blkcg: add blkg_[rw]stat->aux_cnt and replace cfq_group->dead_stats with it
[linux-2.6-block.git] / block / blk-throttle.c
CommitLineData
e43473b7
VG
1/*
2 * Interface for controlling IO bandwidth on a request queue
3 *
4 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
5 */
6
7#include <linux/module.h>
8#include <linux/slab.h>
9#include <linux/blkdev.h>
10#include <linux/bio.h>
11#include <linux/blktrace_api.h>
eea8f41c 12#include <linux/blk-cgroup.h>
bc9fcbf9 13#include "blk.h"
e43473b7
VG
14
15/* Max dispatch from a group in 1 round */
16static int throtl_grp_quantum = 8;
17
18/* Total max dispatch from all groups in one round */
19static int throtl_quantum = 32;
20
21/* Throttling is performed over 100ms slice and after that slice is renewed */
22static unsigned long throtl_slice = HZ/10; /* 100 ms */
23
3c798398 24static struct blkcg_policy blkcg_policy_throtl;
0381411e 25
450adcbe
VG
26/* A workqueue to queue throttle related work */
27static struct workqueue_struct *kthrotld_workqueue;
450adcbe 28
c5cc2070
TH
29/*
30 * To implement hierarchical throttling, throtl_grps form a tree and bios
31 * are dispatched upwards level by level until they reach the top and get
32 * issued. When dispatching bios from the children and local group at each
33 * level, if the bios are dispatched into a single bio_list, there's a risk
34 * of a local or child group which can queue many bios at once filling up
35 * the list starving others.
36 *
37 * To avoid such starvation, dispatched bios are queued separately
38 * according to where they came from. When they are again dispatched to
39 * the parent, they're popped in round-robin order so that no single source
40 * hogs the dispatch window.
41 *
42 * throtl_qnode is used to keep the queued bios separated by their sources.
43 * Bios are queued to throtl_qnode which in turn is queued to
44 * throtl_service_queue and then dispatched in round-robin order.
45 *
46 * It's also used to track the reference counts on blkg's. A qnode always
47 * belongs to a throtl_grp and gets queued on itself or the parent, so
48 * incrementing the reference of the associated throtl_grp when a qnode is
49 * queued and decrementing when dequeued is enough to keep the whole blkg
50 * tree pinned while bios are in flight.
51 */
52struct throtl_qnode {
53 struct list_head node; /* service_queue->queued[] */
54 struct bio_list bios; /* queued bios */
55 struct throtl_grp *tg; /* tg this qnode belongs to */
56};
57
c9e0332e 58struct throtl_service_queue {
77216b04
TH
59 struct throtl_service_queue *parent_sq; /* the parent service_queue */
60
73f0d49a
TH
61 /*
62 * Bios queued directly to this service_queue or dispatched from
63 * children throtl_grp's.
64 */
c5cc2070 65 struct list_head queued[2]; /* throtl_qnode [READ/WRITE] */
73f0d49a
TH
66 unsigned int nr_queued[2]; /* number of queued bios */
67
68 /*
69 * RB tree of active children throtl_grp's, which are sorted by
70 * their ->disptime.
71 */
c9e0332e
TH
72 struct rb_root pending_tree; /* RB tree of active tgs */
73 struct rb_node *first_pending; /* first node in the tree */
74 unsigned int nr_pending; /* # queued in the tree */
75 unsigned long first_pending_disptime; /* disptime of the first tg */
69df0ab0 76 struct timer_list pending_timer; /* fires on first_pending_disptime */
e43473b7
VG
77};
78
5b2c16aa
TH
79enum tg_state_flags {
80 THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */
0e9f4164 81 THROTL_TG_WAS_EMPTY = 1 << 1, /* bio_lists[] became non-empty */
5b2c16aa
TH
82};
83
e43473b7
VG
84#define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
85
8a3d2615
TH
86/* Per-cpu group stats */
87struct tg_stats_cpu {
88 /* total bytes transferred */
89 struct blkg_rwstat service_bytes;
90 /* total IOs serviced, post merge */
91 struct blkg_rwstat serviced;
92};
93
e43473b7 94struct throtl_grp {
f95a04af
TH
95 /* must be the first member */
96 struct blkg_policy_data pd;
97
c9e0332e 98 /* active throtl group service_queue member */
e43473b7
VG
99 struct rb_node rb_node;
100
0f3457f6
TH
101 /* throtl_data this group belongs to */
102 struct throtl_data *td;
103
49a2f1e3
TH
104 /* this group's service queue */
105 struct throtl_service_queue service_queue;
106
c5cc2070
TH
107 /*
108 * qnode_on_self is used when bios are directly queued to this
109 * throtl_grp so that local bios compete fairly with bios
110 * dispatched from children. qnode_on_parent is used when bios are
111 * dispatched from this throtl_grp into its parent and will compete
112 * with the sibling qnode_on_parents and the parent's
113 * qnode_on_self.
114 */
115 struct throtl_qnode qnode_on_self[2];
116 struct throtl_qnode qnode_on_parent[2];
117
e43473b7
VG
118 /*
119 * Dispatch time in jiffies. This is the estimated time when group
120 * will unthrottle and is ready to dispatch more bio. It is used as
121 * key to sort active groups in service tree.
122 */
123 unsigned long disptime;
124
e43473b7
VG
125 unsigned int flags;
126
693e751e
TH
127 /* are there any throtl rules between this group and td? */
128 bool has_rules[2];
129
e43473b7
VG
130 /* bytes per second rate limits */
131 uint64_t bps[2];
132
8e89d13f
VG
133 /* IOPS limits */
134 unsigned int iops[2];
135
e43473b7
VG
136 /* Number of bytes disptached in current slice */
137 uint64_t bytes_disp[2];
8e89d13f
VG
138 /* Number of bio's dispatched in current slice */
139 unsigned int io_disp[2];
e43473b7
VG
140
141 /* When did we start a new slice */
142 unsigned long slice_start[2];
143 unsigned long slice_end[2];
fe071437 144
8a3d2615
TH
145 /* Per cpu stats pointer */
146 struct tg_stats_cpu __percpu *stats_cpu;
e43473b7
VG
147};
148
149struct throtl_data
150{
e43473b7 151 /* service tree for active throtl groups */
c9e0332e 152 struct throtl_service_queue service_queue;
e43473b7 153
e43473b7
VG
154 struct request_queue *queue;
155
156 /* Total Number of queued bios on READ and WRITE lists */
157 unsigned int nr_queued[2];
158
159 /*
02977e4a 160 * number of total undestroyed groups
e43473b7
VG
161 */
162 unsigned int nr_undestroyed_grps;
163
164 /* Work for dispatching throttled bios */
69df0ab0 165 struct work_struct dispatch_work;
e43473b7
VG
166};
167
69df0ab0
TH
168static void throtl_pending_timer_fn(unsigned long arg);
169
f95a04af
TH
170static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
171{
172 return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
173}
174
3c798398 175static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
0381411e 176{
f95a04af 177 return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
0381411e
TH
178}
179
3c798398 180static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
0381411e 181{
f95a04af 182 return pd_to_blkg(&tg->pd);
0381411e
TH
183}
184
fda6f272
TH
185/**
186 * sq_to_tg - return the throl_grp the specified service queue belongs to
187 * @sq: the throtl_service_queue of interest
188 *
189 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
190 * embedded in throtl_data, %NULL is returned.
191 */
192static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
193{
194 if (sq && sq->parent_sq)
195 return container_of(sq, struct throtl_grp, service_queue);
196 else
197 return NULL;
198}
199
200/**
201 * sq_to_td - return throtl_data the specified service queue belongs to
202 * @sq: the throtl_service_queue of interest
203 *
204 * A service_queue can be embeded in either a throtl_grp or throtl_data.
