blk-throttle: Account for child group's start time in parent while bio climbs up
[linux-2.6-block.git] / block / blk-throttle.c
CommitLineData
e43473b7
VG
1/*
2 * Interface for controlling IO bandwidth on a request queue
3 *
4 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
5 */
6
7#include <linux/module.h>
8#include <linux/slab.h>
9#include <linux/blkdev.h>
10#include <linux/bio.h>
11#include <linux/blktrace_api.h>
12#include "blk-cgroup.h"
bc9fcbf9 13#include "blk.h"
e43473b7
VG
14
15/* Max dispatch from a group in 1 round */
16static int throtl_grp_quantum = 8;
17
18/* Total max dispatch from all groups in one round */
19static int throtl_quantum = 32;
20
21/* Throttling is performed over 100ms slice and after that slice is renewed */
22static unsigned long throtl_slice = HZ/10; /* 100 ms */
23
3c798398 24static struct blkcg_policy blkcg_policy_throtl;
0381411e 25
450adcbe
VG
26/* A workqueue to queue throttle related work */
27static struct workqueue_struct *kthrotld_workqueue;
450adcbe 28
c5cc2070
TH
29/*
30 * To implement hierarchical throttling, throtl_grps form a tree and bios
31 * are dispatched upwards level by level until they reach the top and get
32 * issued. When dispatching bios from the children and local group at each
33 * level, if the bios are dispatched into a single bio_list, there's a risk
34 * of a local or child group which can queue many bios at once filling up
35 * the list starving others.
36 *
37 * To avoid such starvation, dispatched bios are queued separately
38 * according to where they came from. When they are again dispatched to
39 * the parent, they're popped in round-robin order so that no single source
40 * hogs the dispatch window.
41 *
42 * throtl_qnode is used to keep the queued bios separated by their sources.
43 * Bios are queued to throtl_qnode which in turn is queued to
44 * throtl_service_queue and then dispatched in round-robin order.
45 *
46 * It's also used to track the reference counts on blkg's. A qnode always
47 * belongs to a throtl_grp and gets queued on itself or the parent, so
48 * incrementing the reference of the associated throtl_grp when a qnode is
49 * queued and decrementing when dequeued is enough to keep the whole blkg
50 * tree pinned while bios are in flight.
51 */
52struct throtl_qnode {
53 struct list_head node; /* service_queue->queued[] */
54 struct bio_list bios; /* queued bios */
55 struct throtl_grp *tg; /* tg this qnode belongs to */
56};
57
c9e0332e 58struct throtl_service_queue {
77216b04
TH
59 struct throtl_service_queue *parent_sq; /* the parent service_queue */
60
73f0d49a
TH
61 /*
62 * Bios queued directly to this service_queue or dispatched from
63 * children throtl_grp's.
64 */
c5cc2070 65 struct list_head queued[2]; /* throtl_qnode [READ/WRITE] */
73f0d49a
TH
66 unsigned int nr_queued[2]; /* number of queued bios */
67
68 /*
69 * RB tree of active children throtl_grp's, which are sorted by
70 * their ->disptime.
71 */
c9e0332e
TH
72 struct rb_root pending_tree; /* RB tree of active tgs */
73 struct rb_node *first_pending; /* first node in the tree */
74 unsigned int nr_pending; /* # queued in the tree */
75 unsigned long first_pending_disptime; /* disptime of the first tg */
69df0ab0 76 struct timer_list pending_timer; /* fires on first_pending_disptime */
e43473b7
VG
77};
78
5b2c16aa
TH
79enum tg_state_flags {
80 THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */
0e9f4164 81 THROTL_TG_WAS_EMPTY = 1 << 1, /* bio_lists[] became non-empty */
5b2c16aa
TH
82};
83
e43473b7
VG
84#define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
85
8a3d2615
TH
86/* Per-cpu group stats */
87struct tg_stats_cpu {
88 /* total bytes transferred */
89 struct blkg_rwstat service_bytes;
90 /* total IOs serviced, post merge */
91 struct blkg_rwstat serviced;
92};
93
e43473b7 94struct throtl_grp {
f95a04af
TH
95 /* must be the first member */
96 struct blkg_policy_data pd;
97
c9e0332e 98 /* active throtl group service_queue member */
e43473b7
VG
99 struct rb_node rb_node;
100
0f3457f6
TH
101 /* throtl_data this group belongs to */
102 struct throtl_data *td;
103
49a2f1e3
TH
104 /* this group's service queue */
105 struct throtl_service_queue service_queue;
106
c5cc2070
TH
107 /*
108 * qnode_on_self is used when bios are directly queued to this
109 * throtl_grp so that local bios compete fairly with bios
110 * dispatched from children. qnode_on_parent is used when bios are
111 * dispatched from this throtl_grp into its parent and will compete
112 * with the sibling qnode_on_parents and the parent's
113 * qnode_on_self.
114 */
115 struct throtl_qnode qnode_on_self[2];
116 struct throtl_qnode qnode_on_parent[2];
117
e43473b7
VG
118 /*
119 * Dispatch time in jiffies. This is the estimated time when group
120 * will unthrottle and is ready to dispatch more bio. It is used as
121 * key to sort active groups in service tree.
122 */
123 unsigned long disptime;
124
e43473b7
VG
125 unsigned int flags;
126
e43473b7
VG
127 /* bytes per second rate limits */
128 uint64_t bps[2];
129
8e89d13f
VG
130 /* IOPS limits */
131 unsigned int iops[2];
132
e43473b7
VG
133 /* Number of bytes disptached in current slice */
134 uint64_t bytes_disp[2];
8e89d13f
VG
135 /* Number of bio's dispatched in current slice */
136 unsigned int io_disp[2];
e43473b7
VG
137
138 /* When did we start a new slice */
139 unsigned long slice_start[2];
140 unsigned long slice_end[2];
fe071437 141
8a3d2615
TH
142 /* Per cpu stats pointer */
143 struct tg_stats_cpu __percpu *stats_cpu;
144
145 /* List of tgs waiting for per cpu stats memory to be allocated */
146 struct list_head stats_alloc_node;
e43473b7
VG
147};
148
149struct throtl_data
150{
e43473b7 151 /* service tree for active throtl groups */
c9e0332e 152 struct throtl_service_queue service_queue;
e43473b7 153
e43473b7
VG
154 struct request_queue *queue;
155
156 /* Total Number of queued bios on READ and WRITE lists */
157 unsigned int nr_queued[2];
158
159 /*
02977e4a 160 * number of total undestroyed groups
e43473b7
VG
161 */
162 unsigned int nr_undestroyed_grps;
163
164 /* Work for dispatching throttled bios */
69df0ab0 165 struct work_struct dispatch_work;
e43473b7
VG
166};
167
8a3d2615
TH
168/* list and work item to allocate percpu group stats */
169static DEFINE_SPINLOCK(tg_stats_alloc_lock);
170static LIST_HEAD(tg_stats_alloc_list);
171
172static void tg_stats_alloc_fn(struct work_struct *);
173static DECLARE_DELAYED_WORK(tg_stats_alloc_work, tg_stats_alloc_fn);
174
69df0ab0
TH
175static void throtl_pending_timer_fn(unsigned long arg);
176
f95a04af
TH
177static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
178{
179 return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
180}
181
3c798398 182static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
0381411e 183{
f95a04af 184 return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
0381411e
TH
185}
186
3c798398 187static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
0381411e 188{
f95a04af 189 return pd_to_blkg(&tg->pd);
0381411e
TH
190}
191
03d8e111
TH
192static inline struct throtl_grp *td_root_tg(struct throtl_data *td)
193{
194 return blkg_to_tg(td->queue->root_blkg);
195}
196
fda6f272
TH
197/**
198 * sq_to_tg - return the throl_grp the specified service queue belongs to
199 * @sq: the throtl_service_queue of interest
200 *
201 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
202 * embedded in throtl_data, %NULL is returned.
