Linux 6.16-rc4
[linux-2.6-block.git] / block / blk-core.c
CommitLineData
3dcf60bc 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * - July2000
1da177e4
LT
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12/*
13 * This handles all read/write requests to block devices
14 */
1da177e4
LT
15#include <linux/kernel.h>
16#include <linux/module.h>
1da177e4
LT
17#include <linux/bio.h>
18#include <linux/blkdev.h>
52abca64 19#include <linux/blk-pm.h>
fe45e630 20#include <linux/blk-integrity.h>
1da177e4
LT
21#include <linux/highmem.h>
22#include <linux/mm.h>
cee9a0c4 23#include <linux/pagemap.h>
1da177e4
LT
24#include <linux/kernel_stat.h>
25#include <linux/string.h>
26#include <linux/init.h>
1da177e4
LT
27#include <linux/completion.h>
28#include <linux/slab.h>
29#include <linux/swap.h>
30#include <linux/writeback.h>
faccbd4b 31#include <linux/task_io_accounting_ops.h>
c17bb495 32#include <linux/fault-inject.h>
73c10101 33#include <linux/list_sort.h>
e3c78ca5 34#include <linux/delay.h>
aaf7c680 35#include <linux/ratelimit.h>
6c954667 36#include <linux/pm_runtime.h>
54d4e6ab 37#include <linux/t10-pi.h>
18fbda91 38#include <linux/debugfs.h>
30abb3a6 39#include <linux/bpf.h>
82d981d4 40#include <linux/part_stat.h>
71ac860a 41#include <linux/sched/sysctl.h>
a892c8d5 42#include <linux/blk-crypto.h>
55782138
LZ
43
44#define CREATE_TRACE_POINTS
45#include <trace/events/block.h>
1da177e4 46
8324aa91 47#include "blk.h"
2aa7745b 48#include "blk-mq-sched.h"
bca6b067 49#include "blk-pm.h"
672fdcf0 50#include "blk-cgroup.h"
a7b36ee6 51#include "blk-throttle.h"
f3c89983 52#include "blk-ioprio.h"
8324aa91 53
18fbda91 54struct dentry *blk_debugfs_root;
18fbda91 55
d07335e5 56EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 57EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 58EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 59EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 60EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
b357e4a6 61EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
0bfc2455 62
2bd85221 63static DEFINE_IDA(blk_queue_ida);
a73f730d 64
1da177e4
LT
65/*
66 * For queue allocation
67 */
2bd85221 68static struct kmem_cache *blk_requestq_cachep;
1da177e4 69
1da177e4
LT
70/*
71 * Controlling structure to kblockd
72 */
ff856bad 73static struct workqueue_struct *kblockd_workqueue;
1da177e4 74
8814ce8a
BVA
75/**
76 * blk_queue_flag_set - atomically set a queue flag
77 * @flag: flag to be set
78 * @q: request queue
79 */
80void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
81{
57d74df9 82 set_bit(flag, &q->queue_flags);
8814ce8a
BVA
83}
84EXPORT_SYMBOL(blk_queue_flag_set);
85
86/**
87 * blk_queue_flag_clear - atomically clear a queue flag
88 * @flag: flag to be cleared
89 * @q: request queue
90 */
91void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
92{
57d74df9 93 clear_bit(flag, &q->queue_flags);
8814ce8a
BVA
94}
95EXPORT_SYMBOL(blk_queue_flag_clear);
96
e47bc4ed
CK
97#define REQ_OP_NAME(name) [REQ_OP_##name] = #name
98static const char *const blk_op_name[] = {
99 REQ_OP_NAME(READ),
100 REQ_OP_NAME(WRITE),
101 REQ_OP_NAME(FLUSH),
102 REQ_OP_NAME(DISCARD),
103 REQ_OP_NAME(SECURE_ERASE),
104 REQ_OP_NAME(ZONE_RESET),
6e33dbf2 105 REQ_OP_NAME(ZONE_RESET_ALL),
6c1b1da5
AJ
106 REQ_OP_NAME(ZONE_OPEN),
107 REQ_OP_NAME(ZONE_CLOSE),
108 REQ_OP_NAME(ZONE_FINISH),
0512a75b 109 REQ_OP_NAME(ZONE_APPEND),
e47bc4ed 110 REQ_OP_NAME(WRITE_ZEROES),
e47bc4ed
CK
111 REQ_OP_NAME(DRV_IN),
112 REQ_OP_NAME(DRV_OUT),
113};
114#undef REQ_OP_NAME
115
116/**
117 * blk_op_str - Return string XXX in the REQ_OP_XXX.
118 * @op: REQ_OP_XXX.
119 *
120 * Description: Centralize block layer function to convert REQ_OP_XXX into
121 * string format. Useful in the debugging and tracing bio or request. For
122 * invalid REQ_OP_XXX it returns string "UNKNOWN".
123 */
77e7ffd7 124inline const char *blk_op_str(enum req_op op)
e47bc4ed
CK
125{
126 const char *op_str = "UNKNOWN";
127
128 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
129 op_str = blk_op_name[op];
130
131 return op_str;
132}
133EXPORT_SYMBOL_GPL(blk_op_str);
134
2a842aca
CH
135static const struct {
136 int errno;
137 const char *name;
138} blk_errors[] = {
139 [BLK_STS_OK] = { 0, "" },
140 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
141 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
142 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
143 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
144 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
7ba15083 145 [BLK_STS_RESV_CONFLICT] = { -EBADE, "reservation conflict" },
2a842aca
CH
146 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
147 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
148 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
86ff7c2a 149 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
03a07c92 150 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
7d32c027 151 [BLK_STS_OFFLINE] = { -ENODEV, "device offline" },
2a842aca 152
4e4cbee9
CH
153 /* device mapper special case, should not leak out: */
154 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
155
3b481d91
KB
156 /* zone device specific errors */
157 [BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" },
158 [BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" },
159
dffc480d
DLM
160 /* Command duration limit device-side timeout */
161 [BLK_STS_DURATION_LIMIT] = { -ETIME, "duration limit exceeded" },
162
9da3d1e9
JG
163 [BLK_STS_INVAL] = { -EINVAL, "invalid" },
164
2a842aca
CH
165 /* everything else not covered above: */
166 [BLK_STS_IOERR] = { -EIO, "I/O" },
167};
168
169blk_status_t errno_to_blk_status(int errno)
170{
171 int i;
172
173 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
174 if (blk_errors[i].errno == errno)
175 return (__force blk_status_t)i;
176 }
177
178 return BLK_STS_IOERR;
179}
180EXPORT_SYMBOL_GPL(errno_to_blk_status);
181
182int blk_status_to_errno(blk_status_t status)
183{
184 int idx = (__force int)status;
185
34bd9c1c 186 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
187 return -EIO;
188 return blk_errors[idx].errno;
189}
190EXPORT_SYMBOL_GPL(blk_status_to_errno);
191
0d7a29a2 192const char *blk_status_to_str(blk_status_t status)
2a842aca
CH
193{
194 int idx = (__force int)status;
195
34bd9c1c 196 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
0d7a29a2
CH
197 return "<null>";
198 return blk_errors[idx].name;
2a842aca 199}
7ba37927 200EXPORT_SYMBOL_GPL(blk_status_to_str);
2a842aca 201
1da177e4
LT
202/**
203 * blk_sync_queue - cancel any pending callbacks on a queue
204 * @q: the queue
205 *
206 * Description:
207 * The block layer may perform asynchronous callback activity
208 * on a queue, such as calling the unplug function after a timeout.
