 * @nr_sectors: number of sectors to end I/O on
3504 *
3505 * Description:
3506 * Ends I/O on a number of sectors attached to @req, and sets it up
3507 * for the next range of segments (if any) in the cluster.
3508 *
3509 * Return:
3510 * 0 - we are done with this request, call end_that_request_last()
3511 * 1 - still buffers pending for this request
3512 **/
3513int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3514{
3515 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3516}
3517
3518EXPORT_SYMBOL(end_that_request_first);
3519
3520/**
3521 * end_that_request_chunk - end I/O on a request
3522 * @req: the request being processed
3523 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3524 * @nr_bytes: number of bytes to complete
3525 *
3526 * Description:
3527 * Ends I/O on a number of bytes attached to @req, and sets it up
3528 * for the next range of segments (if any). Like end_that_request_first(),
3529 * but deals with bytes instead of sectors.
3530 *
3531 * Return:
3532 * 0 - we are done with this request, call end_that_request_last()
3533 * 1 - still buffers pending for this request
3534 **/
3535int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3536{
3537 return __end_that_request_first(req, uptodate, nr_bytes);
3538}
3539
3540EXPORT_SYMBOL(end_that_request_chunk);
3541
ff856bad
JA
3542/*
3543 * splice the completion data to a local structure and hand off to
3544 * process_completion_queue() to complete the requests
3545 */
3546static void blk_done_softirq(struct softirq_action *h)
3547{
626ab0e6 3548 struct list_head *cpu_list, local_list;
ff856bad
JA
3549
3550 local_irq_disable();
3551 cpu_list = &__get_cpu_var(blk_cpu_done);
626ab0e6 3552 list_replace_init(cpu_list, &local_list);
ff856bad
JA
3553 local_irq_enable();
3554
3555 while (!list_empty(&local_list)) {
3556 struct request *rq = list_entry(local_list.next, struct request, donelist);
3557
3558 list_del_init(&rq->donelist);
3559 rq->q->softirq_done_fn(rq);
3560 }
3561}
3562
ff856bad
JA
3563static int blk_cpu_notify(struct notifier_block *self, unsigned long action,
3564 void *hcpu)
3565{
3566 /*
3567 * If a CPU goes away, splice its entries to the current CPU
3568 * and trigger a run of the softirq
3569 */
8bb78442 3570 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
ff856bad
JA
3571 int cpu = (unsigned long) hcpu;
3572
3573 local_irq_disable();
3574 list_splice_init(&per_cpu(blk_cpu_done, cpu),
3575 &__get_cpu_var(blk_cpu_done));
3576 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3577 local_irq_enable();
3578 }
3579
3580 return NOTIFY_OK;
3581}
3582
3583
054cc8a2 3584static struct notifier_block __devinitdata blk_cpu_notifier = {
ff856bad
JA
3585 .notifier_call = blk_cpu_notify,
3586};
3587
ff856bad
JA
3588/**
3589 * blk_complete_request - end I/O on a request
3590 * @req: the request being processed
3591 *
3592 * Description:
3593 * Ends all I/O on a request. It does not handle partial completions,
d6e05edc 3594 * unless the driver actually implements this in its completion callback
ff856bad
JA
3595 * through requeueing. Theh actual completion happens out-of-order,
3596 * through a softirq handler. The user must have registered a completion
3597 * callback through blk_queue_softirq_done().
3598 **/
3599
3600void blk_complete_request(struct request *req)
3601{
3602 struct list_head *cpu_list;
3603 unsigned long flags;
3604
3605 BUG_ON(!req->q->softirq_done_fn);
3606
3607 local_irq_save(flags);
3608
3609 cpu_list = &__get_cpu_var(blk_cpu_done);
3610 list_add_tail(&req->donelist, cpu_list);
3611 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3612
3613 local_irq_restore(flags);
3614}
3615
3616EXPORT_SYMBOL(blk_complete_request);
3617
1da177e4
LT
3618/*
3619 * queue lock must be held
3620 */
8ffdc655 3621void end_that_request_last(struct request *req, int uptodate)
1da177e4
LT
3622{
3623 struct gendisk *disk = req->rq_disk;
8ffdc655
TH
3624 int error;
3625
3626 /*
3627 * extend uptodate bool to allow < 0 value to be direct io error
3628 */
3629 error = 0;
3630 if (end_io_error(uptodate))
3631 error = !uptodate ? -EIO : uptodate;
1da177e4
LT
3632
3633 if (unlikely(laptop_mode) && blk_fs_request(req))
3634 laptop_io_completion();
3635
fd0ff8aa
JA
3636 /*
3637 * Account IO completion. bar_rq isn't accounted as a normal
3638 * IO on queueing nor completion. Accounting the containing
3639 * request is enough.