203 */
204static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
205{
206 if (sq && sq->parent_sq)
207 return container_of(sq, struct throtl_grp, service_queue);
208 else
209 return NULL;
210}
211
212/**
213 * sq_to_td - return throtl_data the specified service queue belongs to
214 * @sq: the throtl_service_queue of interest
215 *
216 * A service_queue can be embeded in either a throtl_grp or throtl_data.
217 * Determine the associated throtl_data accordingly and return it.
218 */
219static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
220{
221 struct throtl_grp *tg = sq_to_tg(sq);
222
223 if (tg)
224 return tg->td;
225 else
226 return container_of(sq, struct throtl_data, service_queue);
227}
228
229/**
230 * throtl_log - log debug message via blktrace
231 * @sq: the service_queue being reported
232 * @fmt: printf format string
233 * @args: printf args
234 *
235 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
236 * throtl_grp; otherwise, just "throtl".
237 *
238 * TODO: this should be made a function and name formatting should happen
239 * after testing whether blktrace is enabled.
240 */
241#define throtl_log(sq, fmt, args...) do { \
242 struct throtl_grp *__tg = sq_to_tg((sq)); \
243 struct throtl_data *__td = sq_to_td((sq)); \
244 \
245 (void)__td; \
246 if ((__tg)) { \
247 char __pbuf[128]; \
54e7ed12 248 \
fda6f272
TH
249 blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf)); \
250 blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
251 } else { \
252 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
253 } \
54e7ed12 254} while (0)
e43473b7 255
8a3d2615
TH
256/*
257 * Worker for allocating per cpu stat for tgs. This is scheduled on the
3b07e9ca 258 * system_wq once there are some groups on the alloc_list waiting for
8a3d2615
TH
259 * allocation.
260 */
261static void tg_stats_alloc_fn(struct work_struct *work)
262{
263 static struct tg_stats_cpu *stats_cpu; /* this fn is non-reentrant */
264 struct delayed_work *dwork = to_delayed_work(work);
265 bool empty = false;
266
267alloc_stats:
268 if (!stats_cpu) {
269 stats_cpu = alloc_percpu(struct tg_stats_cpu);
270 if (!stats_cpu) {
271 /* allocation failed, try again after some time */
3b07e9ca 272 schedule_delayed_work(dwork, msecs_to_jiffies(10));
8a3d2615
TH
273 return;
274 }
275 }
276
277 spin_lock_irq(&tg_stats_alloc_lock);
278
279 if (!list_empty(&tg_stats_alloc_list)) {
280 struct throtl_grp *tg = list_first_entry(&tg_stats_alloc_list,
281 struct throtl_grp,
282 stats_alloc_node);
283 swap(tg->stats_cpu, stats_cpu);
284 list_del_init(&tg->stats_alloc_node);
285 }
286
287 empty = list_empty(&tg_stats_alloc_list);
288 spin_unlock_irq(&tg_stats_alloc_lock);
289 if (!empty)
290 goto alloc_stats;
291}
292
c5cc2070
TH
293static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
294{
295 INIT_LIST_HEAD(&qn->node);
296 bio_list_init(&qn->bios);
297 qn->tg = tg;
298}
299
300/**
301 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
302 * @bio: bio being added
303 * @qn: qnode to add bio to
304 * @queued: the service_queue->queued[] list @qn belongs to
305 *
306 * Add @bio to @qn and put @qn on @queued if it's not already on.
307 * @qn->tg's reference count is bumped when @qn is activated. See the
308 * comment on top of throtl_qnode definition for details.
309 */
310static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
311 struct list_head *queued)
312{
313 bio_list_add(&qn->bios, bio);
314 if (list_empty(&qn->node)) {
315 list_add_tail(&qn->node, queued);
316 blkg_get(tg_to_blkg(qn->tg));
317 }
318}
319
320/**
321 * throtl_peek_queued - peek the first bio on a qnode list
322 * @queued: the qnode list to peek
323 */
324static struct bio *throtl_peek_queued(struct list_head *queued)
325{
326 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
327 struct bio *bio;
328
329 if (list_empty(queued))
330 return NULL;
331
332 bio = bio_list_peek(&qn->bios);
333 WARN_ON_ONCE(!bio);
334 return bio;
335}
336
337/**
338 * throtl_pop_queued - pop the first bio form a qnode list
339 * @queued: the qnode list to pop a bio from
340 * @tg_to_put: optional out argument for throtl_grp to put
341 *
342 * Pop the first bio from the qnode list @queued. After popping, the first
343 * qnode is removed from @queued if empty or moved to the end of @queued so
344 * that the popping order is round-robin.
345 *
346 * When the first qnode is removed, its associated throtl_grp should be put
347 * too. If @tg_to_put is NULL, this function automatically puts it;
348 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
349 * responsible for putting it.
350 */
351static struct bio *throtl_pop_queued(struct list_head *queued,
352 struct throtl_grp **tg_to_put)
353{
354 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
355 struct bio *bio;
356
357 if (list_empty(queued))
358 return NULL;
359
360 bio = bio_list_pop(&qn->bios);
361 WARN_ON_ONCE(!bio);
362
363 if (bio_list_empty(&qn->bios)) {
364 list_del_init(&qn->node);
365 if (tg_to_put)
366 *tg_to_put = qn->tg;
367 else
368 blkg_put(tg_to_blkg(qn->tg));
369 } else {
370 list_move_tail(&qn->node, queued);
371 }
372
373 return bio;
374}
375
49a2f1e3 376/* init a service_queue, assumes the caller zeroed it */
77216b04
TH
377static void throtl_service_queue_init(struct throtl_service_queue *sq,
378 struct throtl_service_queue *parent_sq)
49a2f1e3 379{
c5cc2070
TH
380 INIT_LIST_HEAD(&sq->queued[0]);
381 INIT_LIST_HEAD(&sq->queued[1]);
49a2f1e3 382 sq->pending_tree = RB_ROOT;
77216b04 383 sq->parent_sq = parent_sq;
69df0ab0
TH
384 setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
385 (unsigned long)sq);
386}
387
388static void throtl_service_queue_exit(struct throtl_service_queue *sq)
389{
390 del_timer_sync(&sq->pending_timer);
49a2f1e3
TH
391}
392
3c798398 393static void throtl_pd_init(struct blkcg_gq *blkg)
a29a171e 394{
0381411e 395 struct throtl_grp *tg = blkg_to_tg(blkg);
77216b04 396 struct throtl_data *td = blkg->q->td;
ff26eaad 397 unsigned long flags;
c5cc2070 398 int rw;
cd1604fa 399
77216b04 400 throtl_service_queue_init(&tg->service_queue, &td->service_queue);
c5cc2070
TH
401 for (rw = READ; rw <= WRITE; rw++) {
402 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
403 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
404 }
405
a29a171e 406 RB_CLEAR_NODE(&tg->rb_node);
77216b04 407 tg->td = td;
a29a171e 408
e56da7e2
TH
409 tg->bps[READ] = -1;
410 tg->bps[WRITE] = -1;
411 tg->iops[READ] = -1;
412 tg->iops[WRITE] = -1;
8a3d2615
TH
413
414 /*
415 * Ugh... We need to perform per-cpu allocation for tg->stats_cpu
416 * but percpu allocator can't be called from IO path. Queue tg on
417 * tg_stats_alloc_list and allocate from work item.