209 * A block device may call blk_sync_queue to ensure that any
210 * such activity is cancelled, thus allowing it to release resources
59c51591 211 * that the callbacks might use. The caller must already have made sure
c62b37d9 212 * that its ->submit_bio will not re-add plugging prior to calling
1da177e4
LT
213 * this function.
214 *
da527770 215 * This function does not cancel any asynchronous activity arising
da3dae54 216 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 217 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 218 *
1da177e4
LT
219 */
220void blk_sync_queue(struct request_queue *q)
221{
8fa7292f 222 timer_delete_sync(&q->timeout);
4e9b6f20 223 cancel_work_sync(&q->timeout_work);
1da177e4
LT
224}
225EXPORT_SYMBOL(blk_sync_queue);
226
c9254f2d 227/**
cd84a62e 228 * blk_set_pm_only - increment pm_only counter
c9254f2d 229 * @q: request queue pointer
c9254f2d 230 */
cd84a62e 231void blk_set_pm_only(struct request_queue *q)
c9254f2d 232{
cd84a62e 233 atomic_inc(&q->pm_only);
c9254f2d 234}
cd84a62e 235EXPORT_SYMBOL_GPL(blk_set_pm_only);
c9254f2d 236
cd84a62e 237void blk_clear_pm_only(struct request_queue *q)
c9254f2d 238{
cd84a62e
BVA
239 int pm_only;
240
241 pm_only = atomic_dec_return(&q->pm_only);
242 WARN_ON_ONCE(pm_only < 0);
243 if (pm_only == 0)
244 wake_up_all(&q->mq_freeze_wq);
c9254f2d 245}
cd84a62e 246EXPORT_SYMBOL_GPL(blk_clear_pm_only);
c9254f2d 247
2bd85221
CH
248static void blk_free_queue_rcu(struct rcu_head *rcu_head)
249{
d36a9ea5
ML
250 struct request_queue *q = container_of(rcu_head,
251 struct request_queue, rcu_head);
252
253 percpu_ref_exit(&q->q_usage_counter);
254 kmem_cache_free(blk_requestq_cachep, q);
2bd85221
CH
255}
256
257static void blk_free_queue(struct request_queue *q)
258{
2bd85221 259 blk_free_queue_stats(q->stats);
2bd85221
CH
260 if (queue_is_mq(q))
261 blk_mq_release(q);
262
263 ida_free(&blk_queue_ida, q->id);
f1be1788
ML
264 lockdep_unregister_key(&q->io_lock_cls_key);
265 lockdep_unregister_key(&q->q_lock_cls_key);
2bd85221
CH
266 call_rcu(&q->rcu_head, blk_free_queue_rcu);
267}
268
b5bd357c
LC
269/**
270 * blk_put_queue - decrement the request_queue refcount
271 * @q: the request_queue structure to decrement the refcount for
272 *
2bd85221
CH
273 * Decrements the refcount of the request_queue and free it when the refcount
274 * reaches 0.
b5bd357c 275 */
165125e1 276void blk_put_queue(struct request_queue *q)
483f4afc 277{
2bd85221
CH
278 if (refcount_dec_and_test(&q->refs))
279 blk_free_queue(q);
483f4afc 280}
d86e0e83 281EXPORT_SYMBOL(blk_put_queue);
483f4afc 282
f1be1788 283bool blk_queue_start_drain(struct request_queue *q)
aed3ea94 284{
d3cfb2a0
ML
285 /*
286 * When queue DYING flag is set, we need to block new req
287 * entering queue, so we call blk_freeze_queue_start() to
288 * prevent I/O from crossing blk_queue_enter().
289 */
6a786998 290 bool freeze = __blk_freeze_queue_start(q, current);
344e9ffc 291 if (queue_is_mq(q))
aed3ea94 292 blk_mq_wake_waiters(q);
055f6e18
ML
293 /* Make blk_queue_enter() reexamine the DYING flag. */
294 wake_up_all(&q->mq_freeze_wq);
f1be1788
ML
295
296 return freeze;
aed3ea94 297}
8e141f9e 298
3a0a5299
BVA
299/**
300 * blk_queue_enter() - try to increase q->q_usage_counter
301 * @q: request queue pointer
a4d34da7 302 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
3a0a5299 303 */
9a95e4ef 304int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
3ef28e83 305{
a4d34da7 306 const bool pm = flags & BLK_MQ_REQ_PM;
3a0a5299 307
1f14a098 308 while (!blk_try_enter_queue(q, pm)) {
3a0a5299 309 if (flags & BLK_MQ_REQ_NOWAIT)
56f99b8d 310 return -EAGAIN;
3ef28e83 311
5ed61d3f 312 /*
1f14a098
CH
313 * read pair of barrier in blk_freeze_queue_start(), we need to
314 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
315 * reading .mq_freeze_depth or queue dying flag, otherwise the
316 * following wait may never return if the two reads are
317 * reordered.
5ed61d3f
ML
318 */
319 smp_rmb();
1dc3039b 320 wait_event(q->mq_freeze_wq,
7996a8b5 321 (!q->mq_freeze_depth &&
52abca64 322 blk_pm_resume_queue(pm, q)) ||
1dc3039b 323 blk_queue_dying(q));
3ef28e83
DW
324 if (blk_queue_dying(q))
325 return -ENODEV;
3ef28e83 326 }
1f14a098 327
f1be1788
ML
328 rwsem_acquire_read(&q->q_lockdep_map, 0, 0, _RET_IP_);
329 rwsem_release(&q->q_lockdep_map, _RET_IP_);
1f14a098 330 return 0;
3ef28e83
DW
331}
332
c98cb5bb 333int __bio_queue_enter(struct request_queue *q, struct bio *bio)
accea322 334{
a6741536 335 while (!blk_try_enter_queue(q, false)) {
eab4e027
PB
336 struct gendisk *disk = bio->bi_bdev->bd_disk;
337
a6741536 338 if (bio->bi_opf & REQ_NOWAIT) {
8e141f9e 339 if (test_bit(GD_DEAD, &disk->state))
a6741536 340 goto dead;
accea322 341 bio_wouldblock_error(bio);
56f99b8d 342 return -EAGAIN;
a6741536
CH
343 }
344
345 /*
346 * read pair of barrier in blk_freeze_queue_start(), we need to
347 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
348 * reading .mq_freeze_depth or queue dying flag, otherwise the
349 * following wait may never return if the two reads are
350 * reordered.
