mm/core, x86/mm/pkeys: Differentiate instruction fetches
[linux-2.6-block.git] / arch / x86 / mm / fault.c
CommitLineData
1da177e4 1/*
1da177e4 2 * Copyright (C) 1995 Linus Torvalds
2d4a7167 3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
f8eeb2e6 4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
1da177e4 5 */
a2bcd473
IM
6#include <linux/sched.h> /* test_thread_flag(), ... */
7#include <linux/kdebug.h> /* oops_begin/end, ... */
8#include <linux/module.h> /* search_exception_table */
9#include <linux/bootmem.h> /* max_low_pfn */
9326638c 10#include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
a2bcd473 11#include <linux/mmiotrace.h> /* kmmio_handler, ... */
cdd6c482 12#include <linux/perf_event.h> /* perf_sw_event */
f672b49b 13#include <linux/hugetlb.h> /* hstate_index_to_shift */
268bb0ce 14#include <linux/prefetch.h> /* prefetchw */
56dd9470 15#include <linux/context_tracking.h> /* exception_enter(), ... */
70ffdb93 16#include <linux/uaccess.h> /* faulthandler_disabled() */
2d4a7167 17
019132ff 18#include <asm/cpufeature.h> /* boot_cpu_has, ... */
a2bcd473
IM
19#include <asm/traps.h> /* dotraplinkage, ... */
20#include <asm/pgalloc.h> /* pgd_*(), ... */
f8561296 21#include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
f40c3300
AL
22#include <asm/fixmap.h> /* VSYSCALL_ADDR */
23#include <asm/vsyscall.h> /* emulate_vsyscall */
ba3e127e 24#include <asm/vm86.h> /* struct vm86 */
019132ff 25#include <asm/mmu_context.h> /* vma_pkey() */
1da177e4 26
d34603b0
SA
27#define CREATE_TRACE_POINTS
28#include <asm/trace/exceptions.h>
29
33cb5243 30/*
2d4a7167
IM
31 * Page fault error code bits:
32 *
33 * bit 0 == 0: no page found 1: protection fault
34 * bit 1 == 0: read access 1: write access
35 * bit 2 == 0: kernel-mode access 1: user-mode access
36 * bit 3 == 1: use of reserved bit detected
37 * bit 4 == 1: fault was an instruction fetch
b3ecd515 38 * bit 5 == 1: protection keys block access
33cb5243 39 */
2d4a7167
IM
40enum x86_pf_error_code {
41
42 PF_PROT = 1 << 0,
43 PF_WRITE = 1 << 1,
44 PF_USER = 1 << 2,
45 PF_RSVD = 1 << 3,
46 PF_INSTR = 1 << 4,
b3ecd515 47 PF_PK = 1 << 5,
2d4a7167 48};
66c58156 49
b814d41f 50/*
b319eed0
IM
51 * Returns 0 if mmiotrace is disabled, or if the fault is not
52 * handled by mmiotrace:
b814d41f 53 */
9326638c 54static nokprobe_inline int
62c9295f 55kmmio_fault(struct pt_regs *regs, unsigned long addr)
86069782 56{
0fd0e3da
PP
57 if (unlikely(is_kmmio_active()))
58 if (kmmio_handler(regs, addr) == 1)
59 return -1;
0fd0e3da 60 return 0;
86069782
PP
61}
62
9326638c 63static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
1bd858a5 64{
74a0b576
CH
65 int ret = 0;
66
67 /* kprobe_running() needs smp_processor_id() */
f39b6f0e 68 if (kprobes_built_in() && !user_mode(regs)) {
74a0b576
CH
69 preempt_disable();
70 if (kprobe_running() && kprobe_fault_handler(regs, 14))
71 ret = 1;
72 preempt_enable();
73 }
1bd858a5 74
74a0b576 75 return ret;
33cb5243 76}
1bd858a5 77
1dc85be0 78/*
2d4a7167
IM
79 * Prefetch quirks:
80 *
81 * 32-bit mode:
82 *
83 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
84 * Check that here and ignore it.
1dc85be0 85 *
2d4a7167 86 * 64-bit mode:
1dc85be0 87 *
2d4a7167
IM
88 * Sometimes the CPU reports invalid exceptions on prefetch.
89 * Check that here and ignore it.
90 *
91 * Opcode checker based on code by Richard Brunner.
1dc85be0 92 */
107a0367
IM
93static inline int
94check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
95 unsigned char opcode, int *prefetch)
96{
97 unsigned char instr_hi = opcode & 0xf0;
98 unsigned char instr_lo = opcode & 0x0f;
99
100 switch (instr_hi) {
101 case 0x20:
102 case 0x30:
103 /*
104 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
105 * In X86_64 long mode, the CPU will signal invalid
106 * opcode if some of these prefixes are present so
107 * X86_64 will never get here anyway
108 */
109 return ((instr_lo & 7) == 0x6);
110#ifdef CONFIG_X86_64
111 case 0x40:
112 /*
113 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
114 * Need to figure out under what instruction mode the
115 * instruction was issued. Could check the LDT for lm,
116 * but for now it's good enough to assume that long
117 * mode only uses well known segments or kernel.
118 */
318f5a2a 119 return (!user_mode(regs) || user_64bit_mode(regs));
107a0367
IM
120#endif
121 case 0x60:
122 /* 0x64 thru 0x67 are valid prefixes in all modes. */
123 return (instr_lo & 0xC) == 0x4;
124 case 0xF0:
125 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
126 return !instr_lo || (instr_lo>>1) == 1;
127 case 0x00:
128 /* Prefetch instruction is 0x0F0D or 0x0F18 */
129 if (probe_kernel_address(instr, opcode))
130 return 0;
131
132 *prefetch = (instr_lo == 0xF) &&
133 (opcode == 0x0D || opcode == 0x18);
134 return 0;
135 default:
136 return 0;
137 }
138}
139
2d4a7167
IM
140static int
141is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
33cb5243 142{
2d4a7167 143 unsigned char *max_instr;
ab2bf0c1 144 unsigned char *instr;
33cb5243 145 int prefetch = 0;
1da177e4 146
3085354d
IM
147 /*
148 * If it was a exec (instruction fetch) fault on NX page, then
149 * do not ignore the fault:
150 */
66c58156 151 if (error_code & PF_INSTR)
1da177e4 152 return 0;
1dc85be0 153
107a0367 154 instr = (void *)convert_ip_to_linear(current, regs);
f1290ec9 155 max_instr = instr + 15;
1da177e4 156
d31bf07f 157 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
1da177e4
LT
158 return 0;
159
107a0367 160 while (instr < max_instr) {
2d4a7167 161 unsigned char opcode;
1da177e4 162
ab2bf0c1 163 if (probe_kernel_address(instr, opcode))
33cb5243 164 break;
1da177e4 165
1da177e4
LT
166 instr++;
167
107a0367 168 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
1da177e4 169 break;
1da177e4
LT
170 }
171 return prefetch;
172}
173
019132ff
DH
174/*
175 * A protection key fault means that the PKRU value did not allow
176 * access to some PTE. Userspace can figure out what PKRU was
177 * from the XSAVE state, and this function fills out a field in
178 * siginfo so userspace can discover which protection key was set
179 * on the PTE.
