net: annotate sk->sk_rcvlowat lockless reads
[linux-2.6-block.git] / block / blk-throttle.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
e43473b7
VG
2/*
3 * Interface for controlling IO bandwidth on a request queue
4 *
5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
6 */
7
8#include <linux/module.h>
9#include <linux/slab.h>
10#include <linux/blkdev.h>
11#include <linux/bio.h>
12#include <linux/blktrace_api.h>
eea8f41c 13#include <linux/blk-cgroup.h>
bc9fcbf9 14#include "blk.h"
e43473b7
VG
15
16/* Max dispatch from a group in 1 round */
17static int throtl_grp_quantum = 8;
18
19/* Total max dispatch from all groups in one round */
20static int throtl_quantum = 32;
21
d61fcfa4
SL
22/* Throttling is performed over a slice and after that slice is renewed */
23#define DFL_THROTL_SLICE_HD (HZ / 10)
24#define DFL_THROTL_SLICE_SSD (HZ / 50)
297e3d85 25#define MAX_THROTL_SLICE (HZ)
9e234eea 26#define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
9bb67aeb
SL
27#define MIN_THROTL_BPS (320 * 1024)
28#define MIN_THROTL_IOPS (10)
b4f428ef
SL
29#define DFL_LATENCY_TARGET (-1L)
30#define DFL_IDLE_THRESHOLD (0)
6679a90c
SL
31#define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
32#define LATENCY_FILTERED_SSD (0)
33/*
34 * For HD, very small latency comes from sequential IO. Such IO is helpless to
35 * help determine if its IO is impacted by others, hence we ignore the IO
36 */
37#define LATENCY_FILTERED_HD (1000L) /* 1ms */
e43473b7 38
3c798398 39static struct blkcg_policy blkcg_policy_throtl;
0381411e 40
450adcbe
VG
41/* A workqueue to queue throttle related work */
42static struct workqueue_struct *kthrotld_workqueue;
450adcbe 43
c5cc2070
TH
44/*
45 * To implement hierarchical throttling, throtl_grps form a tree and bios
46 * are dispatched upwards level by level until they reach the top and get
47 * issued. When dispatching bios from the children and local group at each
48 * level, if the bios are dispatched into a single bio_list, there's a risk
49 * of a local or child group which can queue many bios at once filling up
50 * the list starving others.
51 *
52 * To avoid such starvation, dispatched bios are queued separately
53 * according to where they came from. When they are again dispatched to
54 * the parent, they're popped in round-robin order so that no single source
55 * hogs the dispatch window.
56 *
57 * throtl_qnode is used to keep the queued bios separated by their sources.
58 * Bios are queued to throtl_qnode which in turn is queued to
59 * throtl_service_queue and then dispatched in round-robin order.
60 *
61 * It's also used to track the reference counts on blkg's. A qnode always
62 * belongs to a throtl_grp and gets queued on itself or the parent, so
63 * incrementing the reference of the associated throtl_grp when a qnode is
64 * queued and decrementing when dequeued is enough to keep the whole blkg
65 * tree pinned while bios are in flight.
66 */
67struct throtl_qnode {
68 struct list_head node; /* service_queue->queued[] */
69 struct bio_list bios; /* queued bios */
70 struct throtl_grp *tg; /* tg this qnode belongs to */
71};
72
c9e0332e 73struct throtl_service_queue {
77216b04
TH
74 struct throtl_service_queue *parent_sq; /* the parent service_queue */
75
73f0d49a
TH
76 /*
77 * Bios queued directly to this service_queue or dispatched from
78 * children throtl_grp's.
79 */
c5cc2070 80 struct list_head queued[2]; /* throtl_qnode [READ/WRITE] */
73f0d49a
TH
81 unsigned int nr_queued[2]; /* number of queued bios */
82
83 /*
84 * RB tree of active children throtl_grp's, which are sorted by
85 * their ->disptime.
86 */
9ff01255 87 struct rb_root_cached pending_tree; /* RB tree of active tgs */
c9e0332e
TH
88 unsigned int nr_pending; /* # queued in the tree */
89 unsigned long first_pending_disptime; /* disptime of the first tg */
69df0ab0 90 struct timer_list pending_timer; /* fires on first_pending_disptime */
e43473b7
VG
91};
92
5b2c16aa
TH
93enum tg_state_flags {
94 THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */
0e9f4164 95 THROTL_TG_WAS_EMPTY = 1 << 1, /* bio_lists[] became non-empty */
5b2c16aa
TH
96};
97
e43473b7
VG
98#define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
99
9f626e37 100enum {
cd5ab1b0 101 LIMIT_LOW,
9f626e37
SL
102 LIMIT_MAX,
103 LIMIT_CNT,
104};
105
e43473b7 106struct throtl_grp {
f95a04af
TH
107 /* must be the first member */
108 struct blkg_policy_data pd;
109
c9e0332e 110 /* active throtl group service_queue member */
e43473b7
VG
111 struct rb_node rb_node;
112
0f3457f6
TH
113 /* throtl_data this group belongs to */
114 struct throtl_data *td;
115
49a2f1e3
TH
116 /* this group's service queue */
117 struct throtl_service_queue service_queue;
118
c5cc2070
TH
119 /*
120 * qnode_on_self is used when bios are directly queued to this
121 * throtl_grp so that local bios compete fairly with bios
122 * dispatched from children. qnode_on_parent is used when bios are
123 * dispatched from this throtl_grp into its parent and will compete
124 * with the sibling qnode_on_parents and the parent's
125 * qnode_on_self.
126 */
127 struct throtl_qnode qnode_on_self[2];
128 struct throtl_qnode qnode_on_parent[2];
129
e43473b7
VG
130 /*
131 * Dispatch time in jiffies. This is the estimated time when group
132 * will unthrottle and is ready to dispatch more bio. It is used as
133 * key to sort active groups in service tree.
134 */
135 unsigned long disptime;
136
e43473b7
VG
137 unsigned int flags;
138
693e751e
TH
139 /* are there any throtl rules between this group and td? */
140 bool has_rules[2];
141
cd5ab1b0 142 /* internally used bytes per second rate limits */
9f626e37 143 uint64_t bps[2][LIMIT_CNT];
cd5ab1b0
SL
144 /* user configured bps limits */
145 uint64_t bps_conf[2][LIMIT_CNT];
e43473b7 146
cd5ab1b0 147 /* internally used IOPS limits */
9f626e37 148 unsigned int iops[2][LIMIT_CNT];
cd5ab1b0
SL
149 /* user configured IOPS limits */
150 unsigned int iops_conf[2][LIMIT_CNT];
8e89d13f 151
e43473b7
VG
152 /* Number of bytes disptached in current slice */
153 uint64_t bytes_disp[2];
8e89d13f
VG
154 /* Number of bio's dispatched in current slice */
155 unsigned int io_disp[2];
e43473b7 156
3f0abd80
SL
157 unsigned long last_low_overflow_time[2];
158
159 uint64_t last_bytes_disp[2];
160 unsigned int last_io_disp[2];
161
162 unsigned long last_check_time;
163
ec80991d 164 unsigned long latency_target; /* us */
5b81fc3c 165 unsigned long latency_target_conf; /* us */
e43473b7
VG
166 /* When did we start a new slice */
167 unsigned long slice_start[2];
168 unsigned long slice_end[2];
9e234eea
SL
169
170 unsigned long last_finish_time; /* ns / 1024 */
171 unsigned long checked_last_finish_time; /* ns / 1024 */
172 unsigned long avg_idletime; /* ns / 1024 */
173 unsigned long idletime_threshold; /* us */
5b81fc3c 174 unsigned long idletime_threshold_conf; /* us */
53696b8d
SL
175
176 unsigned int bio_cnt; /* total bios */
177 unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
178 unsigned long bio_cnt_reset_time;
e43473b7
VG
179};
180
b9147dd1
SL
181/* We measure latency for request size from <= 4k to >= 1M */
182#define LATENCY_BUCKET_SIZE 9
183
184struct latency_bucket {
185 unsigned long total_latency; /* ns / 1024 */
186 int samples;
187};
188
189struct avg_latency_bucket {
190 unsigned long latency; /* ns / 1024 */
191 bool valid;
192};
193
e43473b7
VG
194struct throtl_data
195{
e43473b7 196 /* service tree for active throtl groups */
c9e0332e 197 struct throtl_service_queue service_queue;
e43473b7 198
e43473b7
VG
199 struct request_queue *queue;
200
201 /* Total Number of queued bios on READ and WRITE lists */
202 unsigned int nr_queued[2];
203
297e3d85
SL
204 unsigned int throtl_slice;
205
e43473b7 206 /* Work for dispatching throttled bios */
69df0ab0 207 struct work_struct dispatch_work;
9f626e37
SL
208 unsigned int limit_index;
209 bool limit_valid[LIMIT_CNT];
3f0abd80
SL
210
211 unsigned long low_upgrade_time;
212 unsigned long low_downgrade_time;
7394e31f
SL
213
214 unsigned int scale;
b9147dd1 215
b889bf66
JQ
216 struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
217 struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
218 struct latency_bucket __percpu *latency_buckets[2];
b9147dd1 219 unsigned long last_calculate_time;
6679a90c 220 unsigned long filtered_latency;
b9147dd1
SL
221
222 bool track_bio_latency;
e43473b7
VG
223};
224
e99e88a9 225static void throtl_pending_timer_fn(struct timer_list *t);
69df0ab0 226
f95a04af
TH
227static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
228{
229 return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
230}
231
3c798398 232static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
0381411e 233{
f95a04af 234 return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
0381411e
TH
235}
236
3c798398 237static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
0381411e 238{
f95a04af 239 return pd_to_blkg(&tg->pd);
0381411e
TH
240}
241
fda6f272
TH
242/**
243 * sq_to_tg - return the throl_grp the specified service queue belongs to
244 * @sq: the throtl_service_queue of interest
245 *
246 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
247 * embedded in throtl_data, %NULL is returned.
248 */
249static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
250{
251 if (sq && sq->parent_sq)
252 return container_of(sq, struct throtl_grp, service_queue);
253 else
254 return NULL;
255}
256
257/**
258 * sq_to_td - return throtl_data the specified service queue belongs to
259 * @sq: the throtl_service_queue of interest
260 *
b43daedc 261 * A service_queue can be embedded in either a throtl_grp or throtl_data.
fda6f272
TH
262 * Determine the associated throtl_data accordingly and return it.
263 */
264static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
265{
266 struct throtl_grp *tg = sq_to_tg(sq);
267
268 if (tg)
269 return tg->td;
270 else
271 return container_of(sq, struct throtl_data, service_queue);
272}
273
7394e31f
SL
274/*
275 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
276 * make the IO dispatch more smooth.