351 */
352 smp_rmb();
353 wait_event(q->mq_freeze_wq,
354 (!q->mq_freeze_depth &&
355 blk_pm_resume_queue(false, q)) ||
8e141f9e
CH
356 test_bit(GD_DEAD, &disk->state));
357 if (test_bit(GD_DEAD, &disk->state))
a6741536 358 goto dead;
accea322
CH
359 }
360
f1be1788
ML
361 rwsem_acquire_read(&q->io_lockdep_map, 0, 0, _RET_IP_);
362 rwsem_release(&q->io_lockdep_map, _RET_IP_);
a6741536
CH
363 return 0;
364dead:
365 bio_io_error(bio);
366 return -ENODEV;
accea322
CH
367}
368
3ef28e83
DW
369void blk_queue_exit(struct request_queue *q)
370{
371 percpu_ref_put(&q->q_usage_counter);
372}
373
374static void blk_queue_usage_counter_release(struct percpu_ref *ref)
375{
376 struct request_queue *q =
377 container_of(ref, struct request_queue, q_usage_counter);
378
379 wake_up_all(&q->mq_freeze_wq);
380}
381
bca237a5 382static void blk_rq_timed_out_timer(struct timer_list *t)
287922eb 383{
41cb0855 384 struct request_queue *q = timer_container_of(q, t, timeout);
287922eb
CH
385
386 kblockd_schedule_work(&q->timeout_work);
387}
388
2e3c18d0
TH
389static void blk_timeout_work(struct work_struct *work)
390{
391}
392
ad751ba1 393struct request_queue *blk_alloc_queue(struct queue_limits *lim, int node_id)
1946089a 394{
165125e1 395 struct request_queue *q;
ad751ba1 396 int error;
1946089a 397
80bd4a7a
CH
398 q = kmem_cache_alloc_node(blk_requestq_cachep, GFP_KERNEL | __GFP_ZERO,
399 node_id);
1da177e4 400 if (!q)
ad751ba1 401 return ERR_PTR(-ENOMEM);
1da177e4 402
cbf62af3 403 q->last_merge = NULL;
cbf62af3 404
798f2a6f 405 q->id = ida_alloc(&blk_queue_ida, GFP_KERNEL);
ad751ba1
CH
406 if (q->id < 0) {
407 error = q->id;
80bd4a7a 408 goto fail_q;
ad751ba1 409 }
a73f730d 410
a83b576c 411 q->stats = blk_alloc_queue_stats();
ad751ba1
CH
412 if (!q->stats) {
413 error = -ENOMEM;
46754bd0 414 goto fail_id;
ad751ba1
CH
415 }
416
417 error = blk_set_default_limits(lim);
418 if (error)
419 goto fail_stats;
420 q->limits = *lim;
a83b576c 421
5151412d 422 q->node = node_id;
0989a025 423
079a2e3e 424 atomic_set(&q->nr_active_requests_shared_tags, 0);
bccf5e26 425
bca237a5 426 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
2e3c18d0 427 INIT_WORK(&q->timeout_work, blk_timeout_work);
a612fddf 428 INIT_LIST_HEAD(&q->icq_list);
483f4afc 429
2bd85221 430 refcount_set(&q->refs, 1);
85e0cbbb 431 mutex_init(&q->debugfs_mutex);
1bf70d08 432 mutex_init(&q->elevator_lock);
483f4afc 433 mutex_init(&q->sysfs_lock);
d690cb8a 434 mutex_init(&q->limits_lock);
a13bd91b 435 mutex_init(&q->rq_qos_mutex);
0d945c1f 436 spin_lock_init(&q->queue_lock);
c94a96ac 437
320ae51f 438 init_waitqueue_head(&q->mq_freeze_wq);
7996a8b5 439 mutex_init(&q->mq_freeze_lock);
320ae51f 440
8b8ace08
ML
441 blkg_init_queue(q);
442
3ef28e83
DW
443 /*
444 * Init percpu_ref in atomic mode so that it's faster to shutdown.
445 * See blk_register_queue() for details.
446 */
ad751ba1 447 error = percpu_ref_init(&q->q_usage_counter,
3ef28e83 448 blk_queue_usage_counter_release,
ad751ba1
CH
449 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL);
450 if (error)
edb0872f 451 goto fail_stats;
f1be1788
ML
452 lockdep_register_key(&q->io_lock_cls_key);
453 lockdep_register_key(&q->q_lock_cls_key);
454 lockdep_init_map(&q->io_lockdep_map, "&q->q_usage_counter(io)",
455 &q->io_lock_cls_key, 0);
456 lockdep_init_map(&q->q_lockdep_map, "&q->q_usage_counter(queue)",
457 &q->q_lock_cls_key, 0);
f51b802c 458
ffa1e7ad
TH
459 /* Teach lockdep about lock ordering (reclaim WRT queue freeze lock). */
460 fs_reclaim_acquire(GFP_KERNEL);
461 rwsem_acquire_read(&q->io_lockdep_map, 0, 0, _RET_IP_);
462 rwsem_release(&q->io_lockdep_map, _RET_IP_);
463 fs_reclaim_release(GFP_KERNEL);
464
d2a27964 465 q->nr_requests = BLKDEV_DEFAULT_RQ;
3d745ea5 466
1da177e4 467 return q;
a73f730d 468
a83b576c 469fail_stats:
edb0872f 470 blk_free_queue_stats(q->stats);
a73f730d 471fail_id:
798f2a6f 472 ida_free(&blk_queue_ida, q->id);
a73f730d 473fail_q:
80bd4a7a 474 kmem_cache_free(blk_requestq_cachep, q);
ad751ba1 475 return ERR_PTR(error);
1da177e4 476}
1da177e4 477
b5bd357c
LC
478/**
479 * blk_get_queue - increment the request_queue refcount
480 * @q: the request_queue structure to increment the refcount for
481 *
482 * Increment the refcount of the request_queue kobject.