205 * Determine the associated throtl_data accordingly and return it.
206 */
207static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
208{
209 struct throtl_grp *tg = sq_to_tg(sq);
210
211 if (tg)
212 return tg->td;
213 else
214 return container_of(sq, struct throtl_data, service_queue);
215}
216
217/**
218 * throtl_log - log debug message via blktrace
219 * @sq: the service_queue being reported
220 * @fmt: printf format string
221 * @args: printf args
222 *
223 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
224 * throtl_grp; otherwise, just "throtl".
225 *
226 * TODO: this should be made a function and name formatting should happen
227 * after testing whether blktrace is enabled.
228 */
229#define throtl_log(sq, fmt, args...) do { \
230 struct throtl_grp *__tg = sq_to_tg((sq)); \
231 struct throtl_data *__td = sq_to_td((sq)); \
232 \
233 (void)__td; \
234 if ((__tg)) { \
235 char __pbuf[128]; \
54e7ed12 236 \
fda6f272
TH
237 blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf)); \
238 blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
239 } else { \
240 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
241 } \
54e7ed12 242} while (0)
e43473b7 243
c5cc2070
TH
244static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
245{
246 INIT_LIST_HEAD(&qn->node);
247 bio_list_init(&qn->bios);
248 qn->tg = tg;
249}
250
251/**
252 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
253 * @bio: bio being added
254 * @qn: qnode to add bio to
255 * @queued: the service_queue->queued[] list @qn belongs to
256 *
257 * Add @bio to @qn and put @qn on @queued if it's not already on.
258 * @qn->tg's reference count is bumped when @qn is activated. See the
259 * comment on top of throtl_qnode definition for details.
260 */
261static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
262 struct list_head *queued)
263{
264 bio_list_add(&qn->bios, bio);
265 if (list_empty(&qn->node)) {
266 list_add_tail(&qn->node, queued);
267 blkg_get(tg_to_blkg(qn->tg));
268 }
269}
270
271/**
272 * throtl_peek_queued - peek the first bio on a qnode list
273 * @queued: the qnode list to peek
274 */
275static struct bio *throtl_peek_queued(struct list_head *queued)
276{
277 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
278 struct bio *bio;
279
280 if (list_empty(queued))
281 return NULL;
282
283 bio = bio_list_peek(&qn->bios);
284 WARN_ON_ONCE(!bio);
285 return bio;
286}
287
288/**
289 * throtl_pop_queued - pop the first bio form a qnode list
290 * @queued: the qnode list to pop a bio from
291 * @tg_to_put: optional out argument for throtl_grp to put
292 *
293 * Pop the first bio from the qnode list @queued. After popping, the first
294 * qnode is removed from @queued if empty or moved to the end of @queued so
295 * that the popping order is round-robin.
296 *
297 * When the first qnode is removed, its associated throtl_grp should be put
298 * too. If @tg_to_put is NULL, this function automatically puts it;
299 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
300 * responsible for putting it.
301 */
302static struct bio *throtl_pop_queued(struct list_head *queued,
303 struct throtl_grp **tg_to_put)
304{
305 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
306 struct bio *bio;
307
308 if (list_empty(queued))
309 return NULL;
310
311 bio = bio_list_pop(&qn->bios);
312 WARN_ON_ONCE(!bio);
313
314 if (bio_list_empty(&qn->bios)) {
315 list_del_init(&qn->node);
316 if (tg_to_put)
317 *tg_to_put = qn->tg;
318 else
319 blkg_put(tg_to_blkg(qn->tg));
320 } else {
321 list_move_tail(&qn->node, queued);
322 }
323
324 return bio;
325}
326
49a2f1e3 327/* init a service_queue, assumes the caller zeroed it */
b2ce2643 328static void throtl_service_queue_init(struct throtl_service_queue *sq)
49a2f1e3 329{
c5cc2070
TH
330 INIT_LIST_HEAD(&sq->queued[0]);
331 INIT_LIST_HEAD(&sq->queued[1]);
49a2f1e3 332 sq->pending_tree = RB_ROOT;
69df0ab0
TH
333 setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
334 (unsigned long)sq);
335}
336
001bea73
TH
337static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
338{
4fb72036 339 struct throtl_grp *tg;
b2ce2643 340 int rw, cpu;
4fb72036
TH
341
342 tg = kzalloc_node(sizeof(*tg), gfp, node);
343 if (!tg)
344 return NULL;
345
346 tg->stats_cpu = alloc_percpu_gfp(struct tg_stats_cpu, gfp);
347 if (!tg->stats_cpu) {
348 kfree(tg);
349 return NULL;
350 }
351
b2ce2643
TH
352 throtl_service_queue_init(&tg->service_queue);
353
354 for (rw = READ; rw <= WRITE; rw++) {
355 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
356 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
357 }
358
359 RB_CLEAR_NODE(&tg->rb_node);
360 tg->bps[READ] = -1;
361 tg->bps[WRITE] = -1;
362 tg->iops[READ] = -1;
363 tg->iops[WRITE] = -1;
364
4fb72036
TH
365 for_each_possible_cpu(cpu) {
366 struct tg_stats_cpu *stats_cpu = per_cpu_ptr(tg->stats_cpu, cpu);
367
368 blkg_rwstat_init(&stats_cpu->service_bytes);
369 blkg_rwstat_init(&stats_cpu->serviced);
370 }
371
372 return &tg->pd;
001bea73
TH
373}
374
a9520cd6 375static void throtl_pd_init(struct blkg_policy_data *pd)
a29a171e 376{
a9520cd6
TH
377 struct throtl_grp *tg = pd_to_tg(pd);
378 struct blkcg_gq *blkg = tg_to_blkg(tg);
77216b04 379 struct throtl_data *td = blkg->q->td;
b2ce2643 380 struct throtl_service_queue *sq = &tg->service_queue;
cd1604fa 381
9138125b 382 /*
aa6ec29b 383 * If on the default hierarchy, we switch to properly hierarchical
9138125b
TH
384 * behavior where limits on a given throtl_grp are applied to the
385 * whole subtree rather than just the group itself. e.g. If 16M
386 * read_bps limit is set on the root group, the whole system can't
387 * exceed 16M for the device.
388 *
aa6ec29b 389 * If not on the default hierarchy, the broken flat hierarchy
9138125b
TH
390 * behavior is retained where all throtl_grps are treated as if
391 * they're all separate root groups right below throtl_data.
392 * Limits of a group don't interact with limits of other groups
393 * regardless of the position of the group in the hierarchy.
394 */
b2ce2643 395 sq->parent_sq = &td->service_queue;
aa6ec29b 396 if (cgroup_on_dfl(blkg->blkcg->css.cgroup) && blkg->parent)
b2ce2643 397 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
77216b04 398 tg->td = td;
8a3d2615
TH
399}
400
693e751e
TH
401/*
402 * Set has_rules[] if @tg or any of its parents have limits configured.
403 * This doesn't require walking up to the top of the hierarchy as the
404 * parent's has_rules[] is guaranteed to be correct.
405 */
406static void tg_update_has_rules(struct throtl_grp *tg)
407{
408 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
409 int rw;
410
411 for (rw = READ; rw <= WRITE; rw++)
412 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
413 (tg->bps[rw] != -1 || tg->iops[rw] != -1);
414}
415
a9520cd6 416static void throtl_pd_online(struct blkg_policy_data *pd)
693e751e
TH
417{
418 /*
419 * We don't want new groups to escape the limits of its ancestors.