180 *
181 * If we get here, we know that the hardware signaled a PF_PK
182 * fault and that there was a VMA once we got in the fault
183 * handler. It does *not* guarantee that the VMA we find here
184 * was the one that we faulted on.
185 *
186 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
187 * 2. T1 : set PKRU to deny access to pkey=4, touches page
188 * 3. T1 : faults...
189 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
190 * 5. T1 : enters fault handler, takes mmap_sem, etc...
191 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
192 * faulted on a pte with its pkey=4.
193 */
194static void fill_sig_info_pkey(int si_code, siginfo_t *info,
195 struct vm_area_struct *vma)
196{
197 /* This is effectively an #ifdef */
198 if (!boot_cpu_has(X86_FEATURE_OSPKE))
199 return;
200
201 /* Fault not from Protection Keys: nothing to do */
202 if (si_code != SEGV_PKUERR)
203 return;
204 /*
205 * force_sig_info_fault() is called from a number of
206 * contexts, some of which have a VMA and some of which
207 * do not. The PF_PK handing happens after we have a
208 * valid VMA, so we should never reach this without a
209 * valid VMA.
210 */
211 if (!vma) {
212 WARN_ONCE(1, "PKU fault with no VMA passed in");
213 info->si_pkey = 0;
214 return;
215 }
216 /*
217 * si_pkey should be thought of as a strong hint, but not
218 * absolutely guranteed to be 100% accurate because of
219 * the race explained above.
220 */
221 info->si_pkey = vma_pkey(vma);
222}
223
2d4a7167
IM
224static void
225force_sig_info_fault(int si_signo, int si_code, unsigned long address,
7b2d0dba
DH
226 struct task_struct *tsk, struct vm_area_struct *vma,
227 int fault)
c4aba4a8 228{
f672b49b 229 unsigned lsb = 0;
c4aba4a8
HH
230 siginfo_t info;
231
2d4a7167
IM
232 info.si_signo = si_signo;
233 info.si_errno = 0;
234 info.si_code = si_code;
235 info.si_addr = (void __user *)address;
f672b49b
AK
236 if (fault & VM_FAULT_HWPOISON_LARGE)
237 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
238 if (fault & VM_FAULT_HWPOISON)
239 lsb = PAGE_SHIFT;
240 info.si_addr_lsb = lsb;
2d4a7167 241
019132ff
DH
242 fill_sig_info_pkey(si_code, &info, vma);
243
c4aba4a8
HH
244 force_sig_info(si_signo, &info, tsk);
245}
246
f2f13a85
IM
247DEFINE_SPINLOCK(pgd_lock);
248LIST_HEAD(pgd_list);
249
250#ifdef CONFIG_X86_32
251static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
33cb5243 252{
f2f13a85
IM
253 unsigned index = pgd_index(address);
254 pgd_t *pgd_k;
255 pud_t *pud, *pud_k;
256 pmd_t *pmd, *pmd_k;
2d4a7167 257
f2f13a85
IM
258 pgd += index;
259 pgd_k = init_mm.pgd + index;
260
261 if (!pgd_present(*pgd_k))
262 return NULL;
263
264 /*
265 * set_pgd(pgd, *pgd_k); here would be useless on PAE
266 * and redundant with the set_pmd() on non-PAE. As would
267 * set_pud.
268 */
269 pud = pud_offset(pgd, address);
270 pud_k = pud_offset(pgd_k, address);
271 if (!pud_present(*pud_k))
272 return NULL;
273
274 pmd = pmd_offset(pud, address);
275 pmd_k = pmd_offset(pud_k, address);
276 if (!pmd_present(*pmd_k))
277 return NULL;
278
b8bcfe99 279 if (!pmd_present(*pmd))
f2f13a85 280 set_pmd(pmd, *pmd_k);
b8bcfe99 281 else
f2f13a85 282 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
f2f13a85
IM
283
284 return pmd_k;
285}
286
287void vmalloc_sync_all(void)
288{
289 unsigned long address;
290
291 if (SHARED_KERNEL_PMD)
292 return;
293
294 for (address = VMALLOC_START & PMD_MASK;
295 address >= TASK_SIZE && address < FIXADDR_TOP;
296 address += PMD_SIZE) {
f2f13a85
IM
297 struct page *page;
298
a79e53d8 299 spin_lock(&pgd_lock);
f2f13a85 300 list_for_each_entry(page, &pgd_list, lru) {
617d34d9 301 spinlock_t *pgt_lock;
f01f7c56 302 pmd_t *ret;
617d34d9 303
a79e53d8 304 /* the pgt_lock only for Xen */
617d34d9
JF
305 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
306
307 spin_lock(pgt_lock);
308 ret = vmalloc_sync_one(page_address(page), address);
309 spin_unlock(pgt_lock);
310
311 if (!ret)
f2f13a85
IM
312 break;
313 }
a79e53d8 314 spin_unlock(&pgd_lock);
f2f13a85
IM
315 }
316}
317
318/*
319 * 32-bit:
320 *
321 * Handle a fault on the vmalloc or module mapping area
322 */
9326638c 323static noinline int vmalloc_fault(unsigned long address)
f2f13a85
IM
324{
325 unsigned long pgd_paddr;
326 pmd_t *pmd_k;
327 pte_t *pte_k;
328
329 /* Make sure we are in vmalloc area: */
330 if (!(address >= VMALLOC_START && address < VMALLOC_END))
331 return -1;
332
ebc8827f
FW
333 WARN_ON_ONCE(in_nmi());
334
f2f13a85
IM
335 /*
336 * Synchronize this task's top level page-table
337 * with the 'reference' page table.
338 *
339 * Do _not_ use "current" here. We might be inside
340 * an interrupt in the middle of a task switch..
341 */
342 pgd_paddr = read_cr3();
343 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
344 if (!pmd_k)
345 return -1;
346
347 pte_k = pte_offset_kernel(pmd_k, address);
348 if (!pte_present(*pte_k))
349 return -1;
350
351 return 0;
352}
9326638c 353NOKPROBE_SYMBOL(vmalloc_fault);
f2f13a85
IM
354
355/*
356 * Did it hit the DOS screen memory VA from vm86 mode?