763b5892
LC
483 *
484 * Context: Any context.
b5bd357c 485 */
09ac46c4 486bool blk_get_queue(struct request_queue *q)
1da177e4 487{
828b5f01
CH
488 if (unlikely(blk_queue_dying(q)))
489 return false;
2bd85221 490 refcount_inc(&q->refs);
828b5f01 491 return true;
1da177e4 492}
d86e0e83 493EXPORT_SYMBOL(blk_get_queue);
1da177e4 494
c17bb495
AM
495#ifdef CONFIG_FAIL_MAKE_REQUEST
496
497static DECLARE_FAULT_ATTR(fail_make_request);
498
499static int __init setup_fail_make_request(char *str)
500{
501 return setup_fault_attr(&fail_make_request, str);
502}
503__setup("fail_make_request=", setup_fail_make_request);
504
06c8c691 505bool should_fail_request(struct block_device *part, unsigned int bytes)
c17bb495 506{
811ba89a
AV
507 return bdev_test_flag(part, BD_MAKE_IT_FAIL) &&
508 should_fail(&fail_make_request, bytes);
c17bb495
AM
509}
510
511static int __init fail_make_request_debugfs(void)
512{
dd48c085
AM
513 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
514 NULL, &fail_make_request);
515
21f9fcd8 516 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
517}
518
519late_initcall(fail_make_request_debugfs);
c17bb495
AM
520#endif /* CONFIG_FAIL_MAKE_REQUEST */
521
bdb7d420 522static inline void bio_check_ro(struct bio *bio)
721c7fc7 523{
2f9f6221 524 if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
8b2ded1c 525 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
bdb7d420 526 return;
67d995e0 527
49a43dae 528 if (bdev_test_flag(bio->bi_bdev, BD_RO_WARNED))
67d995e0
YK
529 return;
530
49a43dae
AV
531 bdev_set_flag(bio->bi_bdev, BD_RO_WARNED);
532
67d995e0
YK
533 /*
534 * Use ioctl to set underlying disk of raid/dm to read-only
535 * will trigger this.
536 */
537 pr_warn("Trying to write to read-only block-device %pg\n",
538 bio->bi_bdev);
721c7fc7 539 }
721c7fc7
ID
540}
541
30abb3a6
HM
542static noinline int should_fail_bio(struct bio *bio)
543{
309dca30 544 if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
30abb3a6
HM
545 return -EIO;
546 return 0;
547}
548ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
549
52c5e62d
CH
550/*
551 * Check whether this bio extends beyond the end of the device or partition.
552 * This may well happen - the kernel calls bread() without checking the size of
553 * the device, e.g., when mounting a file system.
554 */
2f9f6221 555static inline int bio_check_eod(struct bio *bio)
52c5e62d 556{
2f9f6221 557 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
52c5e62d
CH
558 unsigned int nr_sectors = bio_sectors(bio);
559
3eb96946 560 if (nr_sectors &&
52c5e62d
CH
561 (nr_sectors > maxsector ||
562 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
ad740780 563 pr_info_ratelimited("%s: attempt to access beyond end of device\n"
069adbac
CH
564 "%pg: rw=%d, sector=%llu, nr_sectors = %u limit=%llu\n",
565 current->comm, bio->bi_bdev, bio->bi_opf,
566 bio->bi_iter.bi_sector, nr_sectors, maxsector);
52c5e62d
CH
567 return -EIO;
568 }
569 return 0;
570}
571
74d46992
CH
572/*
573 * Remap block n of partition p to block n+start(p) of the disk.
574 */
2f9f6221 575static int blk_partition_remap(struct bio *bio)
74d46992 576{
309dca30 577 struct block_device *p = bio->bi_bdev;
74d46992 578
52c5e62d 579 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
2f9f6221 580 return -EIO;
5eac3eb3 581 if (bio_sectors(bio)) {
8446fe92 582 bio->bi_iter.bi_sector += p->bd_start_sect;
1c02fca6 583 trace_block_bio_remap(bio, p->bd_dev,
29ff57c6 584 bio->bi_iter.bi_sector -
8446fe92 585 p->bd_start_sect);
52c5e62d 586 }
30c5d345 587 bio_set_flag(bio, BIO_REMAPPED);
2f9f6221 588 return 0;
74d46992
CH
589}
590
0512a75b
KB
591/*
592 * Check write append to a zoned block device.
593 */
594static inline blk_status_t blk_check_zone_append(struct request_queue *q,
595 struct bio *bio)
596{
0512a75b
KB
597 int nr_sectors = bio_sectors(bio);
598
599 /* Only applicable to zoned block devices */
edd1dbc8 600 if (!bdev_is_zoned(bio->bi_bdev))
0512a75b
KB
601 return BLK_STS_NOTSUPP;
602
603 /* The bio sector must point to the start of a sequential zone */
bca150f0 604 if (!bdev_is_zone_start(bio->bi_bdev, bio->bi_iter.bi_sector))
0512a75b
KB
605 return BLK_STS_IOERR;
606
607 /*
608 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
609 * split and could result in non-contiguous sectors being written in
610 * different zones.
611 */
612 if (nr_sectors > q->limits.chunk_sectors)
613 return BLK_STS_IOERR;
614
615 /* Make sure the BIO is small enough and will not get split */
559218d4 616 if (nr_sectors > q->limits.max_zone_append_sectors)
0512a75b
KB
617 return BLK_STS_IOERR;
618
619 bio->bi_opf |= REQ_NOMERGE;
620
621 return BLK_STS_OK;
622}
623
900e0807
JA
624static void __submit_bio(struct bio *bio)
625{
9a42891c
YK
626 /* If plug is not used, add new plug here to cache nsecs time. */
627 struct blk_plug plug;
628
7f36b7d0
ML
629 if (unlikely(!blk_crypto_bio_prep(&bio)))
630 return;
631
9a42891c
YK
632 blk_start_plug(&plug);
633
ac2b6f9d 634 if (!bdev_test_flag(bio->bi_bdev, BD_HAS_SUBMIT_BIO)) {
3e08773c 635 blk_mq_submit_bio(bio);
7f36b7d0 636 } else if (likely(bio_queue_enter(bio) == 0)) {
9f4107b0 637 struct gendisk *disk = bio->bi_bdev->bd_disk;
958148a6
CH
638
639 if ((bio->bi_opf & REQ_POLLED) &&
640 !(disk->queue->limits.features & BLK_FEAT_POLL)) {
641 bio->bi_status = BLK_STS_NOTSUPP;
642 bio_endio(bio);
643 } else {
644 disk->fops->submit_bio(bio);
645 }
7f36b7d0
ML
646 blk_queue_exit(disk->queue);
647 }
9a42891c
YK
648
649 blk_finish_plug(&plug);
ac7c5675
CH
650}
651
566acf2d
CH
652/*
653 * The loop in this function may be a bit non-obvious, and so deserves some
654 * explanation:
655 *
656 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure
657 * that), so we have a list with a single bio.