420 * Update has_rules[] after a new group is brought online.
421 */
a9520cd6 422 tg_update_has_rules(pd_to_tg(pd));
693e751e
TH
423}
424
001bea73
TH
425static void throtl_pd_free(struct blkg_policy_data *pd)
426{
4fb72036
TH
427 struct throtl_grp *tg = pd_to_tg(pd);
428
b2ce2643 429 del_timer_sync(&tg->service_queue.pending_timer);
4fb72036
TH
430 free_percpu(tg->stats_cpu);
431 kfree(tg);
001bea73
TH
432}
433
a9520cd6 434static void throtl_pd_reset_stats(struct blkg_policy_data *pd)
8a3d2615 435{
a9520cd6 436 struct throtl_grp *tg = pd_to_tg(pd);
8a3d2615
TH
437 int cpu;
438
8a3d2615
TH
439 for_each_possible_cpu(cpu) {
440 struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
441
442 blkg_rwstat_reset(&sc->service_bytes);
443 blkg_rwstat_reset(&sc->serviced);
444 }
a29a171e
VG
445}
446
0049af73
TH
447static struct throtl_grp *
448throtl_rb_first(struct throtl_service_queue *parent_sq)
e43473b7
VG
449{
450 /* Service tree is empty */
0049af73 451 if (!parent_sq->nr_pending)
e43473b7
VG
452 return NULL;
453
0049af73
TH
454 if (!parent_sq->first_pending)
455 parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
e43473b7 456
0049af73
TH
457 if (parent_sq->first_pending)
458 return rb_entry_tg(parent_sq->first_pending);
e43473b7
VG
459
460 return NULL;
461}
462
463static void rb_erase_init(struct rb_node *n, struct rb_root *root)
464{
465 rb_erase(n, root);
466 RB_CLEAR_NODE(n);
467}
468
0049af73
TH
469static void throtl_rb_erase(struct rb_node *n,
470 struct throtl_service_queue *parent_sq)
e43473b7 471{
0049af73
TH
472 if (parent_sq->first_pending == n)
473 parent_sq->first_pending = NULL;
474 rb_erase_init(n, &parent_sq->pending_tree);
475 --parent_sq->nr_pending;
e43473b7
VG
476}
477
0049af73 478static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
e43473b7
VG
479{
480 struct throtl_grp *tg;
481
0049af73 482 tg = throtl_rb_first(parent_sq);
e43473b7
VG
483 if (!tg)
484 return;
485
0049af73 486 parent_sq->first_pending_disptime = tg->disptime;
e43473b7
VG
487}
488
77216b04 489static void tg_service_queue_add(struct throtl_grp *tg)
e43473b7 490{
77216b04 491 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
0049af73 492 struct rb_node **node = &parent_sq->pending_tree.rb_node;
e43473b7
VG
493 struct rb_node *parent = NULL;
494 struct throtl_grp *__tg;
495 unsigned long key = tg->disptime;
496 int left = 1;
497
498 while (*node != NULL) {
499 parent = *node;
500 __tg = rb_entry_tg(parent);
501
502 if (time_before(key, __tg->disptime))
503 node = &parent->rb_left;
504 else {
505 node = &parent->rb_right;
506 left = 0;
507 }
508 }
509
510 if (left)
0049af73 511 parent_sq->first_pending = &tg->rb_node;
e43473b7
VG
512
513 rb_link_node(&tg->rb_node, parent, node);
0049af73 514 rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
e43473b7
VG
515}
516
77216b04 517static void __throtl_enqueue_tg(struct throtl_grp *tg)
e43473b7 518{
77216b04 519 tg_service_queue_add(tg);
5b2c16aa 520 tg->flags |= THROTL_TG_PENDING;
77216b04 521 tg->service_queue.parent_sq->nr_pending++;
e43473b7
VG
522}
523
77216b04 524static void throtl_enqueue_tg(struct throtl_grp *tg)
e43473b7 525{
5b2c16aa 526 if (!(tg->flags & THROTL_TG_PENDING))
77216b04 527 __throtl_enqueue_tg(tg);
e43473b7
VG
528}
529
77216b04 530static void __throtl_dequeue_tg(struct throtl_grp *tg)
e43473b7 531{
77216b04 532 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
5b2c16aa 533 tg->flags &= ~THROTL_TG_PENDING;
e43473b7
VG
534}
535
77216b04 536static void throtl_dequeue_tg(struct throtl_grp *tg)
e43473b7 537{
5b2c16aa 538 if (tg->flags & THROTL_TG_PENDING)
77216b04 539 __throtl_dequeue_tg(tg);
e43473b7
VG
540}
541
a9131a27 542/* Call with queue lock held */
69df0ab0
TH
543static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
544 unsigned long expires)
a9131a27 545{
69df0ab0
TH
546 mod_timer(&sq->pending_timer, expires);
547 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
548 expires - jiffies, jiffies);
a9131a27
TH
549}
550
7f52f98c
TH
551/**
552 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
553 * @sq: the service_queue to schedule dispatch for
554 * @force: force scheduling
555 *
556 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
557 * dispatch time of the first pending child. Returns %true if either timer
558 * is armed or there's no pending child left. %false if the current
559 * dispatch window is still open and the caller should continue
560 * dispatching.
561 *
562 * If @force is %true, the dispatch timer is always scheduled and this
563 * function is guaranteed to return %true. This is to be used when the
564 * caller can't dispatch itself and needs to invoke pending_timer
565 * unconditionally. Note that forced scheduling is likely to induce short
566 * delay before dispatch starts even if @sq->first_pending_disptime is not
567 * in the future and thus shouldn't be used in hot paths.
568 */
569static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
570 bool force)
e43473b7 571{
6a525600 572 /* any pending children left? */
c9e0332e 573 if (!sq->nr_pending)
7f52f98c 574 return true;
e43473b7 575
c9e0332e 576 update_min_dispatch_time(sq);
e43473b7 577
69df0ab0 578 /* is the next dispatch time in the future? */
7f52f98c 579 if (force || time_after(sq->first_pending_disptime, jiffies)) {
69df0ab0 580 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
7f52f98c 581 return true;
69df0ab0
TH
582 }
583
7f52f98c
TH
584 /* tell the caller to continue dispatching */
585 return false;
e43473b7
VG
586}
587
32ee5bc4
VG
588static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
589 bool rw, unsigned long start)
590{
591 tg->bytes_disp[rw] = 0;
592 tg->io_disp[rw] = 0;
593
594 /*
595 * Previous slice has expired. We must have trimmed it after last
596 * bio dispatch. That means since start of last slice, we never used
597 * that bandwidth. Do try to make use of that bandwidth while giving
598 * credit.