3640 */
3641 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
1da177e4 3642 unsigned long duration = jiffies - req->start_time;
a362357b
JA
3643 const int rw = rq_data_dir(req);
3644
3645 __disk_stat_inc(disk, ios[rw]);
3646 __disk_stat_add(disk, ticks[rw], duration);
1da177e4
LT
3647 disk_round_stats(disk);
3648 disk->in_flight--;
3649 }
3650 if (req->end_io)
8ffdc655 3651 req->end_io(req, error);
1da177e4
LT
3652 else
3653 __blk_put_request(req->q, req);
3654}
3655
3656EXPORT_SYMBOL(end_that_request_last);
3657
3658void end_request(struct request *req, int uptodate)
3659{
3660 if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
3661 add_disk_randomness(req->rq_disk);
3662 blkdev_dequeue_request(req);
8ffdc655 3663 end_that_request_last(req, uptodate);
1da177e4
LT
3664 }
3665}
3666
3667EXPORT_SYMBOL(end_request);
3668
165125e1
JA
3669void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3670 struct bio *bio)
1da177e4 3671{
4aff5e23
JA
3672 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
3673 rq->cmd_flags |= (bio->bi_rw & 3);
1da177e4
LT
3674
3675 rq->nr_phys_segments = bio_phys_segments(q, bio);
3676 rq->nr_hw_segments = bio_hw_segments(q, bio);
3677 rq->current_nr_sectors = bio_cur_sectors(bio);
3678 rq->hard_cur_sectors = rq->current_nr_sectors;
3679 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3680 rq->buffer = bio_data(bio);
0e75f906 3681 rq->data_len = bio->bi_size;
1da177e4
LT
3682
3683 rq->bio = rq->biotail = bio;
3684}
3685
3686EXPORT_SYMBOL(blk_rq_bio_prep);
3687
3688int kblockd_schedule_work(struct work_struct *work)
3689{
3690 return queue_work(kblockd_workqueue, work);
3691}
3692
3693EXPORT_SYMBOL(kblockd_schedule_work);
3694
19a75d83 3695void kblockd_flush_work(struct work_struct *work)
1da177e4 3696{
28e53bdd 3697 cancel_work_sync(work);
1da177e4 3698}
19a75d83 3699EXPORT_SYMBOL(kblockd_flush_work);
1da177e4
LT
3700
3701int __init blk_dev_init(void)
3702{
ff856bad
JA
3703 int i;
3704
1da177e4
LT
3705 kblockd_workqueue = create_workqueue("kblockd");
3706 if (!kblockd_workqueue)
3707 panic("Failed to create kblockd\n");
3708
3709 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3710 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4
LT
3711
3712 requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 3713 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4
LT
3714
3715 iocontext_cachep = kmem_cache_create("blkdev_ioc",
20c2df83 3716 sizeof(struct io_context), 0, SLAB_PANIC, NULL);
1da177e4 3717
0a945022 3718 for_each_possible_cpu(i)
ff856bad
JA
3719 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3720
3721 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
5a67e4c5 3722 register_hotcpu_notifier(&blk_cpu_notifier);
ff856bad 3723
f772b3d9
VT
3724 blk_max_low_pfn = max_low_pfn - 1;
3725 blk_max_pfn = max_pfn - 1;
1da177e4
LT
3726
3727 return 0;
3728}
3729
3730/*
3731 * IO Context helper functions
3732 */
3733void put_io_context(struct io_context *ioc)