418 */
ff26eaad 419 spin_lock_irqsave(&tg_stats_alloc_lock, flags);
8a3d2615 420 list_add(&tg->stats_alloc_node, &tg_stats_alloc_list);
3b07e9ca 421 schedule_delayed_work(&tg_stats_alloc_work, 0);
ff26eaad 422 spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
8a3d2615
TH
423}
424
3c798398 425static void throtl_pd_exit(struct blkcg_gq *blkg)
8a3d2615
TH
426{
427 struct throtl_grp *tg = blkg_to_tg(blkg);
ff26eaad 428 unsigned long flags;
8a3d2615 429
ff26eaad 430 spin_lock_irqsave(&tg_stats_alloc_lock, flags);
8a3d2615 431 list_del_init(&tg->stats_alloc_node);
ff26eaad 432 spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
8a3d2615
TH
433
434 free_percpu(tg->stats_cpu);
69df0ab0
TH
435
436 throtl_service_queue_exit(&tg->service_queue);
8a3d2615
TH
437}
438
3c798398 439static void throtl_pd_reset_stats(struct blkcg_gq *blkg)
8a3d2615
TH
440{
441 struct throtl_grp *tg = blkg_to_tg(blkg);
442 int cpu;
443
444 if (tg->stats_cpu == NULL)
445 return;
446
447 for_each_possible_cpu(cpu) {
448 struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
449
450 blkg_rwstat_reset(&sc->service_bytes);
451 blkg_rwstat_reset(&sc->serviced);
452 }
a29a171e
VG
453}
454
3c798398
TH
455static struct throtl_grp *throtl_lookup_tg(struct throtl_data *td,
456 struct blkcg *blkcg)
e43473b7 457{
be2c6b19 458 /*
3c798398
TH
459 * This is the common case when there are no blkcgs. Avoid lookup
460 * in this case
cd1604fa 461 */
3c798398 462 if (blkcg == &blkcg_root)
03d8e111 463 return td_root_tg(td);
e43473b7 464
e8989fae 465 return blkg_to_tg(blkg_lookup(blkcg, td->queue));
e43473b7
VG
466}
467
cd1604fa 468static struct throtl_grp *throtl_lookup_create_tg(struct throtl_data *td,
3c798398 469 struct blkcg *blkcg)
e43473b7 470{
f469a7b4 471 struct request_queue *q = td->queue;
cd1604fa 472 struct throtl_grp *tg = NULL;
bc16a4f9 473
f469a7b4 474 /*
3c798398
TH
475 * This is the common case when there are no blkcgs. Avoid lookup
476 * in this case
f469a7b4 477 */
3c798398 478 if (blkcg == &blkcg_root) {
03d8e111 479 tg = td_root_tg(td);
cd1604fa 480 } else {
3c798398 481 struct blkcg_gq *blkg;
f469a7b4 482
3c96cb32 483 blkg = blkg_lookup_create(blkcg, q);
f469a7b4 484
cd1604fa
TH
485 /* if %NULL and @q is alive, fall back to root_tg */
486 if (!IS_ERR(blkg))
0381411e 487 tg = blkg_to_tg(blkg);
3f3299d5 488 else if (!blk_queue_dying(q))
03d8e111 489 tg = td_root_tg(td);
f469a7b4
VG
490 }
491
e43473b7
VG
492 return tg;
493}
494
0049af73
TH
495static struct throtl_grp *
496throtl_rb_first(struct throtl_service_queue *parent_sq)
e43473b7
VG
497{
498 /* Service tree is empty */
0049af73 499 if (!parent_sq->nr_pending)
e43473b7
VG
500 return NULL;
501
0049af73
TH
502 if (!parent_sq->first_pending)
503 parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
e43473b7 504
0049af73
TH
505 if (parent_sq->first_pending)
506 return rb_entry_tg(parent_sq->first_pending);
e43473b7
VG
507
508 return NULL;
509}
510
511static void rb_erase_init(struct rb_node *n, struct rb_root *root)
512{
513 rb_erase(n, root);
514 RB_CLEAR_NODE(n);
515}
516
0049af73
TH
517static void throtl_rb_erase(struct rb_node *n,
518 struct throtl_service_queue *parent_sq)
e43473b7 519{
0049af73
TH
520 if (parent_sq->first_pending == n)
521 parent_sq->first_pending = NULL;
522 rb_erase_init(n, &parent_sq->pending_tree);
523 --parent_sq->nr_pending;
e43473b7
VG
524}
525
0049af73 526static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
e43473b7
VG
527{
528 struct throtl_grp *tg;
529
0049af73 530 tg = throtl_rb_first(parent_sq);
e43473b7
VG
531 if (!tg)
532 return;
533
0049af73 534 parent_sq->first_pending_disptime = tg->disptime;
e43473b7
VG
535}
536
77216b04 537static void tg_service_queue_add(struct throtl_grp *tg)
e43473b7 538{
77216b04 539 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
0049af73 540 struct rb_node **node = &parent_sq->pending_tree.rb_node;
e43473b7
VG
541 struct rb_node *parent = NULL;
542 struct throtl_grp *__tg;
543 unsigned long key = tg->disptime;
544 int left = 1;
545
546 while (*node != NULL) {
547 parent = *node;
548 __tg = rb_entry_tg(parent);
549
550 if (time_before(key, __tg->disptime))
551 node = &parent->rb_left;
552 else {
553 node = &parent->rb_right;
554 left = 0;
555 }
556 }
557
558 if (left)
0049af73 559 parent_sq->first_pending = &tg->rb_node;
e43473b7
VG
560
561 rb_link_node(&tg->rb_node, parent, node);
0049af73 562 rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
e43473b7
VG
563}
564
77216b04 565static void __throtl_enqueue_tg(struct throtl_grp *tg)
e43473b7 566{
77216b04 567 tg_service_queue_add(tg);
5b2c16aa 568 tg->flags |= THROTL_TG_PENDING;
77216b04 569 tg->service_queue.parent_sq->nr_pending++;
e43473b7
VG
570}
571
77216b04 572static void throtl_enqueue_tg(struct throtl_grp *tg)
e43473b7 573{
5b2c16aa 574 if (!(tg->flags & THROTL_TG_PENDING))
77216b04 575 __throtl_enqueue_tg(tg);
e43473b7
VG
576}
577
77216b04 578static void __throtl_dequeue_tg(struct throtl_grp *tg)
e43473b7 579{
77216b04 580 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
5b2c16aa 581 tg->flags &= ~THROTL_TG_PENDING;
e43473b7
VG
582}
583
77216b04 584static void throtl_dequeue_tg(struct throtl_grp *tg)
e43473b7 585{
5b2c16aa 586 if (tg->flags & THROTL_TG_PENDING)
77216b04 587 __throtl_dequeue_tg(tg);
e43473b7
VG
588}
589
a9131a27 590/* Call with queue lock held */
69df0ab0
TH
591static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
592 unsigned long expires)
a9131a27 593{
69df0ab0
TH
594 mod_timer(&sq->pending_timer, expires);
595 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
596 expires - jiffies, jiffies);
a9131a27
TH
597}
598
7f52f98c
TH
599/**
600 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
601 * @sq: the service_queue to schedule dispatch for
602 * @force: force scheduling
603 *
604 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
605 * dispatch time of the first pending child. Returns %true if either timer
606 * is armed or there's no pending child left. %false if the current
607 * dispatch window is still open and the caller should continue
608 * dispatching.
609 *
610 * If @force is %true, the dispatch timer is always scheduled and this
611 * function is guaranteed to return %true. This is to be used when the
612 * caller can't dispatch itself and needs to invoke pending_timer
613 * unconditionally. Note that forced scheduling is likely to induce short
614 * delay before dispatch starts even if @sq->first_pending_disptime is not
615 * in the future and thus shouldn't be used in hot paths.
616 */
617static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
618 bool force)
e43473b7 619{
6a525600 620 /* any pending children left? */
c9e0332e 621 if (!sq->nr_pending)
7f52f98c 622 return true;
e43473b7 623
c9e0332e 624 update_min_dispatch_time(sq);
e43473b7 625
69df0ab0 626 /* is the next dispatch time in the future? */
7f52f98c 627 if (force || time_after(sq->first_pending_disptime, jiffies)) {
69df0ab0 628 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
7f52f98c 629 return true;
69df0ab0
TH
630 }
631
7f52f98c
TH
632 /* tell the caller to continue dispatching */
633 return false;
e43473b7
VG
634}
635
32ee5bc4
VG
636static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
637 bool rw, unsigned long start)
638{
639 tg->bytes_disp[rw] = 0;
640 tg->io_disp[rw] = 0;
641
642 /*
643 * Previous slice has expired. We must have trimmed it after last
644 * bio dispatch. That means since start of last slice, we never used
645 * that bandwidth. Do try to make use of that bandwidth while giving
646 * credit.
