[PATCH] elevator: abstract out the rbtree sort handling
[linux-2.6-block.git] / block / as-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Anticipatory & deadline i/o scheduler.
3 *
4 * Copyright (C) 2002 Jens Axboe <axboe@suse.de>
f5b3db00 5 * Nick Piggin <nickpiggin@yahoo.com.au>
1da177e4
LT
6 *
7 */
8#include <linux/kernel.h>
9#include <linux/fs.h>
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
12#include <linux/bio.h>
1da177e4
LT
13#include <linux/module.h>
14#include <linux/slab.h>
15#include <linux/init.h>
16#include <linux/compiler.h>
1da177e4
LT
17#include <linux/rbtree.h>
18#include <linux/interrupt.h>
19
20#define REQ_SYNC 1
21#define REQ_ASYNC 0
22
23/*
24 * See Documentation/block/as-iosched.txt
25 */
26
27/*
28 * max time before a read is submitted.
29 */
30#define default_read_expire (HZ / 8)
31
32/*
33 * ditto for writes, these limits are not hard, even
34 * if the disk is capable of satisfying them.
35 */
36#define default_write_expire (HZ / 4)
37
38/*
39 * read_batch_expire describes how long we will allow a stream of reads to
40 * persist before looking to see whether it is time to switch over to writes.
41 */
42#define default_read_batch_expire (HZ / 2)
43
44/*
45 * write_batch_expire describes how long we want a stream of writes to run for.
46 * This is not a hard limit, but a target we set for the auto-tuning thingy.
47 * See, the problem is: we can send a lot of writes to disk cache / TCQ in
48 * a short amount of time...
49 */
50#define default_write_batch_expire (HZ / 8)
51
52/*
53 * max time we may wait to anticipate a read (default around 6ms)
54 */
55#define default_antic_expire ((HZ / 150) ? HZ / 150 : 1)
56
57/*
58 * Keep track of up to 20ms thinktimes. We can go as big as we like here,
59 * however huge values tend to interfere and not decay fast enough. A program
60 * might be in a non-io phase of operation. Waiting on user input for example,
61 * or doing a lengthy computation. A small penalty can be justified there, and
62 * will still catch out those processes that constantly have large thinktimes.
63 */
64#define MAX_THINKTIME (HZ/50UL)
65
66/* Bits in as_io_context.state */
67enum as_io_states {
f5b3db00 68 AS_TASK_RUNNING=0, /* Process has not exited */
1da177e4
LT
69 AS_TASK_IOSTARTED, /* Process has started some IO */
70 AS_TASK_IORUNNING, /* Process has completed some IO */
71};
72
73enum anticipation_status {
74 ANTIC_OFF=0, /* Not anticipating (normal operation) */
75 ANTIC_WAIT_REQ, /* The last read has not yet completed */
76 ANTIC_WAIT_NEXT, /* Currently anticipating a request vs
77 last read (which has completed) */
78 ANTIC_FINISHED, /* Anticipating but have found a candidate
79 * or timed out */
80};
81
82struct as_data {
83 /*
84 * run time data
85 */
86
87 struct request_queue *q; /* the "owner" queue */
88
89 /*
90 * requests (as_rq s) are present on both sort_list and fifo_list
91 */
92 struct rb_root sort_list[2];
93 struct list_head fifo_list[2];
94
95 struct as_rq *next_arq[2]; /* next in sort order */
96 sector_t last_sector[2]; /* last REQ_SYNC & REQ_ASYNC sectors */
1da177e4
LT
97
98 unsigned long exit_prob; /* probability a task will exit while
99 being waited on */
f5b3db00
NP
100 unsigned long exit_no_coop; /* probablility an exited task will
101 not be part of a later cooperating
102 request */
1da177e4
LT
103 unsigned long new_ttime_total; /* mean thinktime on new proc */
104 unsigned long new_ttime_mean;
105 u64 new_seek_total; /* mean seek on new proc */
106 sector_t new_seek_mean;
107
108 unsigned long current_batch_expires;
109 unsigned long last_check_fifo[2];
110 int changed_batch; /* 1: waiting for old batch to end */
111 int new_batch; /* 1: waiting on first read complete */
112 int batch_data_dir; /* current batch REQ_SYNC / REQ_ASYNC */
113 int write_batch_count; /* max # of reqs in a write batch */
114 int current_write_count; /* how many requests left this batch */
115 int write_batch_idled; /* has the write batch gone idle? */
116 mempool_t *arq_pool;
117
118 enum anticipation_status antic_status;
119 unsigned long antic_start; /* jiffies: when it started */
120 struct timer_list antic_timer; /* anticipatory scheduling timer */
121 struct work_struct antic_work; /* Deferred unplugging */
122 struct io_context *io_context; /* Identify the expected process */
123 int ioc_finished; /* IO associated with io_context is finished */
124 int nr_dispatched;
125
126 /*
127 * settings that change how the i/o scheduler behaves
128 */
129 unsigned long fifo_expire[2];
130 unsigned long batch_expire[2];
131 unsigned long antic_expire;
132};
133
134#define list_entry_fifo(ptr) list_entry((ptr), struct as_rq, fifo)
135
136/*
137 * per-request data.
138 */
139enum arq_state {
140 AS_RQ_NEW=0, /* New - not referenced and not on any lists */
141 AS_RQ_QUEUED, /* In the request queue. It belongs to the
142 scheduler */
143 AS_RQ_DISPATCHED, /* On the dispatch list. It belongs to the
144 driver now */
145 AS_RQ_PRESCHED, /* Debug poisoning for requests being used */
146 AS_RQ_REMOVED,
147 AS_RQ_MERGED,
148 AS_RQ_POSTSCHED, /* when they shouldn't be */
149};
150
151struct as_rq {
152 /*
153 * rbtree index, key is the starting offset
154 */
155 struct rb_node rb_node;
156 sector_t rb_key;
157
158 struct request *request;
159
160 struct io_context *io_context; /* The submitting task */
161
1da177e4
LT
162 /*
163 * expire fifo
164 */
165 struct list_head fifo;
166 unsigned long expires;
167
168 unsigned int is_sync;
169 enum arq_state state;
170};
171
172#define RQ_DATA(rq) ((struct as_rq *) (rq)->elevator_private)
173
174static kmem_cache_t *arq_pool;
175
334e94de
AV
176static atomic_t ioc_count = ATOMIC_INIT(0);
177static struct completion *ioc_gone;
178
ef9be1d3
TH
179static void as_move_to_dispatch(struct as_data *ad, struct as_rq *arq);
180static void as_antic_stop(struct as_data *ad);
181
1da177e4
LT
182/*
183 * IO Context helper functions
184 */
185
186/* Called to deallocate the as_io_context */
187static void free_as_io_context(struct as_io_context *aic)
188{
189 kfree(aic);
334e94de
AV
190 if (atomic_dec_and_test(&ioc_count) && ioc_gone)
191 complete(ioc_gone);
1da177e4
LT
192}
193
e17a9489
AV
194static void as_trim(struct io_context *ioc)
195{
334e94de
AV
196 if (ioc->aic)
197 free_as_io_context(ioc->aic);
e17a9489
AV
198 ioc->aic = NULL;
199}
200
1da177e4
LT
201/* Called when the task exits */
202static void exit_as_io_context(struct as_io_context *aic)
203{
204 WARN_ON(!test_bit(AS_TASK_RUNNING, &aic->state));
205 clear_bit(AS_TASK_RUNNING, &aic->state);
206}
207
208static struct as_io_context *alloc_as_io_context(void)
209{
210 struct as_io_context *ret;
211
212 ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
213 if (ret) {
214 ret->dtor = free_as_io_context;
215 ret->exit = exit_as_io_context;
216 ret->state = 1 << AS_TASK_RUNNING;
217 atomic_set(&ret->nr_queued, 0);
218 atomic_set(&ret->nr_dispatched, 0);
219 spin_lock_init(&ret->lock);
220 ret->ttime_total = 0;
221 ret->ttime_samples = 0;
222 ret->ttime_mean = 0;
223 ret->seek_total = 0;
224 ret->seek_samples = 0;
225 ret->seek_mean = 0;
334e94de 226 atomic_inc(&ioc_count);
1da177e4
LT
227 }
228
229 return ret;
230}
231
232/*
233 * If the current task has no AS IO context then create one and initialise it.