357 */
358static inline void
359check_v8086_mode(struct pt_regs *regs, unsigned long address,
360 struct task_struct *tsk)
361{
9fda6a06 362#ifdef CONFIG_VM86
f2f13a85
IM
363 unsigned long bit;
364
9fda6a06 365 if (!v8086_mode(regs) || !tsk->thread.vm86)
f2f13a85
IM
366 return;
367
368 bit = (address - 0xA0000) >> PAGE_SHIFT;
369 if (bit < 32)
9fda6a06
BG
370 tsk->thread.vm86->screen_bitmap |= 1 << bit;
371#endif
33cb5243 372}
1da177e4 373
087975b0 374static bool low_pfn(unsigned long pfn)
1da177e4 375{
087975b0
AM
376 return pfn < max_low_pfn;
377}
1156e098 378
087975b0
AM
379static void dump_pagetable(unsigned long address)
380{
381 pgd_t *base = __va(read_cr3());
382 pgd_t *pgd = &base[pgd_index(address)];
383 pmd_t *pmd;
384 pte_t *pte;
2d4a7167 385
1156e098 386#ifdef CONFIG_X86_PAE
087975b0
AM
387 printk("*pdpt = %016Lx ", pgd_val(*pgd));
388 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
389 goto out;
1156e098 390#endif
087975b0
AM
391 pmd = pmd_offset(pud_offset(pgd, address), address);
392 printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
1156e098
HH
393
394 /*
395 * We must not directly access the pte in the highpte
396 * case if the page table is located in highmem.
397 * And let's rather not kmap-atomic the pte, just in case
2d4a7167 398 * it's allocated already:
1156e098 399 */
087975b0
AM
400 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
401 goto out;
1156e098 402
087975b0
AM
403 pte = pte_offset_kernel(pmd, address);
404 printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
405out:
1156e098 406 printk("\n");
f2f13a85
IM
407}
408
409#else /* CONFIG_X86_64: */
410
411void vmalloc_sync_all(void)
412{
9661d5bc 413 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END, 0);
f2f13a85
IM
414}
415
416/*
417 * 64-bit:
418 *
419 * Handle a fault on the vmalloc area
420 *
421 * This assumes no large pages in there.
422 */
9326638c 423static noinline int vmalloc_fault(unsigned long address)
f2f13a85
IM
424{
425 pgd_t *pgd, *pgd_ref;
426 pud_t *pud, *pud_ref;
427 pmd_t *pmd, *pmd_ref;
428 pte_t *pte, *pte_ref;
429
430 /* Make sure we are in vmalloc area: */
431 if (!(address >= VMALLOC_START && address < VMALLOC_END))
432 return -1;
433
ebc8827f
FW
434 WARN_ON_ONCE(in_nmi());
435
f2f13a85
IM
436 /*
437 * Copy kernel mappings over when needed. This can also
438 * happen within a race in page table update. In the later
439 * case just flush:
440 */
441 pgd = pgd_offset(current->active_mm, address);
442 pgd_ref = pgd_offset_k(address);
443 if (pgd_none(*pgd_ref))
444 return -1;
445
1160c277 446 if (pgd_none(*pgd)) {
f2f13a85 447 set_pgd(pgd, *pgd_ref);
1160c277
SK
448 arch_flush_lazy_mmu_mode();
449 } else {
f2f13a85 450 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
1160c277 451 }
f2f13a85
IM
452
453 /*
454 * Below here mismatches are bugs because these lower tables
455 * are shared:
456 */
457
458 pud = pud_offset(pgd, address);
459 pud_ref = pud_offset(pgd_ref, address);
460 if (pud_none(*pud_ref))
461 return -1;
462
463 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
464 BUG();
465
466 pmd = pmd_offset(pud, address);
467 pmd_ref = pmd_offset(pud_ref, address);
468 if (pmd_none(*pmd_ref))
469 return -1;
470
471 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
472 BUG();
473
474 pte_ref = pte_offset_kernel(pmd_ref, address);
475 if (!pte_present(*pte_ref))
476 return -1;
477
478 pte = pte_offset_kernel(pmd, address);
479
480 /*
481 * Don't use pte_page here, because the mappings can point
482 * outside mem_map, and the NUMA hash lookup cannot handle
483 * that:
484 */
485 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
486 BUG();
487
488 return 0;
489}
9326638c 490NOKPROBE_SYMBOL(vmalloc_fault);
f2f13a85 491
e05139f2 492#ifdef CONFIG_CPU_SUP_AMD
f2f13a85 493static const char errata93_warning[] =
ad361c98
JP
494KERN_ERR
495"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
496"******* Working around it, but it may cause SEGVs or burn power.\n"
497"******* Please consider a BIOS update.\n"
498"******* Disabling USB legacy in the BIOS may also help.\n";
e05139f2 499#endif
f2f13a85
IM
500
501/*
502 * No vm86 mode in 64-bit mode:
503 */
504static inline void
505check_v8086_mode(struct pt_regs *regs, unsigned long address,
506 struct task_struct *tsk)
507{
508}
509
510static int bad_address(void *p)
511{
512 unsigned long dummy;
513
514 return probe_kernel_address((unsigned long *)p, dummy);
515}
516
517static void dump_pagetable(unsigned long address)
518{
087975b0
AM
519 pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
520 pgd_t *pgd = base + pgd_index(address);
1da177e4
LT
521 pud_t *pud;
522 pmd_t *pmd;
523 pte_t *pte;
524
2d4a7167
IM
525 if (bad_address(pgd))
526 goto bad;
527
d646bce4 528 printk("PGD %lx ", pgd_val(*pgd));
2d4a7167
IM
529
530 if (!pgd_present(*pgd))
531 goto out;
1da177e4 532
d2ae5b5f 533 pud = pud_offset(pgd, address);
2d4a7167
IM
534 if (bad_address(pud))
535 goto bad;
536
1da177e4 537 printk("PUD %lx ", pud_val(*pud));
b5360222 538 if (!pud_present(*pud) || pud_large(*pud))
2d4a7167 539 goto out;
1da177e4
LT
540
541 pmd = pmd_offset(pud, address);
2d4a7167
IM
542 if (bad_address(pmd))
543 goto bad;
544
1da177e4 545 printk("PMD %lx ", pmd_val(*pmd));
2d4a7167
IM
546 if (!pmd_present(*pmd) || pmd_large(*pmd))
547 goto out;
1da177e4
LT
548
549 pte = pte_offset_kernel(pmd, address);
2d4a7167
IM
550 if (bad_address(pte))
551 goto bad;
552
33cb5243 553 printk("PTE %lx", pte_val(*pte));
2d4a7167 554out:
1da177e4
LT
555 printk("\n");
556 return;
557bad:
558 printk("BAD\n");
8c938f9f
IM
559}
560
f2f13a85 561#endif /* CONFIG_X86_64 */
1da177e4 562
2d4a7167
IM
563/*
564 * Workaround for K8 erratum #93 & buggy BIOS.
