Merge tag 'acpi-4.20-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[linux-2.6-block.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
f75782e4 12#include <linux/kmemleak.h>
320ae51f
JA
13#include <linux/mm.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/workqueue.h>
17#include <linux/smp.h>
18#include <linux/llist.h>
19#include <linux/list_sort.h>
20#include <linux/cpu.h>
21#include <linux/cache.h>
22#include <linux/sched/sysctl.h>
105ab3d8 23#include <linux/sched/topology.h>
174cd4b1 24#include <linux/sched/signal.h>
320ae51f 25#include <linux/delay.h>
aedcd72f 26#include <linux/crash_dump.h>
88c7b2b7 27#include <linux/prefetch.h>
320ae51f
JA
28
29#include <trace/events/block.h>
30
31#include <linux/blk-mq.h>
32#include "blk.h"
33#include "blk-mq.h"
9c1051aa 34#include "blk-mq-debugfs.h"
320ae51f 35#include "blk-mq-tag.h"
986d413b 36#include "blk-pm.h"
cf43e6be 37#include "blk-stat.h"
bd166ef1 38#include "blk-mq-sched.h"
c1c80384 39#include "blk-rq-qos.h"
320ae51f 40
ea435e1b 41static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
34dbad5d
OS
42static void blk_mq_poll_stats_start(struct request_queue *q);
43static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44
720b8ccc
SB
45static int blk_mq_poll_stats_bkt(const struct request *rq)
46{
47 int ddir, bytes, bucket;
48
99c749a4 49 ddir = rq_data_dir(rq);
720b8ccc
SB
50 bytes = blk_rq_bytes(rq);
51
52 bucket = ddir + 2*(ilog2(bytes) - 9);
53
54 if (bucket < 0)
55 return -1;
56 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
57 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
58
59 return bucket;
60}
61
320ae51f
JA
62/*
63 * Check if any of the ctx's have pending work in this hardware queue
64 */
79f720a7 65static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
320ae51f 66{
79f720a7
JA
67 return !list_empty_careful(&hctx->dispatch) ||
68 sbitmap_any_bit_set(&hctx->ctx_map) ||
bd166ef1 69 blk_mq_sched_has_work(hctx);
1429d7c9
JA
70}
71
320ae51f
JA
72/*
73 * Mark this ctx as having pending work in this hardware queue
74 */
75static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
76 struct blk_mq_ctx *ctx)
77{
88459642
OS
78 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
79 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
1429d7c9
JA
80}
81
82static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
83 struct blk_mq_ctx *ctx)
84{
88459642 85 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
320ae51f
JA
86}
87
f299b7c7
JA
88struct mq_inflight {
89 struct hd_struct *part;
90 unsigned int *inflight;
91};
92
93static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
94 struct request *rq, void *priv,
95 bool reserved)
96{
97 struct mq_inflight *mi = priv;
98
6131837b
OS
99 /*
100 * index[0] counts the specific partition that was asked for. index[1]
101 * counts the ones that are active on the whole device, so increment
102 * that if mi->part is indeed a partition, and not a whole device.
103 */
104 if (rq->part == mi->part)
105 mi->inflight[0]++;
106 if (mi->part->partno)
107 mi->inflight[1]++;
f299b7c7
JA
108}
109
110void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
111 unsigned int inflight[2])
112{
113 struct mq_inflight mi = { .part = part, .inflight = inflight, };
114
b8d62b3a 115 inflight[0] = inflight[1] = 0;
f299b7c7
JA
116 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
117}
118
bf0ddaba
OS
119static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
120 struct request *rq, void *priv,
121 bool reserved)
122{
123 struct mq_inflight *mi = priv;
124
125 if (rq->part == mi->part)
126 mi->inflight[rq_data_dir(rq)]++;
127}
128
129void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
130 unsigned int inflight[2])
131{
132 struct mq_inflight mi = { .part = part, .inflight = inflight, };
133
134 inflight[0] = inflight[1] = 0;
135 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
136}
137
1671d522 138void blk_freeze_queue_start(struct request_queue *q)
43a5e4e2 139{
4ecd4fef 140 int freeze_depth;
cddd5d17 141
4ecd4fef
CH
142 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
143 if (freeze_depth == 1) {
3ef28e83 144 percpu_ref_kill(&q->q_usage_counter);
055f6e18
ML
145 if (q->mq_ops)
146 blk_mq_run_hw_queues(q, false);
cddd5d17 147 }
f3af020b 148}
1671d522 149EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
f3af020b 150
6bae363e 151void blk_mq_freeze_queue_wait(struct request_queue *q)
f3af020b 152{
3ef28e83 153 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2 154}
6bae363e 155EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
43a5e4e2 156
f91328c4
KB
157int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
158 unsigned long timeout)
159{
160 return wait_event_timeout(q->mq_freeze_wq,
161 percpu_ref_is_zero(&q->q_usage_counter),
162 timeout);
163}
164EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
43a5e4e2 165
f3af020b
TH
166/*
167 * Guarantee no request is in use, so we can change any data structure of
168 * the queue afterward.
169 */
3ef28e83 170void blk_freeze_queue(struct request_queue *q)
f3af020b 171{
3ef28e83
DW
172 /*
173 * In the !blk_mq case we are only calling this to kill the
174 * q_usage_counter, otherwise this increases the freeze depth
175 * and waits for it to return to zero. For this reason there is
176 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
177 * exported to drivers as the only user for unfreeze is blk_mq.
178 */
1671d522 179 blk_freeze_queue_start(q);
454be724
ML
180 if (!q->mq_ops)
181 blk_drain_queue(q);
f3af020b
TH
182 blk_mq_freeze_queue_wait(q);
183}
3ef28e83
DW
184
185void blk_mq_freeze_queue(struct request_queue *q)
186{
187 /*
188 * ...just an alias to keep freeze and unfreeze actions balanced
189 * in the blk_mq_* namespace
190 */
191 blk_freeze_queue(q);
192}
c761d96b 193EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 194
b4c6a028 195void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 196{
4ecd4fef 197 int freeze_depth;
320ae51f 198
4ecd4fef
CH
199 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
200 WARN_ON_ONCE(freeze_depth < 0);
201 if (!freeze_depth) {
bdd63160 202 percpu_ref_resurrect(&q->q_usage_counter);
320ae51f 203 wake_up_all(&q->mq_freeze_wq);
add703fd 204 }
320ae51f 205}
b4c6a028 206EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 207
852ec809
BVA
208/*
209 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
210 * mpt3sas driver such that this function can be removed.
211 */
212void blk_mq_quiesce_queue_nowait(struct request_queue *q)
213{
8814ce8a 214 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
852ec809
BVA
215}
216EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
217
6a83e74d 218/**
69e07c4a 219 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
6a83e74d
BVA
220 * @q: request queue.
221 *
222 * Note: this function does not prevent that the struct request end_io()
69e07c4a
ML
223 * callback function is invoked. Once this function is returned, we make
224 * sure no dispatch can happen until the queue is unquiesced via
225 * blk_mq_unquiesce_queue().
6a83e74d
BVA
226 */
227void blk_mq_quiesce_queue(struct request_queue *q)
228{
229 struct blk_mq_hw_ctx *hctx;
230 unsigned int i;
231 bool rcu = false;
232
1d9e9bc6 233 blk_mq_quiesce_queue_nowait(q);
f4560ffe 234
6a83e74d
BVA
235 queue_for_each_hw_ctx(q, hctx, i) {
236 if (hctx->flags & BLK_MQ_F_BLOCKING)
05707b64 237 synchronize_srcu(hctx->srcu);
6a83e74d
BVA
238 else
239 rcu = true;
240 }
241 if (rcu)
242 synchronize_rcu();
243}
244EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
245
e4e73913
ML
246/*
247 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
248 * @q: request queue.
249 *
250 * This function recovers queue into the state before quiescing
251 * which is done by blk_mq_quiesce_queue.
252 */
253void blk_mq_unquiesce_queue(struct request_queue *q)
254{
8814ce8a 255 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
f4560ffe 256
1d9e9bc6
ML
257 /* dispatch requests which are inserted during quiescing */
258 blk_mq_run_hw_queues(q, true);
e4e73913
ML
259}
260EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
261
aed3ea94
JA
262void blk_mq_wake_waiters(struct request_queue *q)
263{
264 struct blk_mq_hw_ctx *hctx;
265 unsigned int i;
266
267 queue_for_each_hw_ctx(q, hctx, i)
268 if (blk_mq_hw_queue_mapped(hctx))
269 blk_mq_tag_wakeup_all(hctx->tags, true);
270}
271
320ae51f
JA
272bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
273{
274 return blk_mq_has_free_tags(hctx->tags);
275}
276EXPORT_SYMBOL(blk_mq_can_queue);
277
e4cdf1a1
CH
278static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
279 unsigned int tag, unsigned int op)
320ae51f 280{
e4cdf1a1
CH
281 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
282 struct request *rq = tags->static_rqs[tag];
bf9ae8c5 283 req_flags_t rq_flags = 0;
c3a148d2 284
e4cdf1a1
CH
285 if (data->flags & BLK_MQ_REQ_INTERNAL) {
286 rq->tag = -1;
287 rq->internal_tag = tag;
288 } else {
d263ed99 289 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
bf9ae8c5 290 rq_flags = RQF_MQ_INFLIGHT;
e4cdf1a1
CH
291 atomic_inc(&data->hctx->nr_active);
292 }
293 rq->tag = tag;
294 rq->internal_tag = -1;
295 data->hctx->tags->rqs[rq->tag] = rq;
296 }
297
af76e555 298 /* csd/requeue_work/fifo_time is initialized before use */
e4cdf1a1
CH
299 rq->q = data->q;
300 rq->mq_ctx = data->ctx;
bf9ae8c5 301 rq->rq_flags = rq_flags;
7c3fb70f 302 rq->cpu = -1;
ef295ecf 303 rq->cmd_flags = op;
1b6d65a0
BVA
304 if (data->flags & BLK_MQ_REQ_PREEMPT)
305 rq->rq_flags |= RQF_PREEMPT;
e4cdf1a1 306 if (blk_queue_io_stat(data->q))
e8064021 307 rq->rq_flags |= RQF_IO_STAT;
7c3fb70f 308 INIT_LIST_HEAD(&rq->queuelist);
af76e555
CH
309 INIT_HLIST_NODE(&rq->hash);
310 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
311 rq->rq_disk = NULL;
312 rq->part = NULL;
522a7775 313 rq->start_time_ns = ktime_get_ns();
544ccc8d 314 rq->io_start_time_ns = 0;
af76e555
CH
315 rq->nr_phys_segments = 0;
316#if defined(CONFIG_BLK_DEV_INTEGRITY)
317 rq->nr_integrity_segments = 0;
318#endif
af76e555
CH
319 rq->special = NULL;
320 /* tag was already set */
af76e555 321 rq->extra_len = 0;
e14575b3 322 rq->__deadline = 0;
af76e555 323
af76e555 324 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
325 rq->timeout = 0;
326
af76e555
CH
327 rq->end_io = NULL;
328 rq->end_io_data = NULL;
329 rq->next_rq = NULL;
330
7c3fb70f
JA
331#ifdef CONFIG_BLK_CGROUP
332 rq->rl = NULL;
7c3fb70f
JA
333#endif
334
e4cdf1a1 335 data->ctx->rq_dispatched[op_is_sync(op)]++;
12f5b931 336 refcount_set(&rq->ref, 1);
e4cdf1a1 337 return rq;
5dee8577
CH
338}
339
d2c0d383
CH
340static struct request *blk_mq_get_request(struct request_queue *q,
341 struct bio *bio, unsigned int op,
342 struct blk_mq_alloc_data *data)
343{
344 struct elevator_queue *e = q->elevator;
345 struct request *rq;
e4cdf1a1 346 unsigned int tag;
21e768b4 347 bool put_ctx_on_error = false;
d2c0d383
CH
348
349 blk_queue_enter_live(q);
350 data->q = q;
21e768b4
BVA
351 if (likely(!data->ctx)) {
352 data->ctx = blk_mq_get_ctx(q);
353 put_ctx_on_error = true;
354 }
d2c0d383
CH
355 if (likely(!data->hctx))
356 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
03a07c92
GR
357 if (op & REQ_NOWAIT)
358 data->flags |= BLK_MQ_REQ_NOWAIT;
d2c0d383
CH
359
360 if (e) {
361 data->flags |= BLK_MQ_REQ_INTERNAL;
362
363 /*
364 * Flush requests are special and go directly to the
17a51199
JA
365 * dispatch list. Don't include reserved tags in the
366 * limiting, as it isn't useful.
d2c0d383 367 */
17a51199
JA
368 if (!op_is_flush(op) && e->type->ops.mq.limit_depth &&
369 !(data->flags & BLK_MQ_REQ_RESERVED))
5bbf4e5a 370 e->type->ops.mq.limit_depth(op, data);
d263ed99
JW
371 } else {
372 blk_mq_tag_busy(data->hctx);
d2c0d383
CH
373 }
374
e4cdf1a1
CH
375 tag = blk_mq_get_tag(data);
376 if (tag == BLK_MQ_TAG_FAIL) {
21e768b4
BVA
377 if (put_ctx_on_error) {
378 blk_mq_put_ctx(data->ctx);
1ad43c00
ML
379 data->ctx = NULL;
380 }
037cebb8
CH
381 blk_queue_exit(q);
382 return NULL;
d2c0d383
CH
383 }
384
e4cdf1a1 385 rq = blk_mq_rq_ctx_init(data, tag, op);
037cebb8
CH
386 if (!op_is_flush(op)) {
387 rq->elv.icq = NULL;
5bbf4e5a 388 if (e && e->type->ops.mq.prepare_request) {
44e8c2bf
CH
389 if (e->type->icq_cache && rq_ioc(bio))
390 blk_mq_sched_assign_ioc(rq, bio);
391
5bbf4e5a
CH
392 e->type->ops.mq.prepare_request(rq, bio);
393 rq->rq_flags |= RQF_ELVPRIV;
44e8c2bf 394 }
037cebb8
CH
395 }
396 data->hctx->queued++;
397 return rq;
d2c0d383
CH
398}
399
cd6ce148 400struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
9a95e4ef 401 blk_mq_req_flags_t flags)
320ae51f 402{
5a797e00 403 struct blk_mq_alloc_data alloc_data = { .flags = flags };
bd166ef1 404 struct request *rq;
a492f075 405 int ret;
320ae51f 406
3a0a5299 407 ret = blk_queue_enter(q, flags);
a492f075
JL
408 if (ret)
409 return ERR_PTR(ret);
320ae51f 410
cd6ce148 411 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
3280d66a 412 blk_queue_exit(q);
841bac2c 413
bd166ef1 414 if (!rq)
a492f075 415 return ERR_PTR(-EWOULDBLOCK);
0c4de0f3 416
1ad43c00 417 blk_mq_put_ctx(alloc_data.ctx);
1ad43c00 418
0c4de0f3
CH
419 rq->__data_len = 0;
420 rq->__sector = (sector_t) -1;
421 rq->bio = rq->biotail = NULL;
320ae51f
JA
422 return rq;
423}
4bb659b1 424EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 425
cd6ce148 426struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
9a95e4ef 427 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
1f5bd336 428{
6d2809d5 429 struct blk_mq_alloc_data alloc_data = { .flags = flags };
1f5bd336 430 struct request *rq;
6d2809d5 431 unsigned int cpu;
1f5bd336
ML
432 int ret;
433
434 /*
435 * If the tag allocator sleeps we could get an allocation for a
436 * different hardware context. No need to complicate the low level
437 * allocator for this for the rare use case of a command tied to
438 * a specific queue.