277 * Scale up: linearly scale up according to lapsed time since upgrade. For
278 * every throtl_slice, the limit scales up 1/2 .low limit till the
279 * limit hits .max limit
280 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
281 */
282static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
283{
284 /* arbitrary value to avoid too big scale */
285 if (td->scale < 4096 && time_after_eq(jiffies,
286 td->low_upgrade_time + td->scale * td->throtl_slice))
287 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
288
289 return low + (low >> 1) * td->scale;
290}
291
9f626e37
SL
292static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
293{
b22c417c 294 struct blkcg_gq *blkg = tg_to_blkg(tg);
7394e31f 295 struct throtl_data *td;
b22c417c
SL
296 uint64_t ret;
297
298 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
299 return U64_MAX;
7394e31f
SL
300
301 td = tg->td;
302 ret = tg->bps[rw][td->limit_index];
9bb67aeb
SL
303 if (ret == 0 && td->limit_index == LIMIT_LOW) {
304 /* intermediate node or iops isn't 0 */
305 if (!list_empty(&blkg->blkcg->css.children) ||
306 tg->iops[rw][td->limit_index])
307 return U64_MAX;
308 else
309 return MIN_THROTL_BPS;
310 }
7394e31f
SL
311
312 if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
313 tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
314 uint64_t adjusted;
315
316 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
317 ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
318 }
b22c417c 319 return ret;
9f626e37
SL
320}
321
322static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
323{
b22c417c 324 struct blkcg_gq *blkg = tg_to_blkg(tg);
7394e31f 325 struct throtl_data *td;
b22c417c
SL
326 unsigned int ret;
327
328 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
329 return UINT_MAX;
9bb67aeb 330
7394e31f
SL
331 td = tg->td;
332 ret = tg->iops[rw][td->limit_index];
9bb67aeb
SL
333 if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
334 /* intermediate node or bps isn't 0 */
335 if (!list_empty(&blkg->blkcg->css.children) ||
336 tg->bps[rw][td->limit_index])
337 return UINT_MAX;
338 else
339 return MIN_THROTL_IOPS;
340 }
7394e31f
SL
341
342 if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
343 tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
344 uint64_t adjusted;
345
346 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
347 if (adjusted > UINT_MAX)
348 adjusted = UINT_MAX;
349 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
350 }
b22c417c 351 return ret;
9f626e37
SL
352}
353
b9147dd1
SL
354#define request_bucket_index(sectors) \
355 clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
356
fda6f272
TH
357/**
358 * throtl_log - log debug message via blktrace
359 * @sq: the service_queue being reported
360 * @fmt: printf format string
361 * @args: printf args
362 *
363 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
364 * throtl_grp; otherwise, just "throtl".
fda6f272
TH
365 */
366#define throtl_log(sq, fmt, args...) do { \
367 struct throtl_grp *__tg = sq_to_tg((sq)); \
368 struct throtl_data *__td = sq_to_td((sq)); \
369 \
370 (void)__td; \
59fa0224
SL
371 if (likely(!blk_trace_note_message_enabled(__td->queue))) \
372 break; \
fda6f272 373 if ((__tg)) { \
35fe6d76
SL
374 blk_add_cgroup_trace_msg(__td->queue, \
375 tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
fda6f272
TH
376 } else { \
377 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
378 } \
54e7ed12 379} while (0)
e43473b7 380
ea0ea2bc
SL
381static inline unsigned int throtl_bio_data_size(struct bio *bio)
382{
383 /* assume it's one sector */
384 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
385 return 512;
386 return bio->bi_iter.bi_size;
387}
388
c5cc2070
TH
389static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
390{
391 INIT_LIST_HEAD(&qn->node);
392 bio_list_init(&qn->bios);
393 qn->tg = tg;
394}
395
396/**
397 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
398 * @bio: bio being added
399 * @qn: qnode to add bio to
400 * @queued: the service_queue->queued[] list @qn belongs to
401 *
402 * Add @bio to @qn and put @qn on @queued if it's not already on.
403 * @qn->tg's reference count is bumped when @qn is activated. See the
404 * comment on top of throtl_qnode definition for details.
405 */
406static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
407 struct list_head *queued)
408{
409 bio_list_add(&qn->bios, bio);
410 if (list_empty(&qn->node)) {
411 list_add_tail(&qn->node, queued);
412 blkg_get(tg_to_blkg(qn->tg));
413 }
414}
415
416/**
417 * throtl_peek_queued - peek the first bio on a qnode list
418 * @queued: the qnode list to peek
419 */
420static struct bio *throtl_peek_queued(struct list_head *queued)
421{
422 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
423 struct bio *bio;
424
425 if (list_empty(queued))
426 return NULL;
427
428 bio = bio_list_peek(&qn->bios);
429 WARN_ON_ONCE(!bio);
430 return bio;
431}
432
433/**
434 * throtl_pop_queued - pop the first bio form a qnode list
435 * @queued: the qnode list to pop a bio from
436 * @tg_to_put: optional out argument for throtl_grp to put
437 *
438 * Pop the first bio from the qnode list @queued. After popping, the first
439 * qnode is removed from @queued if empty or moved to the end of @queued so
440 * that the popping order is round-robin.
441 *
442 * When the first qnode is removed, its associated throtl_grp should be put
443 * too. If @tg_to_put is NULL, this function automatically puts it;
444 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
445 * responsible for putting it.
446 */
447static struct bio *throtl_pop_queued(struct list_head *queued,
448 struct throtl_grp **tg_to_put)
449{
450 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
451 struct bio *bio;
452
453 if (list_empty(queued))
454 return NULL;
455
456 bio = bio_list_pop(&qn->bios);
457 WARN_ON_ONCE(!bio);
458
459 if (bio_list_empty(&qn->bios)) {
460 list_del_init(&qn->node);
461 if (tg_to_put)
462 *tg_to_put = qn->tg;
463 else
464 blkg_put(tg_to_blkg(qn->tg));
465 } else {
466 list_move_tail(&qn->node, queued);
467 }
468
469 return bio;
470}
471
49a2f1e3 472/* init a service_queue, assumes the caller zeroed it */
b2ce2643 473static void throtl_service_queue_init(struct throtl_service_queue *sq)
49a2f1e3 474{
c5cc2070
TH
475 INIT_LIST_HEAD(&sq->queued[0]);
476 INIT_LIST_HEAD(&sq->queued[1]);
9ff01255 477 sq->pending_tree = RB_ROOT_CACHED;
e99e88a9 478 timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
69df0ab0
TH
479}
480
cf09a8ee
TH
481static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp,
482 struct request_queue *q,
483 struct blkcg *blkcg)
001bea73 484{
4fb72036 485 struct throtl_grp *tg;
24bdb8ef 486 int rw;
4fb72036 487
cf09a8ee 488 tg = kzalloc_node(sizeof(*tg), gfp, q->node);
4fb72036 489 if (!tg)
77ea7338 490 return NULL;
4fb72036 491
b2ce2643
TH
492 throtl_service_queue_init(&tg->service_queue);
493
494 for (rw = READ; rw <= WRITE; rw++) {
495 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
496 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
497 }
498
499 RB_CLEAR_NODE(&tg->rb_node);
9f626e37
SL
500 tg->bps[READ][LIMIT_MAX] = U64_MAX;
501 tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
502 tg->iops[READ][LIMIT_MAX] = UINT_MAX;
503 tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
cd5ab1b0
SL
504 tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
505 tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
506 tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
507 tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
508 /* LIMIT_LOW will have default value 0 */
b2ce2643 509
ec80991d 510 tg->latency_target = DFL_LATENCY_TARGET;
5b81fc3c 511 tg->latency_target_conf = DFL_LATENCY_TARGET;
b4f428ef
SL
512 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
513 tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
ec80991d 514
4fb72036 515 return &tg->pd;
001bea73
TH
516}
517
a9520cd6 518static void throtl_pd_init(struct blkg_policy_data *pd)
a29a171e 519{
a9520cd6
TH
520 struct throtl_grp *tg = pd_to_tg(pd);
521 struct blkcg_gq *blkg = tg_to_blkg(tg);
77216b04 522 struct throtl_data *td = blkg->q->td;
b2ce2643 523 struct throtl_service_queue *sq = &tg->service_queue;
cd1604fa 524
9138125b 525 /*
aa6ec29b 526 * If on the default hierarchy, we switch to properly hierarchical
9138125b
TH
527 * behavior where limits on a given throtl_grp are applied to the
528 * whole subtree rather than just the group itself. e.g. If 16M
529 * read_bps limit is set on the root group, the whole system can't
530 * exceed 16M for the device.
531 *
aa6ec29b 532 * If not on the default hierarchy, the broken flat hierarchy
9138125b
TH
533 * behavior is retained where all throtl_grps are treated as if
534 * they're all separate root groups right below throtl_data.
535 * Limits of a group don't interact with limits of other groups
536 * regardless of the position of the group in the hierarchy.
537 */
b2ce2643 538 sq->parent_sq = &td->service_queue;
9e10a130 539 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
b2ce2643 540 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
77216b04 541 tg->td = td;
8a3d2615
TH
542}
543
693e751e
TH
544/*
545 * Set has_rules[] if @tg or any of its parents have limits configured.
546 * This doesn't require walking up to the top of the hierarchy as the
547 * parent's has_rules[] is guaranteed to be correct.
548 */
549static void tg_update_has_rules(struct throtl_grp *tg)
550{
551 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
9f626e37 552 struct throtl_data *td = tg->td;
693e751e
TH
553 int rw;
554
555 for (rw = READ; rw <= WRITE; rw++)
556 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
9f626e37
SL
557 (td->limit_valid[td->limit_index] &&
558 (tg_bps_limit(tg, rw) != U64_MAX ||
559 tg_iops_limit(tg, rw) != UINT_MAX));
693e751e
TH
560}
561
a9520cd6 562static void throtl_pd_online(struct blkg_policy_data *pd)
693e751e 563{
aec24246 564 struct throtl_grp *tg = pd_to_tg(pd);
693e751e
TH
565 /*
566 * We don't want new groups to escape the limits of its ancestors.
567 * Update has_rules[] after a new group is brought online.
568 */
aec24246 569 tg_update_has_rules(tg);
693e751e
TH
570}
571
cd5ab1b0
SL
572static void blk_throtl_update_limit_valid(struct throtl_data *td)
573{
574 struct cgroup_subsys_state *pos_css;
575 struct blkcg_gq *blkg;
576 bool low_valid = false;
577
578 rcu_read_lock();
579 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
580 struct throtl_grp *tg = blkg_to_tg(blkg);
581
582 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
43ada787 583 tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
cd5ab1b0 584 low_valid = true;
43ada787
LB
585 break;
586 }
cd5ab1b0
SL
587 }
588 rcu_read_unlock();
589
590 td->limit_valid[LIMIT_LOW] = low_valid;
591}
592
c79892c5 593static void throtl_upgrade_state(struct throtl_data *td);
cd5ab1b0
SL
594static void throtl_pd_offline(struct blkg_policy_data *pd)
595{
596 struct throtl_grp *tg = pd_to_tg(pd);
597
598 tg->bps[READ][LIMIT_LOW] = 0;
599 tg->bps[WRITE][LIMIT_LOW] = 0;
600 tg->iops[READ][LIMIT_LOW] = 0;
601 tg->iops[WRITE][LIMIT_LOW] = 0;
602
603 blk_throtl_update_limit_valid(tg->td);
604
c79892c5
SL
605 if (!tg->td->limit_valid[tg->td->limit_index])
606 throtl_upgrade_state(tg->td);
cd5ab1b0
SL
607}
608
001bea73
TH
609static void throtl_pd_free(struct blkg_policy_data *pd)
610{
4fb72036
TH
611 struct throtl_grp *tg = pd_to_tg(pd);
612
b2ce2643 613 del_timer_sync(&tg->service_queue.pending_timer);
4fb72036 614 kfree(tg);
001bea73
TH
615}
616
0049af73
TH
617static struct throtl_grp *
618throtl_rb_first(struct throtl_service_queue *parent_sq)
e43473b7 619{
9ff01255 620 struct rb_node *n;
e43473b7 621 /* Service tree is empty */
0049af73 622 if (!parent_sq->nr_pending)
e43473b7
VG
623 return NULL;
624
9ff01255
LB
625 n = rb_first_cached(&parent_sq->pending_tree);
626 WARN_ON_ONCE(!n);
627 if (!n)
628 return NULL;
629 return rb_entry_tg(n);
e43473b7
VG
630}
631
0049af73
TH
632static void throtl_rb_erase(struct rb_node *n,
633 struct throtl_service_queue *parent_sq)
e43473b7 634{
9ff01255
LB
635 rb_erase_cached(n, &parent_sq->pending_tree);
636 RB_CLEAR_NODE(n);
0049af73 637 --parent_sq->nr_pending;
e43473b7
VG
638}
639
0049af73 640static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
e43473b7
VG
641{
642 struct throtl_grp *tg;
643
0049af73 644 tg = throtl_rb_first(parent_sq);
e43473b7
VG
645 if (!tg)
646 return;
647
0049af73 648 parent_sq->first_pending_disptime = tg->disptime;
e43473b7
VG
649}
650
77216b04 651static void tg_service_queue_add(struct throtl_grp *tg)
e43473b7 652{
77216b04 653 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
9ff01255 654 struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
e43473b7
VG
655 struct rb_node *parent = NULL;
656 struct throtl_grp *__tg;
657 unsigned long key = tg->disptime;
9ff01255 658 bool leftmost = true;
e43473b7
VG
659
660 while (*node != NULL) {
661 parent = *node;
662 __tg = rb_entry_tg(parent);
663
664 if (time_before(key, __tg->disptime))
665 node = &parent->rb_left;
666 else {
667 node = &parent->rb_right;
9ff01255 668 leftmost = false;
e43473b7
VG
669 }
670 }
671
e43473b7 672 rb_link_node(&tg->rb_node, parent, node);
9ff01255
LB
673 rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
674 leftmost);
e43473b7
VG
675}
676
77216b04 677static void __throtl_enqueue_tg(struct throtl_grp *tg)
e43473b7 678{
77216b04 679 tg_service_queue_add(tg);
5b2c16aa 680 tg->flags |= THROTL_TG_PENDING;
77216b04 681 tg->service_queue.parent_sq->nr_pending++;
e43473b7
VG
682}
683
77216b04 684static void throtl_enqueue_tg(struct throtl_grp *tg)
e43473b7 685{
5b2c16aa 686 if (!(tg->flags & THROTL_TG_PENDING))
77216b04 687 __throtl_enqueue_tg(tg);
e43473b7
VG
688}
689
77216b04 690static void __throtl_dequeue_tg(struct throtl_grp *tg)
e43473b7 691{
77216b04 692 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
5b2c16aa 693 tg->flags &= ~THROTL_TG_PENDING;
e43473b7
VG
694}
695
77216b04 696static void throtl_dequeue_tg(struct throtl_grp *tg)
e43473b7 697{
5b2c16aa 698 if (tg->flags & THROTL_TG_PENDING)
77216b04 699 __throtl_dequeue_tg(tg);
e43473b7
VG
700}
701
a9131a27 702/* Call with queue lock held */
69df0ab0
TH
703static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
704 unsigned long expires)
a9131a27 705{
a41b816c 706 unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
06cceedc
SL
707
708 /*
709 * Since we are adjusting the throttle limit dynamically, the sleep
710 * time calculated according to previous limit might be invalid. It's
711 * possible the cgroup sleep time is very long and no other cgroups
712 * have IO running so notify the limit changes. Make sure the cgroup
713 * doesn't sleep too long to avoid the missed notification.