3734{
3735 if (ioc == NULL)
3736 return;
3737
3738 BUG_ON(atomic_read(&ioc->refcount) == 0);
3739
3740 if (atomic_dec_and_test(&ioc->refcount)) {
e2d74ac0
JA
3741 struct cfq_io_context *cic;
3742
334e94de 3743 rcu_read_lock();
1da177e4
LT
3744 if (ioc->aic && ioc->aic->dtor)
3745 ioc->aic->dtor(ioc->aic);
e2d74ac0 3746 if (ioc->cic_root.rb_node != NULL) {
7143dd4b
JA
3747 struct rb_node *n = rb_first(&ioc->cic_root);
3748
3749 cic = rb_entry(n, struct cfq_io_context, rb_node);
e2d74ac0
JA
3750 cic->dtor(ioc);
3751 }
334e94de 3752 rcu_read_unlock();
1da177e4
LT
3753
3754 kmem_cache_free(iocontext_cachep, ioc);
3755 }
3756}
3757EXPORT_SYMBOL(put_io_context);
3758
3759/* Called by the exitting task */
3760void exit_io_context(void)
3761{
1da177e4 3762 struct io_context *ioc;
e2d74ac0 3763 struct cfq_io_context *cic;
1da177e4 3764
22e2c507 3765 task_lock(current);
1da177e4
LT
3766 ioc = current->io_context;
3767 current->io_context = NULL;
22e2c507 3768 task_unlock(current);
1da177e4 3769
25034d7a 3770 ioc->task = NULL;
1da177e4
LT
3771 if (ioc->aic && ioc->aic->exit)
3772 ioc->aic->exit(ioc->aic);
e2d74ac0
JA
3773 if (ioc->cic_root.rb_node != NULL) {
3774 cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
3775 cic->exit(ioc);
3776 }
25034d7a 3777
1da177e4
LT
3778 put_io_context(ioc);
3779}
3780
3781/*
3782 * If the current task has no IO context then create one and initialise it.
fb3cc432 3783 * Otherwise, return its existing IO context.
1da177e4 3784 *
fb3cc432
NP
3785 * This returned IO context doesn't have a specifically elevated refcount,
3786 * but since the current task itself holds a reference, the context can be
3787 * used in general code, so long as it stays within `current` context.
1da177e4 3788 */
b5deef90 3789static struct io_context *current_io_context(gfp_t gfp_flags, int node)
1da177e4
LT
3790{
3791 struct task_struct *tsk = current;
1da177e4
LT
3792 struct io_context *ret;
3793
1da177e4 3794 ret = tsk->io_context;
fb3cc432
NP
3795 if (likely(ret))
3796 return ret;
1da177e4 3797
b5deef90 3798 ret = kmem_cache_alloc_node(iocontext_cachep, gfp_flags, node);
1da177e4
LT
3799 if (ret) {
3800 atomic_set(&ret->refcount, 1);
22e2c507 3801 ret->task = current;
fc46379d 3802 ret->ioprio_changed = 0;
1da177e4
LT
3803 ret->last_waited = jiffies; /* doesn't matter... */
3804 ret->nr_batch_requests = 0; /* because this is 0 */
3805 ret->aic = NULL;
e2d74ac0 3806 ret->cic_root.rb_node = NULL;
4e521c27 3807 ret->ioc_data = NULL;
9f83e45e
ON
3808 /* make sure set_task_ioprio() sees the settings above */
3809 smp_wmb();
fb3cc432
NP
3810 tsk->io_context = ret;
3811 }
1da177e4 3812
fb3cc432
NP
3813 return ret;
3814}
1da177e4 3815
fb3cc432
NP
3816/*
3817 * If the current task has no IO context then create one and initialise it.
3818 * If it does have a context, take a ref on it.
3819 *
3820 * This is always called in the context of the task which submitted the I/O.