439 */
440 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
441 return ERR_PTR(-EINVAL);
442
443 if (hctx_idx >= q->nr_hw_queues)
444 return ERR_PTR(-EIO);
445
3a0a5299 446 ret = blk_queue_enter(q, flags);
1f5bd336
ML
447 if (ret)
448 return ERR_PTR(ret);
449
c8712c6a
CH
450 /*
451 * Check if the hardware context is actually mapped to anything.
452 * If not tell the caller that it should skip this queue.
453 */
6d2809d5
OS
454 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
455 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
456 blk_queue_exit(q);
457 return ERR_PTR(-EXDEV);
c8712c6a 458 }
20e4d813 459 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
6d2809d5 460 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
1f5bd336 461
cd6ce148 462 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
3280d66a 463 blk_queue_exit(q);
c8712c6a 464
6d2809d5
OS
465 if (!rq)
466 return ERR_PTR(-EWOULDBLOCK);
467
468 return rq;
1f5bd336
ML
469}
470EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
471
12f5b931
KB
472static void __blk_mq_free_request(struct request *rq)
473{
474 struct request_queue *q = rq->q;
475 struct blk_mq_ctx *ctx = rq->mq_ctx;
476 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
477 const int sched_tag = rq->internal_tag;
478
986d413b 479 blk_pm_mark_last_busy(rq);
12f5b931
KB
480 if (rq->tag != -1)
481 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
482 if (sched_tag != -1)
483 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
484 blk_mq_sched_restart(hctx);
485 blk_queue_exit(q);
486}
487
6af54051 488void blk_mq_free_request(struct request *rq)
320ae51f 489{
320ae51f 490 struct request_queue *q = rq->q;
6af54051
CH
491 struct elevator_queue *e = q->elevator;
492 struct blk_mq_ctx *ctx = rq->mq_ctx;
493 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
6af54051 494
5bbf4e5a 495 if (rq->rq_flags & RQF_ELVPRIV) {
6af54051
CH
496 if (e && e->type->ops.mq.finish_request)
497 e->type->ops.mq.finish_request(rq);
498 if (rq->elv.icq) {
499 put_io_context(rq->elv.icq->ioc);
500 rq->elv.icq = NULL;
501 }
502 }
320ae51f 503
6af54051 504 ctx->rq_completed[rq_is_sync(rq)]++;
e8064021 505 if (rq->rq_flags & RQF_MQ_INFLIGHT)
0d2602ca 506 atomic_dec(&hctx->nr_active);
87760e5e 507
7beb2f84
JA
508 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
509 laptop_io_completion(q->backing_dev_info);
510
a7905043 511 rq_qos_done(q, rq);
0d2602ca 512
85acb3ba
SL
513 if (blk_rq_rl(rq))
514 blk_put_rl(blk_rq_rl(rq));
515
12f5b931
KB
516 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
517 if (refcount_dec_and_test(&rq->ref))
518 __blk_mq_free_request(rq);
320ae51f 519}
1a3b595a 520EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 521
2a842aca 522inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
320ae51f 523{
522a7775
OS
524 u64 now = ktime_get_ns();
525
4bc6339a
OS
526 if (rq->rq_flags & RQF_STATS) {
527 blk_mq_poll_stats_start(rq->q);
522a7775 528 blk_stat_add(rq, now);
4bc6339a
OS
529 }
530
ed88660a
OS
531 if (rq->internal_tag != -1)
532 blk_mq_sched_completed_request(rq, now);
533
522a7775 534 blk_account_io_done(rq, now);
0d11e6ac 535
91b63639 536 if (rq->end_io) {
a7905043 537 rq_qos_done(rq->q, rq);
320ae51f 538 rq->end_io(rq, error);
91b63639
CH
539 } else {
540 if (unlikely(blk_bidi_rq(rq)))
541 blk_mq_free_request(rq->next_rq);
320ae51f 542 blk_mq_free_request(rq);
91b63639 543 }
320ae51f 544}
c8a446ad 545EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 546
2a842aca 547void blk_mq_end_request(struct request *rq, blk_status_t error)
63151a44
CH
548{
549 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
550 BUG();
c8a446ad 551 __blk_mq_end_request(rq, error);
63151a44 552}
c8a446ad 553EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 554
30a91cb4 555static void __blk_mq_complete_request_remote(void *data)
320ae51f 556{
3d6efbf6 557 struct request *rq = data;
320ae51f 558
30a91cb4 559 rq->q->softirq_done_fn(rq);
320ae51f 560}
320ae51f 561
453f8341 562static void __blk_mq_complete_request(struct request *rq)
320ae51f
JA
563{
564 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 565 bool shared = false;
320ae51f
JA
566 int cpu;
567
0fc09f92 568 if (!blk_mq_mark_complete(rq))
12f5b931 569 return;
453f8341 570
36e76539
ML
571 /*
572 * Most of single queue controllers, there is only one irq vector
573 * for handling IO completion, and the only irq's affinity is set
574 * as all possible CPUs. On most of ARCHs, this affinity means the
575 * irq is handled on one specific CPU.
576 *
577 * So complete IO reqeust in softirq context in case of single queue
578 * for not degrading IO performance by irqsoff latency.
579 */
580 if (rq->q->nr_hw_queues == 1) {
581 __blk_complete_request(rq);
582 return;
583 }
584
38535201 585 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
586 rq->q->softirq_done_fn(rq);
587 return;
588 }
320ae51f
JA
589
590 cpu = get_cpu();
38535201
CH
591 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
592 shared = cpus_share_cache(cpu, ctx->cpu);
593
594 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 595 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
596 rq->csd.info = rq;
597 rq->csd.flags = 0;
c46fff2a 598 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 599 } else {
30a91cb4 600 rq->q->softirq_done_fn(rq);
3d6efbf6 601 }
320ae51f
JA
602 put_cpu();
603}
30a91cb4 604
04ced159 605static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
b7435db8 606 __releases(hctx->srcu)
04ced159
JA
607{
608 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
609 rcu_read_unlock();
610 else
05707b64 611 srcu_read_unlock(hctx->srcu, srcu_idx);
04ced159
JA
612}
613
614static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
b7435db8 615 __acquires(hctx->srcu)
04ced159 616{
08b5a6e2
JA
617 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
618 /* shut up gcc false positive */
619 *srcu_idx = 0;
04ced159 620 rcu_read_lock();
08b5a6e2 621 } else
05707b64 622 *srcu_idx = srcu_read_lock(hctx->srcu);
04ced159
JA
623}
624
30a91cb4
CH
625/**
626 * blk_mq_complete_request - end I/O on a request
627 * @rq: the request being processed
628 *
629 * Description:
630 * Ends all I/O on a request. It does not handle partial completions.
631 * The actual completion happens out-of-order, through a IPI handler.
632 **/
08e0029a 633void blk_mq_complete_request(struct request *rq)
30a91cb4 634{
12f5b931 635 if (unlikely(blk_should_fake_timeout(rq->q)))
30a91cb4 636 return;
12f5b931 637 __blk_mq_complete_request(rq);
30a91cb4
CH
638}
639EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 640
973c0191
KB
641int blk_mq_request_started(struct request *rq)
642{
5a61c363 643 return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
973c0191
KB
644}
645EXPORT_SYMBOL_GPL(blk_mq_request_started);
646
e2490073 647void blk_mq_start_request(struct request *rq)
320ae51f
JA
648{
649 struct request_queue *q = rq->q;
650
bd166ef1
JA
651 blk_mq_sched_started_request(rq);
652
320ae51f
JA
653 trace_block_rq_issue(q, rq);
654
cf43e6be 655 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
544ccc8d
OS
656 rq->io_start_time_ns = ktime_get_ns();
657#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
658 rq->throtl_size = blk_rq_sectors(rq);
659#endif
cf43e6be 660 rq->rq_flags |= RQF_STATS;
a7905043 661 rq_qos_issue(q, rq);
cf43e6be
JA
662 }
663
1d9bd516 664 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
538b7534 665
1d9bd516 666 blk_add_timer(rq);
12f5b931 667 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
49f5baa5
CH
668
669 if (q->dma_drain_size && blk_rq_bytes(rq)) {
670 /*
671 * Make sure space for the drain appears. We know we can do
672 * this because max_hw_segments has been adjusted to be one
673 * fewer than the device can handle.
674 */
675 rq->nr_phys_segments++;
676 }
320ae51f 677}
e2490073 678EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 679
ed0791b2 680static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
681{
682 struct request_queue *q = rq->q;
683
923218f6
ML
684 blk_mq_put_driver_tag(rq);
685
320ae51f 686 trace_block_rq_requeue(q, rq);
a7905043 687 rq_qos_requeue(q, rq);
49f5baa5 688
12f5b931
KB
689 if (blk_mq_request_started(rq)) {
690 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
da661267 691 rq->rq_flags &= ~RQF_TIMED_OUT;
e2490073
CH
692 if (q->dma_drain_size && blk_rq_bytes(rq))
693 rq->nr_phys_segments--;
694 }
320ae51f
JA
695}
696
2b053aca 697void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 698{
ed0791b2 699 __blk_mq_requeue_request(rq);
ed0791b2 700
105976f5
ML
701 /* this request will be re-inserted to io scheduler queue */
702 blk_mq_sched_requeue_request(rq);
703
ed0791b2 704 BUG_ON(blk_queued_rq(rq));
2b053aca 705 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
706}
707EXPORT_SYMBOL(blk_mq_requeue_request);
708
6fca6a61
CH
709static void blk_mq_requeue_work(struct work_struct *work)
710{
711 struct request_queue *q =
2849450a 712 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
713 LIST_HEAD(rq_list);
714 struct request *rq, *next;
6fca6a61 715
18e9781d 716 spin_lock_irq(&q->requeue_lock);
6fca6a61 717 list_splice_init(&q->requeue_list, &rq_list);
18e9781d 718 spin_unlock_irq(&q->requeue_lock);
6fca6a61
CH
719
720 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
e8064021 721 if (!(rq->rq_flags & RQF_SOFTBARRIER))
6fca6a61
CH
722 continue;
723
e8064021 724 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61 725 list_del_init(&rq->queuelist);
9e97d295 726 blk_mq_sched_insert_request(rq, true, false, false);
6fca6a61
CH
727 }
728
729 while (!list_empty(&rq_list)) {
730 rq = list_entry(rq_list.next, struct request, queuelist);
731 list_del_init(&rq->queuelist);
9e97d295 732 blk_mq_sched_insert_request(rq, false, false, false);
6fca6a61
CH
733 }
734
52d7f1b5 735 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
736}
737
2b053aca
BVA
738void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
739 bool kick_requeue_list)
6fca6a61
CH
740{
741 struct request_queue *q = rq->q;
742 unsigned long flags;
743
744 /*
745 * We abuse this flag that is otherwise used by the I/O scheduler to
ff821d27 746 * request head insertion from the workqueue.
6fca6a61 747 */
e8064021 748 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
749
750 spin_lock_irqsave(&q->requeue_lock, flags);
751 if (at_head) {
e8064021 752 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
753 list_add(&rq->queuelist, &q->requeue_list);
754 } else {
755 list_add_tail(&rq->queuelist, &q->requeue_list);
756 }
757 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
758
759 if (kick_requeue_list)
760 blk_mq_kick_requeue_list(q);
6fca6a61
CH
761}
762EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
763
764void blk_mq_kick_requeue_list(struct request_queue *q)
765{
ae943d20 766 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
6fca6a61
CH
767}
768EXPORT_SYMBOL(blk_mq_kick_requeue_list);
769
2849450a
MS
770void blk_mq_delay_kick_requeue_list(struct request_queue *q,
771 unsigned long msecs)
772{
d4acf365
BVA
773 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
774 msecs_to_jiffies(msecs));
2849450a
MS
775}
776EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
777
0e62f51f
JA
778struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
779{
88c7b2b7
JA
780 if (tag < tags->nr_tags) {
781 prefetch(tags->rqs[tag]);
4ee86bab 782 return tags->rqs[tag];
88c7b2b7 783 }
4ee86bab
HR
784
785 return NULL;
24d2f903
CH
786}
787EXPORT_SYMBOL(blk_mq_tag_to_rq);
788
358f70da 789static void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 790{
da661267 791 req->rq_flags |= RQF_TIMED_OUT;
d1210d5a
CH
792 if (req->q->mq_ops->timeout) {
793 enum blk_eh_timer_return ret;
794
795 ret = req->q->mq_ops->timeout(req, reserved);
796 if (ret == BLK_EH_DONE)
797 return;
798 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
46f92d42 799 }
d1210d5a
CH
800
801 blk_add_timer(req);
87ee7b11 802}
5b3f25fc 803
12f5b931 804static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
81481eb4 805{
12f5b931 806 unsigned long deadline;
87ee7b11 807
12f5b931
KB
808 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
809 return false;
da661267
CH
810 if (rq->rq_flags & RQF_TIMED_OUT)
811 return false;
a7af0af3 812
12f5b931
KB
813 deadline = blk_rq_deadline(rq);
814 if (time_after_eq(jiffies, deadline))
815 return true;
a7af0af3 816
12f5b931
KB
817 if (*next == 0)
818 *next = deadline;
819 else if (time_after(*next, deadline))
820 *next = deadline;
821 return false;
87ee7b11
JA
822}
823
12f5b931 824static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
1d9bd516
TH
825 struct request *rq, void *priv, bool reserved)
826{
12f5b931
KB
827 unsigned long *next = priv;
828
829 /*
830 * Just do a quick check if it is expired before locking the request in
831 * so we're not unnecessarilly synchronizing across CPUs.