234 * Then take a ref on the task's io context and return it.
235 */
236static struct io_context *as_get_io_context(void)
237{
238 struct io_context *ioc = get_io_context(GFP_ATOMIC);
239 if (ioc && !ioc->aic) {
240 ioc->aic = alloc_as_io_context();
241 if (!ioc->aic) {
242 put_io_context(ioc);
243 ioc = NULL;
244 }
245 }
246 return ioc;
247}
248
b4878f24
JA
249static void as_put_io_context(struct as_rq *arq)
250{
251 struct as_io_context *aic;
252
253 if (unlikely(!arq->io_context))
254 return;
255
256 aic = arq->io_context->aic;
257
258 if (arq->is_sync == REQ_SYNC && aic) {
259 spin_lock(&aic->lock);
260 set_bit(AS_TASK_IORUNNING, &aic->state);
261 aic->last_end_request = jiffies;
262 spin_unlock(&aic->lock);
263 }
264
265 put_io_context(arq->io_context);
266}
267
1da177e4
LT
268/*
269 * rb tree support functions
270 */
1da177e4
LT
271#define rb_entry_arq(node) rb_entry((node), struct as_rq, rb_node)
272#define ARQ_RB_ROOT(ad, arq) (&(ad)->sort_list[(arq)->is_sync])
273#define rq_rb_key(rq) (rq)->sector
274
275/*
276 * as_find_first_arq finds the first (lowest sector numbered) request
277 * for the specified data_dir. Used to sweep back to the start of the disk
278 * (1-way elevator) after we process the last (highest sector) request.
279 */
280static struct as_rq *as_find_first_arq(struct as_data *ad, int data_dir)
281{
282 struct rb_node *n = ad->sort_list[data_dir].rb_node;
283
284 if (n == NULL)
285 return NULL;
286
287 for (;;) {
288 if (n->rb_left == NULL)
289 return rb_entry_arq(n);
290
291 n = n->rb_left;
292 }
293}
294
295/*
296 * Add the request to the rb tree if it is unique. If there is an alias (an
297 * existing request against the same sector), which can happen when using
298 * direct IO, then return the alias.
299 */
ef9be1d3 300static struct as_rq *__as_add_arq_rb(struct as_data *ad, struct as_rq *arq)
1da177e4
LT
301{
302 struct rb_node **p = &ARQ_RB_ROOT(ad, arq)->rb_node;
303 struct rb_node *parent = NULL;
304 struct as_rq *__arq;
305 struct request *rq = arq->request;
306
307 arq->rb_key = rq_rb_key(rq);
308
309 while (*p) {
310 parent = *p;
311 __arq = rb_entry_arq(parent);
312
313 if (arq->rb_key < __arq->rb_key)
314 p = &(*p)->rb_left;
315 else if (arq->rb_key > __arq->rb_key)
316 p = &(*p)->rb_right;
317 else
318 return __arq;
319 }
320
321 rb_link_node(&arq->rb_node, parent, p);
322 rb_insert_color(&arq->rb_node, ARQ_RB_ROOT(ad, arq));
323
324 return NULL;
325}
326
ef9be1d3
TH
327static void as_add_arq_rb(struct as_data *ad, struct as_rq *arq)
328{
329 struct as_rq *alias;
330
331 while ((unlikely(alias = __as_add_arq_rb(ad, arq)))) {
332 as_move_to_dispatch(ad, alias);
333 as_antic_stop(ad);
334 }
335}
336
1da177e4
LT
337static inline void as_del_arq_rb(struct as_data *ad, struct as_rq *arq)
338{
10fd48f2 339 if (RB_EMPTY_NODE(&arq->rb_node)) {
1da177e4
LT
340 WARN_ON(1);
341 return;
342 }
343
344 rb_erase(&arq->rb_node, ARQ_RB_ROOT(ad, arq));
dd67d051 345 RB_CLEAR_NODE(&arq->rb_node);
1da177e4
LT
346}
347
348static struct request *
349as_find_arq_rb(struct as_data *ad, sector_t sector, int data_dir)
350{
351 struct rb_node *n = ad->sort_list[data_dir].rb_node;
352 struct as_rq *arq;
353
354 while (n) {
355 arq = rb_entry_arq(n);
356
357 if (sector < arq->rb_key)
358 n = n->rb_left;
359 else if (sector > arq->rb_key)
360 n = n->rb_right;
361 else
362 return arq->request;
363 }
364
365 return NULL;
366}
367
368/*
369 * IO Scheduler proper
370 */
371
372#define MAXBACK (1024 * 1024) /*
373 * Maximum distance the disk will go backward
374 * for a request.
375 */
376
377#define BACK_PENALTY 2
378
379/*
380 * as_choose_req selects the preferred one of two requests of the same data_dir
381 * ignoring time - eg. timeouts, which is the job of as_dispatch_request
382 */
383static struct as_rq *
384as_choose_req(struct as_data *ad, struct as_rq *arq1, struct as_rq *arq2)
385{
386 int data_dir;
387 sector_t last, s1, s2, d1, d2;
388 int r1_wrap=0, r2_wrap=0; /* requests are behind the disk head */
389 const sector_t maxback = MAXBACK;
390
391 if (arq1 == NULL || arq1 == arq2)
392 return arq2;
393 if (arq2 == NULL)
394 return arq1;
395
396 data_dir = arq1->is_sync;
397
398 last = ad->last_sector[data_dir];
399 s1 = arq1->request->sector;
400 s2 = arq2->request->sector;
401
402 BUG_ON(data_dir != arq2->is_sync);
403
404 /*
405 * Strict one way elevator _except_ in the case where we allow
406 * short backward seeks which are biased as twice the cost of a
407 * similar forward seek.
408 */
409 if (s1 >= last)
410 d1 = s1 - last;
411 else if (s1+maxback >= last)
412 d1 = (last - s1)*BACK_PENALTY;
413 else {
414 r1_wrap = 1;
415 d1 = 0; /* shut up, gcc */
416 }
417
418 if (s2 >= last)
419 d2 = s2 - last;
420 else if (s2+maxback >= last)
421 d2 = (last - s2)*BACK_PENALTY;
422 else {
423 r2_wrap = 1;
424 d2 = 0;
425 }
426
427 /* Found required data */
428 if (!r1_wrap && r2_wrap)
429 return arq1;
430 else if (!r2_wrap && r1_wrap)
431 return arq2;
432 else if (r1_wrap && r2_wrap) {
433 /* both behind the head */
434 if (s1 <= s2)
435 return arq1;
436 else
437 return arq2;
438 }
439
440 /* Both requests in front of the head */
441 if (d1 < d2)
442 return arq1;
443 else if (d2 < d1)
444 return arq2;
445 else {
446 if (s1 >= s2)
447 return arq1;
448 else
449 return arq2;
450 }
451}
452
453/*
454 * as_find_next_arq finds the next request after @prev in elevator order.
455 * this with as_choose_req form the basis for how the scheduler chooses
456 * what request to process next. Anticipation works on top of this.
457 */
458static struct as_rq *as_find_next_arq(struct as_data *ad, struct as_rq *last)
459{
460 const int data_dir = last->is_sync;
461 struct as_rq *ret;
462 struct rb_node *rbnext = rb_next(&last->rb_node);
463 struct rb_node *rbprev = rb_prev(&last->rb_node);
464 struct as_rq *arq_next, *arq_prev;
465
dd67d051 466 BUG_ON(!RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
467
468 if (rbprev)
469 arq_prev = rb_entry_arq(rbprev);
470 else
471 arq_prev = NULL;
472
473 if (rbnext)
474 arq_next = rb_entry_arq(rbnext);
475 else {
476 arq_next = as_find_first_arq(ad, data_dir);
477 if (arq_next == last)
478 arq_next = NULL;
479 }
480
481 ret = as_choose_req(ad, arq_next, arq_prev);
482
483 return ret;
484}
485
486/*
487 * anticipatory scheduling functions follow
488 */
489
490/*
491 * as_antic_expired tells us when we have anticipated too long.