658 * - We pretend that we have just taken it off a longer list, so we assign
659 * bio_list to a pointer to the bio_list_on_stack, thus initialising the
660 * bio_list of new bios to be added. ->submit_bio() may indeed add some more
661 * bios through a recursive call to submit_bio_noacct. If it did, we find a
662 * non-NULL value in bio_list and re-enter the loop from the top.
663 * - In this case we really did just take the bio of the top of the list (no
664 * pretending) and so remove it from bio_list, and call into ->submit_bio()
665 * again.
666 *
667 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
668 * bio_list_on_stack[1] contains bios that were submitted before the current
69fe0f29 669 * ->submit_bio, but that haven't been processed yet.
566acf2d 670 */
3e08773c 671static void __submit_bio_noacct(struct bio *bio)
566acf2d
CH
672{
673 struct bio_list bio_list_on_stack[2];
566acf2d
CH
674
675 BUG_ON(bio->bi_next);
676
677 bio_list_init(&bio_list_on_stack[0]);
678 current->bio_list = bio_list_on_stack;
679
680 do {
eab4e027 681 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
566acf2d
CH
682 struct bio_list lower, same;
683
566acf2d
CH
684 /*
685 * Create a fresh bio_list for all subordinate requests.
686 */
687 bio_list_on_stack[1] = bio_list_on_stack[0];
688 bio_list_init(&bio_list_on_stack[0]);
689
3e08773c 690 __submit_bio(bio);
566acf2d
CH
691
692 /*
693 * Sort new bios into those for a lower level and those for the
694 * same level.
695 */
696 bio_list_init(&lower);
697 bio_list_init(&same);
698 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
eab4e027 699 if (q == bdev_get_queue(bio->bi_bdev))
566acf2d
CH
700 bio_list_add(&same, bio);
701 else
702 bio_list_add(&lower, bio);
703
704 /*
705 * Now assemble so we handle the lowest level first.
706 */
707 bio_list_merge(&bio_list_on_stack[0], &lower);
708 bio_list_merge(&bio_list_on_stack[0], &same);
709 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
710 } while ((bio = bio_list_pop(&bio_list_on_stack[0])));
711
712 current->bio_list = NULL;
566acf2d
CH
713}
714
3e08773c 715static void __submit_bio_noacct_mq(struct bio *bio)
ff93ea0c 716{
7c792f33 717 struct bio_list bio_list[2] = { };
ff93ea0c 718
7c792f33 719 current->bio_list = bio_list;
ff93ea0c
CH
720
721 do {
3e08773c 722 __submit_bio(bio);
7c792f33 723 } while ((bio = bio_list_pop(&bio_list[0])));
ff93ea0c
CH
724
725 current->bio_list = NULL;
ff93ea0c
CH
726}
727
3f98c753 728void submit_bio_noacct_nocheck(struct bio *bio)
d89d8796 729{
0f7c8f0f
JH
730 blk_cgroup_bio_start(bio);
731 blkcg_bio_issue_init(bio);
732
733 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
734 trace_block_bio_queue(bio);
735 /*
736 * Now that enqueuing has been traced, we need to trace
737 * completion as well.
738 */
739 bio_set_flag(bio, BIO_TRACE_COMPLETION);
740 }
741
27a84d54 742 /*
566acf2d
CH
743 * We only want one ->submit_bio to be active at a time, else stack
744 * usage with stacked devices could be a problem. Use current->bio_list
745 * to collect a list of requests submited by a ->submit_bio method while
746 * it is active, and then process them after it returned.
27a84d54 747 */
3e08773c 748 if (current->bio_list)
f5fe1b51 749 bio_list_add(&current->bio_list[0], bio);
ac2b6f9d 750 else if (!bdev_test_flag(bio->bi_bdev, BD_HAS_SUBMIT_BIO))
3e08773c
CH
751 __submit_bio_noacct_mq(bio);
752 else
753 __submit_bio_noacct(bio);
d89d8796 754}
3f98c753 755
9da3d1e9
JG
756static blk_status_t blk_validate_atomic_write_op_size(struct request_queue *q,
757 struct bio *bio)
758{
759 if (bio->bi_iter.bi_size > queue_atomic_write_unit_max_bytes(q))
760 return BLK_STS_INVAL;
761
762 if (bio->bi_iter.bi_size % queue_atomic_write_unit_min_bytes(q))
763 return BLK_STS_INVAL;
764
765 return BLK_STS_OK;
766}
767
3f98c753
ML
768/**
769 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
770 * @bio: The bio describing the location in memory and on the device.
771 *
772 * This is a version of submit_bio() that shall only be used for I/O that is
773 * resubmitted to lower level drivers by stacking block drivers. All file
774 * systems and other upper level users of the block layer should use
775 * submit_bio() instead.
776 */
777void submit_bio_noacct(struct bio *bio)
1da177e4 778{
309dca30 779 struct block_device *bdev = bio->bi_bdev;
eab4e027 780 struct request_queue *q = bdev_get_queue(bdev);
4e4cbee9 781 blk_status_t status = BLK_STS_IOERR;
1da177e4
LT
782
783 might_sleep();
1da177e4 784
03a07c92 785 /*
b0beb280 786 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
021a2446 787 * if queue does not support NOWAIT.
03a07c92 788 */
568ec936 789 if ((bio->bi_opf & REQ_NOWAIT) && !bdev_nowait(bdev))
b0beb280 790 goto not_supported;
03a07c92 791
30abb3a6 792 if (should_fail_bio(bio))
5a7bbad2 793 goto end_io;
bdb7d420 794 bio_check_ro(bio);
3a905c37
CH
795 if (!bio_flagged(bio, BIO_REMAPPED)) {
796 if (unlikely(bio_check_eod(bio)))
797 goto end_io;
3f9b8fb4
AV
798 if (bdev_is_partition(bdev) &&
799 unlikely(blk_partition_remap(bio)))
3a905c37
CH
800 goto end_io;
801 }
2056a782 802
5a7bbad2 803 /*
ed00aabd
CH
804 * Filter flush bio's early so that bio based drivers without flush
805 * support don't have to worry about them.