714 */
715 if (time_after(expires, max_expire))
716 expires = max_expire;
69df0ab0
TH
717 mod_timer(&sq->pending_timer, expires);
718 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
719 expires - jiffies, jiffies);
a9131a27
TH
720}
721
7f52f98c
TH
722/**
723 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
724 * @sq: the service_queue to schedule dispatch for
725 * @force: force scheduling
726 *
727 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
728 * dispatch time of the first pending child. Returns %true if either timer
729 * is armed or there's no pending child left. %false if the current
730 * dispatch window is still open and the caller should continue
731 * dispatching.
732 *
733 * If @force is %true, the dispatch timer is always scheduled and this
734 * function is guaranteed to return %true. This is to be used when the
735 * caller can't dispatch itself and needs to invoke pending_timer
736 * unconditionally. Note that forced scheduling is likely to induce short
737 * delay before dispatch starts even if @sq->first_pending_disptime is not
738 * in the future and thus shouldn't be used in hot paths.
739 */
740static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
741 bool force)
e43473b7 742{
6a525600 743 /* any pending children left? */
c9e0332e 744 if (!sq->nr_pending)
7f52f98c 745 return true;
e43473b7 746
c9e0332e 747 update_min_dispatch_time(sq);
e43473b7 748
69df0ab0 749 /* is the next dispatch time in the future? */
7f52f98c 750 if (force || time_after(sq->first_pending_disptime, jiffies)) {
69df0ab0 751 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
7f52f98c 752 return true;
69df0ab0
TH
753 }
754
7f52f98c
TH
755 /* tell the caller to continue dispatching */
756 return false;
e43473b7
VG
757}
758
32ee5bc4
VG
759static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
760 bool rw, unsigned long start)
761{
762 tg->bytes_disp[rw] = 0;
763 tg->io_disp[rw] = 0;
764
765 /*
766 * Previous slice has expired. We must have trimmed it after last
767 * bio dispatch. That means since start of last slice, we never used
768 * that bandwidth. Do try to make use of that bandwidth while giving
769 * credit.
770 */
771 if (time_after_eq(start, tg->slice_start[rw]))
772 tg->slice_start[rw] = start;
773
297e3d85 774 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
32ee5bc4
VG
775 throtl_log(&tg->service_queue,
776 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
777 rw == READ ? 'R' : 'W', tg->slice_start[rw],
778 tg->slice_end[rw], jiffies);
779}
780
0f3457f6 781static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
e43473b7
VG
782{
783 tg->bytes_disp[rw] = 0;
8e89d13f 784 tg->io_disp[rw] = 0;
e43473b7 785 tg->slice_start[rw] = jiffies;
297e3d85 786 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
fda6f272
TH
787 throtl_log(&tg->service_queue,
788 "[%c] new slice start=%lu end=%lu jiffies=%lu",
789 rw == READ ? 'R' : 'W', tg->slice_start[rw],
790 tg->slice_end[rw], jiffies);
e43473b7
VG
791}
792
0f3457f6
TH
793static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
794 unsigned long jiffy_end)
d1ae8ffd 795{
297e3d85 796 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
d1ae8ffd
VG
797}
798
0f3457f6
TH
799static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
800 unsigned long jiffy_end)
e43473b7 801{
297e3d85 802 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
fda6f272
TH
803 throtl_log(&tg->service_queue,
804 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
805 rw == READ ? 'R' : 'W', tg->slice_start[rw],
806 tg->slice_end[rw], jiffies);
e43473b7
VG
807}
808
809/* Determine if previously allocated or extended slice is complete or not */
0f3457f6 810static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
e43473b7
VG
811{
812 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
5cf8c227 813 return false;
e43473b7 814
0b6bad7d 815 return true;
e43473b7
VG
816}
817
818/* Trim the used slices and adjust slice start accordingly */
0f3457f6 819static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
e43473b7 820{
3aad5d3e
VG
821 unsigned long nr_slices, time_elapsed, io_trim;
822 u64 bytes_trim, tmp;
e43473b7
VG
823
824 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
825
826 /*
827 * If bps are unlimited (-1), then time slice don't get
828 * renewed. Don't try to trim the slice if slice is used. A new
829 * slice will start when appropriate.
830 */
0f3457f6 831 if (throtl_slice_used(tg, rw))
e43473b7
VG
832 return;
833
d1ae8ffd
VG
834 /*
835 * A bio has been dispatched. Also adjust slice_end. It might happen
836 * that initially cgroup limit was very low resulting in high
837 * slice_end, but later limit was bumped up and bio was dispached
838 * sooner, then we need to reduce slice_end. A high bogus slice_end
839 * is bad because it does not allow new slice to start.
840 */
841
297e3d85 842 throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
d1ae8ffd 843
e43473b7
VG
844 time_elapsed = jiffies - tg->slice_start[rw];
845
297e3d85 846 nr_slices = time_elapsed / tg->td->throtl_slice;
e43473b7
VG
847
848 if (!nr_slices)
849 return;
297e3d85 850 tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
3aad5d3e
VG
851 do_div(tmp, HZ);
852 bytes_trim = tmp;
e43473b7 853
297e3d85
SL
854 io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
855 HZ;
e43473b7 856
8e89d13f 857 if (!bytes_trim && !io_trim)
e43473b7
VG
858 return;
859
860 if (tg->bytes_disp[rw] >= bytes_trim)
861 tg->bytes_disp[rw] -= bytes_trim;
862 else
863 tg->bytes_disp[rw] = 0;
864
8e89d13f
VG
865 if (tg->io_disp[rw] >= io_trim)
866 tg->io_disp[rw] -= io_trim;
867 else
868 tg->io_disp[rw] = 0;
869
297e3d85 870 tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
e43473b7 871
fda6f272
TH
872 throtl_log(&tg->service_queue,
873 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
874 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
875 tg->slice_start[rw], tg->slice_end[rw], jiffies);
e43473b7
VG
876}
877
0f3457f6
TH
878static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
879 unsigned long *wait)
e43473b7
VG
880{
881 bool rw = bio_data_dir(bio);
8e89d13f 882 unsigned int io_allowed;
e43473b7 883 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
c49c06e4 884 u64 tmp;
e43473b7 885
3a10f999 886 jiffy_elapsed = jiffies - tg->slice_start[rw];
e43473b7 887
3a10f999
KK
888 /* Round up to the next throttle slice, wait time must be nonzero */
889 jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
8e89d13f 890
c49c06e4
VG
891 /*
892 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
893 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
894 * will allow dispatch after 1 second and after that slice should
895 * have been trimmed.
896 */
897
9f626e37 898 tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd;
c49c06e4
VG
899 do_div(tmp, HZ);
900
901 if (tmp > UINT_MAX)
902 io_allowed = UINT_MAX;
903 else
904 io_allowed = tmp;
8e89d13f
VG
905
906 if (tg->io_disp[rw] + 1 <= io_allowed) {
e43473b7
VG
907 if (wait)
908 *wait = 0;
5cf8c227 909 return true;
e43473b7
VG
910 }
911
8e89d13f 912 /* Calc approx time to dispatch */
991f61fe 913 jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
8e89d13f
VG
914
915 if (wait)
916 *wait = jiffy_wait;
0b6bad7d 917 return false;
8e89d13f
VG
918}
919
0f3457f6
TH
920static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
921 unsigned long *wait)
8e89d13f
VG
922{
923 bool rw = bio_data_dir(bio);
3aad5d3e 924 u64 bytes_allowed, extra_bytes, tmp;
8e89d13f 925 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
ea0ea2bc 926 unsigned int bio_size = throtl_bio_data_size(bio);
e43473b7
VG
927
928 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
929
930 /* Slice has just started. Consider one slice interval */
931 if (!jiffy_elapsed)
297e3d85 932 jiffy_elapsed_rnd = tg->td->throtl_slice;
e43473b7 933
297e3d85 934 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
e43473b7 935
9f626e37 936 tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd;
5e901a2b 937 do_div(tmp, HZ);
3aad5d3e 938 bytes_allowed = tmp;
e43473b7 939
ea0ea2bc 940 if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
e43473b7
VG
941 if (wait)
942 *wait = 0;
5cf8c227 943 return true;
e43473b7
VG
944 }
945
946 /* Calc approx time to dispatch */
ea0ea2bc 947 extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
9f626e37 948 jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw));
e43473b7
VG
949
950 if (!jiffy_wait)
951 jiffy_wait = 1;
952
953 /*
954 * This wait time is without taking into consideration the rounding
955 * up we did. Add that time also.
956 */
957 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
e43473b7
VG
958 if (wait)
959 *wait = jiffy_wait;
0b6bad7d 960 return false;
8e89d13f
VG
961}
962
963/*
964 * Returns whether one can dispatch a bio or not. Also returns approx number
965 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
966 */
0f3457f6
TH
967static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
968 unsigned long *wait)
8e89d13f
VG
969{
970 bool rw = bio_data_dir(bio);
971 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
972
973 /*
974 * Currently whole state machine of group depends on first bio
975 * queued in the group bio list. So one should not be calling
976 * this function with a different bio if there are other bios
977 * queued.
978 */
73f0d49a 979 BUG_ON(tg->service_queue.nr_queued[rw] &&
c5cc2070 980 bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
e43473b7 981
8e89d13f 982 /* If tg->bps = -1, then BW is unlimited */
9f626e37
SL
983 if (tg_bps_limit(tg, rw) == U64_MAX &&
984 tg_iops_limit(tg, rw) == UINT_MAX) {
8e89d13f
VG
985 if (wait)
986 *wait = 0;
5cf8c227 987 return true;
8e89d13f
VG
988 }
989
990 /*
991 * If previous slice expired, start a new one otherwise renew/extend
992 * existing slice to make sure it is at least throtl_slice interval
164c80ed
VG
993 * long since now. New slice is started only for empty throttle group.