492 * The funny "absolute difference" math on the elapsed time is to handle
493 * jiffy wraps, and disks which have been idle for 0x80000000 jiffies.
494 */
495static int as_antic_expired(struct as_data *ad)
496{
497 long delta_jif;
498
499 delta_jif = jiffies - ad->antic_start;
500 if (unlikely(delta_jif < 0))
501 delta_jif = -delta_jif;
502 if (delta_jif < ad->antic_expire)
503 return 0;
504
505 return 1;
506}
507
508/*
509 * as_antic_waitnext starts anticipating that a nice request will soon be
510 * submitted. See also as_antic_waitreq
511 */
512static void as_antic_waitnext(struct as_data *ad)
513{
514 unsigned long timeout;
515
516 BUG_ON(ad->antic_status != ANTIC_OFF
517 && ad->antic_status != ANTIC_WAIT_REQ);
518
519 timeout = ad->antic_start + ad->antic_expire;
520
521 mod_timer(&ad->antic_timer, timeout);
522
523 ad->antic_status = ANTIC_WAIT_NEXT;
524}
525
526/*
527 * as_antic_waitreq starts anticipating. We don't start timing the anticipation
528 * until the request that we're anticipating on has finished. This means we
529 * are timing from when the candidate process wakes up hopefully.
530 */
531static void as_antic_waitreq(struct as_data *ad)
532{
533 BUG_ON(ad->antic_status == ANTIC_FINISHED);
534 if (ad->antic_status == ANTIC_OFF) {
535 if (!ad->io_context || ad->ioc_finished)
536 as_antic_waitnext(ad);
537 else
538 ad->antic_status = ANTIC_WAIT_REQ;
539 }
540}
541
542/*
543 * This is called directly by the functions in this file to stop anticipation.
544 * We kill the timer and schedule a call to the request_fn asap.
545 */
546static void as_antic_stop(struct as_data *ad)
547{
548 int status = ad->antic_status;
549
550 if (status == ANTIC_WAIT_REQ || status == ANTIC_WAIT_NEXT) {
551 if (status == ANTIC_WAIT_NEXT)
552 del_timer(&ad->antic_timer);
553 ad->antic_status = ANTIC_FINISHED;
554 /* see as_work_handler */
555 kblockd_schedule_work(&ad->antic_work);
556 }
557}
558
559/*
560 * as_antic_timeout is the timer function set by as_antic_waitnext.
561 */
562static void as_antic_timeout(unsigned long data)
563{
564 struct request_queue *q = (struct request_queue *)data;
565 struct as_data *ad = q->elevator->elevator_data;
566 unsigned long flags;
567
568 spin_lock_irqsave(q->queue_lock, flags);
569 if (ad->antic_status == ANTIC_WAIT_REQ
570 || ad->antic_status == ANTIC_WAIT_NEXT) {
571 struct as_io_context *aic = ad->io_context->aic;
572
573 ad->antic_status = ANTIC_FINISHED;
574 kblockd_schedule_work(&ad->antic_work);
575
576 if (aic->ttime_samples == 0) {
f5b3db00 577 /* process anticipated on has exited or timed out*/
1da177e4
LT
578 ad->exit_prob = (7*ad->exit_prob + 256)/8;
579 }
f5b3db00
NP
580 if (!test_bit(AS_TASK_RUNNING, &aic->state)) {
581 /* process not "saved" by a cooperating request */
582 ad->exit_no_coop = (7*ad->exit_no_coop + 256)/8;
583 }
1da177e4
LT
584 }
585 spin_unlock_irqrestore(q->queue_lock, flags);
586}
587
f5b3db00
NP
588static void as_update_thinktime(struct as_data *ad, struct as_io_context *aic,
589 unsigned long ttime)
590{
591 /* fixed point: 1.0 == 1<<8 */
592 if (aic->ttime_samples == 0) {
593 ad->new_ttime_total = (7*ad->new_ttime_total + 256*ttime) / 8;
594 ad->new_ttime_mean = ad->new_ttime_total / 256;
595
596 ad->exit_prob = (7*ad->exit_prob)/8;
597 }
598 aic->ttime_samples = (7*aic->ttime_samples + 256) / 8;
599 aic->ttime_total = (7*aic->ttime_total + 256*ttime) / 8;
600 aic->ttime_mean = (aic->ttime_total + 128) / aic->ttime_samples;
601}
602
603static void as_update_seekdist(struct as_data *ad, struct as_io_context *aic,
604 sector_t sdist)
605{
606 u64 total;
607
608 if (aic->seek_samples == 0) {
609 ad->new_seek_total = (7*ad->new_seek_total + 256*(u64)sdist)/8;
610 ad->new_seek_mean = ad->new_seek_total / 256;
611 }
612
613 /*
614 * Don't allow the seek distance to get too large from the
615 * odd fragment, pagein, etc
616 */
617 if (aic->seek_samples <= 60) /* second&third seek */
618 sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*1024);
619 else
620 sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*64);
621
622 aic->seek_samples = (7*aic->seek_samples + 256) / 8;
623 aic->seek_total = (7*aic->seek_total + (u64)256*sdist) / 8;
624 total = aic->seek_total + (aic->seek_samples/2);
625 do_div(total, aic->seek_samples);
626 aic->seek_mean = (sector_t)total;
627}
628
629/*
630 * as_update_iohist keeps a decaying histogram of IO thinktimes, and
631 * updates @aic->ttime_mean based on that. It is called when a new
632 * request is queued.
633 */
634static void as_update_iohist(struct as_data *ad, struct as_io_context *aic,
635 struct request *rq)
636{
637 struct as_rq *arq = RQ_DATA(rq);
638 int data_dir = arq->is_sync;
639 unsigned long thinktime = 0;
640 sector_t seek_dist;
641
642 if (aic == NULL)
643 return;
644
645 if (data_dir == REQ_SYNC) {
646 unsigned long in_flight = atomic_read(&aic->nr_queued)
647 + atomic_read(&aic->nr_dispatched);
648 spin_lock(&aic->lock);
649 if (test_bit(AS_TASK_IORUNNING, &aic->state) ||
650 test_bit(AS_TASK_IOSTARTED, &aic->state)) {
651 /* Calculate read -> read thinktime */
652 if (test_bit(AS_TASK_IORUNNING, &aic->state)
653 && in_flight == 0) {
654 thinktime = jiffies - aic->last_end_request;
655 thinktime = min(thinktime, MAX_THINKTIME-1);
656 }
657 as_update_thinktime(ad, aic, thinktime);
658
659 /* Calculate read -> read seek distance */
660 if (aic->last_request_pos < rq->sector)
661 seek_dist = rq->sector - aic->last_request_pos;
662 else
663 seek_dist = aic->last_request_pos - rq->sector;
664 as_update_seekdist(ad, aic, seek_dist);
665 }
666 aic->last_request_pos = rq->sector + rq->nr_sectors;
667 set_bit(AS_TASK_IOSTARTED, &aic->state);
668 spin_unlock(&aic->lock);
669 }
670}
671
1da177e4
LT
672/*
673 * as_close_req decides if one request is considered "close" to the
674 * previous one issued.