5a7bbad2 806 */
b4a6bb3a
CH
807 if (op_is_flush(bio->bi_opf)) {
808 if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_WRITE &&
809 bio_op(bio) != REQ_OP_ZONE_APPEND))
51fd77bd 810 goto end_io;
1122c0c1 811 if (!bdev_write_cache(bdev)) {
b4a6bb3a
CH
812 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
813 if (!bio_sectors(bio)) {
814 status = BLK_STS_OK;
815 goto end_io;
816 }
51fd77bd 817 }
5a7bbad2 818 }
5ddfe969 819
288dab8a 820 switch (bio_op(bio)) {
1c042f8d 821 case REQ_OP_READ:
ea6787c6 822 break;
1c042f8d 823 case REQ_OP_WRITE:
9da3d1e9
JG
824 if (bio->bi_opf & REQ_ATOMIC) {
825 status = blk_validate_atomic_write_op_size(q, bio);
826 if (status != BLK_STS_OK)
827 goto end_io;
828 }
1c042f8d
CH
829 break;
830 case REQ_OP_FLUSH:
831 /*
832 * REQ_OP_FLUSH can't be submitted through bios, it is only
833 * synthetized in struct request by the flush state machine.
834 */
835 goto not_supported;
288dab8a 836 case REQ_OP_DISCARD:
70200574 837 if (!bdev_max_discard_sectors(bdev))
288dab8a
CH
838 goto not_supported;
839 break;
840 case REQ_OP_SECURE_ERASE:
44abff2c 841 if (!bdev_max_secure_erase_sectors(bdev))
288dab8a
CH
842 goto not_supported;
843 break;
0512a75b
KB
844 case REQ_OP_ZONE_APPEND:
845 status = blk_check_zone_append(q, bio);
846 if (status != BLK_STS_OK)
847 goto end_io;
848 break;
1c042f8d
CH
849 case REQ_OP_WRITE_ZEROES:
850 if (!q->limits.max_write_zeroes_sectors)
851 goto not_supported;
852 break;
2d253440 853 case REQ_OP_ZONE_RESET:
6c1b1da5
AJ
854 case REQ_OP_ZONE_OPEN:
855 case REQ_OP_ZONE_CLOSE:
856 case REQ_OP_ZONE_FINISH:
6e33dbf2 857 case REQ_OP_ZONE_RESET_ALL:
f2a7bea2 858 if (!bdev_is_zoned(bio->bi_bdev))
6e33dbf2
CK
859 goto not_supported;
860 break;
1c042f8d
CH
861 case REQ_OP_DRV_IN:
862 case REQ_OP_DRV_OUT:
863 /*
864 * Driver private operations are only used with passthrough
865 * requests.
866 */
867 fallthrough;
288dab8a 868 default:
1c042f8d 869 goto not_supported;
5a7bbad2 870 }
01edede4 871
b781d8db 872 if (blk_throtl_bio(bio))
3f98c753
ML
873 return;
874 submit_bio_noacct_nocheck(bio);
d24c670e 875 return;
a7384677 876
288dab8a 877not_supported:
4e4cbee9 878 status = BLK_STS_NOTSUPP;
a7384677 879end_io:
4e4cbee9 880 bio->bi_status = status;
4246a0b6 881 bio_endio(bio);
d89d8796 882}
ed00aabd 883EXPORT_SYMBOL(submit_bio_noacct);
1da177e4 884
f3c89983
HJ
885static void bio_set_ioprio(struct bio *bio)
886{
887 /* Nobody set ioprio so far? Initialize it based on task's nice value */
888 if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
889 bio->bi_ioprio = get_current_ioprio();
890 blkcg_set_ioprio(bio);
891}
892
1da177e4 893/**
710027a4 894 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
895 * @bio: The &struct bio which describes the I/O
896 *
3fdd4086
CH
897 * submit_bio() is used to submit I/O requests to block devices. It is passed a
898 * fully set up &struct bio that describes the I/O that needs to be done. The
309dca30 899 * bio will be send to the device described by the bi_bdev field.
1da177e4 900 *
3fdd4086
CH
901 * The success/failure status of the request, along with notification of
902 * completion, is delivered asynchronously through the ->bi_end_io() callback
e8848087 903 * in @bio. The bio must NOT be touched by the caller until ->bi_end_io() has
3fdd4086 904 * been called.
1da177e4 905 */
3e08773c 906void submit_bio(struct bio *bio)
1da177e4 907{
a3e7689b
CH
908 if (bio_op(bio) == REQ_OP_READ) {
909 task_io_account_read(bio->bi_iter.bi_size);
910 count_vm_events(PGPGIN, bio_sectors(bio));
911 } else if (bio_op(bio) == REQ_OP_WRITE) {
912 count_vm_events(PGPGOUT, bio_sectors(bio));
1da177e4
LT
913 }
914
f3c89983 915 bio_set_ioprio(bio);
3e08773c 916 submit_bio_noacct(bio);
1da177e4 917}
1da177e4
LT
918EXPORT_SYMBOL(submit_bio);
919
3e08773c
CH
920/**
921 * bio_poll - poll for BIO completions
922 * @bio: bio to poll for
e30028ac 923 * @iob: batches of IO
3e08773c
CH
924 * @flags: BLK_POLL_* flags that control the behavior
925 *
926 * Poll for completions on queue associated with the bio. Returns number of
927 * completed entries found.
928 *
929 * Note: the caller must either be the context that submitted @bio, or
930 * be in a RCU critical section to prevent freeing of @bio.
931 */
5a72e899 932int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags)
3e08773c 933{
3e08773c 934 blk_qc_t cookie = READ_ONCE(bio->bi_cookie);
310726c3
JA
935 struct block_device *bdev;
936 struct request_queue *q;
69fe0f29 937 int ret = 0;
3e08773c 938
310726c3
JA
939 bdev = READ_ONCE(bio->bi_bdev);
940 if (!bdev)
941 return 0;
942
943 q = bdev_get_queue(bdev);
958148a6 944 if (cookie == BLK_QC_T_NONE)
3e08773c
CH
945 return 0;
946
aa8dccca 947 blk_flush_plug(current->plug, false);
3e08773c 948
33391eec
JA
949 /*
950 * We need to be able to enter a frozen queue, similar to how
951 * timeouts also need to do that. If that is blocked, then we can
952 * have pending IO when a queue freeze is started, and then the
953 * wait for the freeze to finish will wait for polled requests to
954 * timeout as the poller is preventer from entering the queue and
955 * completing them. As long as we prevent new IO from being queued,
956 * that should be all that matters.