599 */
600 if (time_after_eq(start, tg->slice_start[rw]))
601 tg->slice_start[rw] = start;
602
603 tg->slice_end[rw] = jiffies + throtl_slice;
604 throtl_log(&tg->service_queue,
605 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
606 rw == READ ? 'R' : 'W', tg->slice_start[rw],
607 tg->slice_end[rw], jiffies);
608}
609
0f3457f6 610static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
e43473b7
VG
611{
612 tg->bytes_disp[rw] = 0;
8e89d13f 613 tg->io_disp[rw] = 0;
e43473b7
VG
614 tg->slice_start[rw] = jiffies;
615 tg->slice_end[rw] = jiffies + throtl_slice;
fda6f272
TH
616 throtl_log(&tg->service_queue,
617 "[%c] new slice start=%lu end=%lu jiffies=%lu",
618 rw == READ ? 'R' : 'W', tg->slice_start[rw],
619 tg->slice_end[rw], jiffies);
e43473b7
VG
620}
621
0f3457f6
TH
622static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
623 unsigned long jiffy_end)
d1ae8ffd
VG
624{
625 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
626}
627
0f3457f6
TH
628static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
629 unsigned long jiffy_end)
e43473b7
VG
630{
631 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
fda6f272
TH
632 throtl_log(&tg->service_queue,
633 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
634 rw == READ ? 'R' : 'W', tg->slice_start[rw],
635 tg->slice_end[rw], jiffies);
e43473b7
VG
636}
637
638/* Determine if previously allocated or extended slice is complete or not */
0f3457f6 639static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
e43473b7
VG
640{
641 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
5cf8c227 642 return false;
e43473b7
VG
643
644 return 1;
645}
646
647/* Trim the used slices and adjust slice start accordingly */
0f3457f6 648static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
e43473b7 649{
3aad5d3e
VG
650 unsigned long nr_slices, time_elapsed, io_trim;
651 u64 bytes_trim, tmp;
e43473b7
VG
652
653 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
654
655 /*
656 * If bps are unlimited (-1), then time slice don't get
657 * renewed. Don't try to trim the slice if slice is used. A new
658 * slice will start when appropriate.
659 */
0f3457f6 660 if (throtl_slice_used(tg, rw))
e43473b7
VG
661 return;
662
d1ae8ffd
VG
663 /*
664 * A bio has been dispatched. Also adjust slice_end. It might happen
665 * that initially cgroup limit was very low resulting in high
666 * slice_end, but later limit was bumped up and bio was dispached
667 * sooner, then we need to reduce slice_end. A high bogus slice_end
668 * is bad because it does not allow new slice to start.
669 */
670
0f3457f6 671 throtl_set_slice_end(tg, rw, jiffies + throtl_slice);
d1ae8ffd 672
e43473b7
VG
673 time_elapsed = jiffies - tg->slice_start[rw];
674
675 nr_slices = time_elapsed / throtl_slice;
676
677 if (!nr_slices)
678 return;
3aad5d3e
VG
679 tmp = tg->bps[rw] * throtl_slice * nr_slices;
680 do_div(tmp, HZ);
681 bytes_trim = tmp;
e43473b7 682
8e89d13f 683 io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
e43473b7 684
8e89d13f 685 if (!bytes_trim && !io_trim)
e43473b7
VG
686 return;
687
688 if (tg->bytes_disp[rw] >= bytes_trim)
689 tg->bytes_disp[rw] -= bytes_trim;
690 else
691 tg->bytes_disp[rw] = 0;
692
8e89d13f
VG
693 if (tg->io_disp[rw] >= io_trim)
694 tg->io_disp[rw] -= io_trim;
695 else
696 tg->io_disp[rw] = 0;
697
e43473b7
VG
698 tg->slice_start[rw] += nr_slices * throtl_slice;
699
fda6f272
TH
700 throtl_log(&tg->service_queue,
701 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
702 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
703 tg->slice_start[rw], tg->slice_end[rw], jiffies);
e43473b7
VG
704}
705
0f3457f6
TH
706static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
707 unsigned long *wait)
e43473b7
VG
708{
709 bool rw = bio_data_dir(bio);
8e89d13f 710 unsigned int io_allowed;
e43473b7 711 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
c49c06e4 712 u64 tmp;
e43473b7 713
8e89d13f 714 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
e43473b7 715
8e89d13f
VG
716 /* Slice has just started. Consider one slice interval */
717 if (!jiffy_elapsed)
718 jiffy_elapsed_rnd = throtl_slice;
719
720 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
721
c49c06e4
VG
722 /*
723 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
724 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
725 * will allow dispatch after 1 second and after that slice should
726 * have been trimmed.
727 */
728
729 tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
730 do_div(tmp, HZ);
731
732 if (tmp > UINT_MAX)
733 io_allowed = UINT_MAX;
734 else
735 io_allowed = tmp;
8e89d13f
VG
736
737 if (tg->io_disp[rw] + 1 <= io_allowed) {
e43473b7
VG
738 if (wait)
739 *wait = 0;
5cf8c227 740 return true;
e43473b7
VG
741 }
742
8e89d13f
VG
743 /* Calc approx time to dispatch */
744 jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;
745
746 if (jiffy_wait > jiffy_elapsed)
747 jiffy_wait = jiffy_wait - jiffy_elapsed;
748 else
749 jiffy_wait = 1;
750
751 if (wait)
752 *wait = jiffy_wait;
753 return 0;
754}
755
0f3457f6
TH
756static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
757 unsigned long *wait)
8e89d13f
VG
758{
759 bool rw = bio_data_dir(bio);
3aad5d3e 760 u64 bytes_allowed, extra_bytes, tmp;
8e89d13f 761 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
e43473b7
VG
762
763 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
764
765 /* Slice has just started. Consider one slice interval */
766 if (!jiffy_elapsed)
767 jiffy_elapsed_rnd = throtl_slice;
768
769 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
770
5e901a2b
VG
771 tmp = tg->bps[rw] * jiffy_elapsed_rnd;
772 do_div(tmp, HZ);
3aad5d3e 773 bytes_allowed = tmp;
e43473b7 774
4f024f37 775 if (tg->bytes_disp[rw] + bio->bi_iter.bi_size <= bytes_allowed) {
e43473b7
VG
776 if (wait)
777 *wait = 0;
5cf8c227 778 return true;
e43473b7
VG
779 }
780
781 /* Calc approx time to dispatch */
4f024f37 782 extra_bytes = tg->bytes_disp[rw] + bio->bi_iter.bi_size - bytes_allowed;
e43473b7
VG
783 jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);
784
785 if (!jiffy_wait)
786 jiffy_wait = 1;
787
788 /*
789 * This wait time is without taking into consideration the rounding
790 * up we did. Add that time also.
791 */
792 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
e43473b7
VG
793 if (wait)
794 *wait = jiffy_wait;
8e89d13f
VG
795 return 0;
796}
797
798/*
799 * Returns whether one can dispatch a bio or not. Also returns approx number
800 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
801 */
0f3457f6
TH
802static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
803 unsigned long *wait)
8e89d13f
VG
804{
805 bool rw = bio_data_dir(bio);
806 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
807
808 /*
809 * Currently whole state machine of group depends on first bio
810 * queued in the group bio list. So one should not be calling
811 * this function with a different bio if there are other bios
812 * queued.
813 */
73f0d49a 814 BUG_ON(tg->service_queue.nr_queued[rw] &&
c5cc2070 815 bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
e43473b7 816
8e89d13f
VG
817 /* If tg->bps = -1, then BW is unlimited */
818 if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
819 if (wait)
820 *wait = 0;
5cf8c227 821 return true;
8e89d13f
VG
822 }
823
824 /*
825 * If previous slice expired, start a new one otherwise renew/extend
826 * existing slice to make sure it is at least throtl_slice interval
827 * long since now.
828 */
0f3457f6
TH
829 if (throtl_slice_used(tg, rw))
830 throtl_start_new_slice(tg, rw);
8e89d13f
VG
831 else {
832 if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
0f3457f6 833 throtl_extend_slice(tg, rw, jiffies + throtl_slice);
8e89d13f
VG
834 }
835
0f3457f6
TH
836 if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
837 tg_with_in_iops_limit(tg, bio, &iops_wait)) {
8e89d13f
VG
838 if (wait)
839 *wait = 0;
840 return 1;
841 }
842
843 max_wait = max(bps_wait, iops_wait);
844
845 if (wait)
846 *wait = max_wait;
847
848 if (time_before(tg->slice_end[rw], jiffies + max_wait))
0f3457f6 849 throtl_extend_slice(tg, rw, jiffies + max_wait);
e43473b7
VG
850
851 return 0;
852}
853
3c798398 854static void throtl_update_dispatch_stats(struct blkcg_gq *blkg, u64 bytes,
629ed0b1
TH
855 int rw)
856{
8a3d2615
TH
857 struct throtl_grp *tg = blkg_to_tg(blkg);
858 struct tg_stats_cpu *stats_cpu;
629ed0b1
TH
859 unsigned long flags;
860
629ed0b1
TH
861 /*
862 * Disabling interrupts to provide mutual exclusion between two
863 * writes on same cpu. It probably is not needed for 64bit. Not
864 * optimizing that case yet.