675 */
f5b3db00
NP
676static int as_close_req(struct as_data *ad, struct as_io_context *aic,
677 struct as_rq *arq)
1da177e4
LT
678{
679 unsigned long delay; /* milliseconds */
680 sector_t last = ad->last_sector[ad->batch_data_dir];
681 sector_t next = arq->request->sector;
682 sector_t delta; /* acceptable close offset (in sectors) */
f5b3db00 683 sector_t s;
1da177e4
LT
684
685 if (ad->antic_status == ANTIC_OFF || !ad->ioc_finished)
686 delay = 0;
687 else
688 delay = ((jiffies - ad->antic_start) * 1000) / HZ;
689
f5b3db00
NP
690 if (delay == 0)
691 delta = 8192;
1da177e4 692 else if (delay <= 20 && delay <= ad->antic_expire)
f5b3db00 693 delta = 8192 << delay;
1da177e4
LT
694 else
695 return 1;
696
f5b3db00
NP
697 if ((last <= next + (delta>>1)) && (next <= last + delta))
698 return 1;
699
700 if (last < next)
701 s = next - last;
702 else
703 s = last - next;
704
705 if (aic->seek_samples == 0) {
706 /*
707 * Process has just started IO. Use past statistics to
708 * gauge success possibility
709 */
710 if (ad->new_seek_mean > s) {
711 /* this request is better than what we're expecting */
712 return 1;
713 }
714
715 } else {
716 if (aic->seek_mean > s) {
717 /* this request is better than what we're expecting */
718 return 1;
719 }
720 }
721
722 return 0;
1da177e4
LT
723}
724
725/*
726 * as_can_break_anticipation returns true if we have been anticipating this
727 * request.
728 *
729 * It also returns true if the process against which we are anticipating
730 * submits a write - that's presumably an fsync, O_SYNC write, etc. We want to
731 * dispatch it ASAP, because we know that application will not be submitting
732 * any new reads.
733 *
f5b3db00 734 * If the task which has submitted the request has exited, break anticipation.
1da177e4
LT
735 *
736 * If this task has queued some other IO, do not enter enticipation.
737 */
738static int as_can_break_anticipation(struct as_data *ad, struct as_rq *arq)
739{
740 struct io_context *ioc;
741 struct as_io_context *aic;
1da177e4
LT
742
743 ioc = ad->io_context;
744 BUG_ON(!ioc);
745
746 if (arq && ioc == arq->io_context) {
747 /* request from same process */
748 return 1;
749 }
750
751 if (ad->ioc_finished && as_antic_expired(ad)) {
752 /*
753 * In this situation status should really be FINISHED,
754 * however the timer hasn't had the chance to run yet.
755 */
756 return 1;
757 }
758
759 aic = ioc->aic;
760 if (!aic)
761 return 0;
762
1da177e4
LT
763 if (atomic_read(&aic->nr_queued) > 0) {
764 /* process has more requests queued */
765 return 1;
766 }
767
768 if (atomic_read(&aic->nr_dispatched) > 0) {
769 /* process has more requests dispatched */
770 return 1;
771 }
772
f5b3db00 773 if (arq && arq->is_sync == REQ_SYNC && as_close_req(ad, aic, arq)) {
1da177e4
LT
774 /*
775 * Found a close request that is not one of ours.
776 *
f5b3db00
NP
777 * This makes close requests from another process update
778 * our IO history. Is generally useful when there are
1da177e4
LT
779 * two or more cooperating processes working in the same
780 * area.
781 */
f5b3db00
NP
782 if (!test_bit(AS_TASK_RUNNING, &aic->state)) {
783 if (aic->ttime_samples == 0)
784 ad->exit_prob = (7*ad->exit_prob + 256)/8;
785
786 ad->exit_no_coop = (7*ad->exit_no_coop)/8;
787 }
788
789 as_update_iohist(ad, aic, arq->request);
1da177e4
LT
790 return 1;
791 }
792
f5b3db00
NP
793 if (!test_bit(AS_TASK_RUNNING, &aic->state)) {
794 /* process anticipated on has exited */
795 if (aic->ttime_samples == 0)
796 ad->exit_prob = (7*ad->exit_prob + 256)/8;
797
798 if (ad->exit_no_coop > 128)
799 return 1;
800 }
1da177e4
LT
801
802 if (aic->ttime_samples == 0) {
803 if (ad->new_ttime_mean > ad->antic_expire)
804 return 1;
f5b3db00 805 if (ad->exit_prob * ad->exit_no_coop > 128*256)
1da177e4
LT
806 return 1;
807 } else if (aic->ttime_mean > ad->antic_expire) {
808 /* the process thinks too much between requests */
809 return 1;
810 }
811
1da177e4
LT
812 return 0;
813}
814
815/*
d6e05edc 816 * as_can_anticipate indicates whether we should either run arq
1da177e4
LT
817 * or keep anticipating a better request.
818 */
819static int as_can_anticipate(struct as_data *ad, struct as_rq *arq)
820{
821 if (!ad->io_context)
822 /*
823 * Last request submitted was a write
824 */
825 return 0;
826
827 if (ad->antic_status == ANTIC_FINISHED)
828 /*
829 * Don't restart if we have just finished. Run the next request
830 */
831 return 0;
832
833 if (as_can_break_anticipation(ad, arq))
834 /*
835 * This request is a good candidate. Don't keep anticipating,
836 * run it.
837 */
838 return 0;
839
840 /*
841 * OK from here, we haven't finished, and don't have a decent request!
842 * Status is either ANTIC_OFF so start waiting,
843 * ANTIC_WAIT_REQ so continue waiting for request to finish
844 * or ANTIC_WAIT_NEXT so continue waiting for an acceptable request.
1da177e4
LT
845 */
846
847 return 1;
848}
849
1da177e4
LT
850/*
851 * as_update_arq must be called whenever a request (arq) is added to
852 * the sort_list. This function keeps caches up to date, and checks if the
853 * request might be one we are "anticipating"
854 */
855static void as_update_arq(struct as_data *ad, struct as_rq *arq)
856{
857 const int data_dir = arq->is_sync;
858
859 /* keep the next_arq cache up to date */
860 ad->next_arq[data_dir] = as_choose_req(ad, arq, ad->next_arq[data_dir]);
861
862 /*
863 * have we been anticipating this request?
864 * or does it come from the same process as the one we are anticipating
865 * for?
866 */
867 if (ad->antic_status == ANTIC_WAIT_REQ
868 || ad->antic_status == ANTIC_WAIT_NEXT) {
869 if (as_can_break_anticipation(ad, arq))
870 as_antic_stop(ad);
871 }
872}
873
874/*
875 * Gathers timings and resizes the write batch automatically
876 */
877static void update_write_batch(struct as_data *ad)
878{
879 unsigned long batch = ad->batch_expire[REQ_ASYNC];
880 long write_time;
881
882 write_time = (jiffies - ad->current_batch_expires) + batch;
883 if (write_time < 0)
884 write_time = 0;
885
886 if (write_time > batch && !ad->write_batch_idled) {
887 if (write_time > batch * 3)
888 ad->write_batch_count /= 2;
889 else
890 ad->write_batch_count--;
891 } else if (write_time < batch && ad->current_write_count == 0) {
892 if (batch > write_time * 3)
893 ad->write_batch_count *= 2;
894 else
895 ad->write_batch_count++;
896 }
897
898 if (ad->write_batch_count < 1)
899 ad->write_batch_count = 1;
900}
901
902/*
903 * as_completed_request is to be called when a request has completed and
904 * returned something to the requesting process, be it an error or data.