647 */
648 if (time_after_eq(start, tg->slice_start[rw]))
649 tg->slice_start[rw] = start;
650
651 tg->slice_end[rw] = jiffies + throtl_slice;
652 throtl_log(&tg->service_queue,
653 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
654 rw == READ ? 'R' : 'W', tg->slice_start[rw],
655 tg->slice_end[rw], jiffies);
656}
657
0f3457f6 658static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
e43473b7
VG
659{
660 tg->bytes_disp[rw] = 0;
8e89d13f 661 tg->io_disp[rw] = 0;
e43473b7
VG
662 tg->slice_start[rw] = jiffies;
663 tg->slice_end[rw] = jiffies + throtl_slice;
fda6f272
TH
664 throtl_log(&tg->service_queue,
665 "[%c] new slice start=%lu end=%lu jiffies=%lu",
666 rw == READ ? 'R' : 'W', tg->slice_start[rw],
667 tg->slice_end[rw], jiffies);
e43473b7
VG
668}
669
0f3457f6
TH
670static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
671 unsigned long jiffy_end)
d1ae8ffd
VG
672{
673 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
674}
675
0f3457f6
TH
676static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
677 unsigned long jiffy_end)
e43473b7
VG
678{
679 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
fda6f272
TH
680 throtl_log(&tg->service_queue,
681 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
682 rw == READ ? 'R' : 'W', tg->slice_start[rw],
683 tg->slice_end[rw], jiffies);
e43473b7
VG
684}
685
686/* Determine if previously allocated or extended slice is complete or not */
0f3457f6 687static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
e43473b7
VG
688{
689 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
690 return 0;
691
692 return 1;
693}
694
695/* Trim the used slices and adjust slice start accordingly */
0f3457f6 696static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
e43473b7 697{
3aad5d3e
VG
698 unsigned long nr_slices, time_elapsed, io_trim;
699 u64 bytes_trim, tmp;
e43473b7
VG
700
701 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
702
703 /*
704 * If bps are unlimited (-1), then time slice don't get
705 * renewed. Don't try to trim the slice if slice is used. A new
706 * slice will start when appropriate.
707 */
0f3457f6 708 if (throtl_slice_used(tg, rw))
e43473b7
VG
709 return;
710
d1ae8ffd
VG
711 /*
712 * A bio has been dispatched. Also adjust slice_end. It might happen
713 * that initially cgroup limit was very low resulting in high
714 * slice_end, but later limit was bumped up and bio was dispached
715 * sooner, then we need to reduce slice_end. A high bogus slice_end
716 * is bad because it does not allow new slice to start.
717 */
718
0f3457f6 719 throtl_set_slice_end(tg, rw, jiffies + throtl_slice);
d1ae8ffd 720
e43473b7
VG
721 time_elapsed = jiffies - tg->slice_start[rw];
722
723 nr_slices = time_elapsed / throtl_slice;
724
725 if (!nr_slices)
726 return;
3aad5d3e
VG
727 tmp = tg->bps[rw] * throtl_slice * nr_slices;
728 do_div(tmp, HZ);
729 bytes_trim = tmp;
e43473b7 730
8e89d13f 731 io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
e43473b7 732
8e89d13f 733 if (!bytes_trim && !io_trim)
e43473b7
VG
734 return;
735
736 if (tg->bytes_disp[rw] >= bytes_trim)
737 tg->bytes_disp[rw] -= bytes_trim;
738 else
739 tg->bytes_disp[rw] = 0;
740
8e89d13f
VG
741 if (tg->io_disp[rw] >= io_trim)
742 tg->io_disp[rw] -= io_trim;
743 else
744 tg->io_disp[rw] = 0;
745
e43473b7
VG
746 tg->slice_start[rw] += nr_slices * throtl_slice;
747
fda6f272
TH
748 throtl_log(&tg->service_queue,
749 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
750 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
751 tg->slice_start[rw], tg->slice_end[rw], jiffies);
e43473b7
VG
752}
753
0f3457f6
TH
754static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
755 unsigned long *wait)
e43473b7
VG
756{
757 bool rw = bio_data_dir(bio);
8e89d13f 758 unsigned int io_allowed;
e43473b7 759 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
c49c06e4 760 u64 tmp;
e43473b7 761
8e89d13f 762 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
e43473b7 763
8e89d13f
VG
764 /* Slice has just started. Consider one slice interval */
765 if (!jiffy_elapsed)
766 jiffy_elapsed_rnd = throtl_slice;
767
768 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
769
c49c06e4
VG
770 /*
771 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
772 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
773 * will allow dispatch after 1 second and after that slice should
774 * have been trimmed.
775 */
776
777 tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
778 do_div(tmp, HZ);
779
780 if (tmp > UINT_MAX)
781 io_allowed = UINT_MAX;
782 else
783 io_allowed = tmp;
8e89d13f
VG
784
785 if (tg->io_disp[rw] + 1 <= io_allowed) {
e43473b7
VG
786 if (wait)
787 *wait = 0;
788 return 1;
789 }
790
8e89d13f
VG
791 /* Calc approx time to dispatch */
792 jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;
793
794 if (jiffy_wait > jiffy_elapsed)
795 jiffy_wait = jiffy_wait - jiffy_elapsed;
796 else
797 jiffy_wait = 1;
798
799 if (wait)
800 *wait = jiffy_wait;
801 return 0;
802}
803
0f3457f6
TH
804static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
805 unsigned long *wait)
8e89d13f
VG
806{
807 bool rw = bio_data_dir(bio);
3aad5d3e 808 u64 bytes_allowed, extra_bytes, tmp;
8e89d13f 809 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
e43473b7
VG
810
811 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
812
813 /* Slice has just started. Consider one slice interval */
814 if (!jiffy_elapsed)
815 jiffy_elapsed_rnd = throtl_slice;
816
817 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
818
5e901a2b
VG
819 tmp = tg->bps[rw] * jiffy_elapsed_rnd;
820 do_div(tmp, HZ);
3aad5d3e 821 bytes_allowed = tmp;
e43473b7
VG
822
823 if (tg->bytes_disp[rw] + bio->bi_size <= bytes_allowed) {
824 if (wait)
825 *wait = 0;
826 return 1;
827 }
828
829 /* Calc approx time to dispatch */
830 extra_bytes = tg->bytes_disp[rw] + bio->bi_size - bytes_allowed;
831 jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);
832
833 if (!jiffy_wait)
834 jiffy_wait = 1;
835
836 /*
837 * This wait time is without taking into consideration the rounding
838 * up we did. Add that time also.
839 */
840 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
e43473b7
VG
841 if (wait)
842 *wait = jiffy_wait;
8e89d13f
VG
843 return 0;
844}
845
af75cd3c
VG
846static bool tg_no_rule_group(struct throtl_grp *tg, bool rw) {
847 if (tg->bps[rw] == -1 && tg->iops[rw] == -1)
848 return 1;
849 return 0;
850}
851
8e89d13f
VG
852/*
853 * Returns whether one can dispatch a bio or not. Also returns approx number
854 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
855 */
0f3457f6
TH
856static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
857 unsigned long *wait)
8e89d13f
VG
858{
859 bool rw = bio_data_dir(bio);
860 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
861
862 /*
863 * Currently whole state machine of group depends on first bio
864 * queued in the group bio list. So one should not be calling
865 * this function with a different bio if there are other bios
866 * queued.
867 */
73f0d49a 868 BUG_ON(tg->service_queue.nr_queued[rw] &&
c5cc2070 869 bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
e43473b7 870
8e89d13f
VG
871 /* If tg->bps = -1, then BW is unlimited */
872 if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
873 if (wait)
874 *wait = 0;
875 return 1;
876 }
877
878 /*
879 * If previous slice expired, start a new one otherwise renew/extend
880 * existing slice to make sure it is at least throtl_slice interval
881 * long since now.