3821 */
b5deef90 3822struct io_context *get_io_context(gfp_t gfp_flags, int node)
fb3cc432
NP
3823{
3824 struct io_context *ret;
b5deef90 3825 ret = current_io_context(gfp_flags, node);
fb3cc432 3826 if (likely(ret))
1da177e4 3827 atomic_inc(&ret->refcount);
1da177e4
LT
3828 return ret;
3829}
3830EXPORT_SYMBOL(get_io_context);
3831
3832void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3833{
3834 struct io_context *src = *psrc;
3835 struct io_context *dst = *pdst;
3836
3837 if (src) {
3838 BUG_ON(atomic_read(&src->refcount) == 0);
3839 atomic_inc(&src->refcount);
3840 put_io_context(dst);
3841 *pdst = src;
3842 }
3843}
3844EXPORT_SYMBOL(copy_io_context);
3845
3846void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3847{
3848 struct io_context *temp;
3849 temp = *ioc1;
3850 *ioc1 = *ioc2;
3851 *ioc2 = temp;
3852}
3853EXPORT_SYMBOL(swap_io_context);
3854
3855/*
3856 * sysfs parts below
3857 */
3858struct queue_sysfs_entry {
3859 struct attribute attr;
3860 ssize_t (*show)(struct request_queue *, char *);
3861 ssize_t (*store)(struct request_queue *, const char *, size_t);
3862};
3863
3864static ssize_t
3865queue_var_show(unsigned int var, char *page)
3866{
3867 return sprintf(page, "%d\n", var);
3868}
3869
3870static ssize_t
3871queue_var_store(unsigned long *var, const char *page, size_t count)
3872{
3873 char *p = (char *) page;
3874
3875 *var = simple_strtoul(p, &p, 10);
3876 return count;
3877}
3878
3879static ssize_t queue_requests_show(struct request_queue *q, char *page)
3880{
3881 return queue_var_show(q->nr_requests, (page));
3882}
3883
3884static ssize_t
3885queue_requests_store(struct request_queue *q, const char *page, size_t count)
3886{
3887 struct request_list *rl = &q->rq;
c981ff9f
AV
3888 unsigned long nr;
3889 int ret = queue_var_store(&nr, page, count);
3890 if (nr < BLKDEV_MIN_RQ)
3891 nr = BLKDEV_MIN_RQ;
1da177e4 3892
c981ff9f
AV
3893 spin_lock_irq(q->queue_lock);
3894 q->nr_requests = nr;
1da177e4
LT
3895 blk_queue_congestion_threshold(q);
3896
3897 if (rl->count[READ] >= queue_congestion_on_threshold(q))
79e2de4b 3898 blk_set_queue_congested(q, READ);
1da177e4 3899 else if (rl->count[READ] < queue_congestion_off_threshold(q))
79e2de4b 3900 blk_clear_queue_congested(q, READ);
1da177e4
LT
3901
3902 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
79e2de4b 3903 blk_set_queue_congested(q, WRITE);
1da177e4 3904 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
79e2de4b 3905 blk_clear_queue_congested(q, WRITE);
1da177e4
LT
3906
3907 if (rl->count[READ] >= q->nr_requests) {
3908 blk_set_queue_full(q, READ);
3909 } else if (rl->count[READ]+1 <= q->nr_requests) {
3910 blk_clear_queue_full(q, READ);
3911 wake_up(&rl->wait[READ]);
3912 }
3913
3914 if (rl->count[WRITE] >= q->nr_requests) {
3915 blk_set_queue_full(q, WRITE);
3916 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
3917 blk_clear_queue_full(q, WRITE);
3918 wake_up(&rl->wait[WRITE]);
3919 }
c981ff9f 3920 spin_unlock_irq(q->queue_lock);
1da177e4
LT
3921 return ret;
3922}
3923
3924static ssize_t queue_ra_show(struct request_queue *q, char *page)
3925{
3926 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3927
3928 return queue_var_show(ra_kb, (page));
3929}
3930
3931static ssize_t
3932queue_ra_store(struct request_queue *q, const char *page, size_t count)
3933{
3934 unsigned long ra_kb;
3935 ssize_t ret = queue_var_store(&ra_kb, page, count);
3936
3937 spin_lock_irq(q->queue_lock);
1da177e4
LT
3938 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
3939 spin_unlock_irq(q->queue_lock);
3940
3941 return ret;
3942}
3943
3944static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
3945{
3946 int max_sectors_kb = q->max_sectors >> 1;
3947
3948 return queue_var_show(max_sectors_kb, (page));
3949}
3950
3951static ssize_t
3952queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
3953{
3954 unsigned long max_sectors_kb,
3955 max_hw_sectors_kb = q->max_hw_sectors >> 1,
3956 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
3957 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
3958 int ra_kb;
3959
3960 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
3961 return -EINVAL;
3962 /*
3963 * Take the queue lock to update the readahead and max_sectors
3964 * values synchronously:
3965 */
3966 spin_lock_irq(q->queue_lock);
3967 /*
3968 * Trim readahead window as well, if necessary:
3969 */