905 */
906static void as_completed_request(request_queue_t *q, struct request *rq)
907{
908 struct as_data *ad = q->elevator->elevator_data;
909 struct as_rq *arq = RQ_DATA(rq);
910
911 WARN_ON(!list_empty(&rq->queuelist));
912
1da177e4
LT
913 if (arq->state != AS_RQ_REMOVED) {
914 printk("arq->state %d\n", arq->state);
915 WARN_ON(1);
916 goto out;
917 }
918
1da177e4
LT
919 if (ad->changed_batch && ad->nr_dispatched == 1) {
920 kblockd_schedule_work(&ad->antic_work);
921 ad->changed_batch = 0;
922
923 if (ad->batch_data_dir == REQ_SYNC)
924 ad->new_batch = 1;
925 }
926 WARN_ON(ad->nr_dispatched == 0);
927 ad->nr_dispatched--;
928
929 /*
930 * Start counting the batch from when a request of that direction is
931 * actually serviced. This should help devices with big TCQ windows
932 * and writeback caches
933 */
934 if (ad->new_batch && ad->batch_data_dir == arq->is_sync) {
935 update_write_batch(ad);
936 ad->current_batch_expires = jiffies +
937 ad->batch_expire[REQ_SYNC];
938 ad->new_batch = 0;
939 }
940
941 if (ad->io_context == arq->io_context && ad->io_context) {
942 ad->antic_start = jiffies;
943 ad->ioc_finished = 1;
944 if (ad->antic_status == ANTIC_WAIT_REQ) {
945 /*
946 * We were waiting on this request, now anticipate
947 * the next one
948 */
949 as_antic_waitnext(ad);
950 }
951 }
952
b4878f24 953 as_put_io_context(arq);
1da177e4
LT
954out:
955 arq->state = AS_RQ_POSTSCHED;
956}
957
958/*
959 * as_remove_queued_request removes a request from the pre dispatch queue
960 * without updating refcounts. It is expected the caller will drop the
961 * reference unless it replaces the request at somepart of the elevator
962 * (ie. the dispatch queue)
963 */
964static void as_remove_queued_request(request_queue_t *q, struct request *rq)
965{
966 struct as_rq *arq = RQ_DATA(rq);
967 const int data_dir = arq->is_sync;
968 struct as_data *ad = q->elevator->elevator_data;
969
970 WARN_ON(arq->state != AS_RQ_QUEUED);
971
972 if (arq->io_context && arq->io_context->aic) {
973 BUG_ON(!atomic_read(&arq->io_context->aic->nr_queued));
974 atomic_dec(&arq->io_context->aic->nr_queued);
975 }
976
977 /*
978 * Update the "next_arq" cache if we are about to remove its
979 * entry
980 */
981 if (ad->next_arq[data_dir] == arq)
982 ad->next_arq[data_dir] = as_find_next_arq(ad, arq);
983
984 list_del_init(&arq->fifo);
1da177e4
LT
985 as_del_arq_rb(ad, arq);
986}
987
1da177e4
LT
988/*
989 * as_fifo_expired returns 0 if there are no expired reads on the fifo,
990 * 1 otherwise. It is ratelimited so that we only perform the check once per
991 * `fifo_expire' interval. Otherwise a large number of expired requests
992 * would create a hopeless seekstorm.
993 *
994 * See as_antic_expired comment.
995 */
996static int as_fifo_expired(struct as_data *ad, int adir)
997{
998 struct as_rq *arq;
999 long delta_jif;
1000
1001 delta_jif = jiffies - ad->last_check_fifo[adir];
1002 if (unlikely(delta_jif < 0))
1003 delta_jif = -delta_jif;
1004 if (delta_jif < ad->fifo_expire[adir])
1005 return 0;
1006
1007 ad->last_check_fifo[adir] = jiffies;
1008
1009 if (list_empty(&ad->fifo_list[adir]))
1010 return 0;
1011
1012 arq = list_entry_fifo(ad->fifo_list[adir].next);
1013
1014 return time_after(jiffies, arq->expires);
1015}
1016
1017/*
1018 * as_batch_expired returns true if the current batch has expired. A batch
1019 * is a set of reads or a set of writes.
1020 */
1021static inline int as_batch_expired(struct as_data *ad)
1022{
1023 if (ad->changed_batch || ad->new_batch)
1024 return 0;
1025
1026 if (ad->batch_data_dir == REQ_SYNC)
1027 /* TODO! add a check so a complete fifo gets written? */
1028 return time_after(jiffies, ad->current_batch_expires);
1029
1030 return time_after(jiffies, ad->current_batch_expires)
1031 || ad->current_write_count == 0;
1032}
1033
1034/*
1035 * move an entry to dispatch queue
1036 */
1037static void as_move_to_dispatch(struct as_data *ad, struct as_rq *arq)
1038{
1039 struct request *rq = arq->request;
1da177e4
LT
1040 const int data_dir = arq->is_sync;
1041
10fd48f2 1042 BUG_ON(RB_EMPTY_NODE(&arq->rb_node));
1da177e4
LT
1043
1044 as_antic_stop(ad);
1045 ad->antic_status = ANTIC_OFF;
1046
1047 /*
1048 * This has to be set in order to be correctly updated by
1049 * as_find_next_arq
1050 */
1051 ad->last_sector[data_dir] = rq->sector + rq->nr_sectors;
1052
1053 if (data_dir == REQ_SYNC) {
1054 /* In case we have to anticipate after this */
1055 copy_io_context(&ad->io_context, &arq->io_context);
1056 } else {
1057 if (ad->io_context) {
1058 put_io_context(ad->io_context);
1059 ad->io_context = NULL;
1060 }
1061
1062 if (ad->current_write_count != 0)
1063 ad->current_write_count--;
1064 }
1065 ad->ioc_finished = 0;
1066
1067 ad->next_arq[data_dir] = as_find_next_arq(ad, arq);
1068
1069 /*
1070 * take it off the sort and fifo list, add to dispatch queue
1071 */
1da177e4
LT
1072 as_remove_queued_request(ad->q, rq);
1073 WARN_ON(arq->state != AS_RQ_QUEUED);
1074
b4878f24
JA
1075 elv_dispatch_sort(ad->q, rq);
1076
1da177e4
LT
1077 arq->state = AS_RQ_DISPATCHED;
1078 if (arq->io_context && arq->io_context->aic)
1079 atomic_inc(&arq->io_context->aic->nr_dispatched);
1080 ad->nr_dispatched++;
1081}
1082
1083/*
1084 * as_dispatch_request selects the best request according to
1085 * read/write expire, batch expire, etc, and moves it to the dispatch
1086 * queue. Returns 1 if a request was found, 0 otherwise.
1087 */
b4878f24 1088static int as_dispatch_request(request_queue_t *q, int force)
1da177e4 1089{
b4878f24 1090 struct as_data *ad = q->elevator->elevator_data;
1da177e4
LT
1091 struct as_rq *arq;
1092 const int reads = !list_empty(&ad->fifo_list[REQ_SYNC]);
1093 const int writes = !list_empty(&ad->fifo_list[REQ_ASYNC]);
1094
b4878f24
JA
1095 if (unlikely(force)) {
1096 /*
1097 * Forced dispatch, accounting is useless. Reset
1098 * accounting states and dump fifo_lists. Note that
1099 * batch_data_dir is reset to REQ_SYNC to avoid
1100 * screwing write batch accounting as write batch
1101 * accounting occurs on W->R transition.