565 *
566 * BIOS SMM functions are required to use a specific workaround
567 * to avoid corruption of the 64bit RIP register on C stepping K8.
568 *
569 * A lot of BIOS that didn't get tested properly miss this.
570 *
571 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
572 * Try to work around it here.
573 *
574 * Note we only handle faults in kernel here.
575 * Does nothing on 32-bit.
fdfe8aa8 576 */
33cb5243 577static int is_errata93(struct pt_regs *regs, unsigned long address)
1da177e4 578{
e05139f2
JB
579#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
580 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
581 || boot_cpu_data.x86 != 0xf)
582 return 0;
583
65ea5b03 584 if (address != regs->ip)
1da177e4 585 return 0;
2d4a7167 586
33cb5243 587 if ((address >> 32) != 0)
1da177e4 588 return 0;
2d4a7167 589
1da177e4 590 address |= 0xffffffffUL << 32;
33cb5243
HH
591 if ((address >= (u64)_stext && address <= (u64)_etext) ||
592 (address >= MODULES_VADDR && address <= MODULES_END)) {
a454ab31 593 printk_once(errata93_warning);
65ea5b03 594 regs->ip = address;
1da177e4
LT
595 return 1;
596 }
fdfe8aa8 597#endif
1da177e4 598 return 0;
33cb5243 599}
1da177e4 600
35f3266f 601/*
2d4a7167
IM
602 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
603 * to illegal addresses >4GB.
604 *
605 * We catch this in the page fault handler because these addresses
606 * are not reachable. Just detect this case and return. Any code
35f3266f
HH
607 * segment in LDT is compatibility mode.
608 */
609static int is_errata100(struct pt_regs *regs, unsigned long address)
610{
611#ifdef CONFIG_X86_64
2d4a7167 612 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
35f3266f
HH
613 return 1;
614#endif
615 return 0;
616}
617
29caf2f9
HH
618static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
619{
620#ifdef CONFIG_X86_F00F_BUG
621 unsigned long nr;
2d4a7167 622
29caf2f9 623 /*
2d4a7167 624 * Pentium F0 0F C7 C8 bug workaround:
29caf2f9 625 */
e2604b49 626 if (boot_cpu_has_bug(X86_BUG_F00F)) {
29caf2f9
HH
627 nr = (address - idt_descr.address) >> 3;
628
629 if (nr == 6) {
630 do_invalid_op(regs, 0);
631 return 1;
632 }
633 }
634#endif
635 return 0;
636}
637
8f766149
IM
638static const char nx_warning[] = KERN_CRIT
639"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
eff50c34
JK
640static const char smep_warning[] = KERN_CRIT
641"unable to execute userspace code (SMEP?) (uid: %d)\n";
8f766149 642
2d4a7167
IM
643static void
644show_fault_oops(struct pt_regs *regs, unsigned long error_code,
645 unsigned long address)
b3279c7f 646{
1156e098
HH
647 if (!oops_may_print())
648 return;
649
1156e098 650 if (error_code & PF_INSTR) {
93809be8 651 unsigned int level;
426e34cc
MF
652 pgd_t *pgd;
653 pte_t *pte;
2d4a7167 654
426e34cc
MF
655 pgd = __va(read_cr3() & PHYSICAL_PAGE_MASK);
656 pgd += pgd_index(address);
657
658 pte = lookup_address_in_pgd(pgd, address, &level);
1156e098 659
8f766149 660 if (pte && pte_present(*pte) && !pte_exec(*pte))
078de5f7 661 printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
eff50c34
JK
662 if (pte && pte_present(*pte) && pte_exec(*pte) &&
663 (pgd_flags(*pgd) & _PAGE_USER) &&
1e02ce4c 664 (__read_cr4() & X86_CR4_SMEP))
eff50c34 665 printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
1156e098 666 }
1156e098 667
19f0dda9 668 printk(KERN_ALERT "BUG: unable to handle kernel ");
b3279c7f 669 if (address < PAGE_SIZE)
19f0dda9 670 printk(KERN_CONT "NULL pointer dereference");
b3279c7f 671 else
19f0dda9 672 printk(KERN_CONT "paging request");
2d4a7167 673
f294a8ce 674 printk(KERN_CONT " at %p\n", (void *) address);
19f0dda9 675 printk(KERN_ALERT "IP:");
5f01c988 676 printk_address(regs->ip);
2d4a7167 677
b3279c7f
HH
678 dump_pagetable(address);
679}
680
2d4a7167
IM
681static noinline void
682pgtable_bad(struct pt_regs *regs, unsigned long error_code,
683 unsigned long address)
1da177e4 684{
2d4a7167
IM
685 struct task_struct *tsk;
686 unsigned long flags;
687 int sig;
688
689 flags = oops_begin();
690 tsk = current;
691 sig = SIGKILL;
1209140c 692
1da177e4 693 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
92181f19 694 tsk->comm, address);
1da177e4 695 dump_pagetable(address);
2d4a7167
IM
696
697 tsk->thread.cr2 = address;
51e7dc70 698 tsk->thread.trap_nr = X86_TRAP_PF;
2d4a7167
IM
699 tsk->thread.error_code = error_code;
700
22f5991c 701 if (__die("Bad pagetable", regs, error_code))
874d93d1 702 sig = 0;
2d4a7167 703
874d93d1 704 oops_end(flags, regs, sig);
1da177e4
LT
705}
706
2d4a7167
IM
707static noinline void
708no_context(struct pt_regs *regs, unsigned long error_code,
4fc34901 709 unsigned long address, int signal, int si_code)
92181f19
NP
710{
711 struct task_struct *tsk = current;
92181f19
NP
712 unsigned long flags;
713 int sig;
7b2d0dba
DH
714 /* No context means no VMA to pass down */
715 struct vm_area_struct *vma = NULL;
92181f19 716
2d4a7167 717 /* Are we prepared to handle this kernel fault? */
4fc34901 718 if (fixup_exception(regs)) {
c026b359
PZ
719 /*
720 * Any interrupt that takes a fault gets the fixup. This makes
721 * the below recursive fault logic only apply to a faults from
722 * task context.
723 */
724 if (in_interrupt())
725 return;
726
727 /*
728 * Per the above we're !in_interrupt(), aka. task context.
729 *
730 * In this case we need to make sure we're not recursively
731 * faulting through the emulate_vsyscall() logic.