865 */
866 local_irq_save(flags);
867
8a3d2615 868 stats_cpu = this_cpu_ptr(tg->stats_cpu);
629ed0b1 869
629ed0b1
TH
870 blkg_rwstat_add(&stats_cpu->serviced, rw, 1);
871 blkg_rwstat_add(&stats_cpu->service_bytes, rw, bytes);
872
873 local_irq_restore(flags);
874}
875
e43473b7
VG
876static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
877{
878 bool rw = bio_data_dir(bio);
e43473b7
VG
879
880 /* Charge the bio to the group */
4f024f37 881 tg->bytes_disp[rw] += bio->bi_iter.bi_size;
8e89d13f 882 tg->io_disp[rw]++;
e43473b7 883
2a0f61e6
TH
884 /*
885 * REQ_THROTTLED is used to prevent the same bio to be throttled
886 * more than once as a throttled bio will go through blk-throtl the
887 * second time when it eventually gets issued. Set it when a bio
888 * is being charged to a tg.
889 *
890 * Dispatch stats aren't recursive and each @bio should only be
891 * accounted by the @tg it was originally associated with. Let's
892 * update the stats when setting REQ_THROTTLED for the first time
893 * which is guaranteed to be for the @bio's original tg.
894 */
895 if (!(bio->bi_rw & REQ_THROTTLED)) {
896 bio->bi_rw |= REQ_THROTTLED;
4f024f37
KO
897 throtl_update_dispatch_stats(tg_to_blkg(tg),
898 bio->bi_iter.bi_size, bio->bi_rw);
2a0f61e6 899 }
e43473b7
VG
900}
901
c5cc2070
TH
902/**
903 * throtl_add_bio_tg - add a bio to the specified throtl_grp
904 * @bio: bio to add
905 * @qn: qnode to use
906 * @tg: the target throtl_grp
907 *
908 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
909 * tg->qnode_on_self[] is used.
910 */
911static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
912 struct throtl_grp *tg)
e43473b7 913{
73f0d49a 914 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
915 bool rw = bio_data_dir(bio);
916
c5cc2070
TH
917 if (!qn)
918 qn = &tg->qnode_on_self[rw];
919
0e9f4164
TH
920 /*
921 * If @tg doesn't currently have any bios queued in the same
922 * direction, queueing @bio can change when @tg should be
923 * dispatched. Mark that @tg was empty. This is automatically
924 * cleaered on the next tg_update_disptime().
925 */
926 if (!sq->nr_queued[rw])
927 tg->flags |= THROTL_TG_WAS_EMPTY;
928
c5cc2070
TH
929 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
930
73f0d49a 931 sq->nr_queued[rw]++;
77216b04 932 throtl_enqueue_tg(tg);
e43473b7
VG
933}
934
77216b04 935static void tg_update_disptime(struct throtl_grp *tg)
e43473b7 936{
73f0d49a 937 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
938 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
939 struct bio *bio;
940
c5cc2070 941 if ((bio = throtl_peek_queued(&sq->queued[READ])))
0f3457f6 942 tg_may_dispatch(tg, bio, &read_wait);
e43473b7 943
c5cc2070 944 if ((bio = throtl_peek_queued(&sq->queued[WRITE])))
0f3457f6 945 tg_may_dispatch(tg, bio, &write_wait);
e43473b7
VG
946
947 min_wait = min(read_wait, write_wait);
948 disptime = jiffies + min_wait;
949
e43473b7 950 /* Update dispatch time */
77216b04 951 throtl_dequeue_tg(tg);
e43473b7 952 tg->disptime = disptime;
77216b04 953 throtl_enqueue_tg(tg);
0e9f4164
TH
954
955 /* see throtl_add_bio_tg() */
956 tg->flags &= ~THROTL_TG_WAS_EMPTY;
e43473b7
VG
957}
958
32ee5bc4
VG
959static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
960 struct throtl_grp *parent_tg, bool rw)
961{
962 if (throtl_slice_used(parent_tg, rw)) {
963 throtl_start_new_slice_with_credit(parent_tg, rw,
964 child_tg->slice_start[rw]);
965 }
966
967}
968
77216b04 969static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
e43473b7 970{
73f0d49a 971 struct throtl_service_queue *sq = &tg->service_queue;
6bc9c2b4
TH
972 struct throtl_service_queue *parent_sq = sq->parent_sq;
973 struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
c5cc2070 974 struct throtl_grp *tg_to_put = NULL;
e43473b7
VG
975 struct bio *bio;
976
c5cc2070
TH
977 /*
978 * @bio is being transferred from @tg to @parent_sq. Popping a bio
979 * from @tg may put its reference and @parent_sq might end up
980 * getting released prematurely. Remember the tg to put and put it
981 * after @bio is transferred to @parent_sq.
982 */
983 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
73f0d49a 984 sq->nr_queued[rw]--;
e43473b7
VG
985
986 throtl_charge_bio(tg, bio);
6bc9c2b4
TH
987
988 /*
989 * If our parent is another tg, we just need to transfer @bio to
990 * the parent using throtl_add_bio_tg(). If our parent is
991 * @td->service_queue, @bio is ready to be issued. Put it on its
992 * bio_lists[] and decrease total number queued. The caller is
993 * responsible for issuing these bios.
994 */
995 if (parent_tg) {
c5cc2070 996 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
32ee5bc4 997 start_parent_slice_with_credit(tg, parent_tg, rw);
6bc9c2b4 998 } else {
c5cc2070
TH
999 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1000 &parent_sq->queued[rw]);
6bc9c2b4
TH
1001 BUG_ON(tg->td->nr_queued[rw] <= 0);
1002 tg->td->nr_queued[rw]--;
1003 }
e43473b7 1004
0f3457f6 1005 throtl_trim_slice(tg, rw);
6bc9c2b4 1006
c5cc2070
TH
1007 if (tg_to_put)
1008 blkg_put(tg_to_blkg(tg_to_put));
e43473b7
VG
1009}
1010
77216b04 1011static int throtl_dispatch_tg(struct throtl_grp *tg)
e43473b7 1012{
73f0d49a 1013 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
1014 unsigned int nr_reads = 0, nr_writes = 0;
1015 unsigned int max_nr_reads = throtl_grp_quantum*3/4;
c2f6805d 1016 unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
e43473b7
VG
1017 struct bio *bio;
1018
1019 /* Try to dispatch 75% READS and 25% WRITES */
1020
c5cc2070 1021 while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
0f3457f6 1022 tg_may_dispatch(tg, bio, NULL)) {
e43473b7 1023
77216b04 1024 tg_dispatch_one_bio(tg, bio_data_dir(bio));
e43473b7
VG
1025 nr_reads++;
1026
1027 if (nr_reads >= max_nr_reads)
1028 break;
1029 }
1030
c5cc2070 1031 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
0f3457f6 1032 tg_may_dispatch(tg, bio, NULL)) {
e43473b7 1033
77216b04 1034 tg_dispatch_one_bio(tg, bio_data_dir(bio));
e43473b7
VG
1035 nr_writes++;
1036
1037 if (nr_writes >= max_nr_writes)
1038 break;
1039 }
1040
1041 return nr_reads + nr_writes;
1042}
1043
651930bc 1044static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
e43473b7
VG
1045{
1046 unsigned int nr_disp = 0;
e43473b7
VG
1047
1048 while (1) {
73f0d49a
TH
1049 struct throtl_grp *tg = throtl_rb_first(parent_sq);
1050 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
1051
1052 if (!tg)
1053 break;
1054
1055 if (time_before(jiffies, tg->disptime))
1056 break;
1057
77216b04 1058 throtl_dequeue_tg(tg);
e43473b7 1059
77216b04 1060 nr_disp += throtl_dispatch_tg(tg);
e43473b7 1061
73f0d49a 1062 if (sq->nr_queued[0] || sq->nr_queued[1])
77216b04 1063 tg_update_disptime(tg);
e43473b7
VG
1064
1065 if (nr_disp >= throtl_quantum)
1066 break;
1067 }
1068
1069 return nr_disp;
1070}
1071
6e1a5704
TH
1072/**
1073 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1074 * @arg: the throtl_service_queue being serviced
1075 *
1076 * This timer is armed when a child throtl_grp with active bio's become
1077 * pending and queued on the service_queue's pending_tree and expires when
1078 * the first child throtl_grp should be dispatched. This function
2e48a530
TH
1079 * dispatches bio's from the children throtl_grps to the parent
1080 * service_queue.