882 */
0f3457f6
TH
883 if (throtl_slice_used(tg, rw))
884 throtl_start_new_slice(tg, rw);
8e89d13f
VG
885 else {
886 if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
0f3457f6 887 throtl_extend_slice(tg, rw, jiffies + throtl_slice);
8e89d13f
VG
888 }
889
0f3457f6
TH
890 if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
891 tg_with_in_iops_limit(tg, bio, &iops_wait)) {
8e89d13f
VG
892 if (wait)
893 *wait = 0;
894 return 1;
895 }
896
897 max_wait = max(bps_wait, iops_wait);
898
899 if (wait)
900 *wait = max_wait;
901
902 if (time_before(tg->slice_end[rw], jiffies + max_wait))
0f3457f6 903 throtl_extend_slice(tg, rw, jiffies + max_wait);
e43473b7
VG
904
905 return 0;
906}
907
3c798398 908static void throtl_update_dispatch_stats(struct blkcg_gq *blkg, u64 bytes,
629ed0b1
TH
909 int rw)
910{
8a3d2615
TH
911 struct throtl_grp *tg = blkg_to_tg(blkg);
912 struct tg_stats_cpu *stats_cpu;
629ed0b1
TH
913 unsigned long flags;
914
915 /* If per cpu stats are not allocated yet, don't do any accounting. */
8a3d2615 916 if (tg->stats_cpu == NULL)
629ed0b1
TH
917 return;
918
919 /*
920 * Disabling interrupts to provide mutual exclusion between two
921 * writes on same cpu. It probably is not needed for 64bit. Not
922 * optimizing that case yet.
923 */
924 local_irq_save(flags);
925
8a3d2615 926 stats_cpu = this_cpu_ptr(tg->stats_cpu);
629ed0b1 927
629ed0b1
TH
928 blkg_rwstat_add(&stats_cpu->serviced, rw, 1);
929 blkg_rwstat_add(&stats_cpu->service_bytes, rw, bytes);
930
931 local_irq_restore(flags);
932}
933
e43473b7
VG
934static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
935{
936 bool rw = bio_data_dir(bio);
e43473b7
VG
937
938 /* Charge the bio to the group */
939 tg->bytes_disp[rw] += bio->bi_size;
8e89d13f 940 tg->io_disp[rw]++;
e43473b7 941
2a0f61e6
TH
942 /*
943 * REQ_THROTTLED is used to prevent the same bio to be throttled
944 * more than once as a throttled bio will go through blk-throtl the
945 * second time when it eventually gets issued. Set it when a bio
946 * is being charged to a tg.
947 *
948 * Dispatch stats aren't recursive and each @bio should only be
949 * accounted by the @tg it was originally associated with. Let's
950 * update the stats when setting REQ_THROTTLED for the first time
951 * which is guaranteed to be for the @bio's original tg.
952 */
953 if (!(bio->bi_rw & REQ_THROTTLED)) {
954 bio->bi_rw |= REQ_THROTTLED;
955 throtl_update_dispatch_stats(tg_to_blkg(tg), bio->bi_size,
956 bio->bi_rw);
957 }
e43473b7
VG
958}
959
c5cc2070
TH
960/**
961 * throtl_add_bio_tg - add a bio to the specified throtl_grp
962 * @bio: bio to add
963 * @qn: qnode to use
964 * @tg: the target throtl_grp
965 *
966 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
967 * tg->qnode_on_self[] is used.
968 */
969static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
970 struct throtl_grp *tg)
e43473b7 971{
73f0d49a 972 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
973 bool rw = bio_data_dir(bio);
974
c5cc2070
TH
975 if (!qn)
976 qn = &tg->qnode_on_self[rw];
977
0e9f4164
TH
978 /*
979 * If @tg doesn't currently have any bios queued in the same
980 * direction, queueing @bio can change when @tg should be
981 * dispatched. Mark that @tg was empty. This is automatically
982 * cleaered on the next tg_update_disptime().
983 */
984 if (!sq->nr_queued[rw])
985 tg->flags |= THROTL_TG_WAS_EMPTY;
986
c5cc2070
TH
987 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
988
73f0d49a 989 sq->nr_queued[rw]++;
77216b04 990 throtl_enqueue_tg(tg);
e43473b7
VG
991}
992
77216b04 993static void tg_update_disptime(struct throtl_grp *tg)
e43473b7 994{
73f0d49a 995 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
996 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
997 struct bio *bio;
998
c5cc2070 999 if ((bio = throtl_peek_queued(&sq->queued[READ])))
0f3457f6 1000 tg_may_dispatch(tg, bio, &read_wait);
e43473b7 1001
c5cc2070 1002 if ((bio = throtl_peek_queued(&sq->queued[WRITE])))
0f3457f6 1003 tg_may_dispatch(tg, bio, &write_wait);
e43473b7
VG
1004
1005 min_wait = min(read_wait, write_wait);
1006 disptime = jiffies + min_wait;
1007
e43473b7 1008 /* Update dispatch time */
77216b04 1009 throtl_dequeue_tg(tg);
e43473b7 1010 tg->disptime = disptime;
77216b04 1011 throtl_enqueue_tg(tg);
0e9f4164
TH
1012
1013 /* see throtl_add_bio_tg() */
1014 tg->flags &= ~THROTL_TG_WAS_EMPTY;
e43473b7
VG
1015}
1016
32ee5bc4
VG
1017static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1018 struct throtl_grp *parent_tg, bool rw)
1019{
1020 if (throtl_slice_used(parent_tg, rw)) {
1021 throtl_start_new_slice_with_credit(parent_tg, rw,
1022 child_tg->slice_start[rw]);
1023 }
1024
1025}
1026
77216b04 1027static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
e43473b7 1028{
73f0d49a 1029 struct throtl_service_queue *sq = &tg->service_queue;
6bc9c2b4
TH
1030 struct throtl_service_queue *parent_sq = sq->parent_sq;
1031 struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
c5cc2070 1032 struct throtl_grp *tg_to_put = NULL;
e43473b7
VG
1033 struct bio *bio;
1034
c5cc2070
TH
1035 /*
1036 * @bio is being transferred from @tg to @parent_sq. Popping a bio
1037 * from @tg may put its reference and @parent_sq might end up
1038 * getting released prematurely. Remember the tg to put and put it
1039 * after @bio is transferred to @parent_sq.
1040 */
1041 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
73f0d49a 1042 sq->nr_queued[rw]--;
e43473b7
VG
1043
1044 throtl_charge_bio(tg, bio);
6bc9c2b4
TH
1045
1046 /*
1047 * If our parent is another tg, we just need to transfer @bio to
1048 * the parent using throtl_add_bio_tg(). If our parent is
1049 * @td->service_queue, @bio is ready to be issued. Put it on its
1050 * bio_lists[] and decrease total number queued. The caller is
1051 * responsible for issuing these bios.