832 */
833 if (!blk_mq_req_expired(rq, next))
834 return;
835
836 /*
837 * We have reason to believe the request may be expired. Take a
838 * reference on the request to lock this request lifetime into its
839 * currently allocated context to prevent it from being reallocated in
840 * the event the completion by-passes this timeout handler.
841 *
842 * If the reference was already released, then the driver beat the
843 * timeout handler to posting a natural completion.
844 */
845 if (!refcount_inc_not_zero(&rq->ref))
846 return;
847
1d9bd516 848 /*
12f5b931
KB
849 * The request is now locked and cannot be reallocated underneath the
850 * timeout handler's processing. Re-verify this exact request is truly
851 * expired; if it is not expired, then the request was completed and
852 * reallocated as a new request.
1d9bd516 853 */
12f5b931 854 if (blk_mq_req_expired(rq, next))
1d9bd516 855 blk_mq_rq_timed_out(rq, reserved);
12f5b931
KB
856 if (refcount_dec_and_test(&rq->ref))
857 __blk_mq_free_request(rq);
1d9bd516
TH
858}
859
287922eb 860static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 861{
287922eb
CH
862 struct request_queue *q =
863 container_of(work, struct request_queue, timeout_work);
12f5b931 864 unsigned long next = 0;
1d9bd516 865 struct blk_mq_hw_ctx *hctx;
81481eb4 866 int i;
320ae51f 867
71f79fb3
GKB
868 /* A deadlock might occur if a request is stuck requiring a
869 * timeout at the same time a queue freeze is waiting
870 * completion, since the timeout code would not be able to
871 * acquire the queue reference here.
872 *
873 * That's why we don't use blk_queue_enter here; instead, we use
874 * percpu_ref_tryget directly, because we need to be able to
875 * obtain a reference even in the short window between the queue
876 * starting to freeze, by dropping the first reference in
1671d522 877 * blk_freeze_queue_start, and the moment the last request is
71f79fb3
GKB
878 * consumed, marked by the instant q_usage_counter reaches
879 * zero.
880 */
881 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
882 return;
883
12f5b931 884 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
320ae51f 885
12f5b931
KB
886 if (next != 0) {
887 mod_timer(&q->timeout, next);
0d2602ca 888 } else {
fcd36c36
BVA
889 /*
890 * Request timeouts are handled as a forward rolling timer. If
891 * we end up here it means that no requests are pending and
892 * also that no request has been pending for a while. Mark
893 * each hctx as idle.
894 */
f054b56c
ML
895 queue_for_each_hw_ctx(q, hctx, i) {
896 /* the hctx may be unmapped, so check it here */
897 if (blk_mq_hw_queue_mapped(hctx))
898 blk_mq_tag_idle(hctx);
899 }
0d2602ca 900 }
287922eb 901 blk_queue_exit(q);
320ae51f
JA
902}
903
88459642
OS
904struct flush_busy_ctx_data {
905 struct blk_mq_hw_ctx *hctx;
906 struct list_head *list;
907};
908
909static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
910{
911 struct flush_busy_ctx_data *flush_data = data;
912 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
913 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
914
88459642
OS
915 spin_lock(&ctx->lock);
916 list_splice_tail_init(&ctx->rq_list, flush_data->list);
e9a99a63 917 sbitmap_clear_bit(sb, bitnr);
88459642
OS
918 spin_unlock(&ctx->lock);
919 return true;
920}
921
1429d7c9
JA
922/*
923 * Process software queues that have been marked busy, splicing them
924 * to the for-dispatch
925 */
2c3ad667 926void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1429d7c9 927{
88459642
OS
928 struct flush_busy_ctx_data data = {
929 .hctx = hctx,
930 .list = list,
931 };
1429d7c9 932
88459642 933 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 934}
2c3ad667 935EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1429d7c9 936
b347689f
ML
937struct dispatch_rq_data {
938 struct blk_mq_hw_ctx *hctx;
939 struct request *rq;
940};
941
942static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
943 void *data)
944{
945 struct dispatch_rq_data *dispatch_data = data;
946 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
947 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
948
949 spin_lock(&ctx->lock);
b4f6f38d 950 if (!list_empty(&ctx->rq_list)) {
b347689f
ML
951 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
952 list_del_init(&dispatch_data->rq->queuelist);
953 if (list_empty(&ctx->rq_list))
954 sbitmap_clear_bit(sb, bitnr);
955 }
956 spin_unlock(&ctx->lock);
957
958 return !dispatch_data->rq;
959}
960
961struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
962 struct blk_mq_ctx *start)
963{
964 unsigned off = start ? start->index_hw : 0;
965 struct dispatch_rq_data data = {
966 .hctx = hctx,
967 .rq = NULL,
968 };
969
970 __sbitmap_for_each_set(&hctx->ctx_map, off,
971 dispatch_rq_from_ctx, &data);
972
973 return data.rq;
974}
975
703fd1c0
JA
976static inline unsigned int queued_to_index(unsigned int queued)
977{
978 if (!queued)
979 return 0;
1429d7c9 980
703fd1c0 981 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1429d7c9
JA
982}
983
8ab6bb9e 984bool blk_mq_get_driver_tag(struct request *rq)
bd166ef1
JA
985{
986 struct blk_mq_alloc_data data = {
987 .q = rq->q,
bd166ef1 988 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
8ab6bb9e 989 .flags = BLK_MQ_REQ_NOWAIT,
bd166ef1 990 };
d263ed99 991 bool shared;
5feeacdd 992
81380ca1
OS
993 if (rq->tag != -1)
994 goto done;
bd166ef1 995
415b806d
SG
996 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
997 data.flags |= BLK_MQ_REQ_RESERVED;
998
d263ed99 999 shared = blk_mq_tag_busy(data.hctx);
bd166ef1
JA
1000 rq->tag = blk_mq_get_tag(&data);
1001 if (rq->tag >= 0) {
d263ed99 1002 if (shared) {
200e86b3
JA
1003 rq->rq_flags |= RQF_MQ_INFLIGHT;
1004 atomic_inc(&data.hctx->nr_active);
1005 }
bd166ef1 1006 data.hctx->tags->rqs[rq->tag] = rq;
bd166ef1
JA
1007 }
1008
81380ca1 1009done:
81380ca1 1010 return rq->tag != -1;
bd166ef1
JA
1011}
1012
eb619fdb
JA
1013static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1014 int flags, void *key)
da55f2cc
OS
1015{
1016 struct blk_mq_hw_ctx *hctx;
1017
1018 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1019
5815839b 1020 spin_lock(&hctx->dispatch_wait_lock);
eb619fdb 1021 list_del_init(&wait->entry);
5815839b
ML
1022 spin_unlock(&hctx->dispatch_wait_lock);
1023
da55f2cc
OS
1024 blk_mq_run_hw_queue(hctx, true);
1025 return 1;
1026}
1027
f906a6a0
JA
1028/*
1029 * Mark us waiting for a tag. For shared tags, this involves hooking us into
ee3e4de5
BVA
1030 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1031 * restart. For both cases, take care to check the condition again after
f906a6a0
JA
1032 * marking us as waiting.
1033 */
2278d69f 1034static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
f906a6a0 1035 struct request *rq)
da55f2cc 1036{
5815839b 1037 struct wait_queue_head *wq;
f906a6a0
JA
1038 wait_queue_entry_t *wait;
1039 bool ret;
da55f2cc 1040
2278d69f
ML
1041 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1042 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
1043 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
f906a6a0 1044
c27d53fb
BVA
1045 /*
1046 * It's possible that a tag was freed in the window between the
1047 * allocation failure and adding the hardware queue to the wait
1048 * queue.
1049 *
1050 * Don't clear RESTART here, someone else could have set it.
1051 * At most this will cost an extra queue run.
1052 */
8ab6bb9e 1053 return blk_mq_get_driver_tag(rq);
eb619fdb 1054 }
eb619fdb 1055
2278d69f 1056 wait = &hctx->dispatch_wait;
c27d53fb
BVA
1057 if (!list_empty_careful(&wait->entry))
1058 return false;
1059
5815839b
ML
1060 wq = &bt_wait_ptr(&hctx->tags->bitmap_tags, hctx)->wait;
1061
1062 spin_lock_irq(&wq->lock);
1063 spin_lock(&hctx->dispatch_wait_lock);
c27d53fb 1064 if (!list_empty(&wait->entry)) {
5815839b
ML
1065 spin_unlock(&hctx->dispatch_wait_lock);
1066 spin_unlock_irq(&wq->lock);
c27d53fb 1067 return false;
eb619fdb
JA
1068 }
1069
5815839b
ML
1070 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1071 __add_wait_queue(wq, wait);
c27d53fb 1072
da55f2cc 1073 /*
eb619fdb
JA
1074 * It's possible that a tag was freed in the window between the
1075 * allocation failure and adding the hardware queue to the wait
1076 * queue.
da55f2cc 1077 */
8ab6bb9e 1078 ret = blk_mq_get_driver_tag(rq);
c27d53fb 1079 if (!ret) {
5815839b
ML
1080 spin_unlock(&hctx->dispatch_wait_lock);
1081 spin_unlock_irq(&wq->lock);
c27d53fb 1082 return false;
eb619fdb 1083 }
c27d53fb
BVA
1084
1085 /*
1086 * We got a tag, remove ourselves from the wait queue to ensure
1087 * someone else gets the wakeup.
1088 */
c27d53fb 1089 list_del_init(&wait->entry);
5815839b
ML
1090 spin_unlock(&hctx->dispatch_wait_lock);
1091 spin_unlock_irq(&wq->lock);
c27d53fb
BVA
1092
1093 return true;
da55f2cc
OS
1094}
1095
6e768717
ML
1096#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1097#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1098/*
1099 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1100 * - EWMA is one simple way to compute running average value
1101 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1102 * - take 4 as factor for avoiding to get too small(0) result, and this
1103 * factor doesn't matter because EWMA decreases exponentially
1104 */
1105static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1106{
1107 unsigned int ewma;
1108
1109 if (hctx->queue->elevator)
1110 return;
1111
1112 ewma = hctx->dispatch_busy;
1113
1114 if (!ewma && !busy)
1115 return;
1116
1117 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1118 if (busy)
1119 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1120 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1121
1122 hctx->dispatch_busy = ewma;
1123}
1124
86ff7c2a
ML
1125#define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1126
1f57f8d4
JA
1127/*
1128 * Returns true if we did some work AND can potentially do more.
1129 */
de148297 1130bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
eb619fdb 1131 bool got_budget)
320ae51f 1132{
81380ca1 1133 struct blk_mq_hw_ctx *hctx;
6d6f167c 1134 struct request *rq, *nxt;
eb619fdb 1135 bool no_tag = false;
fc17b653 1136 int errors, queued;
86ff7c2a 1137 blk_status_t ret = BLK_STS_OK;
320ae51f 1138
81380ca1
OS
1139 if (list_empty(list))
1140 return false;
1141
de148297
ML
1142 WARN_ON(!list_is_singular(list) && got_budget);
1143
320ae51f
JA
1144 /*
1145 * Now process all the entries, sending them to the driver.
1146 */
93efe981 1147 errors = queued = 0;
81380ca1 1148 do {
74c45052 1149 struct blk_mq_queue_data bd;
320ae51f 1150
f04c3df3 1151 rq = list_first_entry(list, struct request, queuelist);
0bca799b
ML
1152
1153 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1154 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1155 break;
1156
8ab6bb9e 1157 if (!blk_mq_get_driver_tag(rq)) {
3c782d67 1158 /*
da55f2cc 1159 * The initial allocation attempt failed, so we need to
eb619fdb
JA
1160 * rerun the hardware queue when a tag is freed. The
1161 * waitqueue takes care of that. If the queue is run
1162 * before we add this entry back on the dispatch list,
1163 * we'll re-run it below.
3c782d67 1164 */
2278d69f 1165 if (!blk_mq_mark_tag_wait(hctx, rq)) {
0bca799b 1166 blk_mq_put_dispatch_budget(hctx);
f906a6a0
JA
1167 /*
1168 * For non-shared tags, the RESTART check
1169 * will suffice.
1170 */
1171 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1172 no_tag = true;
de148297
ML
1173 break;
1174 }
1175 }
1176
320ae51f 1177 list_del_init(&rq->queuelist);
320ae51f 1178
74c45052 1179 bd.rq = rq;
113285b4
JA
1180
1181 /*
1182 * Flag last if we have no more requests, or if we have more
1183 * but can't assign a driver tag to it.
1184 */
1185 if (list_empty(list))
1186 bd.last = true;
1187 else {
113285b4 1188 nxt = list_first_entry(list, struct request, queuelist);
8ab6bb9e 1189 bd.last = !blk_mq_get_driver_tag(nxt);
113285b4 1190 }
74c45052
JA
1191
1192 ret = q->mq_ops->queue_rq(hctx, &bd);
86ff7c2a 1193 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
6d6f167c
JW
1194 /*
1195 * If an I/O scheduler has been configured and we got a
ff821d27
JA
1196 * driver tag for the next request already, free it
1197 * again.
6d6f167c
JW
1198 */
1199 if (!list_empty(list)) {
1200 nxt = list_first_entry(list, struct request, queuelist);
1201 blk_mq_put_driver_tag(nxt);
1202 }
f04c3df3 1203 list_add(&rq->queuelist, list);
ed0791b2 1204 __blk_mq_requeue_request(rq);
320ae51f 1205 break;
fc17b653
CH
1206 }
1207
1208 if (unlikely(ret != BLK_STS_OK)) {
93efe981 1209 errors++;
2a842aca 1210 blk_mq_end_request(rq, BLK_STS_IOERR);
fc17b653 1211 continue;
320ae51f
JA
1212 }
1213
fc17b653 1214 queued++;
81380ca1 1215 } while (!list_empty(list));
320ae51f 1216
703fd1c0 1217 hctx->dispatched[queued_to_index(queued)]++;
320ae51f
JA
1218
1219 /*
1220 * Any items that need requeuing? Stuff them into hctx->dispatch,
1221 * that is where we will continue on next queue run.
1222 */
f04c3df3 1223 if (!list_empty(list)) {
86ff7c2a
ML
1224 bool needs_restart;
1225
320ae51f 1226 spin_lock(&hctx->lock);
c13660a0 1227 list_splice_init(list, &hctx->dispatch);
320ae51f 1228 spin_unlock(&hctx->lock);
f04c3df3 1229
9ba52e58 1230 /*
710c785f
BVA
1231 * If SCHED_RESTART was set by the caller of this function and
1232 * it is no longer set that means that it was cleared by another
1233 * thread and hence that a queue rerun is needed.