994 * If there is queued bio, that means there should be an active
995 * slice and it should be extended instead.
8e89d13f 996 */
164c80ed 997 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
0f3457f6 998 throtl_start_new_slice(tg, rw);
8e89d13f 999 else {
297e3d85
SL
1000 if (time_before(tg->slice_end[rw],
1001 jiffies + tg->td->throtl_slice))
1002 throtl_extend_slice(tg, rw,
1003 jiffies + tg->td->throtl_slice);
8e89d13f
VG
1004 }
1005
0f3457f6
TH
1006 if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
1007 tg_with_in_iops_limit(tg, bio, &iops_wait)) {
8e89d13f
VG
1008 if (wait)
1009 *wait = 0;
0b6bad7d 1010 return true;
8e89d13f
VG
1011 }
1012
1013 max_wait = max(bps_wait, iops_wait);
1014
1015 if (wait)
1016 *wait = max_wait;
1017
1018 if (time_before(tg->slice_end[rw], jiffies + max_wait))
0f3457f6 1019 throtl_extend_slice(tg, rw, jiffies + max_wait);
e43473b7 1020
0b6bad7d 1021 return false;
e43473b7
VG
1022}
1023
1024static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
1025{
1026 bool rw = bio_data_dir(bio);
ea0ea2bc 1027 unsigned int bio_size = throtl_bio_data_size(bio);
e43473b7
VG
1028
1029 /* Charge the bio to the group */
ea0ea2bc 1030 tg->bytes_disp[rw] += bio_size;
8e89d13f 1031 tg->io_disp[rw]++;
ea0ea2bc 1032 tg->last_bytes_disp[rw] += bio_size;
3f0abd80 1033 tg->last_io_disp[rw]++;
e43473b7 1034
2a0f61e6 1035 /*
8d2bbd4c 1036 * BIO_THROTTLED is used to prevent the same bio to be throttled
2a0f61e6
TH
1037 * more than once as a throttled bio will go through blk-throtl the
1038 * second time when it eventually gets issued. Set it when a bio
1039 * is being charged to a tg.
2a0f61e6 1040 */
8d2bbd4c
CH
1041 if (!bio_flagged(bio, BIO_THROTTLED))
1042 bio_set_flag(bio, BIO_THROTTLED);
e43473b7
VG
1043}
1044
c5cc2070
TH
1045/**
1046 * throtl_add_bio_tg - add a bio to the specified throtl_grp
1047 * @bio: bio to add
1048 * @qn: qnode to use
1049 * @tg: the target throtl_grp
1050 *
1051 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
1052 * tg->qnode_on_self[] is used.
1053 */
1054static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1055 struct throtl_grp *tg)
e43473b7 1056{
73f0d49a 1057 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
1058 bool rw = bio_data_dir(bio);
1059
c5cc2070
TH
1060 if (!qn)
1061 qn = &tg->qnode_on_self[rw];
1062
0e9f4164
TH
1063 /*
1064 * If @tg doesn't currently have any bios queued in the same
1065 * direction, queueing @bio can change when @tg should be
1066 * dispatched. Mark that @tg was empty. This is automatically
1067 * cleaered on the next tg_update_disptime().
1068 */
1069 if (!sq->nr_queued[rw])
1070 tg->flags |= THROTL_TG_WAS_EMPTY;
1071
c5cc2070
TH
1072 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1073
73f0d49a 1074 sq->nr_queued[rw]++;
77216b04 1075 throtl_enqueue_tg(tg);
e43473b7
VG
1076}
1077
77216b04 1078static void tg_update_disptime(struct throtl_grp *tg)
e43473b7 1079{
73f0d49a 1080 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
1081 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1082 struct bio *bio;
1083
d609af3a
ME
1084 bio = throtl_peek_queued(&sq->queued[READ]);
1085 if (bio)
0f3457f6 1086 tg_may_dispatch(tg, bio, &read_wait);
e43473b7 1087
d609af3a
ME
1088 bio = throtl_peek_queued(&sq->queued[WRITE]);
1089 if (bio)
0f3457f6 1090 tg_may_dispatch(tg, bio, &write_wait);
e43473b7
VG
1091
1092 min_wait = min(read_wait, write_wait);
1093 disptime = jiffies + min_wait;
1094
e43473b7 1095 /* Update dispatch time */
77216b04 1096 throtl_dequeue_tg(tg);
e43473b7 1097 tg->disptime = disptime;
77216b04 1098 throtl_enqueue_tg(tg);
0e9f4164
TH
1099
1100 /* see throtl_add_bio_tg() */
1101 tg->flags &= ~THROTL_TG_WAS_EMPTY;
e43473b7
VG
1102}
1103
32ee5bc4
VG
1104static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1105 struct throtl_grp *parent_tg, bool rw)
1106{
1107 if (throtl_slice_used(parent_tg, rw)) {
1108 throtl_start_new_slice_with_credit(parent_tg, rw,
1109 child_tg->slice_start[rw]);
1110 }
1111
1112}
1113
77216b04 1114static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
e43473b7 1115{
73f0d49a 1116 struct throtl_service_queue *sq = &tg->service_queue;
6bc9c2b4
TH
1117 struct throtl_service_queue *parent_sq = sq->parent_sq;
1118 struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
c5cc2070 1119 struct throtl_grp *tg_to_put = NULL;
e43473b7
VG
1120 struct bio *bio;
1121
c5cc2070
TH
1122 /*
1123 * @bio is being transferred from @tg to @parent_sq. Popping a bio
1124 * from @tg may put its reference and @parent_sq might end up
1125 * getting released prematurely. Remember the tg to put and put it
1126 * after @bio is transferred to @parent_sq.
1127 */
1128 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
73f0d49a 1129 sq->nr_queued[rw]--;
e43473b7
VG
1130
1131 throtl_charge_bio(tg, bio);
6bc9c2b4
TH
1132
1133 /*
1134 * If our parent is another tg, we just need to transfer @bio to
1135 * the parent using throtl_add_bio_tg(). If our parent is
1136 * @td->service_queue, @bio is ready to be issued. Put it on its
1137 * bio_lists[] and decrease total number queued. The caller is
1138 * responsible for issuing these bios.
1139 */
1140 if (parent_tg) {
c5cc2070 1141 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
32ee5bc4 1142 start_parent_slice_with_credit(tg, parent_tg, rw);
6bc9c2b4 1143 } else {
c5cc2070
TH
1144 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1145 &parent_sq->queued[rw]);
6bc9c2b4
TH
1146 BUG_ON(tg->td->nr_queued[rw] <= 0);
1147 tg->td->nr_queued[rw]--;
1148 }
e43473b7 1149
0f3457f6 1150 throtl_trim_slice(tg, rw);
6bc9c2b4 1151
c5cc2070
TH
1152 if (tg_to_put)
1153 blkg_put(tg_to_blkg(tg_to_put));
e43473b7
VG
1154}
1155
77216b04 1156static int throtl_dispatch_tg(struct throtl_grp *tg)
e43473b7 1157{
73f0d49a 1158 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
1159 unsigned int nr_reads = 0, nr_writes = 0;
1160 unsigned int max_nr_reads = throtl_grp_quantum*3/4;
c2f6805d 1161 unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
e43473b7
VG
1162 struct bio *bio;
1163
1164 /* Try to dispatch 75% READS and 25% WRITES */
1165
c5cc2070 1166 while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
0f3457f6 1167 tg_may_dispatch(tg, bio, NULL)) {
e43473b7 1168
77216b04 1169 tg_dispatch_one_bio(tg, bio_data_dir(bio));
e43473b7
VG
1170 nr_reads++;
1171
1172 if (nr_reads >= max_nr_reads)
1173 break;
1174 }
1175
c5cc2070 1176 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
0f3457f6 1177 tg_may_dispatch(tg, bio, NULL)) {
e43473b7 1178
77216b04 1179 tg_dispatch_one_bio(tg, bio_data_dir(bio));
e43473b7
VG
1180 nr_writes++;
1181
1182 if (nr_writes >= max_nr_writes)
1183 break;
1184 }
1185
1186 return nr_reads + nr_writes;
1187}
1188
651930bc 1189static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
e43473b7
VG
1190{
1191 unsigned int nr_disp = 0;
e43473b7
VG
1192
1193 while (1) {
73f0d49a 1194 struct throtl_grp *tg = throtl_rb_first(parent_sq);
2ab74cd2 1195 struct throtl_service_queue *sq;
e43473b7
VG
1196
1197 if (!tg)
1198 break;
1199
1200 if (time_before(jiffies, tg->disptime))
1201 break;
1202
77216b04 1203 throtl_dequeue_tg(tg);
e43473b7 1204
77216b04 1205 nr_disp += throtl_dispatch_tg(tg);
e43473b7 1206
2ab74cd2 1207 sq = &tg->service_queue;
73f0d49a 1208 if (sq->nr_queued[0] || sq->nr_queued[1])
77216b04 1209 tg_update_disptime(tg);
e43473b7
VG
1210
1211 if (nr_disp >= throtl_quantum)
1212 break;
1213 }
1214
1215 return nr_disp;
1216}
1217
c79892c5
SL
1218static bool throtl_can_upgrade(struct throtl_data *td,
1219 struct throtl_grp *this_tg);
6e1a5704
TH
1220/**
1221 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
216382dc 1222 * @t: the pending_timer member of the throtl_service_queue being serviced
6e1a5704
TH
1223 *
1224 * This timer is armed when a child throtl_grp with active bio's become
1225 * pending and queued on the service_queue's pending_tree and expires when
1226 * the first child throtl_grp should be dispatched. This function
2e48a530
TH
1227 * dispatches bio's from the children throtl_grps to the parent
1228 * service_queue.
1229 *
1230 * If the parent's parent is another throtl_grp, dispatching is propagated
1231 * by either arming its pending_timer or repeating dispatch directly. If
1232 * the top-level service_tree is reached, throtl_data->dispatch_work is
1233 * kicked so that the ready bio's are issued.
6e1a5704 1234 */
e99e88a9 1235static void throtl_pending_timer_fn(struct timer_list *t)
69df0ab0 1236{
e99e88a9 1237 struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
2e48a530 1238 struct throtl_grp *tg = sq_to_tg(sq);
69df0ab0 1239 struct throtl_data *td = sq_to_td(sq);
cb76199c 1240 struct request_queue *q = td->queue;
2e48a530
TH
1241 struct throtl_service_queue *parent_sq;
1242 bool dispatched;
6e1a5704 1243 int ret;
e43473b7 1244
0d945c1f 1245 spin_lock_irq(&q->queue_lock);
c79892c5
SL
1246 if (throtl_can_upgrade(td, NULL))
1247 throtl_upgrade_state(td);
1248
2e48a530
TH
1249again:
1250 parent_sq = sq->parent_sq;
1251 dispatched = false;
e43473b7 1252
7f52f98c
TH
1253 while (true) {
1254 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
2e48a530
TH
1255 sq->nr_queued[READ] + sq->nr_queued[WRITE],
1256 sq->nr_queued[READ], sq->nr_queued[WRITE]);
7f52f98c
TH
1257
1258 ret = throtl_select_dispatch(sq);
1259 if (ret) {
7f52f98c
TH
1260 throtl_log(sq, "bios disp=%u", ret);
1261 dispatched = true;
1262 }
e43473b7 1263
7f52f98c
TH
1264 if (throtl_schedule_next_dispatch(sq, false))
1265 break;
e43473b7 1266
7f52f98c 1267 /* this dispatch windows is still open, relax and repeat */
0d945c1f 1268 spin_unlock_irq(&q->queue_lock);
7f52f98c 1269 cpu_relax();
0d945c1f 1270 spin_lock_irq(&q->queue_lock);
651930bc 1271 }
e43473b7 1272
2e48a530
TH
1273 if (!dispatched)
1274 goto out_unlock;
6e1a5704 1275
2e48a530
TH
1276 if (parent_sq) {
1277 /* @parent_sq is another throl_grp, propagate dispatch */
1278 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1279 tg_update_disptime(tg);
1280 if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1281 /* window is already open, repeat dispatching */
1282 sq = parent_sq;
1283 tg = sq_to_tg(sq);
1284 goto again;
1285 }
1286 }
1287 } else {
1288 /* reached the top-level, queue issueing */
1289 queue_work(kthrotld_workqueue, &td->dispatch_work);
1290 }
1291out_unlock:
0d945c1f 1292 spin_unlock_irq(&q->queue_lock);
6e1a5704 1293}
e43473b7 1294
6e1a5704
TH
1295/**
1296 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1297 * @work: work item being executed
1298 *
1299 * This function is queued for execution when bio's reach the bio_lists[]
1300 * of throtl_data->service_queue. Those bio's are ready and issued by this
1301 * function.