1102 */
1103 int dispatched = 0;
1104
1105 ad->batch_data_dir = REQ_SYNC;
1106 ad->changed_batch = 0;
1107 ad->new_batch = 0;
1108
1109 while (ad->next_arq[REQ_SYNC]) {
1110 as_move_to_dispatch(ad, ad->next_arq[REQ_SYNC]);
1111 dispatched++;
1112 }
1113 ad->last_check_fifo[REQ_SYNC] = jiffies;
1114
1115 while (ad->next_arq[REQ_ASYNC]) {
1116 as_move_to_dispatch(ad, ad->next_arq[REQ_ASYNC]);
1117 dispatched++;
1118 }
1119 ad->last_check_fifo[REQ_ASYNC] = jiffies;
1120
1121 return dispatched;
1122 }
1123
1da177e4
LT
1124 /* Signal that the write batch was uncontended, so we can't time it */
1125 if (ad->batch_data_dir == REQ_ASYNC && !reads) {
1126 if (ad->current_write_count == 0 || !writes)
1127 ad->write_batch_idled = 1;
1128 }
1129
1130 if (!(reads || writes)
1131 || ad->antic_status == ANTIC_WAIT_REQ
1132 || ad->antic_status == ANTIC_WAIT_NEXT
1133 || ad->changed_batch)
1134 return 0;
1135
f5b3db00 1136 if (!(reads && writes && as_batch_expired(ad))) {
1da177e4
LT
1137 /*
1138 * batch is still running or no reads or no writes
1139 */
1140 arq = ad->next_arq[ad->batch_data_dir];
1141
1142 if (ad->batch_data_dir == REQ_SYNC && ad->antic_expire) {
1143 if (as_fifo_expired(ad, REQ_SYNC))
1144 goto fifo_expired;
1145
1146 if (as_can_anticipate(ad, arq)) {
1147 as_antic_waitreq(ad);
1148 return 0;
1149 }
1150 }
1151
1152 if (arq) {
1153 /* we have a "next request" */
1154 if (reads && !writes)
1155 ad->current_batch_expires =
1156 jiffies + ad->batch_expire[REQ_SYNC];
1157 goto dispatch_request;
1158 }
1159 }
1160
1161 /*
1162 * at this point we are not running a batch. select the appropriate
1163 * data direction (read / write)
1164 */
1165
1166 if (reads) {
dd67d051 1167 BUG_ON(RB_EMPTY_ROOT(&ad->sort_list[REQ_SYNC]));
1da177e4
LT
1168
1169 if (writes && ad->batch_data_dir == REQ_SYNC)
1170 /*
1171 * Last batch was a read, switch to writes
1172 */
1173 goto dispatch_writes;
1174
1175 if (ad->batch_data_dir == REQ_ASYNC) {
1176 WARN_ON(ad->new_batch);
1177 ad->changed_batch = 1;
1178 }
1179 ad->batch_data_dir = REQ_SYNC;
1180 arq = list_entry_fifo(ad->fifo_list[ad->batch_data_dir].next);
1181 ad->last_check_fifo[ad->batch_data_dir] = jiffies;
1182 goto dispatch_request;
1183 }
1184
1185 /*
1186 * the last batch was a read
1187 */
1188
1189 if (writes) {
1190dispatch_writes:
dd67d051 1191 BUG_ON(RB_EMPTY_ROOT(&ad->sort_list[REQ_ASYNC]));
1da177e4
LT
1192
1193 if (ad->batch_data_dir == REQ_SYNC) {
1194 ad->changed_batch = 1;
1195
1196 /*
1197 * new_batch might be 1 when the queue runs out of
1198 * reads. A subsequent submission of a write might
1199 * cause a change of batch before the read is finished.
1200 */
1201 ad->new_batch = 0;
1202 }
1203 ad->batch_data_dir = REQ_ASYNC;
1204 ad->current_write_count = ad->write_batch_count;
1205 ad->write_batch_idled = 0;
1206 arq = ad->next_arq[ad->batch_data_dir];
1207 goto dispatch_request;
1208 }
1209
1210 BUG();
1211 return 0;
1212
1213dispatch_request:
1214 /*
1215 * If a request has expired, service it.
1216 */
1217
1218 if (as_fifo_expired(ad, ad->batch_data_dir)) {
1219fifo_expired:
1220 arq = list_entry_fifo(ad->fifo_list[ad->batch_data_dir].next);
1221 BUG_ON(arq == NULL);
1222 }
1223
1224 if (ad->changed_batch) {
1225 WARN_ON(ad->new_batch);
1226
1227 if (ad->nr_dispatched)
1228 return 0;
1229
1230 if (ad->batch_data_dir == REQ_ASYNC)
1231 ad->current_batch_expires = jiffies +
1232 ad->batch_expire[REQ_ASYNC];
1233 else
1234 ad->new_batch = 1;
1235
1236 ad->changed_batch = 0;
1237 }
1238
1239 /*
1240 * arq is the selected appropriate request.
1241 */
1242 as_move_to_dispatch(ad, arq);
1243
1244 return 1;
1245}
1246
1da177e4
LT
1247/*
1248 * add arq to rbtree and fifo
1249 */
b4878f24 1250static void as_add_request(request_queue_t *q, struct request *rq)
1da177e4 1251{
b4878f24
JA
1252 struct as_data *ad = q->elevator->elevator_data;
1253 struct as_rq *arq = RQ_DATA(rq);
1da177e4
LT
1254 int data_dir;
1255
b4878f24
JA
1256 arq->state = AS_RQ_NEW;
1257
1da177e4 1258 if (rq_data_dir(arq->request) == READ
4aff5e23 1259 || (arq->request->cmd_flags & REQ_RW_SYNC))
1da177e4
LT
1260 arq->is_sync = 1;
1261 else
1262 arq->is_sync = 0;
1263 data_dir = arq->is_sync;
1264
1265 arq->io_context = as_get_io_context();
1266
1267 if (arq->io_context) {
1268 as_update_iohist(ad, arq->io_context->aic, arq->request);
1269 atomic_inc(&arq->io_context->aic->nr_queued);
1270 }
1271
ef9be1d3 1272 as_add_arq_rb(ad, arq);
1da177e4 1273
ef9be1d3
TH
1274 /*
1275 * set expire time (only used for reads) and add to fifo list
1276 */
1277 arq->expires = jiffies + ad->fifo_expire[data_dir];
1278 list_add_tail(&arq->fifo, &ad->fifo_list[data_dir]);
1da177e4 1279
ef9be1d3 1280 as_update_arq(ad, arq); /* keep state machine up to date */
1da177e4
LT
1281 arq->state = AS_RQ_QUEUED;
1282}
1283
b4878f24 1284static void as_activate_request(request_queue_t *q, struct request *rq)
1da177e4 1285{
1da177e4
LT
1286 struct as_rq *arq = RQ_DATA(rq);
1287
b4878f24
JA
1288 WARN_ON(arq->state != AS_RQ_DISPATCHED);
1289 arq->state = AS_RQ_REMOVED;
1290 if (arq->io_context && arq->io_context->aic)
1291 atomic_dec(&arq->io_context->aic->nr_dispatched);
1da177e4
LT
1292}
1293
b4878f24 1294static void as_deactivate_request(request_queue_t *q, struct request *rq)
1da177e4 1295{
1da177e4
LT
1296 struct as_rq *arq = RQ_DATA(rq);
1297
b4878f24
JA
1298 WARN_ON(arq->state != AS_RQ_REMOVED);
1299 arq->state = AS_RQ_DISPATCHED;
1300 if (arq->io_context && arq->io_context->aic)
1301 atomic_inc(&arq->io_context->aic->nr_dispatched);
1da177e4
LT
1302}
1303
1304/*
1305 * as_queue_empty tells us if there are requests left in the device. It may
1306 * not be the case that a driver can get the next request even if the queue
1307 * is not empty - it is used in the block layer to check for plugging and
1308 * merging opportunities
1309 */
1310static int as_queue_empty(request_queue_t *q)
1311{
1312 struct as_data *ad = q->elevator->elevator_data;
1313
b4878f24
JA
1314 return list_empty(&ad->fifo_list[REQ_ASYNC])
1315 && list_empty(&ad->fifo_list[REQ_SYNC]);
1da177e4
LT
1316}
1317
f5b3db00
NP
1318static struct request *as_former_request(request_queue_t *q,
1319 struct request *rq)
1da177e4
LT
1320{
1321 struct as_rq *arq = RQ_DATA(rq);
1322 struct rb_node *rbprev = rb_prev(&arq->rb_node);
1323 struct request *ret = NULL;
1324
1325 if (rbprev)
1326 ret = rb_entry_arq(rbprev)->request;
1327
1328 return ret;
1329}
1330
f5b3db00
NP
1331static struct request *as_latter_request(request_queue_t *q,
1332 struct request *rq)
1da177e4
LT
1333{
1334 struct as_rq *arq = RQ_DATA(rq);
1335 struct rb_node *rbnext = rb_next(&arq->rb_node);
1336 struct request *ret = NULL;
1337
1338 if (rbnext)
1339 ret = rb_entry_arq(rbnext)->request;
1340
1341 return ret;
1342}
1343
1344static int
1345as_merge(request_queue_t *q, struct request **req, struct bio *bio)
1346{
1347 struct as_data *ad = q->elevator->elevator_data;
1348 sector_t rb_key = bio->bi_sector + bio_sectors(bio);
1349 struct request *__rq;
1da177e4
LT
1350
1351 /*
1352 * check for front merge
1353 */
1354 __rq = as_find_arq_rb(ad, rb_key, bio_data_dir(bio));
9817064b
JA
1355 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1356 *req = __rq;
1357 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
1358 }
1359
1360 return ELEVATOR_NO_MERGE;
1da177e4
LT
1361}
1362
1363static void as_merged_request(request_queue_t *q, struct request *req)
1364{
1365 struct as_data *ad = q->elevator->elevator_data;
1366 struct as_rq *arq = RQ_DATA(req);
1367
1da177e4
LT
1368 /*
1369 * if the merge was a front merge, we need to reposition request
1370 */
1371 if (rq_rb_key(req) != arq->rb_key) {
1da177e4 1372 as_del_arq_rb(ad, arq);
ef9be1d3 1373 as_add_arq_rb(ad, arq);
1da177e4
LT
1374 /*
1375 * Note! At this stage of this and the next function, our next
1376 * request may not be optimal - eg the request may have "grown"
1377 * behind the disk head. We currently don't bother adjusting.