732 */
4fc34901 733 if (current_thread_info()->sig_on_uaccess_error && signal) {
51e7dc70 734 tsk->thread.trap_nr = X86_TRAP_PF;
4fc34901
AL
735 tsk->thread.error_code = error_code | PF_USER;
736 tsk->thread.cr2 = address;
737
738 /* XXX: hwpoison faults will set the wrong code. */
7b2d0dba
DH
739 force_sig_info_fault(signal, si_code, address,
740 tsk, vma, 0);
4fc34901 741 }
c026b359
PZ
742
743 /*
744 * Barring that, we can do the fixup and be happy.
745 */
92181f19 746 return;
4fc34901 747 }
92181f19
NP
748
749 /*
2d4a7167
IM
750 * 32-bit:
751 *
752 * Valid to do another page fault here, because if this fault
753 * had been triggered by is_prefetch fixup_exception would have
754 * handled it.
755 *
756 * 64-bit:
92181f19 757 *
2d4a7167 758 * Hall of shame of CPU/BIOS bugs.
92181f19
NP
759 */
760 if (is_prefetch(regs, error_code, address))
761 return;
762
763 if (is_errata93(regs, address))
764 return;
765
766 /*
767 * Oops. The kernel tried to access some bad page. We'll have to
2d4a7167 768 * terminate things with extreme prejudice:
92181f19 769 */
92181f19 770 flags = oops_begin();
92181f19
NP
771
772 show_fault_oops(regs, error_code, address);
773
a70857e4 774 if (task_stack_end_corrupted(tsk))
b0f4c4b3 775 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
19803078 776
1cc99544 777 tsk->thread.cr2 = address;
51e7dc70 778 tsk->thread.trap_nr = X86_TRAP_PF;
1cc99544 779 tsk->thread.error_code = error_code;
92181f19 780
92181f19
NP
781 sig = SIGKILL;
782 if (__die("Oops", regs, error_code))
783 sig = 0;
2d4a7167 784
92181f19 785 /* Executive summary in case the body of the oops scrolled away */
b0f4c4b3 786 printk(KERN_DEFAULT "CR2: %016lx\n", address);
2d4a7167 787
92181f19 788 oops_end(flags, regs, sig);
92181f19
NP
789}
790
2d4a7167
IM
791/*
792 * Print out info about fatal segfaults, if the show_unhandled_signals
793 * sysctl is set:
794 */
795static inline void
796show_signal_msg(struct pt_regs *regs, unsigned long error_code,
797 unsigned long address, struct task_struct *tsk)
798{
799 if (!unhandled_signal(tsk, SIGSEGV))
800 return;
801
802 if (!printk_ratelimit())
803 return;
804
a1a08d1c 805 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
2d4a7167
IM
806 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
807 tsk->comm, task_pid_nr(tsk), address,
808 (void *)regs->ip, (void *)regs->sp, error_code);
809
810 print_vma_addr(KERN_CONT " in ", regs->ip);
811
812 printk(KERN_CONT "\n");
813}
814
815static void
816__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
7b2d0dba
DH
817 unsigned long address, struct vm_area_struct *vma,
818 int si_code)
92181f19
NP
819{
820 struct task_struct *tsk = current;
821
822 /* User mode accesses just cause a SIGSEGV */
823 if (error_code & PF_USER) {
824 /*
2d4a7167 825 * It's possible to have interrupts off here:
92181f19
NP
826 */
827 local_irq_enable();
828
829 /*
830 * Valid to do another page fault here because this one came
2d4a7167 831 * from user space:
92181f19
NP
832 */
833 if (is_prefetch(regs, error_code, address))
834 return;
835
836 if (is_errata100(regs, address))
837 return;
838
3ae36655
AL
839#ifdef CONFIG_X86_64
840 /*
841 * Instruction fetch faults in the vsyscall page might need
842 * emulation.
843 */
844 if (unlikely((error_code & PF_INSTR) &&
f40c3300 845 ((address & ~0xfff) == VSYSCALL_ADDR))) {
3ae36655
AL
846 if (emulate_vsyscall(regs, address))
847 return;
848 }
849#endif
e575a86f
KC
850 /* Kernel addresses are always protection faults: */
851 if (address >= TASK_SIZE)
852 error_code |= PF_PROT;
3ae36655 853
e575a86f 854 if (likely(show_unhandled_signals))
2d4a7167
IM
855 show_signal_msg(regs, error_code, address, tsk);
856
2d4a7167 857 tsk->thread.cr2 = address;
e575a86f 858 tsk->thread.error_code = error_code;
51e7dc70 859 tsk->thread.trap_nr = X86_TRAP_PF;
92181f19 860
7b2d0dba 861 force_sig_info_fault(SIGSEGV, si_code, address, tsk, vma, 0);
2d4a7167 862
92181f19
NP
863 return;
864 }
865
866 if (is_f00f_bug(regs, address))
867 return;
868
4fc34901 869 no_context(regs, error_code, address, SIGSEGV, si_code);
92181f19
NP
870}
871
2d4a7167
IM
872static noinline void
873bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
7b2d0dba 874 unsigned long address, struct vm_area_struct *vma)
92181f19 875{
7b2d0dba 876 __bad_area_nosemaphore(regs, error_code, address, vma, SEGV_MAPERR);
92181f19
NP
877}
878
2d4a7167
IM
879static void
880__bad_area(struct pt_regs *regs, unsigned long error_code,
7b2d0dba 881 unsigned long address, struct vm_area_struct *vma, int si_code)
92181f19
NP
882{
883 struct mm_struct *mm = current->mm;
884
885 /*
886 * Something tried to access memory that isn't in our memory map..
887 * Fix it, but check if it's kernel or user first..
888 */
889 up_read(&mm->mmap_sem);
890
7b2d0dba 891 __bad_area_nosemaphore(regs, error_code, address, vma, si_code);
92181f19
NP
892}
893
2d4a7167
IM
894static noinline void
895bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
92181f19 896{
7b2d0dba 897 __bad_area(regs, error_code, address, NULL, SEGV_MAPERR);
92181f19
NP
898}
899
33a709b2
DH
900static inline bool bad_area_access_from_pkeys(unsigned long error_code,
901 struct vm_area_struct *vma)
902{
07f146f5
DH
903 /* This code is always called on the current mm */
904 bool foreign = false;
905
33a709b2
DH
906 if (!boot_cpu_has(X86_FEATURE_OSPKE))
907 return false;
908 if (error_code & PF_PK)
909 return true;
07f146f5 910 /* this checks permission keys on the VMA: */
d61172b4
DH
911 if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE),
912 (error_code & PF_INSTR), foreign))
07f146f5 913 return true;
33a709b2
DH
914 return false;
915}
916
2d4a7167
IM
917static noinline void
918bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
7b2d0dba 919 unsigned long address, struct vm_area_struct *vma)
92181f19 920{
019132ff
DH
921 /*
922 * This OSPKE check is not strictly necessary at runtime.