1302 */
8876e140 1303static void blk_throtl_dispatch_work_fn(struct work_struct *work)
6e1a5704
TH
1304{
1305 struct throtl_data *td = container_of(work, struct throtl_data,
1306 dispatch_work);
1307 struct throtl_service_queue *td_sq = &td->service_queue;
1308 struct request_queue *q = td->queue;
1309 struct bio_list bio_list_on_stack;
1310 struct bio *bio;
1311 struct blk_plug plug;
1312 int rw;
1313
1314 bio_list_init(&bio_list_on_stack);
1315
0d945c1f 1316 spin_lock_irq(&q->queue_lock);
c5cc2070
TH
1317 for (rw = READ; rw <= WRITE; rw++)
1318 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1319 bio_list_add(&bio_list_on_stack, bio);
0d945c1f 1320 spin_unlock_irq(&q->queue_lock);
6e1a5704
TH
1321
1322 if (!bio_list_empty(&bio_list_on_stack)) {
69d60eb9 1323 blk_start_plug(&plug);
e43473b7
VG
1324 while((bio = bio_list_pop(&bio_list_on_stack)))
1325 generic_make_request(bio);
69d60eb9 1326 blk_finish_plug(&plug);
e43473b7 1327 }
e43473b7
VG
1328}
1329
f95a04af
TH
1330static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1331 int off)
60c2bc2d 1332{
f95a04af
TH
1333 struct throtl_grp *tg = pd_to_tg(pd);
1334 u64 v = *(u64 *)((void *)tg + off);
60c2bc2d 1335
2ab5492d 1336 if (v == U64_MAX)
60c2bc2d 1337 return 0;
f95a04af 1338 return __blkg_prfill_u64(sf, pd, v);
60c2bc2d
TH
1339}
1340
f95a04af
TH
1341static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1342 int off)
e43473b7 1343{
f95a04af
TH
1344 struct throtl_grp *tg = pd_to_tg(pd);
1345 unsigned int v = *(unsigned int *)((void *)tg + off);
fe071437 1346
2ab5492d 1347 if (v == UINT_MAX)
af133ceb 1348 return 0;
f95a04af 1349 return __blkg_prfill_u64(sf, pd, v);
e43473b7
VG
1350}
1351
2da8ca82 1352static int tg_print_conf_u64(struct seq_file *sf, void *v)
8e89d13f 1353{
2da8ca82
TH
1354 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1355 &blkcg_policy_throtl, seq_cft(sf)->private, false);
af133ceb 1356 return 0;
8e89d13f
VG
1357}
1358
2da8ca82 1359static int tg_print_conf_uint(struct seq_file *sf, void *v)
8e89d13f 1360{
2da8ca82
TH
1361 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1362 &blkcg_policy_throtl, seq_cft(sf)->private, false);
af133ceb 1363 return 0;
60c2bc2d
TH
1364}
1365
9bb67aeb 1366static void tg_conf_updated(struct throtl_grp *tg, bool global)
60c2bc2d 1367{
69948b07 1368 struct throtl_service_queue *sq = &tg->service_queue;
492eb21b 1369 struct cgroup_subsys_state *pos_css;
69948b07 1370 struct blkcg_gq *blkg;
af133ceb 1371
fda6f272
TH
1372 throtl_log(&tg->service_queue,
1373 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
9f626e37
SL
1374 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1375 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
632b4493 1376
693e751e
TH
1377 /*
1378 * Update has_rules[] flags for the updated tg's subtree. A tg is
1379 * considered to have rules if either the tg itself or any of its
1380 * ancestors has rules. This identifies groups without any
1381 * restrictions in the whole hierarchy and allows them to bypass
1382 * blk-throttle.
1383 */
9bb67aeb
SL
1384 blkg_for_each_descendant_pre(blkg, pos_css,
1385 global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
5b81fc3c
SL
1386 struct throtl_grp *this_tg = blkg_to_tg(blkg);
1387 struct throtl_grp *parent_tg;
1388
1389 tg_update_has_rules(this_tg);
1390 /* ignore root/second level */
1391 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1392 !blkg->parent->parent)
1393 continue;
1394 parent_tg = blkg_to_tg(blkg->parent);
1395 /*
1396 * make sure all children has lower idle time threshold and
1397 * higher latency target
1398 */
1399 this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1400 parent_tg->idletime_threshold);
1401 this_tg->latency_target = max(this_tg->latency_target,
1402 parent_tg->latency_target);
1403 }
693e751e 1404
632b4493
TH
1405 /*
1406 * We're already holding queue_lock and know @tg is valid. Let's
1407 * apply the new config directly.
1408 *
1409 * Restart the slices for both READ and WRITES. It might happen
1410 * that a group's limit are dropped suddenly and we don't want to
1411 * account recently dispatched IO with new low rate.
1412 */
0f3457f6
TH
1413 throtl_start_new_slice(tg, 0);
1414 throtl_start_new_slice(tg, 1);
632b4493 1415
5b2c16aa 1416 if (tg->flags & THROTL_TG_PENDING) {
77216b04 1417 tg_update_disptime(tg);
7f52f98c 1418 throtl_schedule_next_dispatch(sq->parent_sq, true);
632b4493 1419 }
69948b07
TH
1420}
1421
1422static ssize_t tg_set_conf(struct kernfs_open_file *of,
1423 char *buf, size_t nbytes, loff_t off, bool is_u64)
1424{
1425 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1426 struct blkg_conf_ctx ctx;
1427 struct throtl_grp *tg;
1428 int ret;
1429 u64 v;
1430
1431 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1432 if (ret)
1433 return ret;
1434
1435 ret = -EINVAL;
1436 if (sscanf(ctx.body, "%llu", &v) != 1)
1437 goto out_finish;
1438 if (!v)
2ab5492d 1439 v = U64_MAX;
69948b07
TH
1440
1441 tg = blkg_to_tg(ctx.blkg);
1442
1443 if (is_u64)
1444 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1445 else
1446 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
60c2bc2d 1447
9bb67aeb 1448 tg_conf_updated(tg, false);
36aa9e5f
TH
1449 ret = 0;
1450out_finish:
60c2bc2d 1451 blkg_conf_finish(&ctx);
36aa9e5f 1452 return ret ?: nbytes;
8e89d13f
VG
1453}
1454
451af504
TH
1455static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1456 char *buf, size_t nbytes, loff_t off)
60c2bc2d 1457{
451af504 1458 return tg_set_conf(of, buf, nbytes, off, true);
60c2bc2d
TH
1459}
1460
451af504
TH
1461static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1462 char *buf, size_t nbytes, loff_t off)
60c2bc2d 1463{
451af504 1464 return tg_set_conf(of, buf, nbytes, off, false);
60c2bc2d
TH
1465}
1466
880f50e2 1467static struct cftype throtl_legacy_files[] = {
60c2bc2d
TH
1468 {
1469 .name = "throttle.read_bps_device",
9f626e37 1470 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
2da8ca82 1471 .seq_show = tg_print_conf_u64,
451af504 1472 .write = tg_set_conf_u64,
60c2bc2d
TH
1473 },
1474 {
1475 .name = "throttle.write_bps_device",
9f626e37 1476 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
2da8ca82 1477 .seq_show = tg_print_conf_u64,
451af504 1478 .write = tg_set_conf_u64,
60c2bc2d
TH
1479 },
1480 {
1481 .name = "throttle.read_iops_device",
9f626e37 1482 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
2da8ca82 1483 .seq_show = tg_print_conf_uint,
451af504 1484 .write = tg_set_conf_uint,
60c2bc2d
TH
1485 },
1486 {
1487 .name = "throttle.write_iops_device",
9f626e37 1488 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
2da8ca82 1489 .seq_show = tg_print_conf_uint,
451af504 1490 .write = tg_set_conf_uint,
60c2bc2d
TH
1491 },
1492 {
1493 .name = "throttle.io_service_bytes",
77ea7338
TH
1494 .private = (unsigned long)&blkcg_policy_throtl,
1495 .seq_show = blkg_print_stat_bytes,
60c2bc2d 1496 },
17534c6f 1497 {
1498 .name = "throttle.io_service_bytes_recursive",
1499 .private = (unsigned long)&blkcg_policy_throtl,
1500 .seq_show = blkg_print_stat_bytes_recursive,
1501 },
60c2bc2d
TH
1502 {
1503 .name = "throttle.io_serviced",
77ea7338
TH
1504 .private = (unsigned long)&blkcg_policy_throtl,
1505 .seq_show = blkg_print_stat_ios,
60c2bc2d 1506 },
17534c6f 1507 {
1508 .name = "throttle.io_serviced_recursive",
1509 .private = (unsigned long)&blkcg_policy_throtl,
1510 .seq_show = blkg_print_stat_ios_recursive,
1511 },
60c2bc2d
TH
1512 { } /* terminate */
1513};
1514
cd5ab1b0 1515static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
2ee867dc
TH
1516 int off)
1517{
1518 struct throtl_grp *tg = pd_to_tg(pd);
1519 const char *dname = blkg_dev_name(pd->blkg);
1520 char bufs[4][21] = { "max", "max", "max", "max" };
cd5ab1b0
SL
1521 u64 bps_dft;
1522 unsigned int iops_dft;
ada75b6e 1523 char idle_time[26] = "";
ec80991d 1524 char latency_time[26] = "";
2ee867dc
TH
1525
1526 if (!dname)
1527 return 0;
9f626e37 1528
cd5ab1b0
SL
1529 if (off == LIMIT_LOW) {
1530 bps_dft = 0;
1531 iops_dft = 0;
1532 } else {
1533 bps_dft = U64_MAX;
1534 iops_dft = UINT_MAX;
1535 }
1536
1537 if (tg->bps_conf[READ][off] == bps_dft &&
1538 tg->bps_conf[WRITE][off] == bps_dft &&
1539 tg->iops_conf[READ][off] == iops_dft &&
ada75b6e 1540 tg->iops_conf[WRITE][off] == iops_dft &&
ec80991d 1541 (off != LIMIT_LOW ||
b4f428ef 1542 (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
5b81fc3c 1543 tg->latency_target_conf == DFL_LATENCY_TARGET)))
2ee867dc
TH
1544 return 0;
1545
9bb67aeb 1546 if (tg->bps_conf[READ][off] != U64_MAX)
9f626e37 1547 snprintf(bufs[0], sizeof(bufs[0]), "%llu",
cd5ab1b0 1548 tg->bps_conf[READ][off]);
9bb67aeb 1549 if (tg->bps_conf[WRITE][off] != U64_MAX)
9f626e37 1550 snprintf(bufs[1], sizeof(bufs[1]), "%llu",
cd5ab1b0 1551 tg->bps_conf[WRITE][off]);
9bb67aeb 1552 if (tg->iops_conf[READ][off] != UINT_MAX)
9f626e37 1553 snprintf(bufs[2], sizeof(bufs[2]), "%u",
cd5ab1b0 1554 tg->iops_conf[READ][off]);
9bb67aeb 1555 if (tg->iops_conf[WRITE][off] != UINT_MAX)
9f626e37 1556 snprintf(bufs[3], sizeof(bufs[3]), "%u",
cd5ab1b0 1557 tg->iops_conf[WRITE][off]);
ada75b6e 1558 if (off == LIMIT_LOW) {
5b81fc3c 1559 if (tg->idletime_threshold_conf == ULONG_MAX)
ada75b6e
SL
1560 strcpy(idle_time, " idle=max");
1561 else
1562 snprintf(idle_time, sizeof(idle_time), " idle=%lu",
5b81fc3c 1563 tg->idletime_threshold_conf);
ec80991d 1564
5b81fc3c 1565 if (tg->latency_target_conf == ULONG_MAX)
ec80991d
SL
1566 strcpy(latency_time, " latency=max");
1567 else
1568 snprintf(latency_time, sizeof(latency_time),
5b81fc3c 1569 " latency=%lu", tg->latency_target_conf);
ada75b6e 1570 }
2ee867dc 1571
ec80991d
SL
1572 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1573 dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1574 latency_time);
2ee867dc
TH
1575 return 0;
1576}
1577