1052 */
1053 if (parent_tg) {
c5cc2070 1054 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
32ee5bc4 1055 start_parent_slice_with_credit(tg, parent_tg, rw);
6bc9c2b4 1056 } else {
c5cc2070
TH
1057 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1058 &parent_sq->queued[rw]);
6bc9c2b4
TH
1059 BUG_ON(tg->td->nr_queued[rw] <= 0);
1060 tg->td->nr_queued[rw]--;
1061 }
e43473b7 1062
0f3457f6 1063 throtl_trim_slice(tg, rw);
6bc9c2b4 1064
c5cc2070
TH
1065 if (tg_to_put)
1066 blkg_put(tg_to_blkg(tg_to_put));
e43473b7
VG
1067}
1068
77216b04 1069static int throtl_dispatch_tg(struct throtl_grp *tg)
e43473b7 1070{
73f0d49a 1071 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
1072 unsigned int nr_reads = 0, nr_writes = 0;
1073 unsigned int max_nr_reads = throtl_grp_quantum*3/4;
c2f6805d 1074 unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
e43473b7
VG
1075 struct bio *bio;
1076
1077 /* Try to dispatch 75% READS and 25% WRITES */
1078
c5cc2070 1079 while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
0f3457f6 1080 tg_may_dispatch(tg, bio, NULL)) {
e43473b7 1081
77216b04 1082 tg_dispatch_one_bio(tg, bio_data_dir(bio));
e43473b7
VG
1083 nr_reads++;
1084
1085 if (nr_reads >= max_nr_reads)
1086 break;
1087 }
1088
c5cc2070 1089 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
0f3457f6 1090 tg_may_dispatch(tg, bio, NULL)) {
e43473b7 1091
77216b04 1092 tg_dispatch_one_bio(tg, bio_data_dir(bio));
e43473b7
VG
1093 nr_writes++;
1094
1095 if (nr_writes >= max_nr_writes)
1096 break;
1097 }
1098
1099 return nr_reads + nr_writes;
1100}
1101
651930bc 1102static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
e43473b7
VG
1103{
1104 unsigned int nr_disp = 0;
e43473b7
VG
1105
1106 while (1) {
73f0d49a
TH
1107 struct throtl_grp *tg = throtl_rb_first(parent_sq);
1108 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
1109
1110 if (!tg)
1111 break;
1112
1113 if (time_before(jiffies, tg->disptime))
1114 break;
1115
77216b04 1116 throtl_dequeue_tg(tg);
e43473b7 1117
77216b04 1118 nr_disp += throtl_dispatch_tg(tg);
e43473b7 1119
73f0d49a 1120 if (sq->nr_queued[0] || sq->nr_queued[1])
77216b04 1121 tg_update_disptime(tg);
e43473b7
VG
1122
1123 if (nr_disp >= throtl_quantum)
1124 break;
1125 }
1126
1127 return nr_disp;
1128}
1129
6e1a5704
TH
1130/**
1131 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1132 * @arg: the throtl_service_queue being serviced
1133 *
1134 * This timer is armed when a child throtl_grp with active bio's become
1135 * pending and queued on the service_queue's pending_tree and expires when
1136 * the first child throtl_grp should be dispatched. This function
2e48a530
TH
1137 * dispatches bio's from the children throtl_grps to the parent
1138 * service_queue.
1139 *
1140 * If the parent's parent is another throtl_grp, dispatching is propagated
1141 * by either arming its pending_timer or repeating dispatch directly. If
1142 * the top-level service_tree is reached, throtl_data->dispatch_work is
1143 * kicked so that the ready bio's are issued.
6e1a5704 1144 */
69df0ab0
TH
1145static void throtl_pending_timer_fn(unsigned long arg)
1146{
1147 struct throtl_service_queue *sq = (void *)arg;
2e48a530 1148 struct throtl_grp *tg = sq_to_tg(sq);
69df0ab0 1149 struct throtl_data *td = sq_to_td(sq);
cb76199c 1150 struct request_queue *q = td->queue;
2e48a530
TH
1151 struct throtl_service_queue *parent_sq;
1152 bool dispatched;
6e1a5704 1153 int ret;
e43473b7
VG
1154
1155 spin_lock_irq(q->queue_lock);
2e48a530
TH
1156again:
1157 parent_sq = sq->parent_sq;
1158 dispatched = false;
e43473b7 1159
7f52f98c
TH
1160 while (true) {
1161 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
2e48a530
TH
1162 sq->nr_queued[READ] + sq->nr_queued[WRITE],
1163 sq->nr_queued[READ], sq->nr_queued[WRITE]);
7f52f98c
TH
1164
1165 ret = throtl_select_dispatch(sq);
1166 if (ret) {
7f52f98c
TH
1167 throtl_log(sq, "bios disp=%u", ret);
1168 dispatched = true;
1169 }
e43473b7 1170
7f52f98c
TH
1171 if (throtl_schedule_next_dispatch(sq, false))
1172 break;
e43473b7 1173
7f52f98c
TH
1174 /* this dispatch windows is still open, relax and repeat */
1175 spin_unlock_irq(q->queue_lock);
1176 cpu_relax();
1177 spin_lock_irq(q->queue_lock);
651930bc 1178 }
e43473b7 1179
2e48a530
TH
1180 if (!dispatched)
1181 goto out_unlock;
6e1a5704 1182
2e48a530
TH
1183 if (parent_sq) {
1184 /* @parent_sq is another throl_grp, propagate dispatch */
1185 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1186 tg_update_disptime(tg);
1187 if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1188 /* window is already open, repeat dispatching */
1189 sq = parent_sq;
1190 tg = sq_to_tg(sq);
1191 goto again;
1192 }
1193 }
1194 } else {
1195 /* reached the top-level, queue issueing */
1196 queue_work(kthrotld_workqueue, &td->dispatch_work);
1197 }
1198out_unlock:
e43473b7 1199 spin_unlock_irq(q->queue_lock);
6e1a5704 1200}
e43473b7 1201
6e1a5704
TH
1202/**
1203 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1204 * @work: work item being executed
1205 *
1206 * This function is queued for execution when bio's reach the bio_lists[]
1207 * of throtl_data->service_queue. Those bio's are ready and issued by this
1208 * function.
1209 */
1210void blk_throtl_dispatch_work_fn(struct work_struct *work)
1211{
1212 struct throtl_data *td = container_of(work, struct throtl_data,
1213 dispatch_work);
1214 struct throtl_service_queue *td_sq = &td->service_queue;
1215 struct request_queue *q = td->queue;
1216 struct bio_list bio_list_on_stack;
1217 struct bio *bio;
1218 struct blk_plug plug;
1219 int rw;
1220
1221 bio_list_init(&bio_list_on_stack);
1222
1223 spin_lock_irq(q->queue_lock);
c5cc2070
TH
1224 for (rw = READ; rw <= WRITE; rw++)
1225 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1226 bio_list_add(&bio_list_on_stack, bio);
6e1a5704
TH
1227 spin_unlock_irq(q->queue_lock);
1228
1229 if (!bio_list_empty(&bio_list_on_stack)) {
69d60eb9 1230 blk_start_plug(&plug);
e43473b7
VG
1231 while((bio = bio_list_pop(&bio_list_on_stack)))
1232 generic_make_request(bio);
69d60eb9 1233 blk_finish_plug(&plug);
e43473b7 1234 }
e43473b7
VG
1235}
1236
f95a04af
TH
1237static u64 tg_prfill_cpu_rwstat(struct seq_file *sf,
1238 struct blkg_policy_data *pd, int off)
41b38b6d 1239{
f95a04af 1240 struct throtl_grp *tg = pd_to_tg(pd);
41b38b6d
TH
1241 struct blkg_rwstat rwstat = { }, tmp;
1242 int i, cpu;
1243
1244 for_each_possible_cpu(cpu) {
8a3d2615 1245 struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
41b38b6d
TH
1246
1247 tmp = blkg_rwstat_read((void *)sc + off);
1248 for (i = 0; i < BLKG_RWSTAT_NR; i++)