9ba52e58 1234 *
eb619fdb
JA
1235 * If 'no_tag' is set, that means that we failed getting
1236 * a driver tag with an I/O scheduler attached. If our dispatch
1237 * waitqueue is no longer active, ensure that we run the queue
1238 * AFTER adding our entries back to the list.
bd166ef1 1239 *
710c785f
BVA
1240 * If no I/O scheduler has been configured it is possible that
1241 * the hardware queue got stopped and restarted before requests
1242 * were pushed back onto the dispatch list. Rerun the queue to
1243 * avoid starvation. Notes:
1244 * - blk_mq_run_hw_queue() checks whether or not a queue has
1245 * been stopped before rerunning a queue.
1246 * - Some but not all block drivers stop a queue before
fc17b653 1247 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
710c785f 1248 * and dm-rq.
86ff7c2a
ML
1249 *
1250 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1251 * bit is set, run queue after a delay to avoid IO stalls
1252 * that could otherwise occur if the queue is idle.
bd166ef1 1253 */
86ff7c2a
ML
1254 needs_restart = blk_mq_sched_needs_restart(hctx);
1255 if (!needs_restart ||
eb619fdb 1256 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
bd166ef1 1257 blk_mq_run_hw_queue(hctx, true);
86ff7c2a
ML
1258 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1259 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1f57f8d4 1260
6e768717 1261 blk_mq_update_dispatch_busy(hctx, true);
1f57f8d4 1262 return false;
6e768717
ML
1263 } else
1264 blk_mq_update_dispatch_busy(hctx, false);
f04c3df3 1265
1f57f8d4
JA
1266 /*
1267 * If the host/device is unable to accept more work, inform the
1268 * caller of that.
1269 */
1270 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1271 return false;
1272
93efe981 1273 return (queued + errors) != 0;
f04c3df3
JA
1274}
1275
6a83e74d
BVA
1276static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1277{
1278 int srcu_idx;
1279
b7a71e66
JA
1280 /*
1281 * We should be running this queue from one of the CPUs that
1282 * are mapped to it.
7df938fb
ML
1283 *
1284 * There are at least two related races now between setting
1285 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1286 * __blk_mq_run_hw_queue():
1287 *
1288 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1289 * but later it becomes online, then this warning is harmless
1290 * at all
1291 *
1292 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1293 * but later it becomes offline, then the warning can't be
1294 * triggered, and we depend on blk-mq timeout handler to
1295 * handle dispatched requests to this hctx
b7a71e66 1296 */
7df938fb
ML
1297 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1298 cpu_online(hctx->next_cpu)) {
1299 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1300 raw_smp_processor_id(),
1301 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1302 dump_stack();
1303 }
6a83e74d 1304
b7a71e66
JA
1305 /*
1306 * We can't run the queue inline with ints disabled. Ensure that
1307 * we catch bad users of this early.
1308 */
1309 WARN_ON_ONCE(in_interrupt());
1310
04ced159 1311 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
bf4907c0 1312
04ced159
JA
1313 hctx_lock(hctx, &srcu_idx);
1314 blk_mq_sched_dispatch_requests(hctx);
1315 hctx_unlock(hctx, srcu_idx);
6a83e74d
BVA
1316}
1317
f82ddf19
ML
1318static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1319{
1320 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1321
1322 if (cpu >= nr_cpu_ids)
1323 cpu = cpumask_first(hctx->cpumask);
1324 return cpu;
1325}
1326
506e931f
JA
1327/*
1328 * It'd be great if the workqueue API had a way to pass
1329 * in a mask and had some smarts for more clever placement.
1330 * For now we just round-robin here, switching for every
1331 * BLK_MQ_CPU_WORK_BATCH queued items.
1332 */
1333static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1334{
7bed4595 1335 bool tried = false;
476f8c98 1336 int next_cpu = hctx->next_cpu;
7bed4595 1337
b657d7e6
CH
1338 if (hctx->queue->nr_hw_queues == 1)
1339 return WORK_CPU_UNBOUND;
506e931f
JA
1340
1341 if (--hctx->next_cpu_batch <= 0) {
7bed4595 1342select_cpu:
476f8c98 1343 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
20e4d813 1344 cpu_online_mask);
506e931f 1345 if (next_cpu >= nr_cpu_ids)
f82ddf19 1346 next_cpu = blk_mq_first_mapped_cpu(hctx);
506e931f
JA
1347 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1348 }
1349
7bed4595
ML
1350 /*
1351 * Do unbound schedule if we can't find a online CPU for this hctx,
1352 * and it should only happen in the path of handling CPU DEAD.
1353 */
476f8c98 1354 if (!cpu_online(next_cpu)) {
7bed4595
ML
1355 if (!tried) {
1356 tried = true;
1357 goto select_cpu;
1358 }
1359
1360 /*
1361 * Make sure to re-select CPU next time once after CPUs
1362 * in hctx->cpumask become online again.
1363 */
476f8c98 1364 hctx->next_cpu = next_cpu;
7bed4595
ML
1365 hctx->next_cpu_batch = 1;
1366 return WORK_CPU_UNBOUND;
1367 }
476f8c98
ML
1368
1369 hctx->next_cpu = next_cpu;
1370 return next_cpu;
506e931f
JA
1371}
1372
7587a5ae
BVA
1373static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1374 unsigned long msecs)
320ae51f 1375{
5435c023 1376 if (unlikely(blk_mq_hctx_stopped(hctx)))
320ae51f
JA
1377 return;
1378
1b792f2f 1379 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
1380 int cpu = get_cpu();
1381 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 1382 __blk_mq_run_hw_queue(hctx);
2a90d4aa 1383 put_cpu();
398205b8
PB
1384 return;
1385 }
e4043dcf 1386
2a90d4aa 1387 put_cpu();
e4043dcf 1388 }
398205b8 1389
ae943d20
BVA
1390 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1391 msecs_to_jiffies(msecs));
7587a5ae
BVA
1392}
1393
1394void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1395{
1396 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1397}
1398EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1399
79f720a7 1400bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
7587a5ae 1401{
24f5a90f
ML
1402 int srcu_idx;
1403 bool need_run;
1404
1405 /*
1406 * When queue is quiesced, we may be switching io scheduler, or
1407 * updating nr_hw_queues, or other things, and we can't run queue
1408 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1409 *
1410 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1411 * quiesced.
1412 */
04ced159
JA
1413 hctx_lock(hctx, &srcu_idx);
1414 need_run = !blk_queue_quiesced(hctx->queue) &&
1415 blk_mq_hctx_has_pending(hctx);
1416 hctx_unlock(hctx, srcu_idx);
24f5a90f
ML
1417
1418 if (need_run) {
79f720a7
JA
1419 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1420 return true;
1421 }
1422
1423 return false;
320ae51f 1424}
5b727272 1425EXPORT_SYMBOL(blk_mq_run_hw_queue);
320ae51f 1426
b94ec296 1427void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1428{
1429 struct blk_mq_hw_ctx *hctx;
1430 int i;
1431
1432 queue_for_each_hw_ctx(q, hctx, i) {
79f720a7 1433 if (blk_mq_hctx_stopped(hctx))
320ae51f
JA
1434 continue;
1435
b94ec296 1436 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
1437 }
1438}
b94ec296 1439EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 1440
fd001443
BVA
1441/**
1442 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1443 * @q: request queue.
1444 *
1445 * The caller is responsible for serializing this function against
1446 * blk_mq_{start,stop}_hw_queue().
1447 */
1448bool blk_mq_queue_stopped(struct request_queue *q)
1449{
1450 struct blk_mq_hw_ctx *hctx;
1451 int i;
1452
1453 queue_for_each_hw_ctx(q, hctx, i)
1454 if (blk_mq_hctx_stopped(hctx))
1455 return true;
1456
1457 return false;
1458}
1459EXPORT_SYMBOL(blk_mq_queue_stopped);
1460
39a70c76
ML
1461/*
1462 * This function is often used for pausing .queue_rq() by driver when
1463 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 1464 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
1465 *
1466 * We do not guarantee that dispatch can be drained or blocked
1467 * after blk_mq_stop_hw_queue() returns. Please use
1468 * blk_mq_quiesce_queue() for that requirement.
1469 */
2719aa21
JA
1470void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1471{
641a9ed6 1472 cancel_delayed_work(&hctx->run_work);
280d45f6 1473
641a9ed6 1474 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2719aa21 1475}
641a9ed6 1476EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2719aa21 1477
39a70c76
ML
1478/*
1479 * This function is often used for pausing .queue_rq() by driver when
1480 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 1481 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
1482 *
1483 * We do not guarantee that dispatch can be drained or blocked
1484 * after blk_mq_stop_hw_queues() returns. Please use
1485 * blk_mq_quiesce_queue() for that requirement.
1486 */
2719aa21
JA
1487void blk_mq_stop_hw_queues(struct request_queue *q)
1488{
641a9ed6
ML
1489 struct blk_mq_hw_ctx *hctx;
1490 int i;
1491
1492 queue_for_each_hw_ctx(q, hctx, i)
1493 blk_mq_stop_hw_queue(hctx);
280d45f6
CH
1494}
1495EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1496
320ae51f
JA
1497void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1498{
1499 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 1500
0ffbce80 1501 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
1502}
1503EXPORT_SYMBOL(blk_mq_start_hw_queue);
1504
2f268556
CH
1505void blk_mq_start_hw_queues(struct request_queue *q)
1506{
1507 struct blk_mq_hw_ctx *hctx;
1508 int i;
1509
1510 queue_for_each_hw_ctx(q, hctx, i)
1511 blk_mq_start_hw_queue(hctx);
1512}
1513EXPORT_SYMBOL(blk_mq_start_hw_queues);
1514
ae911c5e
JA
1515void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1516{
1517 if (!blk_mq_hctx_stopped(hctx))
1518 return;
1519
1520 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1521 blk_mq_run_hw_queue(hctx, async);
1522}
1523EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1524
1b4a3258 1525void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1526{
1527 struct blk_mq_hw_ctx *hctx;
1528 int i;
1529
ae911c5e
JA
1530 queue_for_each_hw_ctx(q, hctx, i)
1531 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
1532}
1533EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1534
70f4db63 1535static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
1536{
1537 struct blk_mq_hw_ctx *hctx;
1538
9f993737 1539 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
320ae51f 1540
21c6e939 1541 /*
15fe8a90 1542 * If we are stopped, don't run the queue.
21c6e939 1543 */
15fe8a90 1544 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
0196d6b4 1545 return;
7587a5ae
BVA
1546
1547 __blk_mq_run_hw_queue(hctx);
1548}
1549
cfd0c552 1550static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
1551 struct request *rq,
1552 bool at_head)
320ae51f 1553{
e57690fe
JA
1554 struct blk_mq_ctx *ctx = rq->mq_ctx;
1555
7b607814
BVA
1556 lockdep_assert_held(&ctx->lock);
1557
01b983c9
JA
1558 trace_block_rq_insert(hctx->queue, rq);
1559
72a0a36e
CH
1560 if (at_head)
1561 list_add(&rq->queuelist, &ctx->rq_list);
1562 else
1563 list_add_tail(&rq->queuelist, &ctx->rq_list);
cfd0c552 1564}
4bb659b1 1565
2c3ad667
JA
1566void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1567 bool at_head)
cfd0c552
ML
1568{
1569 struct blk_mq_ctx *ctx = rq->mq_ctx;
1570
7b607814
BVA
1571 lockdep_assert_held(&ctx->lock);
1572
e57690fe 1573 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 1574 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1575}
1576
157f377b
JA
1577/*
1578 * Should only be used carefully, when the caller knows we want to
1579 * bypass a potential IO scheduler on the target device.
1580 */
b0850297 1581void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
157f377b
JA
1582{
1583 struct blk_mq_ctx *ctx = rq->mq_ctx;
1584 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1585
1586 spin_lock(&hctx->lock);
1587 list_add_tail(&rq->queuelist, &hctx->dispatch);
1588 spin_unlock(&hctx->lock);
1589
b0850297
ML
1590 if (run_queue)
1591 blk_mq_run_hw_queue(hctx, false);
157f377b
JA
1592}
1593
bd166ef1
JA
1594void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1595 struct list_head *list)
320ae51f
JA
1596
1597{
3f0cedc7
ML
1598 struct request *rq;
1599
320ae51f
JA
1600 /*
1601 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1602 * offline now
1603 */
3f0cedc7 1604 list_for_each_entry(rq, list, queuelist) {
e57690fe 1605 BUG_ON(rq->mq_ctx != ctx);
3f0cedc7 1606 trace_block_rq_insert(hctx->queue, rq);
320ae51f 1607 }
3f0cedc7
ML
1608
1609 spin_lock(&ctx->lock);
1610 list_splice_tail_init(list, &ctx->rq_list);
cfd0c552 1611 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f 1612 spin_unlock(&ctx->lock);
320ae51f
JA
1613}
1614
1615static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1616{
1617 struct request *rqa = container_of(a, struct request, queuelist);
1618 struct request *rqb = container_of(b, struct request, queuelist);
1619
1620 return !(rqa->mq_ctx < rqb->mq_ctx ||
1621 (rqa->mq_ctx == rqb->mq_ctx &&
1622 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1623}
1624
1625void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1626{
1627 struct blk_mq_ctx *this_ctx;
1628 struct request_queue *this_q;
1629 struct request *rq;
1630 LIST_HEAD(list);
1631 LIST_HEAD(ctx_list);
1632 unsigned int depth;
1633
1634 list_splice_init(&plug->mq_list, &list);
1635
1636 list_sort(NULL, &list, plug_ctx_cmp);
1637
1638 this_q = NULL;
1639 this_ctx = NULL;
1640 depth = 0;
1641
1642 while (!list_empty(&list)) {
1643 rq = list_entry_rq(list.next);
1644 list_del_init(&rq->queuelist);
1645 BUG_ON(!rq->q);
1646 if (rq->mq_ctx != this_ctx) {
1647 if (this_ctx) {
587562d0 1648 trace_block_unplug(this_q, depth, !from_schedule);
bd166ef1
JA
1649 blk_mq_sched_insert_requests(this_q, this_ctx,
1650 &ctx_list,
1651 from_schedule);
320ae51f
JA
1652 }
1653
1654 this_ctx = rq->mq_ctx;
1655 this_q = rq->q;
1656 depth = 0;
1657 }
1658
1659 depth++;
1660 list_add_tail(&rq->queuelist, &ctx_list);
1661 }
1662
1663 /*
1664 * If 'this_ctx' is set, we know we have entries to complete
1665 * on 'ctx_list'. Do those.