1081 *
1082 * If the parent's parent is another throtl_grp, dispatching is propagated
1083 * by either arming its pending_timer or repeating dispatch directly. If
1084 * the top-level service_tree is reached, throtl_data->dispatch_work is
1085 * kicked so that the ready bio's are issued.
6e1a5704 1086 */
69df0ab0
TH
1087static void throtl_pending_timer_fn(unsigned long arg)
1088{
1089 struct throtl_service_queue *sq = (void *)arg;
2e48a530 1090 struct throtl_grp *tg = sq_to_tg(sq);
69df0ab0 1091 struct throtl_data *td = sq_to_td(sq);
cb76199c 1092 struct request_queue *q = td->queue;
2e48a530
TH
1093 struct throtl_service_queue *parent_sq;
1094 bool dispatched;
6e1a5704 1095 int ret;
e43473b7
VG
1096
1097 spin_lock_irq(q->queue_lock);
2e48a530
TH
1098again:
1099 parent_sq = sq->parent_sq;
1100 dispatched = false;
e43473b7 1101
7f52f98c
TH
1102 while (true) {
1103 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
2e48a530
TH
1104 sq->nr_queued[READ] + sq->nr_queued[WRITE],
1105 sq->nr_queued[READ], sq->nr_queued[WRITE]);
7f52f98c
TH
1106
1107 ret = throtl_select_dispatch(sq);
1108 if (ret) {
7f52f98c
TH
1109 throtl_log(sq, "bios disp=%u", ret);
1110 dispatched = true;
1111 }
e43473b7 1112
7f52f98c
TH
1113 if (throtl_schedule_next_dispatch(sq, false))
1114 break;
e43473b7 1115
7f52f98c
TH
1116 /* this dispatch windows is still open, relax and repeat */
1117 spin_unlock_irq(q->queue_lock);
1118 cpu_relax();
1119 spin_lock_irq(q->queue_lock);
651930bc 1120 }
e43473b7 1121
2e48a530
TH
1122 if (!dispatched)
1123 goto out_unlock;
6e1a5704 1124
2e48a530
TH
1125 if (parent_sq) {
1126 /* @parent_sq is another throl_grp, propagate dispatch */
1127 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1128 tg_update_disptime(tg);
1129 if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1130 /* window is already open, repeat dispatching */
1131 sq = parent_sq;
1132 tg = sq_to_tg(sq);
1133 goto again;
1134 }
1135 }
1136 } else {
1137 /* reached the top-level, queue issueing */
1138 queue_work(kthrotld_workqueue, &td->dispatch_work);
1139 }
1140out_unlock:
e43473b7 1141 spin_unlock_irq(q->queue_lock);
6e1a5704 1142}
e43473b7 1143
6e1a5704
TH
1144/**
1145 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1146 * @work: work item being executed
1147 *
1148 * This function is queued for execution when bio's reach the bio_lists[]
1149 * of throtl_data->service_queue. Those bio's are ready and issued by this
1150 * function.
1151 */
8876e140 1152static void blk_throtl_dispatch_work_fn(struct work_struct *work)
6e1a5704
TH
1153{
1154 struct throtl_data *td = container_of(work, struct throtl_data,
1155 dispatch_work);
1156 struct throtl_service_queue *td_sq = &td->service_queue;
1157 struct request_queue *q = td->queue;
1158 struct bio_list bio_list_on_stack;
1159 struct bio *bio;
1160 struct blk_plug plug;
1161 int rw;
1162
1163 bio_list_init(&bio_list_on_stack);
1164
1165 spin_lock_irq(q->queue_lock);
c5cc2070
TH
1166 for (rw = READ; rw <= WRITE; rw++)
1167 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1168 bio_list_add(&bio_list_on_stack, bio);
6e1a5704
TH
1169 spin_unlock_irq(q->queue_lock);
1170
1171 if (!bio_list_empty(&bio_list_on_stack)) {
69d60eb9 1172 blk_start_plug(&plug);
e43473b7
VG
1173 while((bio = bio_list_pop(&bio_list_on_stack)))
1174 generic_make_request(bio);
69d60eb9 1175 blk_finish_plug(&plug);
e43473b7 1176 }
e43473b7
VG
1177}
1178
f95a04af
TH
1179static u64 tg_prfill_cpu_rwstat(struct seq_file *sf,
1180 struct blkg_policy_data *pd, int off)
41b38b6d 1181{
f95a04af 1182 struct throtl_grp *tg = pd_to_tg(pd);
41b38b6d
TH
1183 struct blkg_rwstat rwstat = { }, tmp;
1184 int i, cpu;
1185
1186 for_each_possible_cpu(cpu) {
8a3d2615 1187 struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
41b38b6d
TH
1188
1189 tmp = blkg_rwstat_read((void *)sc + off);
1190 for (i = 0; i < BLKG_RWSTAT_NR; i++)
1191 rwstat.cnt[i] += tmp.cnt[i];
1192 }
1193
f95a04af 1194 return __blkg_prfill_rwstat(sf, pd, &rwstat);
41b38b6d
TH
1195}
1196
2da8ca82 1197static int tg_print_cpu_rwstat(struct seq_file *sf, void *v)
41b38b6d 1198{
2da8ca82
TH
1199 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_cpu_rwstat,
1200 &blkcg_policy_throtl, seq_cft(sf)->private, true);
41b38b6d
TH
1201 return 0;
1202}
1203
f95a04af
TH
1204static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1205 int off)
60c2bc2d 1206{
f95a04af
TH
1207 struct throtl_grp *tg = pd_to_tg(pd);
1208 u64 v = *(u64 *)((void *)tg + off);
60c2bc2d 1209
af133ceb 1210 if (v == -1)
60c2bc2d 1211 return 0;
f95a04af 1212 return __blkg_prfill_u64(sf, pd, v);
60c2bc2d
TH
1213}
1214
f95a04af
TH
1215static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1216 int off)
e43473b7 1217{
f95a04af
TH
1218 struct throtl_grp *tg = pd_to_tg(pd);
1219 unsigned int v = *(unsigned int *)((void *)tg + off);
fe071437 1220
af133ceb
TH
1221 if (v == -1)
1222 return 0;
f95a04af 1223 return __blkg_prfill_u64(sf, pd, v);
e43473b7
VG
1224}
1225
2da8ca82 1226static int tg_print_conf_u64(struct seq_file *sf, void *v)
8e89d13f 1227{
2da8ca82
TH
1228 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1229 &blkcg_policy_throtl, seq_cft(sf)->private, false);
af133ceb 1230 return 0;
8e89d13f
VG
1231}
1232
2da8ca82 1233static int tg_print_conf_uint(struct seq_file *sf, void *v)
8e89d13f 1234{
2da8ca82
TH
1235 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1236 &blkcg_policy_throtl, seq_cft(sf)->private, false);
af133ceb 1237 return 0;
60c2bc2d
TH
1238}
1239
451af504
TH
1240static ssize_t tg_set_conf(struct kernfs_open_file *of,
1241 char *buf, size_t nbytes, loff_t off, bool is_u64)
60c2bc2d 1242{
451af504 1243 struct blkcg *blkcg = css_to_blkcg(of_css(of));
60c2bc2d 1244 struct blkg_conf_ctx ctx;
af133ceb 1245 struct throtl_grp *tg;
69df0ab0 1246 struct throtl_service_queue *sq;