1249 rwstat.cnt[i] += tmp.cnt[i];
1250 }
1251
f95a04af 1252 return __blkg_prfill_rwstat(sf, pd, &rwstat);
41b38b6d
TH
1253}
1254
8a3d2615
TH
1255static int tg_print_cpu_rwstat(struct cgroup *cgrp, struct cftype *cft,
1256 struct seq_file *sf)
41b38b6d 1257{
3c798398 1258 struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
41b38b6d 1259
3c798398 1260 blkcg_print_blkgs(sf, blkcg, tg_prfill_cpu_rwstat, &blkcg_policy_throtl,
5bc4afb1 1261 cft->private, true);
41b38b6d
TH
1262 return 0;
1263}
1264
f95a04af
TH
1265static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1266 int off)
60c2bc2d 1267{
f95a04af
TH
1268 struct throtl_grp *tg = pd_to_tg(pd);
1269 u64 v = *(u64 *)((void *)tg + off);
60c2bc2d 1270
af133ceb 1271 if (v == -1)
60c2bc2d 1272 return 0;
f95a04af 1273 return __blkg_prfill_u64(sf, pd, v);
60c2bc2d
TH
1274}
1275
f95a04af
TH
1276static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1277 int off)
e43473b7 1278{
f95a04af
TH
1279 struct throtl_grp *tg = pd_to_tg(pd);
1280 unsigned int v = *(unsigned int *)((void *)tg + off);
fe071437 1281
af133ceb
TH
1282 if (v == -1)
1283 return 0;
f95a04af 1284 return __blkg_prfill_u64(sf, pd, v);
e43473b7
VG
1285}
1286
af133ceb
TH
1287static int tg_print_conf_u64(struct cgroup *cgrp, struct cftype *cft,
1288 struct seq_file *sf)
8e89d13f 1289{
3c798398
TH
1290 blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp), tg_prfill_conf_u64,
1291 &blkcg_policy_throtl, cft->private, false);
af133ceb 1292 return 0;
8e89d13f
VG
1293}
1294
af133ceb
TH
1295static int tg_print_conf_uint(struct cgroup *cgrp, struct cftype *cft,
1296 struct seq_file *sf)
8e89d13f 1297{
3c798398
TH
1298 blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp), tg_prfill_conf_uint,
1299 &blkcg_policy_throtl, cft->private, false);
af133ceb 1300 return 0;
60c2bc2d
TH
1301}
1302
af133ceb
TH
1303static int tg_set_conf(struct cgroup *cgrp, struct cftype *cft, const char *buf,
1304 bool is_u64)
60c2bc2d 1305{
3c798398 1306 struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
60c2bc2d 1307 struct blkg_conf_ctx ctx;
af133ceb 1308 struct throtl_grp *tg;
69df0ab0 1309 struct throtl_service_queue *sq;
60c2bc2d
TH
1310 int ret;
1311
3c798398 1312 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
60c2bc2d
TH
1313 if (ret)
1314 return ret;
1315
af133ceb 1316 tg = blkg_to_tg(ctx.blkg);
69df0ab0 1317 sq = &tg->service_queue;
af133ceb 1318
a2b1693b
TH
1319 if (!ctx.v)
1320 ctx.v = -1;
af133ceb 1321
a2b1693b
TH
1322 if (is_u64)
1323 *(u64 *)((void *)tg + cft->private) = ctx.v;
1324 else
1325 *(unsigned int *)((void *)tg + cft->private) = ctx.v;
af133ceb 1326
fda6f272
TH
1327 throtl_log(&tg->service_queue,
1328 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1329 tg->bps[READ], tg->bps[WRITE],
1330 tg->iops[READ], tg->iops[WRITE]);
632b4493
TH
1331
1332 /*
1333 * We're already holding queue_lock and know @tg is valid. Let's
1334 * apply the new config directly.
1335 *
1336 * Restart the slices for both READ and WRITES. It might happen
1337 * that a group's limit are dropped suddenly and we don't want to
1338 * account recently dispatched IO with new low rate.
1339 */
0f3457f6
TH
1340 throtl_start_new_slice(tg, 0);
1341 throtl_start_new_slice(tg, 1);
632b4493 1342
5b2c16aa 1343 if (tg->flags & THROTL_TG_PENDING) {
77216b04 1344 tg_update_disptime(tg);
7f52f98c 1345 throtl_schedule_next_dispatch(sq->parent_sq, true);
632b4493 1346 }
60c2bc2d
TH
1347
1348 blkg_conf_finish(&ctx);
a2b1693b 1349 return 0;
8e89d13f
VG
1350}
1351
af133ceb
TH
1352static int tg_set_conf_u64(struct cgroup *cgrp, struct cftype *cft,
1353 const char *buf)
60c2bc2d 1354{
af133ceb 1355 return tg_set_conf(cgrp, cft, buf, true);
60c2bc2d
TH
1356}
1357
af133ceb
TH
1358static int tg_set_conf_uint(struct cgroup *cgrp, struct cftype *cft,
1359 const char *buf)
60c2bc2d 1360{
af133ceb 1361 return tg_set_conf(cgrp, cft, buf, false);
60c2bc2d
TH
1362}
1363
1364static struct cftype throtl_files[] = {
1365 {
1366 .name = "throttle.read_bps_device",
af133ceb
TH
1367 .private = offsetof(struct throtl_grp, bps[READ]),
1368 .read_seq_string = tg_print_conf_u64,
1369 .write_string = tg_set_conf_u64,
60c2bc2d
TH
1370 .max_write_len = 256,
1371 },
1372 {
1373 .name = "throttle.write_bps_device",
af133ceb
TH
1374 .private = offsetof(struct throtl_grp, bps[WRITE]),
1375 .read_seq_string = tg_print_conf_u64,
1376 .write_string = tg_set_conf_u64,
60c2bc2d
TH
1377 .max_write_len = 256,
1378 },
1379 {
1380 .name = "throttle.read_iops_device",
af133ceb
TH
1381 .private = offsetof(struct throtl_grp, iops[READ]),
1382 .read_seq_string = tg_print_conf_uint,
1383 .write_string = tg_set_conf_uint,
60c2bc2d
TH
1384 .max_write_len = 256,
1385 },
1386 {
1387 .name = "throttle.write_iops_device",
af133ceb
TH
1388 .private = offsetof(struct throtl_grp, iops[WRITE]),
1389 .read_seq_string = tg_print_conf_uint,
1390 .write_string = tg_set_conf_uint,
60c2bc2d
TH
1391 .max_write_len = 256,
1392 },
1393 {
1394 .name = "throttle.io_service_bytes",
5bc4afb1 1395 .private = offsetof(struct tg_stats_cpu, service_bytes),
8a3d2615 1396 .read_seq_string = tg_print_cpu_rwstat,
60c2bc2d
TH
1397 },
1398 {
1399 .name = "throttle.io_serviced",
5bc4afb1 1400 .private = offsetof(struct tg_stats_cpu, serviced),
8a3d2615 1401 .read_seq_string = tg_print_cpu_rwstat,
60c2bc2d
TH
1402 },
1403 { } /* terminate */
1404};
1405
da527770 1406static void throtl_shutdown_wq(struct request_queue *q)
e43473b7
VG
1407{
1408 struct throtl_data *td = q->td;
1409
69df0ab0 1410 cancel_work_sync(&td->dispatch_work);
e43473b7
VG
1411}
1412
3c798398 1413static struct blkcg_policy blkcg_policy_throtl = {
f9fcc2d3
TH
1414 .pd_size = sizeof(struct throtl_grp),
1415 .cftypes = throtl_files,
1416
1417 .pd_init_fn = throtl_pd_init,
1418 .pd_exit_fn = throtl_pd_exit,
1419 .pd_reset_stats_fn = throtl_pd_reset_stats,
e43473b7
VG
1420};
1421
bc16a4f9 1422bool blk_throtl_bio(struct request_queue *q, struct bio *bio)
e43473b7
VG
1423{
1424 struct throtl_data *td = q->td;
c5cc2070 1425 struct throtl_qnode *qn = NULL;
e43473b7 1426 struct throtl_grp *tg;
73f0d49a 1427 struct throtl_service_queue *sq;
0e9f4164 1428 bool rw = bio_data_dir(bio);
3c798398 1429 struct blkcg *blkcg;
bc16a4f9 1430 bool throttled = false;
e43473b7 1431
2a0f61e6
TH
1432 /* see throtl_charge_bio() */
1433 if (bio->bi_rw & REQ_THROTTLED)
bc16a4f9 1434 goto out;
e43473b7 1435
af75cd3c
VG
1436 /*
1437 * A throtl_grp pointer retrieved under rcu can be used to access
1438 * basic fields like stats and io rates. If a group has no rules,
1439 * just update the dispatch stats in lockless manner and return.