923 * But, doing it this way allows compiler optimizations
924 * if pkeys are compiled out.
925 */
33a709b2 926 if (bad_area_access_from_pkeys(error_code, vma))
019132ff
DH
927 __bad_area(regs, error_code, address, vma, SEGV_PKUERR);
928 else
929 __bad_area(regs, error_code, address, vma, SEGV_ACCERR);
92181f19
NP
930}
931
2d4a7167 932static void
a6e04aa9 933do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
7b2d0dba 934 struct vm_area_struct *vma, unsigned int fault)
92181f19
NP
935{
936 struct task_struct *tsk = current;
a6e04aa9 937 int code = BUS_ADRERR;
92181f19 938
2d4a7167 939 /* Kernel mode? Handle exceptions or die: */
96054569 940 if (!(error_code & PF_USER)) {
4fc34901 941 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
96054569
LT
942 return;
943 }
2d4a7167 944
cd1b68f0 945 /* User-space => ok to do another page fault: */
92181f19
NP
946 if (is_prefetch(regs, error_code, address))
947 return;
2d4a7167
IM
948
949 tsk->thread.cr2 = address;
950 tsk->thread.error_code = error_code;
51e7dc70 951 tsk->thread.trap_nr = X86_TRAP_PF;
2d4a7167 952
a6e04aa9 953#ifdef CONFIG_MEMORY_FAILURE
f672b49b 954 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
a6e04aa9
AK
955 printk(KERN_ERR
956 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
957 tsk->comm, tsk->pid, address);
958 code = BUS_MCEERR_AR;
959 }
960#endif
7b2d0dba 961 force_sig_info_fault(SIGBUS, code, address, tsk, vma, fault);
92181f19
NP
962}
963
3a13c4d7 964static noinline void
2d4a7167 965mm_fault_error(struct pt_regs *regs, unsigned long error_code,
7b2d0dba
DH
966 unsigned long address, struct vm_area_struct *vma,
967 unsigned int fault)
92181f19 968{
3a13c4d7 969 if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
3a13c4d7
JW
970 no_context(regs, error_code, address, 0, 0);
971 return;
b80ef10e 972 }
b80ef10e 973
2d4a7167 974 if (fault & VM_FAULT_OOM) {
f8626854
AV
975 /* Kernel mode? Handle exceptions or die: */
976 if (!(error_code & PF_USER)) {
4fc34901
AL
977 no_context(regs, error_code, address,
978 SIGSEGV, SEGV_MAPERR);
3a13c4d7 979 return;
f8626854
AV
980 }
981
c2d23f91
DR
982 /*
983 * We ran out of memory, call the OOM killer, and return the
984 * userspace (which will retry the fault, or kill us if we got
985 * oom-killed):
986 */
987 pagefault_out_of_memory();
2d4a7167 988 } else {
f672b49b
AK
989 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
990 VM_FAULT_HWPOISON_LARGE))
7b2d0dba 991 do_sigbus(regs, error_code, address, vma, fault);
33692f27 992 else if (fault & VM_FAULT_SIGSEGV)
7b2d0dba 993 bad_area_nosemaphore(regs, error_code, address, vma);
2d4a7167
IM
994 else
995 BUG();
996 }
92181f19
NP
997}
998
d8b57bb7
TG
999static int spurious_fault_check(unsigned long error_code, pte_t *pte)
1000{
1001 if ((error_code & PF_WRITE) && !pte_write(*pte))
1002 return 0;
2d4a7167 1003
d8b57bb7
TG
1004 if ((error_code & PF_INSTR) && !pte_exec(*pte))
1005 return 0;
b3ecd515
DH
1006 /*
1007 * Note: We do not do lazy flushing on protection key
1008 * changes, so no spurious fault will ever set PF_PK.
1009 */
1010 if ((error_code & PF_PK))
1011 return 1;
d8b57bb7
TG
1012
1013 return 1;
1014}
1015
5b727a3b 1016/*
2d4a7167
IM
1017 * Handle a spurious fault caused by a stale TLB entry.
1018 *
1019 * This allows us to lazily refresh the TLB when increasing the
1020 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
1021 * eagerly is very expensive since that implies doing a full
1022 * cross-processor TLB flush, even if no stale TLB entries exist
1023 * on other processors.
1024 *
31668511
DV
1025 * Spurious faults may only occur if the TLB contains an entry with
1026 * fewer permission than the page table entry. Non-present (P = 0)
1027 * and reserved bit (R = 1) faults are never spurious.
1028 *
5b727a3b
JF
1029 * There are no security implications to leaving a stale TLB when
1030 * increasing the permissions on a page.
31668511
DV
1031 *
1032 * Returns non-zero if a spurious fault was handled, zero otherwise.
1033 *
1034 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1035 * (Optional Invalidation).
5b727a3b 1036 */
9326638c 1037static noinline int
2d4a7167 1038spurious_fault(unsigned long error_code, unsigned long address)
5b727a3b
JF
1039{
1040 pgd_t *pgd;
1041 pud_t *pud;
1042 pmd_t *pmd;
1043 pte_t *pte;
3c3e5694 1044 int ret;
5b727a3b 1045
31668511
DV
1046 /*
1047 * Only writes to RO or instruction fetches from NX may cause
1048 * spurious faults.
1049 *
1050 * These could be from user or supervisor accesses but the TLB
1051 * is only lazily flushed after a kernel mapping protection
1052 * change, so user accesses are not expected to cause spurious
1053 * faults.
1054 */
1055 if (error_code != (PF_WRITE | PF_PROT)
1056 && error_code != (PF_INSTR | PF_PROT))
5b727a3b
JF
1057 return 0;
1058
1059 pgd = init_mm.pgd + pgd_index(address);
1060 if (!pgd_present(*pgd))
1061 return 0;
1062
1063 pud = pud_offset(pgd, address);
1064 if (!pud_present(*pud))
1065 return 0;
1066
d8b57bb7
TG
1067 if (pud_large(*pud))
1068 return spurious_fault_check(error_code, (pte_t *) pud);
1069
5b727a3b
JF
1070 pmd = pmd_offset(pud, address);
1071 if (!pmd_present(*pmd))
1072 return 0;
1073
d8b57bb7
TG
1074 if (pmd_large(*pmd))
1075 return spurious_fault_check(error_code, (pte_t *) pmd);
1076
5b727a3b 1077 pte = pte_offset_kernel(pmd, address);
954f8571 1078 if (!pte_present(*pte))
5b727a3b
JF
1079 return 0;
1080
3c3e5694
SR
1081 ret = spurious_fault_check(error_code, pte);
1082 if (!ret)
1083 return 0;
1084
1085 /*
2d4a7167
IM
1086 * Make sure we have permissions in PMD.