693e751e 1247 struct blkcg_gq *blkg;
492eb21b 1248 struct cgroup_subsys_state *pos_css;
60c2bc2d
TH
1249 int ret;
1250
3c798398 1251 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
60c2bc2d
TH
1252 if (ret)
1253 return ret;
1254
af133ceb 1255 tg = blkg_to_tg(ctx.blkg);
69df0ab0 1256 sq = &tg->service_queue;
af133ceb 1257
a2b1693b
TH
1258 if (!ctx.v)
1259 ctx.v = -1;
af133ceb 1260
a2b1693b 1261 if (is_u64)
451af504 1262 *(u64 *)((void *)tg + of_cft(of)->private) = ctx.v;
a2b1693b 1263 else
451af504 1264 *(unsigned int *)((void *)tg + of_cft(of)->private) = ctx.v;
af133ceb 1265
fda6f272
TH
1266 throtl_log(&tg->service_queue,
1267 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1268 tg->bps[READ], tg->bps[WRITE],
1269 tg->iops[READ], tg->iops[WRITE]);
632b4493 1270
693e751e
TH
1271 /*
1272 * Update has_rules[] flags for the updated tg's subtree. A tg is
1273 * considered to have rules if either the tg itself or any of its
1274 * ancestors has rules. This identifies groups without any
1275 * restrictions in the whole hierarchy and allows them to bypass
1276 * blk-throttle.
1277 */
492eb21b 1278 blkg_for_each_descendant_pre(blkg, pos_css, ctx.blkg)
693e751e
TH
1279 tg_update_has_rules(blkg_to_tg(blkg));
1280
632b4493
TH
1281 /*
1282 * We're already holding queue_lock and know @tg is valid. Let's
1283 * apply the new config directly.
1284 *
1285 * Restart the slices for both READ and WRITES. It might happen
1286 * that a group's limit are dropped suddenly and we don't want to
1287 * account recently dispatched IO with new low rate.
1288 */
0f3457f6
TH
1289 throtl_start_new_slice(tg, 0);
1290 throtl_start_new_slice(tg, 1);
632b4493 1291
5b2c16aa 1292 if (tg->flags & THROTL_TG_PENDING) {
77216b04 1293 tg_update_disptime(tg);
7f52f98c 1294 throtl_schedule_next_dispatch(sq->parent_sq, true);
632b4493 1295 }
60c2bc2d
TH
1296
1297 blkg_conf_finish(&ctx);
451af504 1298 return nbytes;
8e89d13f
VG
1299}
1300
451af504
TH
1301static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1302 char *buf, size_t nbytes, loff_t off)
60c2bc2d 1303{
451af504 1304 return tg_set_conf(of, buf, nbytes, off, true);
60c2bc2d
TH
1305}
1306
451af504
TH
1307static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1308 char *buf, size_t nbytes, loff_t off)
60c2bc2d 1309{
451af504 1310 return tg_set_conf(of, buf, nbytes, off, false);
60c2bc2d
TH
1311}
1312
1313static struct cftype throtl_files[] = {
1314 {
1315 .name = "throttle.read_bps_device",
af133ceb 1316 .private = offsetof(struct throtl_grp, bps[READ]),
2da8ca82 1317 .seq_show = tg_print_conf_u64,
451af504 1318 .write = tg_set_conf_u64,
60c2bc2d
TH
1319 },
1320 {
1321 .name = "throttle.write_bps_device",
af133ceb 1322 .private = offsetof(struct throtl_grp, bps[WRITE]),
2da8ca82 1323 .seq_show = tg_print_conf_u64,
451af504 1324 .write = tg_set_conf_u64,
60c2bc2d
TH
1325 },
1326 {
1327 .name = "throttle.read_iops_device",
af133ceb 1328 .private = offsetof(struct throtl_grp, iops[READ]),
2da8ca82 1329 .seq_show = tg_print_conf_uint,
451af504 1330 .write = tg_set_conf_uint,
60c2bc2d
TH
1331 },
1332 {
1333 .name = "throttle.write_iops_device",
af133ceb 1334 .private = offsetof(struct throtl_grp, iops[WRITE]),
2da8ca82 1335 .seq_show = tg_print_conf_uint,
451af504 1336 .write = tg_set_conf_uint,
60c2bc2d
TH
1337 },
1338 {
1339 .name = "throttle.io_service_bytes",
5bc4afb1 1340 .private = offsetof(struct tg_stats_cpu, service_bytes),
2da8ca82 1341 .seq_show = tg_print_cpu_rwstat,
60c2bc2d
TH
1342 },
1343 {
1344 .name = "throttle.io_serviced",
5bc4afb1 1345 .private = offsetof(struct tg_stats_cpu, serviced),
2da8ca82 1346 .seq_show = tg_print_cpu_rwstat,
60c2bc2d
TH
1347 },
1348 { } /* terminate */
1349};
1350
da527770 1351static void throtl_shutdown_wq(struct request_queue *q)
e43473b7
VG
1352{
1353 struct throtl_data *td = q->td;
1354
69df0ab0 1355 cancel_work_sync(&td->dispatch_work);
e43473b7
VG
1356}
1357
3c798398 1358static struct blkcg_policy blkcg_policy_throtl = {
f9fcc2d3
TH
1359 .cftypes = throtl_files,
1360
001bea73 1361 .pd_alloc_fn = throtl_pd_alloc,
f9fcc2d3 1362 .pd_init_fn = throtl_pd_init,
693e751e 1363 .pd_online_fn = throtl_pd_online,
001bea73 1364 .pd_free_fn = throtl_pd_free,
f9fcc2d3 1365 .pd_reset_stats_fn = throtl_pd_reset_stats,
e43473b7
VG
1366};
1367
ae118896
TH
1368bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
1369 struct bio *bio)
e43473b7 1370{
c5cc2070 1371 struct throtl_qnode *qn = NULL;
ae118896 1372 struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
73f0d49a 1373 struct throtl_service_queue *sq;
0e9f4164 1374 bool rw = bio_data_dir(bio);
bc16a4f9 1375 bool throttled = false;
e43473b7 1376
ae118896
TH
1377 WARN_ON_ONCE(!rcu_read_lock_held());
1378
2a0f61e6 1379 /* see throtl_charge_bio() */
ae118896 1380 if ((bio->bi_rw & REQ_THROTTLED) || !tg->has_rules[rw])
bc16a4f9 1381 goto out;
e43473b7
VG
1382
1383 spin_lock_irq(q->queue_lock);
c9589f03
TH
1384
1385 if (unlikely(blk_queue_bypass(q)))
bc16a4f9 1386 goto out_unlock;
f469a7b4 1387
73f0d49a
TH
1388 sq = &tg->service_queue;
1389
9e660acf
TH
1390 while (true) {
1391 /* throtl is FIFO - if bios are already queued, should queue */
1392 if (sq->nr_queued[rw])
1393 break;
de701c74 1394
9e660acf
TH
1395 /* if above limits, break to queue */
1396 if (!tg_may_dispatch(tg, bio, NULL))
1397 break;
1398
1399 /* within limits, let's charge and dispatch directly */
e43473b7 1400 throtl_charge_bio(tg, bio);
04521db0
VG
1401
1402 /*
1403 * We need to trim slice even when bios are not being queued
1404 * otherwise it might happen that a bio is not queued for
1405 * a long time and slice keeps on extending and trim is not
1406 * called for a long time. Now if limits are reduced suddenly
1407 * we take into account all the IO dispatched so far at new
1408 * low rate and * newly queued IO gets a really long dispatch
1409 * time.