1666 */
1667 if (this_ctx) {
587562d0 1668 trace_block_unplug(this_q, depth, !from_schedule);
bd166ef1
JA
1669 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1670 from_schedule);
320ae51f
JA
1671 }
1672}
1673
1674static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1675{
da8d7f07 1676 blk_init_request_from_bio(rq, bio);
4b570521 1677
85acb3ba
SL
1678 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1679
6e85eaf3 1680 blk_account_io_start(rq, true);
320ae51f
JA
1681}
1682
fd2d3326
JA
1683static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1684{
bd166ef1
JA
1685 if (rq->tag != -1)
1686 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1687
1688 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
fd2d3326
JA
1689}
1690
0f95549c
MS
1691static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1692 struct request *rq,
1693 blk_qc_t *cookie)
f984df1f 1694{
f984df1f 1695 struct request_queue *q = rq->q;
f984df1f
SL
1696 struct blk_mq_queue_data bd = {
1697 .rq = rq,
d945a365 1698 .last = true,
f984df1f 1699 };
bd166ef1 1700 blk_qc_t new_cookie;
f06345ad 1701 blk_status_t ret;
0f95549c
MS
1702
1703 new_cookie = request_to_qc_t(hctx, rq);
1704
1705 /*
1706 * For OK queue, we are done. For error, caller may kill it.
1707 * Any other error (busy), just add it to our list as we
1708 * previously would have done.
1709 */
1710 ret = q->mq_ops->queue_rq(hctx, &bd);
1711 switch (ret) {
1712 case BLK_STS_OK:
6ce3dd6e 1713 blk_mq_update_dispatch_busy(hctx, false);
0f95549c
MS
1714 *cookie = new_cookie;
1715 break;
1716 case BLK_STS_RESOURCE:
86ff7c2a 1717 case BLK_STS_DEV_RESOURCE:
6ce3dd6e 1718 blk_mq_update_dispatch_busy(hctx, true);
0f95549c
MS
1719 __blk_mq_requeue_request(rq);
1720 break;
1721 default:
6ce3dd6e 1722 blk_mq_update_dispatch_busy(hctx, false);
0f95549c
MS
1723 *cookie = BLK_QC_T_NONE;
1724 break;
1725 }
1726
1727 return ret;
1728}
1729
0f95549c
MS
1730static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1731 struct request *rq,
396eaf21
ML
1732 blk_qc_t *cookie,
1733 bool bypass_insert)
0f95549c
MS
1734{
1735 struct request_queue *q = rq->q;
d964f04a
ML
1736 bool run_queue = true;
1737
23d4ee19
ML
1738 /*
1739 * RCU or SRCU read lock is needed before checking quiesced flag.
1740 *
1741 * When queue is stopped or quiesced, ignore 'bypass_insert' from
c77ff7fd 1742 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
23d4ee19
ML
1743 * and avoid driver to try to dispatch again.
1744 */
f4560ffe 1745 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
d964f04a 1746 run_queue = false;
23d4ee19 1747 bypass_insert = false;
d964f04a
ML
1748 goto insert;
1749 }
f984df1f 1750
396eaf21 1751 if (q->elevator && !bypass_insert)
2253efc8
BVA
1752 goto insert;
1753
0bca799b 1754 if (!blk_mq_get_dispatch_budget(hctx))
bd166ef1
JA
1755 goto insert;
1756
8ab6bb9e 1757 if (!blk_mq_get_driver_tag(rq)) {
0bca799b 1758 blk_mq_put_dispatch_budget(hctx);
de148297 1759 goto insert;
88022d72 1760 }
de148297 1761
0f95549c 1762 return __blk_mq_issue_directly(hctx, rq, cookie);
2253efc8 1763insert:
396eaf21
ML
1764 if (bypass_insert)
1765 return BLK_STS_RESOURCE;
0f95549c 1766
23d4ee19 1767 blk_mq_sched_insert_request(rq, false, run_queue, false);
0f95549c 1768 return BLK_STS_OK;
f984df1f
SL
1769}
1770
5eb6126e
CH
1771static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1772 struct request *rq, blk_qc_t *cookie)
1773{
0f95549c 1774 blk_status_t ret;
04ced159 1775 int srcu_idx;
bf4907c0 1776
04ced159 1777 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
bf4907c0 1778
04ced159 1779 hctx_lock(hctx, &srcu_idx);
0f95549c 1780
396eaf21 1781 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
86ff7c2a 1782 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
23d4ee19 1783 blk_mq_sched_insert_request(rq, false, true, false);
0f95549c
MS
1784 else if (ret != BLK_STS_OK)
1785 blk_mq_end_request(rq, ret);
1786
04ced159 1787 hctx_unlock(hctx, srcu_idx);
5eb6126e
CH
1788}
1789
c77ff7fd 1790blk_status_t blk_mq_request_issue_directly(struct request *rq)
396eaf21
ML
1791{
1792 blk_status_t ret;
1793 int srcu_idx;
1794 blk_qc_t unused_cookie;
1795 struct blk_mq_ctx *ctx = rq->mq_ctx;
1796 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1797
1798 hctx_lock(hctx, &srcu_idx);
1799 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
1800 hctx_unlock(hctx, srcu_idx);
1801
1802 return ret;
5eb6126e
CH
1803}
1804
6ce3dd6e
ML
1805void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1806 struct list_head *list)
1807{
1808 while (!list_empty(list)) {
1809 blk_status_t ret;
1810 struct request *rq = list_first_entry(list, struct request,
1811 queuelist);
1812
1813 list_del_init(&rq->queuelist);
1814 ret = blk_mq_request_issue_directly(rq);
1815 if (ret != BLK_STS_OK) {
8824f622
ML
1816 if (ret == BLK_STS_RESOURCE ||
1817 ret == BLK_STS_DEV_RESOURCE) {
1818 list_add(&rq->queuelist, list);
1819 break;
1820 }
1821 blk_mq_end_request(rq, ret);
6ce3dd6e
ML
1822 }
1823 }
1824}
1825
dece1635 1826static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1827{
ef295ecf 1828 const int is_sync = op_is_sync(bio->bi_opf);
f73f44eb 1829 const int is_flush_fua = op_is_flush(bio->bi_opf);
5a797e00 1830 struct blk_mq_alloc_data data = { .flags = 0 };
07068d5b 1831 struct request *rq;
5eb6126e 1832 unsigned int request_count = 0;
f984df1f 1833 struct blk_plug *plug;
5b3f341f 1834 struct request *same_queue_rq = NULL;
7b371636 1835 blk_qc_t cookie;
07068d5b
JA
1836
1837 blk_queue_bounce(q, &bio);
1838
af67c31f 1839 blk_queue_split(q, &bio);
f36ea50c 1840
e23947bd 1841 if (!bio_integrity_prep(bio))
dece1635 1842 return BLK_QC_T_NONE;
07068d5b 1843
87c279e6
OS
1844 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1845 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1846 return BLK_QC_T_NONE;
f984df1f 1847
bd166ef1
JA
1848 if (blk_mq_sched_bio_merge(q, bio))
1849 return BLK_QC_T_NONE;
1850
c1c80384 1851 rq_qos_throttle(q, bio, NULL);
87760e5e 1852
d2c0d383 1853 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
87760e5e 1854 if (unlikely(!rq)) {
c1c80384 1855 rq_qos_cleanup(q, bio);
03a07c92
GR
1856 if (bio->bi_opf & REQ_NOWAIT)
1857 bio_wouldblock_error(bio);
dece1635 1858 return BLK_QC_T_NONE;
87760e5e
JA
1859 }
1860
d6f1dda2
XW
1861 trace_block_getrq(q, bio, bio->bi_opf);
1862
c1c80384 1863 rq_qos_track(q, rq, bio);
07068d5b 1864
fd2d3326 1865 cookie = request_to_qc_t(data.hctx, rq);
07068d5b 1866
f984df1f 1867 plug = current->plug;
07068d5b 1868 if (unlikely(is_flush_fua)) {
f984df1f 1869 blk_mq_put_ctx(data.ctx);
07068d5b 1870 blk_mq_bio_to_request(rq, bio);
923218f6
ML
1871
1872 /* bypass scheduler for flush rq */
1873 blk_insert_flush(rq);
1874 blk_mq_run_hw_queue(data.hctx, true);
a4d907b6 1875 } else if (plug && q->nr_hw_queues == 1) {
600271d9
SL
1876 struct request *last = NULL;
1877
b00c53e8 1878 blk_mq_put_ctx(data.ctx);
e6c4438b 1879 blk_mq_bio_to_request(rq, bio);
0a6219a9
ML
1880
1881 /*
1882 * @request_count may become stale because of schedule
1883 * out, so check the list again.
1884 */
1885 if (list_empty(&plug->mq_list))
1886 request_count = 0;
254d259d
CH
1887 else if (blk_queue_nomerges(q))
1888 request_count = blk_plug_queued_count(q);
1889
676d0607 1890 if (!request_count)
e6c4438b 1891 trace_block_plug(q);
600271d9
SL
1892 else
1893 last = list_entry_rq(plug->mq_list.prev);
b094f89c 1894
600271d9
SL
1895 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1896 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
e6c4438b
JM
1897 blk_flush_plug_list(plug, false);
1898 trace_block_plug(q);
320ae51f 1899 }
b094f89c 1900
e6c4438b 1901 list_add_tail(&rq->queuelist, &plug->mq_list);
2299722c 1902 } else if (plug && !blk_queue_nomerges(q)) {
bd166ef1 1903 blk_mq_bio_to_request(rq, bio);
07068d5b 1904
07068d5b 1905 /*
6a83e74d 1906 * We do limited plugging. If the bio can be merged, do that.
f984df1f
SL
1907 * Otherwise the existing request in the plug list will be
1908 * issued. So the plug list will have one request at most
2299722c
CH
1909 * The plug list might get flushed before this. If that happens,
1910 * the plug list is empty, and same_queue_rq is invalid.
07068d5b 1911 */
2299722c
CH
1912 if (list_empty(&plug->mq_list))
1913 same_queue_rq = NULL;
1914 if (same_queue_rq)
1915 list_del_init(&same_queue_rq->queuelist);
1916 list_add_tail(&rq->queuelist, &plug->mq_list);
1917
bf4907c0
JA
1918 blk_mq_put_ctx(data.ctx);
1919
dad7a3be
ML
1920 if (same_queue_rq) {
1921 data.hctx = blk_mq_map_queue(q,
1922 same_queue_rq->mq_ctx->cpu);
2299722c
CH
1923 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1924 &cookie);
dad7a3be 1925 }
6ce3dd6e
ML
1926 } else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
1927 !data.hctx->dispatch_busy)) {
bf4907c0 1928 blk_mq_put_ctx(data.ctx);
2299722c 1929 blk_mq_bio_to_request(rq, bio);
2299722c 1930 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
ab42f35d 1931 } else {
b00c53e8 1932 blk_mq_put_ctx(data.ctx);
ab42f35d 1933 blk_mq_bio_to_request(rq, bio);
8fa9f556 1934 blk_mq_sched_insert_request(rq, false, true, true);
ab42f35d 1935 }
320ae51f 1936
7b371636 1937 return cookie;
320ae51f
JA
1938}
1939
cc71a6f4
JA
1940void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1941 unsigned int hctx_idx)
95363efd 1942{
e9b267d9 1943 struct page *page;
320ae51f 1944
24d2f903 1945 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1946 int i;
320ae51f 1947
24d2f903 1948 for (i = 0; i < tags->nr_tags; i++) {
2af8cbe3
JA
1949 struct request *rq = tags->static_rqs[i];
1950
1951 if (!rq)
e9b267d9 1952 continue;
d6296d39 1953 set->ops->exit_request(set, rq, hctx_idx);
2af8cbe3 1954 tags->static_rqs[i] = NULL;
e9b267d9 1955 }
320ae51f 1956 }
320ae51f 1957
24d2f903
CH
1958 while (!list_empty(&tags->page_list)) {
1959 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1960 list_del_init(&page->lru);
f75782e4
CM
1961 /*
1962 * Remove kmemleak object previously allocated in
1963 * blk_mq_init_rq_map().
1964 */
1965 kmemleak_free(page_address(page));
320ae51f
JA
1966 __free_pages(page, page->private);
1967 }
cc71a6f4 1968}
320ae51f 1969
cc71a6f4
JA
1970void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1971{
24d2f903 1972 kfree(tags->rqs);
cc71a6f4 1973 tags->rqs = NULL;
2af8cbe3
JA
1974 kfree(tags->static_rqs);
1975 tags->static_rqs = NULL;
320ae51f 1976
24d2f903 1977 blk_mq_free_tags(tags);
320ae51f
JA
1978}
1979
cc71a6f4
JA
1980struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1981 unsigned int hctx_idx,
1982 unsigned int nr_tags,
1983 unsigned int reserved_tags)
320ae51f 1984{
24d2f903 1985 struct blk_mq_tags *tags;
59f082e4 1986 int node;
320ae51f 1987
59f082e4
SL
1988 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1989 if (node == NUMA_NO_NODE)
1990 node = set->numa_node;
1991
1992 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
24391c0d 1993 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
1994 if (!tags)
1995 return NULL;
320ae51f 1996
590b5b7d 1997 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
36e1f3d1 1998 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1999 node);
24d2f903
CH
2000 if (!tags->rqs) {
2001 blk_mq_free_tags(tags);
2002 return NULL;
2003 }
320ae51f 2004
590b5b7d
KC
2005 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2006 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2007 node);
2af8cbe3
JA
2008 if (!tags->static_rqs) {
2009 kfree(tags->rqs);
2010 blk_mq_free_tags(tags);
2011 return NULL;
2012 }
2013
cc71a6f4
JA
2014 return tags;
2015}
2016
2017static size_t order_to_size(unsigned int order)
2018{
2019 return (size_t)PAGE_SIZE << order;
2020}
2021
1d9bd516
TH
2022static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2023 unsigned int hctx_idx, int node)
2024{
2025 int ret;
2026
2027 if (set->ops->init_request) {
2028 ret = set->ops->init_request(set, rq, hctx_idx, node);
2029 if (ret)
2030 return ret;
2031 }
2032
12f5b931 2033 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1d9bd516
TH
2034 return 0;
2035}
2036
cc71a6f4
JA
2037int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2038 unsigned int hctx_idx, unsigned int depth)
2039{
2040 unsigned int i, j, entries_per_page, max_order = 4;
2041 size_t rq_size, left;
59f082e4
SL
2042 int node;
2043
2044 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2045 if (node == NUMA_NO_NODE)
2046 node = set->numa_node;
cc71a6f4
JA
2047
2048 INIT_LIST_HEAD(&tags->page_list);
2049
320ae51f
JA
2050 /*
2051 * rq_size is the size of the request plus driver payload, rounded
2052 * to the cacheline size
2053 */
24d2f903 2054 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 2055 cache_line_size());
cc71a6f4 2056 left = rq_size * depth;
320ae51f 2057
cc71a6f4 2058 for (i = 0; i < depth; ) {
320ae51f
JA
2059 int this_order = max_order;
2060 struct page *page;
2061 int to_do;
2062 void *p;
2063
b3a834b1 2064 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
2065 this_order--;
2066
2067 do {
59f082e4 2068 page = alloc_pages_node(node,
36e1f3d1 2069 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 2070 this_order);
320ae51f
JA
2071 if (page)
2072 break;
2073 if (!this_order--)
2074 break;
2075 if (order_to_size(this_order) < rq_size)
2076 break;
2077 } while (1);
2078
2079 if (!page)
24d2f903 2080 goto fail;
320ae51f
JA
2081
2082 page->private = this_order;
24d2f903 2083 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
2084
2085 p = page_address(page);
f75782e4
CM
2086 /*
2087 * Allow kmemleak to scan these pages as they contain pointers
2088 * to additional allocations like via ops->init_request().