cd5ab1b0 1578static int tg_print_limit(struct seq_file *sf, void *v)
2ee867dc 1579{
cd5ab1b0 1580 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
2ee867dc
TH
1581 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1582 return 0;
1583}
1584
cd5ab1b0 1585static ssize_t tg_set_limit(struct kernfs_open_file *of,
2ee867dc
TH
1586 char *buf, size_t nbytes, loff_t off)
1587{
1588 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1589 struct blkg_conf_ctx ctx;
1590 struct throtl_grp *tg;
1591 u64 v[4];
ada75b6e 1592 unsigned long idle_time;
ec80991d 1593 unsigned long latency_time;
2ee867dc 1594 int ret;
cd5ab1b0 1595 int index = of_cft(of)->private;
2ee867dc
TH
1596
1597 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1598 if (ret)
1599 return ret;
1600
1601 tg = blkg_to_tg(ctx.blkg);
1602
cd5ab1b0
SL
1603 v[0] = tg->bps_conf[READ][index];
1604 v[1] = tg->bps_conf[WRITE][index];
1605 v[2] = tg->iops_conf[READ][index];
1606 v[3] = tg->iops_conf[WRITE][index];
2ee867dc 1607
5b81fc3c
SL
1608 idle_time = tg->idletime_threshold_conf;
1609 latency_time = tg->latency_target_conf;
2ee867dc
TH
1610 while (true) {
1611 char tok[27]; /* wiops=18446744073709551616 */
1612 char *p;
2ab5492d 1613 u64 val = U64_MAX;
2ee867dc
TH
1614 int len;
1615
1616 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1617 break;
1618 if (tok[0] == '\0')
1619 break;
1620 ctx.body += len;
1621
1622 ret = -EINVAL;
1623 p = tok;
1624 strsep(&p, "=");
1625 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1626 goto out_finish;
1627
1628 ret = -ERANGE;
1629 if (!val)
1630 goto out_finish;
1631
1632 ret = -EINVAL;
1633 if (!strcmp(tok, "rbps"))
1634 v[0] = val;
1635 else if (!strcmp(tok, "wbps"))
1636 v[1] = val;
1637 else if (!strcmp(tok, "riops"))
1638 v[2] = min_t(u64, val, UINT_MAX);
1639 else if (!strcmp(tok, "wiops"))
1640 v[3] = min_t(u64, val, UINT_MAX);
ada75b6e
SL
1641 else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1642 idle_time = val;
ec80991d
SL
1643 else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1644 latency_time = val;
2ee867dc
TH
1645 else
1646 goto out_finish;
1647 }
1648
cd5ab1b0
SL
1649 tg->bps_conf[READ][index] = v[0];
1650 tg->bps_conf[WRITE][index] = v[1];
1651 tg->iops_conf[READ][index] = v[2];
1652 tg->iops_conf[WRITE][index] = v[3];
2ee867dc 1653
cd5ab1b0
SL
1654 if (index == LIMIT_MAX) {
1655 tg->bps[READ][index] = v[0];
1656 tg->bps[WRITE][index] = v[1];
1657 tg->iops[READ][index] = v[2];
1658 tg->iops[WRITE][index] = v[3];
1659 }
1660 tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1661 tg->bps_conf[READ][LIMIT_MAX]);
1662 tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1663 tg->bps_conf[WRITE][LIMIT_MAX]);
1664 tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1665 tg->iops_conf[READ][LIMIT_MAX]);
1666 tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1667 tg->iops_conf[WRITE][LIMIT_MAX]);
b4f428ef
SL
1668 tg->idletime_threshold_conf = idle_time;
1669 tg->latency_target_conf = latency_time;
1670
1671 /* force user to configure all settings for low limit */
1672 if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1673 tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1674 tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1675 tg->latency_target_conf == DFL_LATENCY_TARGET) {
1676 tg->bps[READ][LIMIT_LOW] = 0;
1677 tg->bps[WRITE][LIMIT_LOW] = 0;
1678 tg->iops[READ][LIMIT_LOW] = 0;
1679 tg->iops[WRITE][LIMIT_LOW] = 0;
1680 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1681 tg->latency_target = DFL_LATENCY_TARGET;
1682 } else if (index == LIMIT_LOW) {
5b81fc3c 1683 tg->idletime_threshold = tg->idletime_threshold_conf;
5b81fc3c 1684 tg->latency_target = tg->latency_target_conf;
cd5ab1b0 1685 }
b4f428ef
SL
1686
1687 blk_throtl_update_limit_valid(tg->td);
1688 if (tg->td->limit_valid[LIMIT_LOW]) {
1689 if (index == LIMIT_LOW)
1690 tg->td->limit_index = LIMIT_LOW;
1691 } else
1692 tg->td->limit_index = LIMIT_MAX;
9bb67aeb
SL
1693 tg_conf_updated(tg, index == LIMIT_LOW &&
1694 tg->td->limit_valid[LIMIT_LOW]);
2ee867dc
TH
1695 ret = 0;
1696out_finish:
1697 blkg_conf_finish(&ctx);
1698 return ret ?: nbytes;
1699}
1700
1701static struct cftype throtl_files[] = {
cd5ab1b0
SL
1702#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1703 {
1704 .name = "low",
1705 .flags = CFTYPE_NOT_ON_ROOT,
1706 .seq_show = tg_print_limit,
1707 .write = tg_set_limit,
1708 .private = LIMIT_LOW,
1709 },
1710#endif
2ee867dc
TH
1711 {
1712 .name = "max",
1713 .flags = CFTYPE_NOT_ON_ROOT,
cd5ab1b0
SL
1714 .seq_show = tg_print_limit,
1715 .write = tg_set_limit,
1716 .private = LIMIT_MAX,
2ee867dc
TH
1717 },
1718 { } /* terminate */
1719};
1720
da527770 1721static void throtl_shutdown_wq(struct request_queue *q)
e43473b7
VG
1722{
1723 struct throtl_data *td = q->td;
1724
69df0ab0 1725 cancel_work_sync(&td->dispatch_work);
e43473b7
VG
1726}
1727
3c798398 1728static struct blkcg_policy blkcg_policy_throtl = {
2ee867dc 1729 .dfl_cftypes = throtl_files,
880f50e2 1730 .legacy_cftypes = throtl_legacy_files,
f9fcc2d3 1731
001bea73 1732 .pd_alloc_fn = throtl_pd_alloc,
f9fcc2d3 1733 .pd_init_fn = throtl_pd_init,
693e751e 1734 .pd_online_fn = throtl_pd_online,
cd5ab1b0 1735 .pd_offline_fn = throtl_pd_offline,
001bea73 1736 .pd_free_fn = throtl_pd_free,
e43473b7
VG
1737};
1738
3f0abd80
SL
1739static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1740{
1741 unsigned long rtime = jiffies, wtime = jiffies;
1742
1743 if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1744 rtime = tg->last_low_overflow_time[READ];
1745 if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1746 wtime = tg->last_low_overflow_time[WRITE];
1747 return min(rtime, wtime);
1748}
1749
1750/* tg should not be an intermediate node */
1751static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1752{
1753 struct throtl_service_queue *parent_sq;
1754 struct throtl_grp *parent = tg;
1755 unsigned long ret = __tg_last_low_overflow_time(tg);
1756
1757 while (true) {
1758 parent_sq = parent->service_queue.parent_sq;
1759 parent = sq_to_tg(parent_sq);
1760 if (!parent)
1761 break;
1762
1763 /*
1764 * The parent doesn't have low limit, it always reaches low
1765 * limit. Its overflow time is useless for children
1766 */
1767 if (!parent->bps[READ][LIMIT_LOW] &&
1768 !parent->iops[READ][LIMIT_LOW] &&
1769 !parent->bps[WRITE][LIMIT_LOW] &&
1770 !parent->iops[WRITE][LIMIT_LOW])
1771 continue;
1772 if (time_after(__tg_last_low_overflow_time(parent), ret))
1773 ret = __tg_last_low_overflow_time(parent);
1774 }
1775 return ret;
1776}
1777
9e234eea
SL
1778static bool throtl_tg_is_idle(struct throtl_grp *tg)
1779{
1780 /*
1781 * cgroup is idle if:
1782 * - single idle is too long, longer than a fixed value (in case user
b4f428ef 1783 * configure a too big threshold) or 4 times of idletime threshold
9e234eea 1784 * - average think time is more than threshold
53696b8d 1785 * - IO latency is largely below threshold
9e234eea 1786 */
b4f428ef 1787 unsigned long time;
4cff729f 1788 bool ret;
9e234eea 1789
b4f428ef
SL
1790 time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1791 ret = tg->latency_target == DFL_LATENCY_TARGET ||
1792 tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1793 (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1794 tg->avg_idletime > tg->idletime_threshold ||
1795 (tg->latency_target && tg->bio_cnt &&
53696b8d 1796 tg->bad_bio_cnt * 5 < tg->bio_cnt);
4cff729f
SL
1797 throtl_log(&tg->service_queue,
1798 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1799 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1800 tg->bio_cnt, ret, tg->td->scale);
1801 return ret;
9e234eea
SL
1802}
1803
c79892c5
SL
1804static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1805{
1806 struct throtl_service_queue *sq = &tg->service_queue;
1807 bool read_limit, write_limit;
1808
1809 /*
1810 * if cgroup reaches low limit (if low limit is 0, the cgroup always
1811 * reaches), it's ok to upgrade to next limit
1812 */
1813 read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1814 write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1815 if (!read_limit && !write_limit)
1816 return true;
1817 if (read_limit && sq->nr_queued[READ] &&
1818 (!write_limit || sq->nr_queued[WRITE]))
1819 return true;
1820 if (write_limit && sq->nr_queued[WRITE] &&
1821 (!read_limit || sq->nr_queued[READ]))
1822 return true;
aec24246
SL
1823
1824 if (time_after_eq(jiffies,
fa6fb5aa
SL
1825 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1826 throtl_tg_is_idle(tg))
aec24246 1827 return true;
c79892c5
SL
1828 return false;
1829}
1830
1831static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1832{
1833 while (true) {
1834 if (throtl_tg_can_upgrade(tg))
1835 return true;
1836 tg = sq_to_tg(tg->service_queue.parent_sq);
1837 if (!tg || !tg_to_blkg(tg)->parent)
1838 return false;
1839 }
1840 return false;
1841}
1842
1843static bool throtl_can_upgrade(struct throtl_data *td,
1844 struct throtl_grp *this_tg)
1845{
1846 struct cgroup_subsys_state *pos_css;
1847 struct blkcg_gq *blkg;
1848
1849 if (td->limit_index != LIMIT_LOW)
1850 return false;
1851
297e3d85 1852 if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
3f0abd80
SL
1853 return false;
1854
c79892c5
SL
1855 rcu_read_lock();
1856 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1857 struct throtl_grp *tg = blkg_to_tg(blkg);
1858
1859 if (tg == this_tg)
1860 continue;
1861 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1862 continue;
1863 if (!throtl_hierarchy_can_upgrade(tg)) {
1864 rcu_read_unlock();
1865 return false;
1866 }
1867 }
1868 rcu_read_unlock();
1869 return true;
1870}
1871
fa6fb5aa
SL
1872static void throtl_upgrade_check(struct throtl_grp *tg)
1873{
1874 unsigned long now = jiffies;
1875
1876 if (tg->td->limit_index != LIMIT_LOW)
1877 return;
1878
1879 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1880 return;