1440 */
af75cd3c 1441 rcu_read_lock();
3c798398 1442 blkcg = bio_blkcg(bio);
cd1604fa 1443 tg = throtl_lookup_tg(td, blkcg);
af75cd3c 1444 if (tg) {
af75cd3c 1445 if (tg_no_rule_group(tg, rw)) {
629ed0b1
TH
1446 throtl_update_dispatch_stats(tg_to_blkg(tg),
1447 bio->bi_size, bio->bi_rw);
2a7f1244 1448 goto out_unlock_rcu;
af75cd3c
VG
1449 }
1450 }
af75cd3c
VG
1451
1452 /*
1453 * Either group has not been allocated yet or it is not an unlimited
1454 * IO group
1455 */
e43473b7 1456 spin_lock_irq(q->queue_lock);
cd1604fa 1457 tg = throtl_lookup_create_tg(td, blkcg);
bc16a4f9
TH
1458 if (unlikely(!tg))
1459 goto out_unlock;
f469a7b4 1460
73f0d49a
TH
1461 sq = &tg->service_queue;
1462
9e660acf
TH
1463 while (true) {
1464 /* throtl is FIFO - if bios are already queued, should queue */
1465 if (sq->nr_queued[rw])
1466 break;
de701c74 1467
9e660acf
TH
1468 /* if above limits, break to queue */
1469 if (!tg_may_dispatch(tg, bio, NULL))
1470 break;
1471
1472 /* within limits, let's charge and dispatch directly */
e43473b7 1473 throtl_charge_bio(tg, bio);
04521db0
VG
1474
1475 /*
1476 * We need to trim slice even when bios are not being queued
1477 * otherwise it might happen that a bio is not queued for
1478 * a long time and slice keeps on extending and trim is not
1479 * called for a long time. Now if limits are reduced suddenly
1480 * we take into account all the IO dispatched so far at new
1481 * low rate and * newly queued IO gets a really long dispatch
1482 * time.
1483 *
1484 * So keep on trimming slice even if bio is not queued.
1485 */
0f3457f6 1486 throtl_trim_slice(tg, rw);
9e660acf
TH
1487
1488 /*
1489 * @bio passed through this layer without being throttled.
1490 * Climb up the ladder. If we''re already at the top, it
1491 * can be executed directly.
1492 */
c5cc2070 1493 qn = &tg->qnode_on_parent[rw];
9e660acf
TH
1494 sq = sq->parent_sq;
1495 tg = sq_to_tg(sq);
1496 if (!tg)
1497 goto out_unlock;
e43473b7
VG
1498 }
1499
9e660acf 1500 /* out-of-limit, queue to @tg */
fda6f272
TH
1501 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
1502 rw == READ ? 'R' : 'W',
1503 tg->bytes_disp[rw], bio->bi_size, tg->bps[rw],
1504 tg->io_disp[rw], tg->iops[rw],
1505 sq->nr_queued[READ], sq->nr_queued[WRITE]);
e43473b7 1506
671058fb 1507 bio_associate_current(bio);
6bc9c2b4 1508 tg->td->nr_queued[rw]++;
c5cc2070 1509 throtl_add_bio_tg(bio, qn, tg);
bc16a4f9 1510 throttled = true;
e43473b7 1511
7f52f98c
TH
1512 /*
1513 * Update @tg's dispatch time and force schedule dispatch if @tg
1514 * was empty before @bio. The forced scheduling isn't likely to
1515 * cause undue delay as @bio is likely to be dispatched directly if
1516 * its @tg's disptime is not in the future.
1517 */
0e9f4164 1518 if (tg->flags & THROTL_TG_WAS_EMPTY) {
77216b04 1519 tg_update_disptime(tg);
7f52f98c 1520 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
e43473b7
VG
1521 }
1522
bc16a4f9 1523out_unlock:
e43473b7 1524 spin_unlock_irq(q->queue_lock);
2a7f1244
TH
1525out_unlock_rcu:
1526 rcu_read_unlock();
bc16a4f9 1527out:
2a0f61e6
TH
1528 /*
1529 * As multiple blk-throtls may stack in the same issue path, we
1530 * don't want bios to leave with the flag set. Clear the flag if
1531 * being issued.
1532 */
1533 if (!throttled)
1534 bio->bi_rw &= ~REQ_THROTTLED;
bc16a4f9 1535 return throttled;
e43473b7
VG
1536}
1537
2a12f0dc
TH
1538/*
1539 * Dispatch all bios from all children tg's queued on @parent_sq. On
1540 * return, @parent_sq is guaranteed to not have any active children tg's
1541 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
1542 */
1543static void tg_drain_bios(struct throtl_service_queue *parent_sq)
1544{
1545 struct throtl_grp *tg;
1546
1547 while ((tg = throtl_rb_first(parent_sq))) {
1548 struct throtl_service_queue *sq = &tg->service_queue;
1549 struct bio *bio;
1550
1551 throtl_dequeue_tg(tg);
1552
c5cc2070 1553 while ((bio = throtl_peek_queued(&sq->queued[READ])))
2a12f0dc 1554 tg_dispatch_one_bio(tg, bio_data_dir(bio));
c5cc2070 1555 while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
2a12f0dc
TH
1556 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1557 }
1558}
1559
c9a929dd
TH
1560/**
1561 * blk_throtl_drain - drain throttled bios
1562 * @q: request_queue to drain throttled bios for
1563 *
1564 * Dispatch all currently throttled bios on @q through ->make_request_fn().
1565 */
1566void blk_throtl_drain(struct request_queue *q)
1567 __releases(q->queue_lock) __acquires(q->queue_lock)
1568{
1569 struct throtl_data *td = q->td;
2a12f0dc
TH
1570 struct blkcg_gq *blkg;
1571 struct cgroup *pos_cgrp;
c9a929dd 1572 struct bio *bio;
651930bc 1573 int rw;
c9a929dd 1574
8bcb6c7d 1575 queue_lockdep_assert_held(q);
2a12f0dc 1576 rcu_read_lock();
c9a929dd 1577
2a12f0dc
TH
1578 /*
1579 * Drain each tg while doing post-order walk on the blkg tree, so
1580 * that all bios are propagated to td->service_queue. It'd be
1581 * better to walk service_queue tree directly but blkg walk is
1582 * easier.
1583 */
1584 blkg_for_each_descendant_post(blkg, pos_cgrp, td->queue->root_blkg)
1585 tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
73f0d49a 1586
2a12f0dc 1587 tg_drain_bios(&td_root_tg(td)->service_queue);
c9a929dd 1588
2a12f0dc
TH
1589 /* finally, transfer bios from top-level tg's into the td */
1590 tg_drain_bios(&td->service_queue);
1591
1592 rcu_read_unlock();
c9a929dd
TH
1593 spin_unlock_irq(q->queue_lock);
1594
2a12f0dc 1595 /* all bios now should be in td->service_queue, issue them */
651930bc 1596 for (rw = READ; rw <= WRITE; rw++)
c5cc2070
TH
1597 while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
1598 NULL)))
651930bc 1599 generic_make_request(bio);
c9a929dd
TH
1600
1601 spin_lock_irq(q->queue_lock);
1602}
1603
e43473b7
VG
1604int blk_throtl_init(struct request_queue *q)
1605{
1606 struct throtl_data *td;
a2b1693b 1607 int ret;
e43473b7
VG
1608
1609 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
1610 if (!td)
1611 return -ENOMEM;
1612
69df0ab0 1613 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
77216b04 1614 throtl_service_queue_init(&td->service_queue, NULL);
e43473b7 1615
cd1604fa 1616 q->td = td;
29b12589 1617 td->queue = q;
02977e4a 1618
a2b1693b 1619 /* activate policy */
3c798398 1620 ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
a2b1693b 1621 if (ret)
f51b802c 1622 kfree(td);
a2b1693b 1623 return ret;
e43473b7
VG
1624}
1625
1626void blk_throtl_exit(struct request_queue *q)
1627{
c875f4d0 1628 BUG_ON(!q->td);
da527770 1629 throtl_shutdown_wq(q);
3c798398 1630 blkcg_deactivate_policy(q, &blkcg_policy_throtl);
c9a929dd 1631 kfree(q->td);
e43473b7
VG
1632}
1633
1634static int __init throtl_init(void)
1635{
450adcbe
VG
1636 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
1637 if (!kthrotld_workqueue)
1638 panic("Failed to create kthrotld\n");
1639
3c798398 1640 return blkcg_policy_register(&blkcg_policy_throtl);
e43473b7
VG
1641}
1642
1643module_init(throtl_init);