957 */
958 if (!percpu_ref_tryget(&q->q_usage_counter))
3e08773c 959 return 0;
d432c817 960 if (queue_is_mq(q)) {
5a72e899 961 ret = blk_mq_poll(q, cookie, iob, flags);
69fe0f29
ML
962 } else {
963 struct gendisk *disk = q->disk;
964
d432c817
CH
965 if ((q->limits.features & BLK_FEAT_POLL) && disk &&
966 disk->fops->poll_bio)
69fe0f29
ML
967 ret = disk->fops->poll_bio(bio, iob, flags);
968 }
3e08773c
CH
969 blk_queue_exit(q);
970 return ret;
971}
972EXPORT_SYMBOL_GPL(bio_poll);
973
974/*
975 * Helper to implement file_operations.iopoll. Requires the bio to be stored
976 * in iocb->private, and cleared before freeing the bio.
977 */
5a72e899
JA
978int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
979 unsigned int flags)
3e08773c
CH
980{
981 struct bio *bio;
982 int ret = 0;
983
984 /*
985 * Note: the bio cache only uses SLAB_TYPESAFE_BY_RCU, so bio can
986 * point to a freshly allocated bio at this point. If that happens
987 * we have a few cases to consider:
988 *
989 * 1) the bio is beeing initialized and bi_bdev is NULL. We can just
990 * simply nothing in this case
991 * 2) the bio points to a not poll enabled device. bio_poll will catch
992 * this and return 0
993 * 3) the bio points to a poll capable device, including but not
994 * limited to the one that the original bio pointed to. In this
995 * case we will call into the actual poll method and poll for I/O,
996 * even if we don't need to, but it won't cause harm either.
997 *
998 * For cases 2) and 3) above the RCU grace period ensures that bi_bdev
999 * is still allocated. Because partitions hold a reference to the whole
1000 * device bdev and thus disk, the disk is also still valid. Grabbing
1001 * a reference to the queue in bio_poll() ensures the hctxs and requests
1002 * are still valid as well.
1003 */
1004 rcu_read_lock();
1005 bio = READ_ONCE(kiocb->private);
310726c3 1006 if (bio)
5a72e899 1007 ret = bio_poll(bio, iob, flags);
3e08773c
CH
1008 rcu_read_unlock();
1009
1010 return ret;
1011}
1012EXPORT_SYMBOL_GPL(iocb_bio_iopoll);
1013
450b7879 1014void update_io_ticks(struct block_device *part, unsigned long now, bool end)
9123bf6f
CH
1015{
1016 unsigned long stamp;
1017again:
8446fe92 1018 stamp = READ_ONCE(part->bd_stamp);
99dc4223
YK
1019 if (unlikely(time_after(now, stamp)) &&
1020 likely(try_cmpxchg(&part->bd_stamp, &stamp, now)) &&
f2987c58 1021 (end || bdev_count_inflight(part)))
99dc4223
YK
1022 __part_stat_add(part, io_ticks, now - stamp);
1023
3f9b8fb4 1024 if (bdev_is_partition(part)) {
8446fe92 1025 part = bdev_whole(part);
9123bf6f
CH
1026 goto again;
1027 }
1028}
1029
5f275713 1030unsigned long bdev_start_io_acct(struct block_device *bdev, enum req_op op,
5f0614a5 1031 unsigned long start_time)
956d510e 1032{
956d510e 1033 part_stat_lock();
5f0614a5 1034 update_io_ticks(bdev, start_time, false);
5f0614a5 1035 part_stat_local_inc(bdev, in_flight[op_is_write(op)]);
956d510e 1036 part_stat_unlock();
320ae51f 1037
e45c47d1
MS
1038 return start_time;
1039}
5f0614a5 1040EXPORT_SYMBOL(bdev_start_io_acct);
e45c47d1 1041
99dfc43e
CH
1042/**
1043 * bio_start_io_acct - start I/O accounting for bio based drivers
1044 * @bio: bio to start account for
1045 *
1046 * Returns the start time that should be passed back to bio_end_io_acct().
1047 */
1048unsigned long bio_start_io_acct(struct bio *bio)
7b26410b 1049{
5f275713 1050 return bdev_start_io_acct(bio->bi_bdev, bio_op(bio), jiffies);
7b26410b 1051}
99dfc43e 1052EXPORT_SYMBOL_GPL(bio_start_io_acct);
7b26410b 1053
77e7ffd7 1054void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
5f275713 1055 unsigned int sectors, unsigned long start_time)
956d510e 1056{
956d510e
CH
1057 const int sgrp = op_stat_group(op);
1058 unsigned long now = READ_ONCE(jiffies);
1059 unsigned long duration = now - start_time;
5b18b5a7 1060
956d510e 1061 part_stat_lock();
5f0614a5 1062 update_io_ticks(bdev, now, true);
5f275713
YK
1063 part_stat_inc(bdev, ios[sgrp]);
1064 part_stat_add(bdev, sectors[sgrp], sectors);
5f0614a5
ML
1065 part_stat_add(bdev, nsecs[sgrp], jiffies_to_nsecs(duration));
1066 part_stat_local_dec(bdev, in_flight[op_is_write(op)]);
320ae51f
JA
1067 part_stat_unlock();
1068}
5f0614a5 1069EXPORT_SYMBOL(bdev_end_io_acct);
7b26410b 1070
99dfc43e 1071void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
5f0614a5 1072 struct block_device *orig_bdev)
7b26410b 1073{
5f275713 1074 bdev_end_io_acct(orig_bdev, bio_op(bio), bio_sectors(bio), start_time);
7b26410b 1075}
99dfc43e 1076EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
7b26410b 1077
ef9e3fac
KU
1078/**
1079 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1080 * @q : the queue of the device being checked
1081 *
1082 * Description:
1083 * Check if underlying low-level drivers of a device are busy.
1084 * If the drivers want to export their busy state, they must set own
1085 * exporting function using blk_queue_lld_busy() first.
1086 *
1087 * Basically, this function is used only by request stacking drivers
1088 * to stop dispatching requests to underlying devices when underlying
1089 * devices are busy. This behavior helps more I/O merging on the queue
1090 * of the request stacking driver and prevents I/O throughput regression
1091 * on burst I/O load.
1092 *
1093 * Return:
1094 * 0 - Not busy (The request stacking driver should dispatch request)
1095 * 1 - Busy (The request stacking driver should stop dispatching request)
1096 */
1097int blk_lld_busy(struct request_queue *q)
1098{
344e9ffc 1099 if (queue_is_mq(q) && q->mq_ops->busy)
9ba20527 1100 return q->mq_ops->busy(q);
ef9e3fac
KU
1101
1102 return 0;
1103}
1104EXPORT_SYMBOL_GPL(blk_lld_busy);
1105
59c3d45e 1106int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
1107{
1108 return queue_work(kblockd_workqueue, work);
1109}
1da177e4
LT
1110EXPORT_SYMBOL(kblockd_schedule_work);
1111
818cd1cb
JA
1112int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1113 unsigned long delay)
1114{
1115 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1116}
1117EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1118
47c122e3
JA
1119void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios)
1120{
1121 struct task_struct *tsk = current;
1122
1123 /*
1124 * If this is a nested plug, don't actually assign it.