1881
1882 tg->last_check_time = now;
1883
1884 if (!time_after_eq(now,
1885 __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1886 return;
1887
1888 if (throtl_can_upgrade(tg->td, NULL))
1889 throtl_upgrade_state(tg->td);
1890}
1891
c79892c5
SL
1892static void throtl_upgrade_state(struct throtl_data *td)
1893{
1894 struct cgroup_subsys_state *pos_css;
1895 struct blkcg_gq *blkg;
1896
4cff729f 1897 throtl_log(&td->service_queue, "upgrade to max");
c79892c5 1898 td->limit_index = LIMIT_MAX;
3f0abd80 1899 td->low_upgrade_time = jiffies;
7394e31f 1900 td->scale = 0;
c79892c5
SL
1901 rcu_read_lock();
1902 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1903 struct throtl_grp *tg = blkg_to_tg(blkg);
1904 struct throtl_service_queue *sq = &tg->service_queue;
1905
1906 tg->disptime = jiffies - 1;
1907 throtl_select_dispatch(sq);
4f02fb76 1908 throtl_schedule_next_dispatch(sq, true);
c79892c5
SL
1909 }
1910 rcu_read_unlock();
1911 throtl_select_dispatch(&td->service_queue);
4f02fb76 1912 throtl_schedule_next_dispatch(&td->service_queue, true);
c79892c5
SL
1913 queue_work(kthrotld_workqueue, &td->dispatch_work);
1914}
1915
3f0abd80
SL
1916static void throtl_downgrade_state(struct throtl_data *td, int new)
1917{
7394e31f
SL
1918 td->scale /= 2;
1919
4cff729f 1920 throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
7394e31f
SL
1921 if (td->scale) {
1922 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1923 return;
1924 }
1925
3f0abd80
SL
1926 td->limit_index = new;
1927 td->low_downgrade_time = jiffies;
1928}
1929
1930static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1931{
1932 struct throtl_data *td = tg->td;
1933 unsigned long now = jiffies;
1934
1935 /*
1936 * If cgroup is below low limit, consider downgrade and throttle other
1937 * cgroups
1938 */
297e3d85
SL
1939 if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
1940 time_after_eq(now, tg_last_low_overflow_time(tg) +
fa6fb5aa
SL
1941 td->throtl_slice) &&
1942 (!throtl_tg_is_idle(tg) ||
1943 !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
3f0abd80
SL
1944 return true;
1945 return false;
1946}
1947
1948static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1949{
1950 while (true) {
1951 if (!throtl_tg_can_downgrade(tg))
1952 return false;
1953 tg = sq_to_tg(tg->service_queue.parent_sq);
1954 if (!tg || !tg_to_blkg(tg)->parent)
1955 break;
1956 }
1957 return true;
1958}
1959
1960static void throtl_downgrade_check(struct throtl_grp *tg)
1961{
1962 uint64_t bps;
1963 unsigned int iops;
1964 unsigned long elapsed_time;
1965 unsigned long now = jiffies;
1966
1967 if (tg->td->limit_index != LIMIT_MAX ||
1968 !tg->td->limit_valid[LIMIT_LOW])
1969 return;
1970 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1971 return;
297e3d85 1972 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
3f0abd80
SL
1973 return;
1974
1975 elapsed_time = now - tg->last_check_time;
1976 tg->last_check_time = now;
1977
297e3d85
SL
1978 if (time_before(now, tg_last_low_overflow_time(tg) +
1979 tg->td->throtl_slice))
3f0abd80
SL
1980 return;
1981
1982 if (tg->bps[READ][LIMIT_LOW]) {
1983 bps = tg->last_bytes_disp[READ] * HZ;
1984 do_div(bps, elapsed_time);
1985 if (bps >= tg->bps[READ][LIMIT_LOW])
1986 tg->last_low_overflow_time[READ] = now;
1987 }
1988
1989 if (tg->bps[WRITE][LIMIT_LOW]) {
1990 bps = tg->last_bytes_disp[WRITE] * HZ;
1991 do_div(bps, elapsed_time);
1992 if (bps >= tg->bps[WRITE][LIMIT_LOW])
1993 tg->last_low_overflow_time[WRITE] = now;
1994 }
1995
1996 if (tg->iops[READ][LIMIT_LOW]) {
1997 iops = tg->last_io_disp[READ] * HZ / elapsed_time;
1998 if (iops >= tg->iops[READ][LIMIT_LOW])
1999 tg->last_low_overflow_time[READ] = now;
2000 }
2001
2002 if (tg->iops[WRITE][LIMIT_LOW]) {
2003 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
2004 if (iops >= tg->iops[WRITE][LIMIT_LOW])
2005 tg->last_low_overflow_time[WRITE] = now;
2006 }
2007
2008 /*
2009 * If cgroup is below low limit, consider downgrade and throttle other
2010 * cgroups
2011 */
2012 if (throtl_hierarchy_can_downgrade(tg))
2013 throtl_downgrade_state(tg->td, LIMIT_LOW);
2014
2015 tg->last_bytes_disp[READ] = 0;
2016 tg->last_bytes_disp[WRITE] = 0;
2017 tg->last_io_disp[READ] = 0;
2018 tg->last_io_disp[WRITE] = 0;
2019}
2020
9e234eea
SL
2021static void blk_throtl_update_idletime(struct throtl_grp *tg)
2022{
2023 unsigned long now = ktime_get_ns() >> 10;
2024 unsigned long last_finish_time = tg->last_finish_time;
2025
2026 if (now <= last_finish_time || last_finish_time == 0 ||
2027 last_finish_time == tg->checked_last_finish_time)
2028 return;
2029
2030 tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2031 tg->checked_last_finish_time = last_finish_time;
2032}
2033
b9147dd1
SL
2034#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2035static void throtl_update_latency_buckets(struct throtl_data *td)
2036{
b889bf66
JQ
2037 struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2038 int i, cpu, rw;
2039 unsigned long last_latency[2] = { 0 };
2040 unsigned long latency[2];
b9147dd1
SL
2041
2042 if (!blk_queue_nonrot(td->queue))
2043 return;
2044 if (time_before(jiffies, td->last_calculate_time + HZ))
2045 return;
2046 td->last_calculate_time = jiffies;
2047
2048 memset(avg_latency, 0, sizeof(avg_latency));
b889bf66
JQ
2049 for (rw = READ; rw <= WRITE; rw++) {
2050 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2051 struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2052
2053 for_each_possible_cpu(cpu) {
2054 struct latency_bucket *bucket;
2055
2056 /* this isn't race free, but ok in practice */
2057 bucket = per_cpu_ptr(td->latency_buckets[rw],
2058 cpu);
2059 tmp->total_latency += bucket[i].total_latency;
2060 tmp->samples += bucket[i].samples;
2061 bucket[i].total_latency = 0;
2062 bucket[i].samples = 0;
2063 }
b9147dd1 2064
b889bf66
JQ
2065 if (tmp->samples >= 32) {
2066 int samples = tmp->samples;
b9147dd1 2067
b889bf66 2068 latency[rw] = tmp->total_latency;
b9147dd1 2069
b889bf66
JQ
2070 tmp->total_latency = 0;
2071 tmp->samples = 0;
2072 latency[rw] /= samples;
2073 if (latency[rw] == 0)
2074 continue;
2075 avg_latency[rw][i].latency = latency[rw];
2076 }
b9147dd1
SL
2077 }
2078 }
2079
b889bf66
JQ
2080 for (rw = READ; rw <= WRITE; rw++) {
2081 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2082 if (!avg_latency[rw][i].latency) {
2083 if (td->avg_buckets[rw][i].latency < last_latency[rw])
2084 td->avg_buckets[rw][i].latency =
2085 last_latency[rw];
2086 continue;
2087 }
b9147dd1 2088
b889bf66
JQ
2089 if (!td->avg_buckets[rw][i].valid)
2090 latency[rw] = avg_latency[rw][i].latency;
2091 else
2092 latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2093 avg_latency[rw][i].latency) >> 3;
b9147dd1 2094
b889bf66
JQ
2095 td->avg_buckets[rw][i].latency = max(latency[rw],
2096 last_latency[rw]);
2097 td->avg_buckets[rw][i].valid = true;
2098 last_latency[rw] = td->avg_buckets[rw][i].latency;
2099 }
b9147dd1 2100 }
4cff729f
SL
2101
2102 for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2103 throtl_log(&td->service_queue,
b889bf66
JQ
2104 "Latency bucket %d: read latency=%ld, read valid=%d, "
2105 "write latency=%ld, write valid=%d", i,
2106 td->avg_buckets[READ][i].latency,
2107 td->avg_buckets[READ][i].valid,
2108 td->avg_buckets[WRITE][i].latency,
2109 td->avg_buckets[WRITE][i].valid);
b9147dd1
SL
2110}
2111#else
2112static inline void throtl_update_latency_buckets(struct throtl_data *td)
2113{
2114}
2115#endif
2116
ae118896
TH
2117bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
2118 struct bio *bio)
e43473b7 2119{
c5cc2070 2120 struct throtl_qnode *qn = NULL;
b5f2954d 2121 struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
73f0d49a 2122 struct throtl_service_queue *sq;
0e9f4164 2123 bool rw = bio_data_dir(bio);
bc16a4f9 2124 bool throttled = false;
b9147dd1 2125 struct throtl_data *td = tg->td;
e43473b7 2126
ae118896
TH
2127 WARN_ON_ONCE(!rcu_read_lock_held());
2128
2a0f61e6 2129 /* see throtl_charge_bio() */
8d2bbd4c 2130 if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw])
bc16a4f9 2131 goto out;
e43473b7 2132
0d945c1f 2133 spin_lock_irq(&q->queue_lock);
c9589f03 2134
b9147dd1
SL
2135 throtl_update_latency_buckets(td);
2136
9e234eea
SL
2137 blk_throtl_update_idletime(tg);
2138
73f0d49a
TH
2139 sq = &tg->service_queue;
2140
c79892c5 2141again:
9e660acf 2142 while (true) {
3f0abd80
SL
2143 if (tg->last_low_overflow_time[rw] == 0)
2144 tg->last_low_overflow_time[rw] = jiffies;
2145 throtl_downgrade_check(tg);
fa6fb5aa 2146 throtl_upgrade_check(tg);
9e660acf
TH
2147 /* throtl is FIFO - if bios are already queued, should queue */
2148 if (sq->nr_queued[rw])
2149 break;
de701c74 2150
9e660acf 2151 /* if above limits, break to queue */
c79892c5 2152 if (!tg_may_dispatch(tg, bio, NULL)) {
3f0abd80 2153 tg->last_low_overflow_time[rw] = jiffies;
b9147dd1
SL
2154 if (throtl_can_upgrade(td, tg)) {
2155 throtl_upgrade_state(td);
c79892c5
SL
2156 goto again;
2157 }
9e660acf 2158 break;
c79892c5 2159 }
9e660acf
TH
2160
2161 /* within limits, let's charge and dispatch directly */
e43473b7 2162 throtl_charge_bio(tg, bio);
04521db0
VG
2163
2164 /*
2165 * We need to trim slice even when bios are not being queued
2166 * otherwise it might happen that a bio is not queued for
2167 * a long time and slice keeps on extending and trim is not
2168 * called for a long time. Now if limits are reduced suddenly
2169 * we take into account all the IO dispatched so far at new
2170 * low rate and * newly queued IO gets a really long dispatch
2171 * time.
2172 *
2173 * So keep on trimming slice even if bio is not queued.
2174 */
0f3457f6 2175 throtl_trim_slice(tg, rw);
9e660acf
TH
2176
2177 /*
2178 * @bio passed through this layer without being throttled.
2179 * Climb up the ladder. If we''re already at the top, it
2180 * can be executed directly.