3970 ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3971 if (ra_kb > max_sectors_kb)
3972 q->backing_dev_info.ra_pages =
3973 max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
3974
3975 q->max_sectors = max_sectors_kb << 1;
3976 spin_unlock_irq(q->queue_lock);
3977
3978 return ret;
3979}
3980
3981static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
3982{
3983 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
3984
3985 return queue_var_show(max_hw_sectors_kb, (page));
3986}
3987
3988
3989static struct queue_sysfs_entry queue_requests_entry = {
3990 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
3991 .show = queue_requests_show,
3992 .store = queue_requests_store,
3993};
3994
3995static struct queue_sysfs_entry queue_ra_entry = {
3996 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
3997 .show = queue_ra_show,
3998 .store = queue_ra_store,
3999};
4000
4001static struct queue_sysfs_entry queue_max_sectors_entry = {
4002 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
4003 .show = queue_max_sectors_show,
4004 .store = queue_max_sectors_store,
4005};
4006
4007static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
4008 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
4009 .show = queue_max_hw_sectors_show,
4010};
4011
4012static struct queue_sysfs_entry queue_iosched_entry = {
4013 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
4014 .show = elv_iosched_show,
4015 .store = elv_iosched_store,
4016};
4017
4018static struct attribute *default_attrs[] = {
4019 &queue_requests_entry.attr,
4020 &queue_ra_entry.attr,
4021 &queue_max_hw_sectors_entry.attr,
4022 &queue_max_sectors_entry.attr,
4023 &queue_iosched_entry.attr,
4024 NULL,
4025};
4026
4027#define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
4028
4029static ssize_t
4030queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4031{
4032 struct queue_sysfs_entry *entry = to_queue(attr);
165125e1
JA
4033 struct request_queue *q =
4034 container_of(kobj, struct request_queue, kobj);
483f4afc 4035 ssize_t res;
1da177e4 4036
1da177e4 4037 if (!entry->show)
6c1852a0 4038 return -EIO;
483f4afc
AV
4039 mutex_lock(&q->sysfs_lock);
4040 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4041 mutex_unlock(&q->sysfs_lock);
4042 return -ENOENT;
4043 }
4044 res = entry->show(q, page);
4045 mutex_unlock(&q->sysfs_lock);
4046 return res;
1da177e4
LT
4047}
4048
4049static ssize_t
4050queue_attr_store(struct kobject *kobj, struct attribute *attr,
4051 const char *page, size_t length)
4052{
4053 struct queue_sysfs_entry *entry = to_queue(attr);
165125e1 4054 struct request_queue *q = container_of(kobj, struct request_queue, kobj);
483f4afc
AV
4055
4056 ssize_t res;
1da177e4 4057
1da177e4 4058 if (!entry->store)
6c1852a0 4059 return -EIO;
483f4afc
AV
4060 mutex_lock(&q->sysfs_lock);
4061 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4062 mutex_unlock(&q->sysfs_lock);
4063 return -ENOENT;
4064 }
4065 res = entry->store(q, page, length);
4066 mutex_unlock(&q->sysfs_lock);
4067 return res;
1da177e4
LT
4068}
4069
4070static struct sysfs_ops queue_sysfs_ops = {
4071 .show = queue_attr_show,
4072 .store = queue_attr_store,
4073};
4074
93d17d3d 4075static struct kobj_type queue_ktype = {
1da177e4
LT
4076 .sysfs_ops = &queue_sysfs_ops,
4077 .default_attrs = default_attrs,
483f4afc 4078 .release = blk_release_queue,
1da177e4
LT
4079};
4080
4081int blk_register_queue(struct gendisk *disk)
4082{
4083 int ret;
4084
165125e1 4085 struct request_queue *q = disk->queue;
1da177e4
LT
4086
4087 if (!q || !q->request_fn)
4088 return -ENXIO;
4089
4090 q->kobj.parent = kobject_get(&disk->kobj);
1da177e4 4091
483f4afc 4092 ret = kobject_add(&q->kobj);
1da177e4
LT
4093 if (ret < 0)
4094 return ret;
4095
483f4afc
AV
4096 kobject_uevent(&q->kobj, KOBJ_ADD);
4097
1da177e4
LT
4098 ret = elv_register_queue(q);
4099 if (ret) {
483f4afc
AV
4100 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4101 kobject_del(&q->kobj);
1da177e4
LT
4102 return ret;
4103 }
4104
4105 return 0;
4106}
4107
4108void blk_unregister_queue(struct gendisk *disk)
4109{
165125e1 4110 struct request_queue *q = disk->queue;
1da177e4
LT
4111
4112 if (q && q->request_fn) {
4113 elv_unregister_queue(q);
4114
483f4afc
AV
4115 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4116 kobject_del(&q->kobj);
1da177e4
LT
4117 kobject_put(&disk->kobj);
4118 }
4119}