2089 */
36e1f3d1 2090 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 2091 entries_per_page = order_to_size(this_order) / rq_size;
cc71a6f4 2092 to_do = min(entries_per_page, depth - i);
320ae51f
JA
2093 left -= to_do * rq_size;
2094 for (j = 0; j < to_do; j++) {
2af8cbe3
JA
2095 struct request *rq = p;
2096
2097 tags->static_rqs[i] = rq;
1d9bd516
TH
2098 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2099 tags->static_rqs[i] = NULL;
2100 goto fail;
e9b267d9
CH
2101 }
2102
320ae51f
JA
2103 p += rq_size;
2104 i++;
2105 }
2106 }
cc71a6f4 2107 return 0;
320ae51f 2108
24d2f903 2109fail:
cc71a6f4
JA
2110 blk_mq_free_rqs(set, tags, hctx_idx);
2111 return -ENOMEM;
320ae51f
JA
2112}
2113
e57690fe
JA
2114/*
2115 * 'cpu' is going away. splice any existing rq_list entries from this
2116 * software queue to the hw queue dispatch list, and ensure that it
2117 * gets run.
2118 */
9467f859 2119static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 2120{
9467f859 2121 struct blk_mq_hw_ctx *hctx;
484b4061
JA
2122 struct blk_mq_ctx *ctx;
2123 LIST_HEAD(tmp);
2124
9467f859 2125 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
e57690fe 2126 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
484b4061
JA
2127
2128 spin_lock(&ctx->lock);
2129 if (!list_empty(&ctx->rq_list)) {
2130 list_splice_init(&ctx->rq_list, &tmp);
2131 blk_mq_hctx_clear_pending(hctx, ctx);
2132 }
2133 spin_unlock(&ctx->lock);
2134
2135 if (list_empty(&tmp))
9467f859 2136 return 0;
484b4061 2137
e57690fe
JA
2138 spin_lock(&hctx->lock);
2139 list_splice_tail_init(&tmp, &hctx->dispatch);
2140 spin_unlock(&hctx->lock);
484b4061
JA
2141
2142 blk_mq_run_hw_queue(hctx, true);
9467f859 2143 return 0;
484b4061
JA
2144}
2145
9467f859 2146static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 2147{
9467f859
TG
2148 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2149 &hctx->cpuhp_dead);
484b4061
JA
2150}
2151
c3b4afca 2152/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
2153static void blk_mq_exit_hctx(struct request_queue *q,
2154 struct blk_mq_tag_set *set,
2155 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2156{
8ab0b7dc
ML
2157 if (blk_mq_hw_queue_mapped(hctx))
2158 blk_mq_tag_idle(hctx);
08e98fc6 2159
f70ced09 2160 if (set->ops->exit_request)
d6296d39 2161 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
f70ced09 2162
08e98fc6
ML
2163 if (set->ops->exit_hctx)
2164 set->ops->exit_hctx(hctx, hctx_idx);
2165
6a83e74d 2166 if (hctx->flags & BLK_MQ_F_BLOCKING)
05707b64 2167 cleanup_srcu_struct(hctx->srcu);
6a83e74d 2168
9467f859 2169 blk_mq_remove_cpuhp(hctx);
f70ced09 2170 blk_free_flush_queue(hctx->fq);
88459642 2171 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
2172}
2173
624dbe47
ML
2174static void blk_mq_exit_hw_queues(struct request_queue *q,
2175 struct blk_mq_tag_set *set, int nr_queue)
2176{
2177 struct blk_mq_hw_ctx *hctx;
2178 unsigned int i;
2179
2180 queue_for_each_hw_ctx(q, hctx, i) {
2181 if (i == nr_queue)
2182 break;
477e19de 2183 blk_mq_debugfs_unregister_hctx(hctx);
08e98fc6 2184 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 2185 }
624dbe47
ML
2186}
2187
08e98fc6
ML
2188static int blk_mq_init_hctx(struct request_queue *q,
2189 struct blk_mq_tag_set *set,
2190 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 2191{
08e98fc6
ML
2192 int node;
2193
2194 node = hctx->numa_node;
2195 if (node == NUMA_NO_NODE)
2196 node = hctx->numa_node = set->numa_node;
2197
9f993737 2198 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
2199 spin_lock_init(&hctx->lock);
2200 INIT_LIST_HEAD(&hctx->dispatch);
2201 hctx->queue = q;
2404e607 2202 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6 2203
9467f859 2204 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
08e98fc6
ML
2205
2206 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
2207
2208 /*
08e98fc6
ML
2209 * Allocate space for all possible cpus to avoid allocation at
2210 * runtime
320ae51f 2211 */
d904bfa7 2212 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
5b202853 2213 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node);
08e98fc6
ML
2214 if (!hctx->ctxs)
2215 goto unregister_cpu_notifier;
320ae51f 2216
5b202853
JW
2217 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2218 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node))
08e98fc6 2219 goto free_ctxs;
320ae51f 2220
08e98fc6 2221 hctx->nr_ctx = 0;
320ae51f 2222
5815839b 2223 spin_lock_init(&hctx->dispatch_wait_lock);
eb619fdb
JA
2224 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2225 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2226
08e98fc6
ML
2227 if (set->ops->init_hctx &&
2228 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2229 goto free_bitmap;
320ae51f 2230
5b202853
JW
2231 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2232 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
f70ced09 2233 if (!hctx->fq)
d48ece20 2234 goto exit_hctx;
320ae51f 2235
1d9bd516 2236 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
f70ced09 2237 goto free_fq;
320ae51f 2238
6a83e74d 2239 if (hctx->flags & BLK_MQ_F_BLOCKING)
05707b64 2240 init_srcu_struct(hctx->srcu);
6a83e74d 2241
08e98fc6 2242 return 0;
320ae51f 2243
f70ced09
ML
2244 free_fq:
2245 kfree(hctx->fq);
2246 exit_hctx:
2247 if (set->ops->exit_hctx)
2248 set->ops->exit_hctx(hctx, hctx_idx);
08e98fc6 2249 free_bitmap:
88459642 2250 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
2251 free_ctxs:
2252 kfree(hctx->ctxs);
2253 unregister_cpu_notifier:
9467f859 2254 blk_mq_remove_cpuhp(hctx);
08e98fc6
ML
2255 return -1;
2256}
320ae51f 2257
320ae51f
JA
2258static void blk_mq_init_cpu_queues(struct request_queue *q,
2259 unsigned int nr_hw_queues)
2260{
2261 unsigned int i;
2262
2263 for_each_possible_cpu(i) {
2264 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2265 struct blk_mq_hw_ctx *hctx;
2266
320ae51f
JA
2267 __ctx->cpu = i;
2268 spin_lock_init(&__ctx->lock);
2269 INIT_LIST_HEAD(&__ctx->rq_list);
2270 __ctx->queue = q;
2271
320ae51f
JA
2272 /*
2273 * Set local node, IFF we have more than one hw queue. If
2274 * not, we remain on the home node of the device
2275 */
20e4d813 2276 hctx = blk_mq_map_queue(q, i);
320ae51f 2277 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
bffed457 2278 hctx->numa_node = local_memory_node(cpu_to_node(i));
320ae51f
JA
2279 }
2280}
2281
cc71a6f4
JA
2282static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2283{
2284 int ret = 0;
2285
2286 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2287 set->queue_depth, set->reserved_tags);
2288 if (!set->tags[hctx_idx])
2289 return false;
2290
2291 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2292 set->queue_depth);
2293 if (!ret)
2294 return true;
2295
2296 blk_mq_free_rq_map(set->tags[hctx_idx]);
2297 set->tags[hctx_idx] = NULL;
2298 return false;
2299}
2300
2301static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2302 unsigned int hctx_idx)
2303{
bd166ef1
JA
2304 if (set->tags[hctx_idx]) {
2305 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2306 blk_mq_free_rq_map(set->tags[hctx_idx]);
2307 set->tags[hctx_idx] = NULL;
2308 }
cc71a6f4
JA
2309}
2310
4b855ad3 2311static void blk_mq_map_swqueue(struct request_queue *q)
320ae51f 2312{
4412efec 2313 unsigned int i, hctx_idx;
320ae51f
JA
2314 struct blk_mq_hw_ctx *hctx;
2315 struct blk_mq_ctx *ctx;
2a34c087 2316 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2317
60de074b
AM
2318 /*
2319 * Avoid others reading imcomplete hctx->cpumask through sysfs
2320 */
2321 mutex_lock(&q->sysfs_lock);
2322
320ae51f 2323 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 2324 cpumask_clear(hctx->cpumask);
320ae51f 2325 hctx->nr_ctx = 0;
d416c92c 2326 hctx->dispatch_from = NULL;
320ae51f
JA
2327 }
2328
2329 /*
4b855ad3 2330 * Map software to hardware queues.
4412efec
ML
2331 *
2332 * If the cpu isn't present, the cpu is mapped to first hctx.
320ae51f 2333 */
20e4d813 2334 for_each_possible_cpu(i) {
4412efec
ML
2335 hctx_idx = q->mq_map[i];
2336 /* unmapped hw queue can be remapped after CPU topo changed */
2337 if (!set->tags[hctx_idx] &&
2338 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2339 /*
2340 * If tags initialization fail for some hctx,
2341 * that hctx won't be brought online. In this
2342 * case, remap the current ctx to hctx[0] which
2343 * is guaranteed to always have tags allocated
2344 */
2345 q->mq_map[i] = 0;
2346 }
2347
897bb0c7 2348 ctx = per_cpu_ptr(q->queue_ctx, i);
7d7e0f90 2349 hctx = blk_mq_map_queue(q, i);
868f2f0b 2350
e4043dcf 2351 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
2352 ctx->index_hw = hctx->nr_ctx;
2353 hctx->ctxs[hctx->nr_ctx++] = ctx;
2354 }
506e931f 2355
60de074b
AM
2356 mutex_unlock(&q->sysfs_lock);
2357
506e931f 2358 queue_for_each_hw_ctx(q, hctx, i) {
4412efec
ML
2359 /*
2360 * If no software queues are mapped to this hardware queue,
2361 * disable it and free the request entries.
2362 */
2363 if (!hctx->nr_ctx) {
2364 /* Never unmap queue 0. We need it as a
2365 * fallback in case of a new remap fails
2366 * allocation
2367 */
2368 if (i && set->tags[i])
2369 blk_mq_free_map_and_requests(set, i);
2370
2371 hctx->tags = NULL;
2372 continue;
2373 }
484b4061 2374
2a34c087
ML
2375 hctx->tags = set->tags[i];
2376 WARN_ON(!hctx->tags);
2377
889fa31f
CY
2378 /*
2379 * Set the map size to the number of mapped software queues.
2380 * This is more accurate and more efficient than looping
2381 * over all possibly mapped software queues.
2382 */
88459642 2383 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 2384
484b4061
JA
2385 /*
2386 * Initialize batch roundrobin counts
2387 */
f82ddf19 2388 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
506e931f
JA
2389 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2390 }
320ae51f
JA
2391}
2392
8e8320c9
JA
2393/*
2394 * Caller needs to ensure that we're either frozen/quiesced, or that
2395 * the queue isn't live yet.
2396 */
2404e607 2397static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
2398{
2399 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
2400 int i;
2401
2404e607 2402 queue_for_each_hw_ctx(q, hctx, i) {
97889f9a 2403 if (shared)
2404e607 2404 hctx->flags |= BLK_MQ_F_TAG_SHARED;
97889f9a 2405 else
2404e607
JM
2406 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2407 }
2408}
2409
8e8320c9
JA
2410static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2411 bool shared)
2404e607
JM
2412{
2413 struct request_queue *q;
0d2602ca 2414
705cda97
BVA
2415 lockdep_assert_held(&set->tag_list_lock);
2416
0d2602ca
JA
2417 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2418 blk_mq_freeze_queue(q);
2404e607 2419 queue_set_hctx_shared(q, shared);
0d2602ca
JA
2420 blk_mq_unfreeze_queue(q);
2421 }
2422}
2423
2424static void blk_mq_del_queue_tag_set(struct request_queue *q)
2425{
2426 struct blk_mq_tag_set *set = q->tag_set;
2427
0d2602ca 2428 mutex_lock(&set->tag_list_lock);
705cda97 2429 list_del_rcu(&q->tag_set_list);
2404e607
JM
2430 if (list_is_singular(&set->tag_list)) {
2431 /* just transitioned to unshared */
2432 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2433 /* update existing queue */
2434 blk_mq_update_tag_set_depth(set, false);
2435 }
0d2602ca 2436 mutex_unlock(&set->tag_list_lock);
a347c7ad 2437 INIT_LIST_HEAD(&q->tag_set_list);
0d2602ca
JA
2438}
2439
2440static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2441 struct request_queue *q)
2442{
2443 q->tag_set = set;
2444
2445 mutex_lock(&set->tag_list_lock);
2404e607 2446
ff821d27
JA
2447 /*
2448 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2449 */
2450 if (!list_empty(&set->tag_list) &&
2451 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2404e607
JM
2452 set->flags |= BLK_MQ_F_TAG_SHARED;
2453 /* update existing queue */
2454 blk_mq_update_tag_set_depth(set, true);
2455 }
2456 if (set->flags & BLK_MQ_F_TAG_SHARED)
2457 queue_set_hctx_shared(q, true);
705cda97 2458 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2404e607 2459
0d2602ca
JA
2460 mutex_unlock(&set->tag_list_lock);
2461}
2462
e09aae7e
ML
2463/*
2464 * It is the actual release handler for mq, but we do it from
2465 * request queue's release handler for avoiding use-after-free
2466 * and headache because q->mq_kobj shouldn't have been introduced,
2467 * but we can't group ctx/kctx kobj without it.