1378 */
1379 }
1da177e4
LT
1380}
1381
f5b3db00
NP
1382static void as_merged_requests(request_queue_t *q, struct request *req,
1383 struct request *next)
1da177e4
LT
1384{
1385 struct as_data *ad = q->elevator->elevator_data;
1386 struct as_rq *arq = RQ_DATA(req);
1387 struct as_rq *anext = RQ_DATA(next);
1388
1389 BUG_ON(!arq);
1390 BUG_ON(!anext);
1391
1da177e4 1392 if (rq_rb_key(req) != arq->rb_key) {
1da177e4 1393 as_del_arq_rb(ad, arq);
ef9be1d3 1394 as_add_arq_rb(ad, arq);
1da177e4
LT
1395 }
1396
1397 /*
1398 * if anext expires before arq, assign its expire time to arq
1399 * and move into anext position (anext will be deleted) in fifo
1400 */
1401 if (!list_empty(&arq->fifo) && !list_empty(&anext->fifo)) {
1402 if (time_before(anext->expires, arq->expires)) {
1403 list_move(&arq->fifo, &anext->fifo);
1404 arq->expires = anext->expires;
1405 /*
1406 * Don't copy here but swap, because when anext is
1407 * removed below, it must contain the unused context
1408 */
1409 swap_io_context(&arq->io_context, &anext->io_context);
1410 }
1411 }
1412
1da177e4
LT
1413 /*
1414 * kill knowledge of next, this one is a goner
1415 */
1416 as_remove_queued_request(q, next);
b4878f24 1417 as_put_io_context(anext);
1da177e4
LT
1418
1419 anext->state = AS_RQ_MERGED;
1420}
1421
1422/*
1423 * This is executed in a "deferred" process context, by kblockd. It calls the
1424 * driver's request_fn so the driver can submit that request.
1425 *
1426 * IMPORTANT! This guy will reenter the elevator, so set up all queue global
1427 * state before calling, and don't rely on any state over calls.
1428 *
1429 * FIXME! dispatch queue is not a queue at all!
1430 */
1431static void as_work_handler(void *data)
1432{
1433 struct request_queue *q = data;
1434 unsigned long flags;
1435
1436 spin_lock_irqsave(q->queue_lock, flags);
b4878f24 1437 if (!as_queue_empty(q))
1da177e4
LT
1438 q->request_fn(q);
1439 spin_unlock_irqrestore(q->queue_lock, flags);
1440}
1441
1442static void as_put_request(request_queue_t *q, struct request *rq)
1443{
1444 struct as_data *ad = q->elevator->elevator_data;
1445 struct as_rq *arq = RQ_DATA(rq);
1446
1447 if (!arq) {
1448 WARN_ON(1);
1449 return;
1450 }
1451
b4878f24
JA
1452 if (unlikely(arq->state != AS_RQ_POSTSCHED &&
1453 arq->state != AS_RQ_PRESCHED &&
1454 arq->state != AS_RQ_MERGED)) {
1da177e4
LT
1455 printk("arq->state %d\n", arq->state);
1456 WARN_ON(1);
1457 }
1458
1459 mempool_free(arq, ad->arq_pool);
1460 rq->elevator_private = NULL;
1461}
1462
22e2c507 1463static int as_set_request(request_queue_t *q, struct request *rq,
8267e268 1464 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
1465{
1466 struct as_data *ad = q->elevator->elevator_data;
1467 struct as_rq *arq = mempool_alloc(ad->arq_pool, gfp_mask);
1468
1469 if (arq) {
1470 memset(arq, 0, sizeof(*arq));
dd67d051 1471 RB_CLEAR_NODE(&arq->rb_node);
1da177e4
LT
1472 arq->request = rq;
1473 arq->state = AS_RQ_PRESCHED;
1474 arq->io_context = NULL;
1da177e4
LT
1475 INIT_LIST_HEAD(&arq->fifo);
1476 rq->elevator_private = arq;
1477 return 0;
1478 }
1479
1480 return 1;
1481}
1482
22e2c507 1483static int as_may_queue(request_queue_t *q, int rw, struct bio *bio)
1da177e4
LT
1484{
1485 int ret = ELV_MQUEUE_MAY;
1486 struct as_data *ad = q->elevator->elevator_data;
1487 struct io_context *ioc;
1488 if (ad->antic_status == ANTIC_WAIT_REQ ||
1489 ad->antic_status == ANTIC_WAIT_NEXT) {
1490 ioc = as_get_io_context();
1491 if (ad->io_context == ioc)
1492 ret = ELV_MQUEUE_MUST;
1493 put_io_context(ioc);
1494 }
1495
1496 return ret;
1497}
1498
1499static void as_exit_queue(elevator_t *e)
1500{
1501 struct as_data *ad = e->elevator_data;
1502
1503 del_timer_sync(&ad->antic_timer);
1504 kblockd_flush();
1505
1506 BUG_ON(!list_empty(&ad->fifo_list[REQ_SYNC]));
1507 BUG_ON(!list_empty(&ad->fifo_list[REQ_ASYNC]));
1508
1509 mempool_destroy(ad->arq_pool);
1510 put_io_context(ad->io_context);
1da177e4
LT
1511 kfree(ad);
1512}
1513
1514/*
1515 * initialize elevator private data (as_data), and alloc a arq for
1516 * each request on the free lists
1517 */
bc1c1169 1518static void *as_init_queue(request_queue_t *q, elevator_t *e)
1da177e4
LT
1519{
1520 struct as_data *ad;
1da177e4
LT
1521
1522 if (!arq_pool)
bc1c1169 1523 return NULL;
1da177e4 1524
1946089a 1525 ad = kmalloc_node(sizeof(*ad), GFP_KERNEL, q->node);
1da177e4 1526 if (!ad)
bc1c1169 1527 return NULL;
1da177e4
LT
1528 memset(ad, 0, sizeof(*ad));
1529
1530 ad->q = q; /* Identify what queue the data belongs to */
1531
1946089a
CL
1532 ad->arq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1533 mempool_free_slab, arq_pool, q->node);
1da177e4 1534 if (!ad->arq_pool) {
1da177e4 1535 kfree(ad);
bc1c1169 1536 return NULL;
1da177e4
LT
1537 }
1538
1539 /* anticipatory scheduling helpers */
1540 ad->antic_timer.function = as_antic_timeout;
1541 ad->antic_timer.data = (unsigned long)q;
1542 init_timer(&ad->antic_timer);
1543 INIT_WORK(&ad->antic_work, as_work_handler, q);
1544
1da177e4
LT
1545 INIT_LIST_HEAD(&ad->fifo_list[REQ_SYNC]);
1546 INIT_LIST_HEAD(&ad->fifo_list[REQ_ASYNC]);
1547 ad->sort_list[REQ_SYNC] = RB_ROOT;
1548 ad->sort_list[REQ_ASYNC] = RB_ROOT;
1da177e4
LT
1549 ad->fifo_expire[REQ_SYNC] = default_read_expire;
1550 ad->fifo_expire[REQ_ASYNC] = default_write_expire;
1551 ad->antic_expire = default_antic_expire;
1552 ad->batch_expire[REQ_SYNC] = default_read_batch_expire;
1553 ad->batch_expire[REQ_ASYNC] = default_write_batch_expire;
1da177e4
LT
1554
1555 ad->current_batch_expires = jiffies + ad->batch_expire[REQ_SYNC];