1125 */
1126 if (tsk->plug)
1127 return;
1128
da4c8c3d 1129 plug->cur_ktime = 0;
a3396b99
CH
1130 rq_list_init(&plug->mq_list);
1131 rq_list_init(&plug->cached_rqs);
47c122e3
JA
1132 plug->nr_ios = min_t(unsigned short, nr_ios, BLK_MAX_REQUEST_COUNT);
1133 plug->rq_count = 0;
1134 plug->multiple_queues = false;
dc5fc361 1135 plug->has_elevator = false;
47c122e3
JA
1136 INIT_LIST_HEAD(&plug->cb_list);
1137
1138 /*
1139 * Store ordering should not be needed here, since a potential
1140 * preempt will imply a full memory barrier
1141 */
1142 tsk->plug = plug;
1143}
1144
75df7136
SJ
1145/**
1146 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1147 * @plug: The &struct blk_plug that needs to be initialized
1148 *
1149 * Description:
40405851
JM
1150 * blk_start_plug() indicates to the block layer an intent by the caller
1151 * to submit multiple I/O requests in a batch. The block layer may use
1152 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1153 * is called. However, the block layer may choose to submit requests
1154 * before a call to blk_finish_plug() if the number of queued I/Os
1155 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1156 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1157 * the task schedules (see below).
1158 *
75df7136
SJ
1159 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1160 * pending I/O should the task end up blocking between blk_start_plug() and
1161 * blk_finish_plug(). This is important from a performance perspective, but
1162 * also ensures that we don't deadlock. For instance, if the task is blocking
1163 * for a memory allocation, memory reclaim could end up wanting to free a
1164 * page belonging to that request that is currently residing in our private
1165 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1166 * this kind of deadlock.
1167 */
73c10101
JA
1168void blk_start_plug(struct blk_plug *plug)
1169{
47c122e3 1170 blk_start_plug_nr_ios(plug, 1);
73c10101
JA
1171}
1172EXPORT_SYMBOL(blk_start_plug);
1173
74018dc3 1174static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
1175{
1176 LIST_HEAD(callbacks);
1177
2a7d5559
SL
1178 while (!list_empty(&plug->cb_list)) {
1179 list_splice_init(&plug->cb_list, &callbacks);
048c9374 1180
2a7d5559
SL
1181 while (!list_empty(&callbacks)) {
1182 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
1183 struct blk_plug_cb,
1184 list);
2a7d5559 1185 list_del(&cb->list);
74018dc3 1186 cb->callback(cb, from_schedule);
2a7d5559 1187 }
048c9374
N
1188 }
1189}
1190
9cbb1750
N
1191struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1192 int size)
1193{
1194 struct blk_plug *plug = current->plug;
1195 struct blk_plug_cb *cb;
1196
1197 if (!plug)
1198 return NULL;
1199
1200 list_for_each_entry(cb, &plug->cb_list, list)
1201 if (cb->callback == unplug && cb->data == data)
1202 return cb;
1203
1204 /* Not currently on the callback list */
1205 BUG_ON(size < sizeof(*cb));
1206 cb = kzalloc(size, GFP_ATOMIC);
1207 if (cb) {
1208 cb->data = data;
1209 cb->callback = unplug;
1210 list_add(&cb->list, &plug->cb_list);
1211 }
1212 return cb;
1213}
1214EXPORT_SYMBOL(blk_check_plugged);
1215
aa8dccca 1216void __blk_flush_plug(struct blk_plug *plug, bool from_schedule)
73c10101 1217{
b600455d
PB
1218 if (!list_empty(&plug->cb_list))
1219 flush_plug_callbacks(plug, from_schedule);
70904263 1220 blk_mq_flush_plug_list(plug, from_schedule);
c5fc7b93
JA
1221 /*
1222 * Unconditionally flush out cached requests, even if the unplug
1223 * event came from schedule. Since we know hold references to the
1224 * queue for cached requests, we don't want a blocked task holding
1225 * up a queue freeze/quiesce event.
1226 */
a3396b99 1227 if (unlikely(!rq_list_empty(&plug->cached_rqs)))
47c122e3 1228 blk_mq_free_plug_rqs(plug);
06b23f92 1229
3ec48489 1230 plug->cur_ktime = 0;
06b23f92 1231 current->flags &= ~PF_BLOCK_TS;
73c10101 1232}
73c10101 1233
40405851
JM
1234/**
1235 * blk_finish_plug - mark the end of a batch of submitted I/O
1236 * @plug: The &struct blk_plug passed to blk_start_plug()
1237 *
1238 * Description:
1239 * Indicate that a batch of I/O submissions is complete. This function
1240 * must be paired with an initial call to blk_start_plug(). The intent
1241 * is to allow the block layer to optimize I/O submission. See the
1242 * documentation for blk_start_plug() for more information.
1243 */
73c10101
JA
1244void blk_finish_plug(struct blk_plug *plug)
1245{
008f75a2 1246 if (plug == current->plug) {
aa8dccca 1247 __blk_flush_plug(plug, false);
008f75a2
CH
1248 current->plug = NULL;
1249 }
73c10101 1250}
88b996cd 1251EXPORT_SYMBOL(blk_finish_plug);
73c10101 1252
71ac860a
ML
1253void blk_io_schedule(void)
1254{
1255 /* Prevent hang_check timer from firing at us during very long I/O */
1256 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1257
1258 if (timeout)
1259 io_schedule_timeout(timeout);
1260 else
1261 io_schedule();
1262}
1263EXPORT_SYMBOL_GPL(blk_io_schedule);
1264
1da177e4
LT
1265int __init blk_dev_init(void)
1266{
16458cf3 1267 BUILD_BUG_ON((__force u32)REQ_OP_LAST >= (1 << REQ_OP_BITS));
ef295ecf 1268 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
c593642c 1269 sizeof_field(struct request, cmd_flags));
ef295ecf 1270 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
c593642c 1271 sizeof_field(struct bio, bi_opf));
9eb55b03 1272
89b90be2
TH
1273 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1274 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 1275 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
1276 if (!kblockd_workqueue)
1277 panic("Failed to create kblockd\n");
1278
48ff13a6 1279 blk_requestq_cachep = KMEM_CACHE(request_queue, SLAB_PANIC);
1da177e4 1280
18fbda91 1281 blk_debugfs_root = debugfs_create_dir("block", NULL);
18fbda91 1282
d38ecf93 1283 return 0;
1da177e4 1284}