2468 */
2469void blk_mq_release(struct request_queue *q)
2470{
2471 struct blk_mq_hw_ctx *hctx;
2472 unsigned int i;
2473
2474 /* hctx kobj stays in hctx */
c3b4afca
ML
2475 queue_for_each_hw_ctx(q, hctx, i) {
2476 if (!hctx)
2477 continue;
6c8b232e 2478 kobject_put(&hctx->kobj);
c3b4afca 2479 }
e09aae7e 2480
a723bab3
AM
2481 q->mq_map = NULL;
2482
e09aae7e
ML
2483 kfree(q->queue_hw_ctx);
2484
7ea5fe31
ML
2485 /*
2486 * release .mq_kobj and sw queue's kobject now because
2487 * both share lifetime with request queue.
2488 */
2489 blk_mq_sysfs_deinit(q);
2490
e09aae7e
ML
2491 free_percpu(q->queue_ctx);
2492}
2493
24d2f903 2494struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
2495{
2496 struct request_queue *uninit_q, *q;
2497
5ee0524b 2498 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
b62c21b7
MS
2499 if (!uninit_q)
2500 return ERR_PTR(-ENOMEM);
2501
2502 q = blk_mq_init_allocated_queue(set, uninit_q);
2503 if (IS_ERR(q))
2504 blk_cleanup_queue(uninit_q);
2505
2506 return q;
2507}
2508EXPORT_SYMBOL(blk_mq_init_queue);
2509
9316a9ed
JA
2510/*
2511 * Helper for setting up a queue with mq ops, given queue depth, and
2512 * the passed in mq ops flags.
2513 */
2514struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2515 const struct blk_mq_ops *ops,
2516 unsigned int queue_depth,
2517 unsigned int set_flags)
2518{
2519 struct request_queue *q;
2520 int ret;
2521
2522 memset(set, 0, sizeof(*set));
2523 set->ops = ops;
2524 set->nr_hw_queues = 1;
2525 set->queue_depth = queue_depth;
2526 set->numa_node = NUMA_NO_NODE;
2527 set->flags = set_flags;
2528
2529 ret = blk_mq_alloc_tag_set(set);
2530 if (ret)
2531 return ERR_PTR(ret);
2532
2533 q = blk_mq_init_queue(set);
2534 if (IS_ERR(q)) {
2535 blk_mq_free_tag_set(set);
2536 return q;
2537 }
2538
2539 return q;
2540}
2541EXPORT_SYMBOL(blk_mq_init_sq_queue);
2542
07319678
BVA
2543static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2544{
2545 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2546
05707b64 2547 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
07319678
BVA
2548 __alignof__(struct blk_mq_hw_ctx)) !=
2549 sizeof(struct blk_mq_hw_ctx));
2550
2551 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2552 hw_ctx_size += sizeof(struct srcu_struct);
2553
2554 return hw_ctx_size;
2555}
2556
34d11ffa
JW
2557static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2558 struct blk_mq_tag_set *set, struct request_queue *q,
2559 int hctx_idx, int node)
2560{
2561 struct blk_mq_hw_ctx *hctx;
2562
2563 hctx = kzalloc_node(blk_mq_hw_ctx_size(set),
2564 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2565 node);
2566 if (!hctx)
2567 return NULL;
2568
2569 if (!zalloc_cpumask_var_node(&hctx->cpumask,
2570 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2571 node)) {
2572 kfree(hctx);
2573 return NULL;
2574 }
2575
2576 atomic_set(&hctx->nr_active, 0);
2577 hctx->numa_node = node;
2578 hctx->queue_num = hctx_idx;
2579
2580 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) {
2581 free_cpumask_var(hctx->cpumask);
2582 kfree(hctx);
2583 return NULL;
2584 }
2585 blk_mq_hctx_kobj_init(hctx);
2586
2587 return hctx;
2588}
2589
868f2f0b
KB
2590static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2591 struct request_queue *q)
320ae51f 2592{
e01ad46d 2593 int i, j, end;
868f2f0b 2594 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 2595
fb350e0a
ML
2596 /* protect against switching io scheduler */
2597 mutex_lock(&q->sysfs_lock);
24d2f903 2598 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 2599 int node;
34d11ffa 2600 struct blk_mq_hw_ctx *hctx;
868f2f0b
KB
2601
2602 node = blk_mq_hw_queue_to_node(q->mq_map, i);
34d11ffa
JW
2603 /*
2604 * If the hw queue has been mapped to another numa node,
2605 * we need to realloc the hctx. If allocation fails, fallback
2606 * to use the previous one.
2607 */
2608 if (hctxs[i] && (hctxs[i]->numa_node == node))
2609 continue;
868f2f0b 2610
34d11ffa
JW
2611 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2612 if (hctx) {
2613 if (hctxs[i]) {
2614 blk_mq_exit_hctx(q, set, hctxs[i], i);
2615 kobject_put(&hctxs[i]->kobj);
2616 }
2617 hctxs[i] = hctx;
2618 } else {
2619 if (hctxs[i])
2620 pr_warn("Allocate new hctx on node %d fails,\
2621 fallback to previous one on node %d\n",
2622 node, hctxs[i]->numa_node);
2623 else
2624 break;
868f2f0b 2625 }
320ae51f 2626 }
e01ad46d
JW
2627 /*
2628 * Increasing nr_hw_queues fails. Free the newly allocated
2629 * hctxs and keep the previous q->nr_hw_queues.
2630 */
2631 if (i != set->nr_hw_queues) {
2632 j = q->nr_hw_queues;
2633 end = i;
2634 } else {
2635 j = i;
2636 end = q->nr_hw_queues;
2637 q->nr_hw_queues = set->nr_hw_queues;
2638 }
34d11ffa 2639
e01ad46d 2640 for (; j < end; j++) {
868f2f0b
KB
2641 struct blk_mq_hw_ctx *hctx = hctxs[j];
2642
2643 if (hctx) {
cc71a6f4
JA
2644 if (hctx->tags)
2645 blk_mq_free_map_and_requests(set, j);
868f2f0b 2646 blk_mq_exit_hctx(q, set, hctx, j);
868f2f0b 2647 kobject_put(&hctx->kobj);
868f2f0b
KB
2648 hctxs[j] = NULL;
2649
2650 }
2651 }
fb350e0a 2652 mutex_unlock(&q->sysfs_lock);
868f2f0b
KB
2653}
2654
2655struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2656 struct request_queue *q)
2657{
66841672
ML
2658 /* mark the queue as mq asap */
2659 q->mq_ops = set->ops;
2660
34dbad5d 2661 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
720b8ccc
SB
2662 blk_mq_poll_stats_bkt,
2663 BLK_MQ_POLL_STATS_BKTS, q);
34dbad5d
OS
2664 if (!q->poll_cb)
2665 goto err_exit;
2666
868f2f0b
KB
2667 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2668 if (!q->queue_ctx)
c7de5726 2669 goto err_exit;
868f2f0b 2670
737f98cf
ML
2671 /* init q->mq_kobj and sw queues' kobjects */
2672 blk_mq_sysfs_init(q);
2673
590b5b7d 2674 q->queue_hw_ctx = kcalloc_node(nr_cpu_ids, sizeof(*(q->queue_hw_ctx)),
868f2f0b
KB
2675 GFP_KERNEL, set->numa_node);
2676 if (!q->queue_hw_ctx)
2677 goto err_percpu;
2678
bdd17e75 2679 q->mq_map = set->mq_map;
868f2f0b
KB
2680
2681 blk_mq_realloc_hw_ctxs(set, q);
2682 if (!q->nr_hw_queues)
2683 goto err_hctxs;
320ae51f 2684
287922eb 2685 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 2686 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f
JA
2687
2688 q->nr_queues = nr_cpu_ids;
320ae51f 2689
94eddfbe 2690 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 2691
05f1dd53 2692 if (!(set->flags & BLK_MQ_F_SG_MERGE))
f78bac2c 2693 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
05f1dd53 2694
1be036e9
CH
2695 q->sg_reserved_size = INT_MAX;
2696
2849450a 2697 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
2698 INIT_LIST_HEAD(&q->requeue_list);
2699 spin_lock_init(&q->requeue_lock);
2700
254d259d 2701 blk_queue_make_request(q, blk_mq_make_request);
ea435e1b
CH
2702 if (q->mq_ops->poll)
2703 q->poll_fn = blk_mq_poll;
07068d5b 2704
eba71768
JA
2705 /*
2706 * Do this after blk_queue_make_request() overrides it...
2707 */
2708 q->nr_requests = set->queue_depth;
2709
64f1c21e
JA
2710 /*
2711 * Default to classic polling
2712 */
2713 q->poll_nsec = -1;
2714
24d2f903
CH
2715 if (set->ops->complete)
2716 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 2717
24d2f903 2718 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
0d2602ca 2719 blk_mq_add_queue_tag_set(set, q);
4b855ad3 2720 blk_mq_map_swqueue(q);
4593fdbe 2721
d3484991
JA
2722 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2723 int ret;
2724
131d08e1 2725 ret = elevator_init_mq(q);
d3484991
JA
2726 if (ret)
2727 return ERR_PTR(ret);
2728 }
2729
320ae51f 2730 return q;
18741986 2731
320ae51f 2732err_hctxs:
868f2f0b 2733 kfree(q->queue_hw_ctx);
320ae51f 2734err_percpu:
868f2f0b 2735 free_percpu(q->queue_ctx);
c7de5726
ML
2736err_exit:
2737 q->mq_ops = NULL;
320ae51f
JA
2738 return ERR_PTR(-ENOMEM);
2739}
b62c21b7 2740EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f
JA
2741
2742void blk_mq_free_queue(struct request_queue *q)
2743{
624dbe47 2744 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2745
0d2602ca 2746 blk_mq_del_queue_tag_set(q);
624dbe47 2747 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
320ae51f 2748}
320ae51f 2749
a5164405
JA
2750static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2751{
2752 int i;
2753
cc71a6f4
JA
2754 for (i = 0; i < set->nr_hw_queues; i++)
2755 if (!__blk_mq_alloc_rq_map(set, i))
a5164405 2756 goto out_unwind;
a5164405
JA
2757
2758 return 0;
2759
2760out_unwind:
2761 while (--i >= 0)
cc71a6f4 2762 blk_mq_free_rq_map(set->tags[i]);
a5164405 2763
a5164405
JA
2764 return -ENOMEM;
2765}
2766
2767/*
2768 * Allocate the request maps associated with this tag_set. Note that this
2769 * may reduce the depth asked for, if memory is tight. set->queue_depth
2770 * will be updated to reflect the allocated depth.
2771 */
2772static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2773{
2774 unsigned int depth;
2775 int err;
2776
2777 depth = set->queue_depth;
2778 do {
2779 err = __blk_mq_alloc_rq_maps(set);
2780 if (!err)
2781 break;
2782
2783 set->queue_depth >>= 1;
2784 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2785 err = -ENOMEM;
2786 break;
2787 }
2788 } while (set->queue_depth);
2789
2790 if (!set->queue_depth || err) {
2791 pr_err("blk-mq: failed to allocate request map\n");
2792 return -ENOMEM;
2793 }
2794
2795 if (depth != set->queue_depth)
2796 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2797 depth, set->queue_depth);
2798
2799 return 0;
2800}
2801
ebe8bddb
OS
2802static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2803{
7d4901a9 2804 if (set->ops->map_queues) {
7d4901a9
ML
2805 /*
2806 * transport .map_queues is usually done in the following
2807 * way:
2808 *
2809 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2810 * mask = get_cpu_mask(queue)
2811 * for_each_cpu(cpu, mask)
2812 * set->mq_map[cpu] = queue;
2813 * }
2814 *
2815 * When we need to remap, the table has to be cleared for
2816 * killing stale mapping since one CPU may not be mapped
2817 * to any hw queue.
2818 */
0da73d00 2819 blk_mq_clear_mq_map(set);
7d4901a9 2820
ebe8bddb 2821 return set->ops->map_queues(set);
7d4901a9 2822 } else
ebe8bddb
OS
2823 return blk_mq_map_queues(set);
2824}
2825
a4391c64
JA
2826/*
2827 * Alloc a tag set to be associated with one or more request queues.
2828 * May fail with EINVAL for various error conditions. May adjust the
c018c84f 2829 * requested depth down, if it's too large. In that case, the set
a4391c64
JA
2830 * value will be stored in set->queue_depth.
2831 */
24d2f903
CH
2832int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2833{
da695ba2
CH
2834 int ret;
2835
205fb5f5
BVA
2836 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2837
24d2f903
CH
2838 if (!set->nr_hw_queues)
2839 return -EINVAL;
a4391c64 2840 if (!set->queue_depth)
24d2f903
CH
2841 return -EINVAL;
2842 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2843 return -EINVAL;
2844
7d7e0f90 2845 if (!set->ops->queue_rq)
24d2f903
CH
2846 return -EINVAL;
2847
de148297
ML
2848 if (!set->ops->get_budget ^ !set->ops->put_budget)
2849 return -EINVAL;
2850
a4391c64
JA
2851 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2852 pr_info("blk-mq: reduced tag depth to %u\n",
2853 BLK_MQ_MAX_DEPTH);
2854 set->queue_depth = BLK_MQ_MAX_DEPTH;
2855 }
24d2f903 2856
6637fadf
SL
2857 /*
2858 * If a crashdump is active, then we are potentially in a very
2859 * memory constrained environment. Limit us to 1 queue and
2860 * 64 tags to prevent using too much memory.
2861 */
2862 if (is_kdump_kernel()) {
2863 set->nr_hw_queues = 1;
2864 set->queue_depth = min(64U, set->queue_depth);
2865 }
868f2f0b
KB
2866 /*
2867 * There is no use for more h/w queues than cpus.