1556 ad->write_batch_count = ad->batch_expire[REQ_ASYNC] / 10;
1557 if (ad->write_batch_count < 2)
1558 ad->write_batch_count = 2;
1559
bc1c1169 1560 return ad;
1da177e4
LT
1561}
1562
1563/*
1564 * sysfs parts below
1565 */
1da177e4
LT
1566
1567static ssize_t
1568as_var_show(unsigned int var, char *page)
1569{
1da177e4
LT
1570 return sprintf(page, "%d\n", var);
1571}
1572
1573static ssize_t
1574as_var_store(unsigned long *var, const char *page, size_t count)
1575{
1da177e4
LT
1576 char *p = (char *) page;
1577
c9b3ad67 1578 *var = simple_strtoul(p, &p, 10);
1da177e4
LT
1579 return count;
1580}
1581
e572ec7e 1582static ssize_t est_time_show(elevator_t *e, char *page)
1da177e4 1583{
3d1ab40f 1584 struct as_data *ad = e->elevator_data;
1da177e4
LT
1585 int pos = 0;
1586
f5b3db00
NP
1587 pos += sprintf(page+pos, "%lu %% exit probability\n",
1588 100*ad->exit_prob/256);
1589 pos += sprintf(page+pos, "%lu %% probability of exiting without a "
1590 "cooperating process submitting IO\n",
1591 100*ad->exit_no_coop/256);
1da177e4 1592 pos += sprintf(page+pos, "%lu ms new thinktime\n", ad->new_ttime_mean);
f5b3db00
NP
1593 pos += sprintf(page+pos, "%llu sectors new seek distance\n",
1594 (unsigned long long)ad->new_seek_mean);
1da177e4
LT
1595
1596 return pos;
1597}
1598
1599#define SHOW_FUNCTION(__FUNC, __VAR) \
3d1ab40f 1600static ssize_t __FUNC(elevator_t *e, char *page) \
1da177e4 1601{ \
3d1ab40f 1602 struct as_data *ad = e->elevator_data; \
1da177e4
LT
1603 return as_var_show(jiffies_to_msecs((__VAR)), (page)); \
1604}
e572ec7e
AV
1605SHOW_FUNCTION(as_read_expire_show, ad->fifo_expire[REQ_SYNC]);
1606SHOW_FUNCTION(as_write_expire_show, ad->fifo_expire[REQ_ASYNC]);
1607SHOW_FUNCTION(as_antic_expire_show, ad->antic_expire);
1608SHOW_FUNCTION(as_read_batch_expire_show, ad->batch_expire[REQ_SYNC]);
1609SHOW_FUNCTION(as_write_batch_expire_show, ad->batch_expire[REQ_ASYNC]);
1da177e4
LT
1610#undef SHOW_FUNCTION
1611
1612#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
3d1ab40f 1613static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
1da177e4 1614{ \
3d1ab40f
AV
1615 struct as_data *ad = e->elevator_data; \
1616 int ret = as_var_store(__PTR, (page), count); \
1da177e4
LT
1617 if (*(__PTR) < (MIN)) \
1618 *(__PTR) = (MIN); \
1619 else if (*(__PTR) > (MAX)) \
1620 *(__PTR) = (MAX); \
1621 *(__PTR) = msecs_to_jiffies(*(__PTR)); \
1622 return ret; \
1623}
e572ec7e
AV
1624STORE_FUNCTION(as_read_expire_store, &ad->fifo_expire[REQ_SYNC], 0, INT_MAX);
1625STORE_FUNCTION(as_write_expire_store, &ad->fifo_expire[REQ_ASYNC], 0, INT_MAX);
1626STORE_FUNCTION(as_antic_expire_store, &ad->antic_expire, 0, INT_MAX);
1627STORE_FUNCTION(as_read_batch_expire_store,
1da177e4 1628 &ad->batch_expire[REQ_SYNC], 0, INT_MAX);
e572ec7e 1629STORE_FUNCTION(as_write_batch_expire_store,
1da177e4
LT
1630 &ad->batch_expire[REQ_ASYNC], 0, INT_MAX);
1631#undef STORE_FUNCTION
1632
e572ec7e
AV
1633#define AS_ATTR(name) \
1634 __ATTR(name, S_IRUGO|S_IWUSR, as_##name##_show, as_##name##_store)
1635
1636static struct elv_fs_entry as_attrs[] = {
1637 __ATTR_RO(est_time),
1638 AS_ATTR(read_expire),
1639 AS_ATTR(write_expire),
1640 AS_ATTR(antic_expire),
1641 AS_ATTR(read_batch_expire),
1642 AS_ATTR(write_batch_expire),
1643 __ATTR_NULL
1da177e4
LT
1644};
1645
1da177e4
LT
1646static struct elevator_type iosched_as = {
1647 .ops = {
1648 .elevator_merge_fn = as_merge,
1649 .elevator_merged_fn = as_merged_request,
1650 .elevator_merge_req_fn = as_merged_requests,
b4878f24
JA
1651 .elevator_dispatch_fn = as_dispatch_request,
1652 .elevator_add_req_fn = as_add_request,
1653 .elevator_activate_req_fn = as_activate_request,
1da177e4
LT
1654 .elevator_deactivate_req_fn = as_deactivate_request,
1655 .elevator_queue_empty_fn = as_queue_empty,
1656 .elevator_completed_req_fn = as_completed_request,
1657 .elevator_former_req_fn = as_former_request,
1658 .elevator_latter_req_fn = as_latter_request,
1659 .elevator_set_req_fn = as_set_request,
1660 .elevator_put_req_fn = as_put_request,
1661 .elevator_may_queue_fn = as_may_queue,
1662 .elevator_init_fn = as_init_queue,
1663 .elevator_exit_fn = as_exit_queue,
e17a9489 1664 .trim = as_trim,
1da177e4
LT
1665 },
1666
3d1ab40f 1667 .elevator_attrs = as_attrs,
1da177e4
LT
1668 .elevator_name = "anticipatory",
1669 .elevator_owner = THIS_MODULE,
1670};
1671
1672static int __init as_init(void)
1673{
1674 int ret;
1675
1676 arq_pool = kmem_cache_create("as_arq", sizeof(struct as_rq),
1677 0, 0, NULL, NULL);
1678 if (!arq_pool)
1679 return -ENOMEM;
1680
1681 ret = elv_register(&iosched_as);
1682 if (!ret) {
1683 /*
1684 * don't allow AS to get unregistered, since we would have
1685 * to browse all tasks in the system and release their
1686 * as_io_context first
1687 */
1688 __module_get(THIS_MODULE);
1689 return 0;
1690 }
1691
1692 kmem_cache_destroy(arq_pool);
1693 return ret;
1694}
1695
1696static void __exit as_exit(void)
1697{
334e94de 1698 DECLARE_COMPLETION(all_gone);
1da177e4 1699 elv_unregister(&iosched_as);
334e94de 1700 ioc_gone = &all_gone;
fba82272
OH
1701 /* ioc_gone's update must be visible before reading ioc_count */
1702 smp_wmb();
334e94de 1703 if (atomic_read(&ioc_count))
fba82272 1704 wait_for_completion(ioc_gone);
334e94de 1705 synchronize_rcu();
83521d3e 1706 kmem_cache_destroy(arq_pool);
1da177e4
LT
1707}
1708
1709module_init(as_init);
1710module_exit(as_exit);
1711
1712MODULE_AUTHOR("Nick Piggin");
1713MODULE_LICENSE("GPL");
1714MODULE_DESCRIPTION("anticipatory IO scheduler");