1087 * If not, then there's a bug in the page tables:
3c3e5694
SR
1088 */
1089 ret = spurious_fault_check(error_code, (pte_t *) pmd);
1090 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
2d4a7167 1091
3c3e5694 1092 return ret;
5b727a3b 1093}
9326638c 1094NOKPROBE_SYMBOL(spurious_fault);
5b727a3b 1095
abd4f750 1096int show_unhandled_signals = 1;
1da177e4 1097
2d4a7167 1098static inline int
68da336a 1099access_error(unsigned long error_code, struct vm_area_struct *vma)
92181f19 1100{
07f146f5
DH
1101 /* This is only called for the current mm, so: */
1102 bool foreign = false;
33a709b2
DH
1103 /*
1104 * Access or read was blocked by protection keys. We do
1105 * this check before any others because we do not want
1106 * to, for instance, confuse a protection-key-denied
1107 * write with one for which we should do a COW.
1108 */
1109 if (error_code & PF_PK)
1110 return 1;
07f146f5
DH
1111 /*
1112 * Make sure to check the VMA so that we do not perform
1113 * faults just to hit a PF_PK as soon as we fill in a
1114 * page.
1115 */
d61172b4
DH
1116 if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE),
1117 (error_code & PF_INSTR), foreign))
07f146f5 1118 return 1;
33a709b2 1119
68da336a 1120 if (error_code & PF_WRITE) {
2d4a7167 1121 /* write, present and write, not present: */
92181f19
NP
1122 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1123 return 1;
2d4a7167 1124 return 0;
92181f19
NP
1125 }
1126
2d4a7167
IM
1127 /* read, present: */
1128 if (unlikely(error_code & PF_PROT))
1129 return 1;
1130
1131 /* read, not present: */
1132 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1133 return 1;
1134
92181f19
NP
1135 return 0;
1136}
1137
0973a06c
HS
1138static int fault_in_kernel_space(unsigned long address)
1139{
d9517346 1140 return address >= TASK_SIZE_MAX;
0973a06c
HS
1141}
1142
40d3cd66
PA
1143static inline bool smap_violation(int error_code, struct pt_regs *regs)
1144{
4640c7ee
PA
1145 if (!IS_ENABLED(CONFIG_X86_SMAP))
1146 return false;
1147
1148 if (!static_cpu_has(X86_FEATURE_SMAP))
1149 return false;
1150
40d3cd66
PA
1151 if (error_code & PF_USER)
1152 return false;
1153
f39b6f0e 1154 if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
40d3cd66
PA
1155 return false;
1156
1157 return true;
1158}
1159
1da177e4
LT
1160/*
1161 * This routine handles page faults. It determines the address,
1162 * and the problem, and then passes it off to one of the appropriate
1163 * routines.
d4078e23
PZ
1164 *
1165 * This function must have noinline because both callers
1166 * {,trace_}do_page_fault() have notrace on. Having this an actual function
1167 * guarantees there's a function trace entry.
1da177e4 1168 */
9326638c 1169static noinline void
0ac09f9f
JO
1170__do_page_fault(struct pt_regs *regs, unsigned long error_code,
1171 unsigned long address)
1da177e4 1172{
2d4a7167 1173 struct vm_area_struct *vma;
1da177e4
LT
1174 struct task_struct *tsk;
1175 struct mm_struct *mm;
26178ec1 1176 int fault, major = 0;
759496ba 1177 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1da177e4 1178
a9ba9a3b
AV
1179 tsk = current;
1180 mm = tsk->mm;
2d4a7167 1181
f8561296
VN
1182 /*
1183 * Detect and handle instructions that would cause a page fault for
1184 * both a tracked kernel page and a userspace page.
1185 */
1186 if (kmemcheck_active(regs))
1187 kmemcheck_hide(regs);
5dfaf90f 1188 prefetchw(&mm->mmap_sem);
f8561296 1189
0fd0e3da 1190 if (unlikely(kmmio_fault(regs, address)))
86069782 1191 return;
1da177e4
LT
1192
1193 /*
1194 * We fault-in kernel-space virtual memory on-demand. The
1195 * 'reference' page table is init_mm.pgd.
1196 *
1197 * NOTE! We MUST NOT take any locks for this case. We may
1198 * be in an interrupt or a critical region, and should
1199 * only copy the information from the master page table,
1200 * nothing more.
1201 *
1202 * This verifies that the fault happens in kernel space
1203 * (error_code & 4) == 0, and that the fault was not a
8b1bde93 1204 * protection error (error_code & 9) == 0.
1da177e4 1205 */
0973a06c 1206 if (unlikely(fault_in_kernel_space(address))) {
f8561296
VN
1207 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1208 if (vmalloc_fault(address) >= 0)
1209 return;
1210
1211 if (kmemcheck_fault(regs, address, error_code))
1212 return;
1213 }
5b727a3b 1214
2d4a7167 1215 /* Can handle a stale RO->RW TLB: */
92181f19 1216 if (spurious_fault(error_code, address))
5b727a3b
JF
1217 return;
1218
2d4a7167 1219 /* kprobes don't want to hook the spurious faults: */
e00b12e6 1220 if (kprobes_fault(regs))
9be260a6 1221 return;
f8c2ee22
HH
1222 /*
1223 * Don't take the mm semaphore here. If we fixup a prefetch
2d4a7167 1224 * fault we could otherwise deadlock:
f8c2ee22 1225 */
7b2d0dba 1226 bad_area_nosemaphore(regs, error_code, address, NULL);
2d4a7167 1227
92181f19 1228 return;
f8c2ee22
HH
1229 }
1230
2d4a7167 1231 /* kprobes don't want to hook the spurious faults: */
e00b12e6 1232 if (unlikely(kprobes_fault(regs)))
9be260a6 1233 return;
8c914cb7 1234
66c58156 1235 if (unlikely(error_code & PF_RSVD))
92181f19 1236 pgtable_bad(regs, error_code, address);
1da177e4 1237
4640c7ee 1238 if (unlikely(smap_violation(error_code, regs))) {
7b2d0dba 1239 bad_area_nosemaphore(regs, error_code, address, NULL);
4640c7ee 1240 return;
40d3cd66
PA
1241 }
1242
1da177e4 1243 /*
2d4a7167 1244 * If we're in an interrupt, have no user context or are running
70ffdb93 1245 * in a region with pagefaults disabled then we must not take the fault
1da177e4 1246 */
70ffdb93 1247 if (unlikely(faulthandler_disabled() || !mm)) {
7b2d0dba 1248 bad_area_nosemaphore(regs, error_code, address, NULL);
92181f19
NP
1249 return;
1250 }
1da177e4 1251
e00b12e6
PZ
1252 /*
1253 * It's safe to allow irq's after cr2 has been saved and the
1254 * vmalloc fault has been handled.