2868 */
2869 if (set->nr_hw_queues > nr_cpu_ids)
2870 set->nr_hw_queues = nr_cpu_ids;
6637fadf 2871
590b5b7d 2872 set->tags = kcalloc_node(nr_cpu_ids, sizeof(struct blk_mq_tags *),
24d2f903
CH
2873 GFP_KERNEL, set->numa_node);
2874 if (!set->tags)
a5164405 2875 return -ENOMEM;
24d2f903 2876
da695ba2 2877 ret = -ENOMEM;
590b5b7d
KC
2878 set->mq_map = kcalloc_node(nr_cpu_ids, sizeof(*set->mq_map),
2879 GFP_KERNEL, set->numa_node);
bdd17e75
CH
2880 if (!set->mq_map)
2881 goto out_free_tags;
2882
ebe8bddb 2883 ret = blk_mq_update_queue_map(set);
da695ba2
CH
2884 if (ret)
2885 goto out_free_mq_map;
2886
2887 ret = blk_mq_alloc_rq_maps(set);
2888 if (ret)
bdd17e75 2889 goto out_free_mq_map;
24d2f903 2890
0d2602ca
JA
2891 mutex_init(&set->tag_list_lock);
2892 INIT_LIST_HEAD(&set->tag_list);
2893
24d2f903 2894 return 0;
bdd17e75
CH
2895
2896out_free_mq_map:
2897 kfree(set->mq_map);
2898 set->mq_map = NULL;
2899out_free_tags:
5676e7b6
RE
2900 kfree(set->tags);
2901 set->tags = NULL;
da695ba2 2902 return ret;
24d2f903
CH
2903}
2904EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2905
2906void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2907{
2908 int i;
2909
cc71a6f4
JA
2910 for (i = 0; i < nr_cpu_ids; i++)
2911 blk_mq_free_map_and_requests(set, i);
484b4061 2912
bdd17e75
CH
2913 kfree(set->mq_map);
2914 set->mq_map = NULL;
2915
981bd189 2916 kfree(set->tags);
5676e7b6 2917 set->tags = NULL;
24d2f903
CH
2918}
2919EXPORT_SYMBOL(blk_mq_free_tag_set);
2920
e3a2b3f9
JA
2921int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2922{
2923 struct blk_mq_tag_set *set = q->tag_set;
2924 struct blk_mq_hw_ctx *hctx;
2925 int i, ret;
2926
bd166ef1 2927 if (!set)
e3a2b3f9
JA
2928 return -EINVAL;
2929
70f36b60 2930 blk_mq_freeze_queue(q);
24f5a90f 2931 blk_mq_quiesce_queue(q);
70f36b60 2932
e3a2b3f9
JA
2933 ret = 0;
2934 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
2935 if (!hctx->tags)
2936 continue;
bd166ef1
JA
2937 /*
2938 * If we're using an MQ scheduler, just update the scheduler
2939 * queue depth. This is similar to what the old code would do.
2940 */
70f36b60 2941 if (!hctx->sched_tags) {
c2e82a23 2942 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
70f36b60
JA
2943 false);
2944 } else {
2945 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2946 nr, true);
2947 }
e3a2b3f9
JA
2948 if (ret)
2949 break;
2950 }
2951
2952 if (!ret)
2953 q->nr_requests = nr;
2954
24f5a90f 2955 blk_mq_unquiesce_queue(q);
70f36b60 2956 blk_mq_unfreeze_queue(q);
70f36b60 2957
e3a2b3f9
JA
2958 return ret;
2959}
2960
d48ece20
JW
2961/*
2962 * request_queue and elevator_type pair.
2963 * It is just used by __blk_mq_update_nr_hw_queues to cache
2964 * the elevator_type associated with a request_queue.
2965 */
2966struct blk_mq_qe_pair {
2967 struct list_head node;
2968 struct request_queue *q;
2969 struct elevator_type *type;
2970};
2971
2972/*
2973 * Cache the elevator_type in qe pair list and switch the
2974 * io scheduler to 'none'
2975 */
2976static bool blk_mq_elv_switch_none(struct list_head *head,
2977 struct request_queue *q)
2978{
2979 struct blk_mq_qe_pair *qe;
2980
2981 if (!q->elevator)
2982 return true;
2983
2984 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2985 if (!qe)
2986 return false;
2987
2988 INIT_LIST_HEAD(&qe->node);
2989 qe->q = q;
2990 qe->type = q->elevator->type;
2991 list_add(&qe->node, head);
2992
2993 mutex_lock(&q->sysfs_lock);
2994 /*
2995 * After elevator_switch_mq, the previous elevator_queue will be
2996 * released by elevator_release. The reference of the io scheduler
2997 * module get by elevator_get will also be put. So we need to get
2998 * a reference of the io scheduler module here to prevent it to be
2999 * removed.
3000 */
3001 __module_get(qe->type->elevator_owner);
3002 elevator_switch_mq(q, NULL);
3003 mutex_unlock(&q->sysfs_lock);
3004
3005 return true;
3006}
3007
3008static void blk_mq_elv_switch_back(struct list_head *head,
3009 struct request_queue *q)
3010{
3011 struct blk_mq_qe_pair *qe;
3012 struct elevator_type *t = NULL;
3013
3014 list_for_each_entry(qe, head, node)
3015 if (qe->q == q) {
3016 t = qe->type;
3017 break;
3018 }
3019
3020 if (!t)
3021 return;
3022
3023 list_del(&qe->node);
3024 kfree(qe);
3025
3026 mutex_lock(&q->sysfs_lock);
3027 elevator_switch_mq(q, t);
3028 mutex_unlock(&q->sysfs_lock);
3029}
3030
e4dc2b32
KB
3031static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3032 int nr_hw_queues)
868f2f0b
KB
3033{
3034 struct request_queue *q;
d48ece20 3035 LIST_HEAD(head);
e01ad46d 3036 int prev_nr_hw_queues;
868f2f0b 3037
705cda97
BVA
3038 lockdep_assert_held(&set->tag_list_lock);
3039
868f2f0b
KB
3040 if (nr_hw_queues > nr_cpu_ids)
3041 nr_hw_queues = nr_cpu_ids;
3042 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3043 return;
3044
3045 list_for_each_entry(q, &set->tag_list, tag_set_list)
3046 blk_mq_freeze_queue(q);
f5bbbbe4
JW
3047 /*
3048 * Sync with blk_mq_queue_tag_busy_iter.
3049 */
3050 synchronize_rcu();
d48ece20
JW
3051 /*
3052 * Switch IO scheduler to 'none', cleaning up the data associated
3053 * with the previous scheduler. We will switch back once we are done
3054 * updating the new sw to hw queue mappings.
3055 */
3056 list_for_each_entry(q, &set->tag_list, tag_set_list)
3057 if (!blk_mq_elv_switch_none(&head, q))
3058 goto switch_back;
868f2f0b 3059
477e19de
JW
3060 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3061 blk_mq_debugfs_unregister_hctxs(q);
3062 blk_mq_sysfs_unregister(q);
3063 }
3064
e01ad46d 3065 prev_nr_hw_queues = set->nr_hw_queues;
868f2f0b 3066 set->nr_hw_queues = nr_hw_queues;
ebe8bddb 3067 blk_mq_update_queue_map(set);
e01ad46d 3068fallback:
868f2f0b
KB
3069 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3070 blk_mq_realloc_hw_ctxs(set, q);
e01ad46d
JW
3071 if (q->nr_hw_queues != set->nr_hw_queues) {
3072 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3073 nr_hw_queues, prev_nr_hw_queues);
3074 set->nr_hw_queues = prev_nr_hw_queues;
3075 blk_mq_map_queues(set);
3076 goto fallback;
3077 }
477e19de
JW
3078 blk_mq_map_swqueue(q);
3079 }
3080
3081 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3082 blk_mq_sysfs_register(q);
3083 blk_mq_debugfs_register_hctxs(q);
868f2f0b
KB
3084 }
3085
d48ece20
JW
3086switch_back:
3087 list_for_each_entry(q, &set->tag_list, tag_set_list)
3088 blk_mq_elv_switch_back(&head, q);
3089
868f2f0b
KB
3090 list_for_each_entry(q, &set->tag_list, tag_set_list)
3091 blk_mq_unfreeze_queue(q);
3092}
e4dc2b32
KB
3093
3094void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3095{
3096 mutex_lock(&set->tag_list_lock);
3097 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3098 mutex_unlock(&set->tag_list_lock);
3099}
868f2f0b
KB
3100EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3101
34dbad5d
OS
3102/* Enable polling stats and return whether they were already enabled. */
3103static bool blk_poll_stats_enable(struct request_queue *q)
3104{
3105 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
7dfdbc73 3106 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
34dbad5d
OS
3107 return true;
3108 blk_stat_add_callback(q, q->poll_cb);
3109 return false;
3110}
3111
3112static void blk_mq_poll_stats_start(struct request_queue *q)
3113{
3114 /*
3115 * We don't arm the callback if polling stats are not enabled or the
3116 * callback is already active.
3117 */
3118 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3119 blk_stat_is_active(q->poll_cb))
3120 return;
3121
3122 blk_stat_activate_msecs(q->poll_cb, 100);
3123}
3124
3125static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3126{
3127 struct request_queue *q = cb->data;
720b8ccc 3128 int bucket;
34dbad5d 3129
720b8ccc
SB
3130 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3131 if (cb->stat[bucket].nr_samples)
3132 q->poll_stat[bucket] = cb->stat[bucket];
3133 }
34dbad5d
OS
3134}
3135
64f1c21e
JA
3136static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3137 struct blk_mq_hw_ctx *hctx,
3138 struct request *rq)
3139{
64f1c21e 3140 unsigned long ret = 0;
720b8ccc 3141 int bucket;
64f1c21e
JA
3142
3143 /*
3144 * If stats collection isn't on, don't sleep but turn it on for
3145 * future users
3146 */
34dbad5d 3147 if (!blk_poll_stats_enable(q))
64f1c21e
JA
3148 return 0;
3149
64f1c21e
JA
3150 /*
3151 * As an optimistic guess, use half of the mean service time
3152 * for this type of request. We can (and should) make this smarter.
3153 * For instance, if the completion latencies are tight, we can
3154 * get closer than just half the mean. This is especially
3155 * important on devices where the completion latencies are longer
720b8ccc
SB
3156 * than ~10 usec. We do use the stats for the relevant IO size
3157 * if available which does lead to better estimates.
64f1c21e 3158 */
720b8ccc
SB
3159 bucket = blk_mq_poll_stats_bkt(rq);
3160 if (bucket < 0)
3161 return ret;
3162
3163 if (q->poll_stat[bucket].nr_samples)
3164 ret = (q->poll_stat[bucket].mean + 1) / 2;
64f1c21e
JA
3165
3166 return ret;
3167}
3168
06426adf 3169static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
64f1c21e 3170 struct blk_mq_hw_ctx *hctx,
06426adf
JA
3171 struct request *rq)
3172{
3173 struct hrtimer_sleeper hs;
3174 enum hrtimer_mode mode;
64f1c21e 3175 unsigned int nsecs;
06426adf
JA
3176 ktime_t kt;
3177
76a86f9d 3178 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
64f1c21e
JA
3179 return false;
3180
3181 /*
3182 * poll_nsec can be:
3183 *
3184 * -1: don't ever hybrid sleep
3185 * 0: use half of prev avg
3186 * >0: use this specific value
3187 */
3188 if (q->poll_nsec == -1)
3189 return false;
3190 else if (q->poll_nsec > 0)
3191 nsecs = q->poll_nsec;
3192 else
3193 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3194
3195 if (!nsecs)
06426adf
JA
3196 return false;
3197
76a86f9d 3198 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
06426adf
JA
3199
3200 /*
3201 * This will be replaced with the stats tracking code, using
3202 * 'avg_completion_time / 2' as the pre-sleep target.
3203 */
8b0e1953 3204 kt = nsecs;
06426adf
JA
3205
3206 mode = HRTIMER_MODE_REL;
3207 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3208 hrtimer_set_expires(&hs.timer, kt);
3209
3210 hrtimer_init_sleeper(&hs, current);
3211 do {
5a61c363 3212 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
06426adf
JA
3213 break;
3214 set_current_state(TASK_UNINTERRUPTIBLE);
3215 hrtimer_start_expires(&hs.timer, mode);
3216 if (hs.task)
3217 io_schedule();
3218 hrtimer_cancel(&hs.timer);
3219 mode = HRTIMER_MODE_ABS;
3220 } while (hs.task && !signal_pending(current));
3221
3222 __set_current_state(TASK_RUNNING);
3223 destroy_hrtimer_on_stack(&hs.timer);
3224 return true;
3225}
3226
bbd7bb70
JA
3227static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
3228{
3229 struct request_queue *q = hctx->queue;
3230 long state;
3231
06426adf
JA
3232 /*
3233 * If we sleep, have the caller restart the poll loop to reset
3234 * the state. Like for the other success return cases, the
3235 * caller is responsible for checking if the IO completed. If
3236 * the IO isn't complete, we'll get called again and will go
3237 * straight to the busy poll loop.
3238 */
64f1c21e 3239 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
06426adf
JA
3240 return true;
3241
bbd7bb70
JA
3242 hctx->poll_considered++;
3243
3244 state = current->state;
3245 while (!need_resched()) {
3246 int ret;
3247
3248 hctx->poll_invoked++;
3249
3250 ret = q->mq_ops->poll(hctx, rq->tag);
3251 if (ret > 0) {
3252 hctx->poll_success++;
3253 set_current_state(TASK_RUNNING);
3254 return true;
3255 }
3256
3257 if (signal_pending_state(state, current))
3258 set_current_state(TASK_RUNNING);
3259
3260 if (current->state == TASK_RUNNING)
3261 return true;
3262 if (ret < 0)
3263 break;
3264 cpu_relax();
3265 }
3266
67b4110f 3267 __set_current_state(TASK_RUNNING);
bbd7bb70
JA
3268 return false;
3269}
3270
ea435e1b 3271static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
bbd7bb70
JA
3272{
3273 struct blk_mq_hw_ctx *hctx;
bbd7bb70
JA
3274 struct request *rq;
3275
ea435e1b 3276 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
bbd7bb70
JA
3277 return false;
3278
bbd7bb70 3279 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
bd166ef1
JA
3280 if (!blk_qc_t_is_internal(cookie))
3281 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3a07bb1d 3282 else {
bd166ef1 3283 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3a07bb1d
JA
3284 /*
3285 * With scheduling, if the request has completed, we'll
3286 * get a NULL return here, as we clear the sched tag when
3287 * that happens. The request still remains valid, like always,
3288 * so we should be safe with just the NULL check.
3289 */
3290 if (!rq)
3291 return false;
3292 }
bbd7bb70
JA
3293
3294 return __blk_mq_poll(hctx, rq);
3295}
bbd7bb70 3296
320ae51f
JA
3297static int __init blk_mq_init(void)
3298{
9467f859
TG
3299 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3300 blk_mq_hctx_notify_dead);
320ae51f
JA
3301 return 0;
3302}
3303subsys_initcall(blk_mq_init);