1410 *
1411 * So keep on trimming slice even if bio is not queued.
1412 */
0f3457f6 1413 throtl_trim_slice(tg, rw);
9e660acf
TH
1414
1415 /*
1416 * @bio passed through this layer without being throttled.
1417 * Climb up the ladder. If we''re already at the top, it
1418 * can be executed directly.
1419 */
c5cc2070 1420 qn = &tg->qnode_on_parent[rw];
9e660acf
TH
1421 sq = sq->parent_sq;
1422 tg = sq_to_tg(sq);
1423 if (!tg)
1424 goto out_unlock;
e43473b7
VG
1425 }
1426
9e660acf 1427 /* out-of-limit, queue to @tg */
fda6f272
TH
1428 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
1429 rw == READ ? 'R' : 'W',
4f024f37 1430 tg->bytes_disp[rw], bio->bi_iter.bi_size, tg->bps[rw],
fda6f272
TH
1431 tg->io_disp[rw], tg->iops[rw],
1432 sq->nr_queued[READ], sq->nr_queued[WRITE]);
e43473b7 1433
671058fb 1434 bio_associate_current(bio);
6bc9c2b4 1435 tg->td->nr_queued[rw]++;
c5cc2070 1436 throtl_add_bio_tg(bio, qn, tg);
bc16a4f9 1437 throttled = true;
e43473b7 1438
7f52f98c
TH
1439 /*
1440 * Update @tg's dispatch time and force schedule dispatch if @tg
1441 * was empty before @bio. The forced scheduling isn't likely to
1442 * cause undue delay as @bio is likely to be dispatched directly if
1443 * its @tg's disptime is not in the future.
1444 */
0e9f4164 1445 if (tg->flags & THROTL_TG_WAS_EMPTY) {
77216b04 1446 tg_update_disptime(tg);
7f52f98c 1447 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
e43473b7
VG
1448 }
1449
bc16a4f9 1450out_unlock:
e43473b7 1451 spin_unlock_irq(q->queue_lock);
bc16a4f9 1452out:
2a0f61e6
TH
1453 /*
1454 * As multiple blk-throtls may stack in the same issue path, we
1455 * don't want bios to leave with the flag set. Clear the flag if
1456 * being issued.
1457 */
1458 if (!throttled)
1459 bio->bi_rw &= ~REQ_THROTTLED;
bc16a4f9 1460 return throttled;
e43473b7
VG
1461}
1462
2a12f0dc
TH
1463/*
1464 * Dispatch all bios from all children tg's queued on @parent_sq. On
1465 * return, @parent_sq is guaranteed to not have any active children tg's
1466 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
1467 */
1468static void tg_drain_bios(struct throtl_service_queue *parent_sq)
1469{
1470 struct throtl_grp *tg;
1471
1472 while ((tg = throtl_rb_first(parent_sq))) {
1473 struct throtl_service_queue *sq = &tg->service_queue;
1474 struct bio *bio;
1475
1476 throtl_dequeue_tg(tg);
1477
c5cc2070 1478 while ((bio = throtl_peek_queued(&sq->queued[READ])))
2a12f0dc 1479 tg_dispatch_one_bio(tg, bio_data_dir(bio));
c5cc2070 1480 while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
2a12f0dc
TH
1481 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1482 }
1483}
1484
c9a929dd
TH
1485/**
1486 * blk_throtl_drain - drain throttled bios
1487 * @q: request_queue to drain throttled bios for
1488 *
1489 * Dispatch all currently throttled bios on @q through ->make_request_fn().
1490 */
1491void blk_throtl_drain(struct request_queue *q)
1492 __releases(q->queue_lock) __acquires(q->queue_lock)
1493{
1494 struct throtl_data *td = q->td;
2a12f0dc 1495 struct blkcg_gq *blkg;
492eb21b 1496 struct cgroup_subsys_state *pos_css;
c9a929dd 1497 struct bio *bio;
651930bc 1498 int rw;
c9a929dd 1499
8bcb6c7d 1500 queue_lockdep_assert_held(q);
2a12f0dc 1501 rcu_read_lock();
c9a929dd 1502
2a12f0dc
TH
1503 /*
1504 * Drain each tg while doing post-order walk on the blkg tree, so
1505 * that all bios are propagated to td->service_queue. It'd be
1506 * better to walk service_queue tree directly but blkg walk is
1507 * easier.
1508 */
492eb21b 1509 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
2a12f0dc 1510 tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
73f0d49a 1511
2a12f0dc
TH
1512 /* finally, transfer bios from top-level tg's into the td */
1513 tg_drain_bios(&td->service_queue);
1514
1515 rcu_read_unlock();
c9a929dd
TH
1516 spin_unlock_irq(q->queue_lock);
1517
2a12f0dc 1518 /* all bios now should be in td->service_queue, issue them */
651930bc 1519 for (rw = READ; rw <= WRITE; rw++)
c5cc2070
TH
1520 while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
1521 NULL)))
651930bc 1522 generic_make_request(bio);
c9a929dd
TH
1523
1524 spin_lock_irq(q->queue_lock);
1525}
1526
e43473b7
VG
1527int blk_throtl_init(struct request_queue *q)
1528{
1529 struct throtl_data *td;
a2b1693b 1530 int ret;
e43473b7
VG
1531
1532 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
1533 if (!td)
1534 return -ENOMEM;
1535
69df0ab0 1536 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
b2ce2643 1537 throtl_service_queue_init(&td->service_queue);
e43473b7 1538
cd1604fa 1539 q->td = td;
29b12589 1540 td->queue = q;
02977e4a 1541
a2b1693b 1542 /* activate policy */
3c798398 1543 ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
a2b1693b 1544 if (ret)
f51b802c 1545 kfree(td);
a2b1693b 1546 return ret;
e43473b7
VG
1547}
1548
1549void blk_throtl_exit(struct request_queue *q)
1550{
c875f4d0 1551 BUG_ON(!q->td);
da527770 1552 throtl_shutdown_wq(q);
3c798398 1553 blkcg_deactivate_policy(q, &blkcg_policy_throtl);
c9a929dd 1554 kfree(q->td);
e43473b7
VG
1555}
1556
1557static int __init throtl_init(void)
1558{
450adcbe
VG
1559 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
1560 if (!kthrotld_workqueue)
1561 panic("Failed to create kthrotld\n");
1562
3c798398 1563 return blkcg_policy_register(&blkcg_policy_throtl);
e43473b7
VG
1564}
1565
1566module_init(throtl_init);