2181 */
c5cc2070 2182 qn = &tg->qnode_on_parent[rw];
9e660acf
TH
2183 sq = sq->parent_sq;
2184 tg = sq_to_tg(sq);
2185 if (!tg)
2186 goto out_unlock;
e43473b7
VG
2187 }
2188
9e660acf 2189 /* out-of-limit, queue to @tg */
fda6f272
TH
2190 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2191 rw == READ ? 'R' : 'W',
9f626e37
SL
2192 tg->bytes_disp[rw], bio->bi_iter.bi_size,
2193 tg_bps_limit(tg, rw),
2194 tg->io_disp[rw], tg_iops_limit(tg, rw),
fda6f272 2195 sq->nr_queued[READ], sq->nr_queued[WRITE]);
e43473b7 2196
3f0abd80
SL
2197 tg->last_low_overflow_time[rw] = jiffies;
2198
b9147dd1 2199 td->nr_queued[rw]++;
c5cc2070 2200 throtl_add_bio_tg(bio, qn, tg);
bc16a4f9 2201 throttled = true;
e43473b7 2202
7f52f98c
TH
2203 /*
2204 * Update @tg's dispatch time and force schedule dispatch if @tg
2205 * was empty before @bio. The forced scheduling isn't likely to
2206 * cause undue delay as @bio is likely to be dispatched directly if
2207 * its @tg's disptime is not in the future.
2208 */
0e9f4164 2209 if (tg->flags & THROTL_TG_WAS_EMPTY) {
77216b04 2210 tg_update_disptime(tg);
7f52f98c 2211 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
e43473b7
VG
2212 }
2213
bc16a4f9 2214out_unlock:
0d945c1f 2215 spin_unlock_irq(&q->queue_lock);
bc16a4f9 2216out:
111be883 2217 bio_set_flag(bio, BIO_THROTTLED);
b9147dd1
SL
2218
2219#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2220 if (throttled || !td->track_bio_latency)
5238dcf4 2221 bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
b9147dd1 2222#endif
bc16a4f9 2223 return throttled;
e43473b7
VG
2224}
2225
9e234eea 2226#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
b9147dd1
SL
2227static void throtl_track_latency(struct throtl_data *td, sector_t size,
2228 int op, unsigned long time)
2229{
2230 struct latency_bucket *latency;
2231 int index;
2232
b889bf66
JQ
2233 if (!td || td->limit_index != LIMIT_LOW ||
2234 !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
b9147dd1
SL
2235 !blk_queue_nonrot(td->queue))
2236 return;
2237
2238 index = request_bucket_index(size);
2239
b889bf66 2240 latency = get_cpu_ptr(td->latency_buckets[op]);
b9147dd1
SL
2241 latency[index].total_latency += time;
2242 latency[index].samples++;
b889bf66 2243 put_cpu_ptr(td->latency_buckets[op]);
b9147dd1
SL
2244}
2245
2246void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2247{
2248 struct request_queue *q = rq->q;
2249 struct throtl_data *td = q->td;
2250
3d244306
HT
2251 throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq),
2252 time_ns >> 10);
b9147dd1
SL
2253}
2254
9e234eea
SL
2255void blk_throtl_bio_endio(struct bio *bio)
2256{
08e18eab 2257 struct blkcg_gq *blkg;
9e234eea 2258 struct throtl_grp *tg;
b9147dd1
SL
2259 u64 finish_time_ns;
2260 unsigned long finish_time;
2261 unsigned long start_time;
2262 unsigned long lat;
b889bf66 2263 int rw = bio_data_dir(bio);
9e234eea 2264
08e18eab
JB
2265 blkg = bio->bi_blkg;
2266 if (!blkg)
9e234eea 2267 return;
08e18eab 2268 tg = blkg_to_tg(blkg);
9e234eea 2269
b9147dd1
SL
2270 finish_time_ns = ktime_get_ns();
2271 tg->last_finish_time = finish_time_ns >> 10;
2272
5238dcf4
OS
2273 start_time = bio_issue_time(&bio->bi_issue) >> 10;
2274 finish_time = __bio_issue_time(finish_time_ns) >> 10;
08e18eab 2275 if (!start_time || finish_time <= start_time)
53696b8d
SL
2276 return;
2277
2278 lat = finish_time - start_time;
b9147dd1 2279 /* this is only for bio based driver */
5238dcf4
OS
2280 if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2281 throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2282 bio_op(bio), lat);
53696b8d 2283
6679a90c 2284 if (tg->latency_target && lat >= tg->td->filtered_latency) {
53696b8d
SL
2285 int bucket;
2286 unsigned int threshold;
2287
5238dcf4 2288 bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
b889bf66 2289 threshold = tg->td->avg_buckets[rw][bucket].latency +
53696b8d
SL
2290 tg->latency_target;
2291 if (lat > threshold)
2292 tg->bad_bio_cnt++;
2293 /*
2294 * Not race free, could get wrong count, which means cgroups
2295 * will be throttled
2296 */
2297 tg->bio_cnt++;
2298 }
2299
2300 if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2301 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2302 tg->bio_cnt /= 2;
2303 tg->bad_bio_cnt /= 2;
b9147dd1 2304 }
9e234eea
SL
2305}
2306#endif
2307
2a12f0dc
TH
2308/*
2309 * Dispatch all bios from all children tg's queued on @parent_sq. On
2310 * return, @parent_sq is guaranteed to not have any active children tg's
2311 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
2312 */
2313static void tg_drain_bios(struct throtl_service_queue *parent_sq)
2314{
2315 struct throtl_grp *tg;
2316
2317 while ((tg = throtl_rb_first(parent_sq))) {
2318 struct throtl_service_queue *sq = &tg->service_queue;
2319 struct bio *bio;
2320
2321 throtl_dequeue_tg(tg);
2322
c5cc2070 2323 while ((bio = throtl_peek_queued(&sq->queued[READ])))
2a12f0dc 2324 tg_dispatch_one_bio(tg, bio_data_dir(bio));
c5cc2070 2325 while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
2a12f0dc
TH
2326 tg_dispatch_one_bio(tg, bio_data_dir(bio));
2327 }
2328}
2329
c9a929dd
TH
2330/**
2331 * blk_throtl_drain - drain throttled bios
2332 * @q: request_queue to drain throttled bios for
2333 *
2334 * Dispatch all currently throttled bios on @q through ->make_request_fn().
2335 */
2336void blk_throtl_drain(struct request_queue *q)
0d945c1f 2337 __releases(&q->queue_lock) __acquires(&q->queue_lock)
c9a929dd
TH
2338{
2339 struct throtl_data *td = q->td;
2a12f0dc 2340 struct blkcg_gq *blkg;
492eb21b 2341 struct cgroup_subsys_state *pos_css;
c9a929dd 2342 struct bio *bio;
651930bc 2343 int rw;
c9a929dd 2344
2a12f0dc 2345 rcu_read_lock();
c9a929dd 2346
2a12f0dc
TH
2347 /*
2348 * Drain each tg while doing post-order walk on the blkg tree, so
2349 * that all bios are propagated to td->service_queue. It'd be
2350 * better to walk service_queue tree directly but blkg walk is
2351 * easier.
2352 */
492eb21b 2353 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
2a12f0dc 2354 tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
73f0d49a 2355
2a12f0dc
TH
2356 /* finally, transfer bios from top-level tg's into the td */
2357 tg_drain_bios(&td->service_queue);
2358
2359 rcu_read_unlock();
0d945c1f 2360 spin_unlock_irq(&q->queue_lock);
c9a929dd 2361
2a12f0dc 2362 /* all bios now should be in td->service_queue, issue them */
651930bc 2363 for (rw = READ; rw <= WRITE; rw++)
c5cc2070
TH
2364 while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
2365 NULL)))
651930bc 2366 generic_make_request(bio);
c9a929dd 2367
0d945c1f 2368 spin_lock_irq(&q->queue_lock);
c9a929dd
TH
2369}
2370
e43473b7
VG
2371int blk_throtl_init(struct request_queue *q)
2372{
2373 struct throtl_data *td;
a2b1693b 2374 int ret;
e43473b7
VG
2375
2376 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2377 if (!td)
2378 return -ENOMEM;
b889bf66 2379 td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
b9147dd1 2380 LATENCY_BUCKET_SIZE, __alignof__(u64));
b889bf66
JQ
2381 if (!td->latency_buckets[READ]) {
2382 kfree(td);
2383 return -ENOMEM;
2384 }
2385 td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
b9147dd1 2386 LATENCY_BUCKET_SIZE, __alignof__(u64));
b889bf66
JQ
2387 if (!td->latency_buckets[WRITE]) {
2388 free_percpu(td->latency_buckets[READ]);
b9147dd1
SL
2389 kfree(td);
2390 return -ENOMEM;
2391 }
e43473b7 2392
69df0ab0 2393 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
b2ce2643 2394 throtl_service_queue_init(&td->service_queue);
e43473b7 2395
cd1604fa 2396 q->td = td;
29b12589 2397 td->queue = q;
02977e4a 2398
9f626e37 2399 td->limit_valid[LIMIT_MAX] = true;
cd5ab1b0 2400 td->limit_index = LIMIT_MAX;
3f0abd80
SL
2401 td->low_upgrade_time = jiffies;
2402 td->low_downgrade_time = jiffies;
9e234eea 2403
a2b1693b 2404 /* activate policy */
3c798398 2405 ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
b9147dd1 2406 if (ret) {
b889bf66
JQ
2407 free_percpu(td->latency_buckets[READ]);
2408 free_percpu(td->latency_buckets[WRITE]);
f51b802c 2409 kfree(td);
b9147dd1 2410 }
a2b1693b 2411 return ret;
e43473b7
VG
2412}
2413
2414void blk_throtl_exit(struct request_queue *q)
2415{
c875f4d0 2416 BUG_ON(!q->td);
da527770 2417 throtl_shutdown_wq(q);
3c798398 2418 blkcg_deactivate_policy(q, &blkcg_policy_throtl);
b889bf66
JQ
2419 free_percpu(q->td->latency_buckets[READ]);
2420 free_percpu(q->td->latency_buckets[WRITE]);
c9a929dd 2421 kfree(q->td);
e43473b7
VG
2422}
2423
d61fcfa4
SL
2424void blk_throtl_register_queue(struct request_queue *q)
2425{
2426 struct throtl_data *td;
6679a90c 2427 int i;
d61fcfa4
SL
2428
2429 td = q->td;
2430 BUG_ON(!td);
2431
6679a90c 2432 if (blk_queue_nonrot(q)) {
d61fcfa4 2433 td->throtl_slice = DFL_THROTL_SLICE_SSD;
6679a90c
SL
2434 td->filtered_latency = LATENCY_FILTERED_SSD;
2435 } else {
d61fcfa4 2436 td->throtl_slice = DFL_THROTL_SLICE_HD;
6679a90c 2437 td->filtered_latency = LATENCY_FILTERED_HD;
b889bf66
JQ
2438 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2439 td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2440 td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2441 }
6679a90c 2442 }
d61fcfa4
SL
2443#ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2444 /* if no low limit, use previous default */
2445 td->throtl_slice = DFL_THROTL_SLICE_HD;
2446#endif
9e234eea 2447
344e9ffc 2448 td->track_bio_latency = !queue_is_mq(q);
b9147dd1
SL
2449 if (!td->track_bio_latency)
2450 blk_stat_enable_accounting(q);
d61fcfa4
SL
2451}
2452
297e3d85
SL
2453#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2454ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2455{
2456 if (!q->td)
2457 return -EINVAL;
2458 return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2459}
2460
2461ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2462 const char *page, size_t count)
2463{
2464 unsigned long v;
2465 unsigned long t;
2466
2467 if (!q->td)
2468 return -EINVAL;
2469 if (kstrtoul(page, 10, &v))
2470 return -EINVAL;
2471 t = msecs_to_jiffies(v);
2472 if (t == 0 || t > MAX_THROTL_SLICE)
2473 return -EINVAL;
2474 q->td->throtl_slice = t;
2475 return count;
2476}
2477#endif
2478
e43473b7
VG
2479static int __init throtl_init(void)
2480{
450adcbe
VG
2481 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2482 if (!kthrotld_workqueue)
2483 panic("Failed to create kthrotld\n");
2484
3c798398 2485 return blkcg_policy_register(&blkcg_policy_throtl);
e43473b7
VG
2486}
2487
2488module_init(throtl_init);