1255 *
1256 * User-mode registers count as a user access even for any
1257 * potential system fault or CPU buglet:
1258 */
f39b6f0e 1259 if (user_mode(regs)) {
e00b12e6
PZ
1260 local_irq_enable();
1261 error_code |= PF_USER;
1262 flags |= FAULT_FLAG_USER;
1263 } else {
1264 if (regs->flags & X86_EFLAGS_IF)
1265 local_irq_enable();
1266 }
1267
1268 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1269
759496ba
JW
1270 if (error_code & PF_WRITE)
1271 flags |= FAULT_FLAG_WRITE;
d61172b4
DH
1272 if (error_code & PF_INSTR)
1273 flags |= FAULT_FLAG_INSTRUCTION;
759496ba 1274
3a1dfe6e
IM
1275 /*
1276 * When running in the kernel we expect faults to occur only to
2d4a7167
IM
1277 * addresses in user space. All other faults represent errors in
1278 * the kernel and should generate an OOPS. Unfortunately, in the
1279 * case of an erroneous fault occurring in a code path which already
1280 * holds mmap_sem we will deadlock attempting to validate the fault
1281 * against the address space. Luckily the kernel only validly
1282 * references user space from well defined areas of code, which are
1283 * listed in the exceptions table.
1da177e4
LT
1284 *
1285 * As the vast majority of faults will be valid we will only perform
2d4a7167
IM
1286 * the source reference check when there is a possibility of a
1287 * deadlock. Attempt to lock the address space, if we cannot we then
1288 * validate the source. If this is invalid we can skip the address
1289 * space check, thus avoiding the deadlock:
1da177e4 1290 */
92181f19 1291 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
66c58156 1292 if ((error_code & PF_USER) == 0 &&
92181f19 1293 !search_exception_tables(regs->ip)) {
7b2d0dba 1294 bad_area_nosemaphore(regs, error_code, address, NULL);
92181f19
NP
1295 return;
1296 }
d065bd81 1297retry:
1da177e4 1298 down_read(&mm->mmap_sem);
01006074
PZ
1299 } else {
1300 /*
2d4a7167
IM
1301 * The above down_read_trylock() might have succeeded in
1302 * which case we'll have missed the might_sleep() from
1303 * down_read():
01006074
PZ
1304 */
1305 might_sleep();
1da177e4
LT
1306 }
1307
1308 vma = find_vma(mm, address);
92181f19
NP
1309 if (unlikely(!vma)) {
1310 bad_area(regs, error_code, address);
1311 return;
1312 }
1313 if (likely(vma->vm_start <= address))
1da177e4 1314 goto good_area;
92181f19
NP
1315 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1316 bad_area(regs, error_code, address);
1317 return;
1318 }
33cb5243 1319 if (error_code & PF_USER) {
6f4d368e
HH
1320 /*
1321 * Accessing the stack below %sp is always a bug.
1322 * The large cushion allows instructions like enter
2d4a7167 1323 * and pusha to work. ("enter $65535, $31" pushes
6f4d368e 1324 * 32 pointers and then decrements %sp by 65535.)
03fdc2c2 1325 */
92181f19
NP
1326 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1327 bad_area(regs, error_code, address);
1328 return;
1329 }
1da177e4 1330 }
92181f19
NP
1331 if (unlikely(expand_stack(vma, address))) {
1332 bad_area(regs, error_code, address);
1333 return;
1334 }
1335
1336 /*
1337 * Ok, we have a good vm_area for this memory access, so
1338 * we can handle it..
1339 */
1da177e4 1340good_area:
68da336a 1341 if (unlikely(access_error(error_code, vma))) {
7b2d0dba 1342 bad_area_access_error(regs, error_code, address, vma);
92181f19 1343 return;
1da177e4
LT
1344 }
1345
1346 /*
1347 * If for any reason at all we couldn't handle the fault,
1348 * make sure we exit gracefully rather than endlessly redo
9a95f3cf
PC
1349 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1350 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1da177e4 1351 */
d065bd81 1352 fault = handle_mm_fault(mm, vma, address, flags);
26178ec1 1353 major |= fault & VM_FAULT_MAJOR;
2d4a7167 1354
3a13c4d7 1355 /*
26178ec1
LT
1356 * If we need to retry the mmap_sem has already been released,
1357 * and if there is a fatal signal pending there is no guarantee
1358 * that we made any progress. Handle this case first.
3a13c4d7 1359 */
26178ec1
LT
1360 if (unlikely(fault & VM_FAULT_RETRY)) {
1361 /* Retry at most once */
1362 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1363 flags &= ~FAULT_FLAG_ALLOW_RETRY;
1364 flags |= FAULT_FLAG_TRIED;
1365 if (!fatal_signal_pending(tsk))
1366 goto retry;
1367 }
1368
1369 /* User mode? Just return to handle the fatal exception */
cf3c0a15 1370 if (flags & FAULT_FLAG_USER)
26178ec1
LT
1371 return;
1372
1373 /* Not returning to user mode? Handle exceptions or die: */
1374 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
3a13c4d7 1375 return;
26178ec1 1376 }
3a13c4d7 1377
26178ec1 1378 up_read(&mm->mmap_sem);
3a13c4d7 1379 if (unlikely(fault & VM_FAULT_ERROR)) {
7b2d0dba 1380 mm_fault_error(regs, error_code, address, vma, fault);
3a13c4d7 1381 return;
37b23e05
KM
1382 }
1383
d065bd81 1384 /*
26178ec1
LT
1385 * Major/minor page fault accounting. If any of the events
1386 * returned VM_FAULT_MAJOR, we account it as a major fault.
d065bd81 1387 */
26178ec1
LT
1388 if (major) {
1389 tsk->maj_flt++;
1390 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1391 } else {
1392 tsk->min_flt++;
1393 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
ac17dc8e 1394 }
d729ab35 1395
8c938f9f 1396 check_v8086_mode(regs, address, tsk);
1da177e4 1397}
9326638c 1398NOKPROBE_SYMBOL(__do_page_fault);
6ba3c97a 1399
9326638c 1400dotraplinkage void notrace
6ba3c97a
FW
1401do_page_fault(struct pt_regs *regs, unsigned long error_code)
1402{
d4078e23 1403 unsigned long address = read_cr2(); /* Get the faulting address */
6c1e0256 1404 enum ctx_state prev_state;
d4078e23
PZ
1405
1406 /*
1407 * We must have this function tagged with __kprobes, notrace and call
1408 * read_cr2() before calling anything else. To avoid calling any kind
1409 * of tracing machinery before we've observed the CR2 value.
1410 *
1411 * exception_{enter,exit}() contain all sorts of tracepoints.
1412 */
6c1e0256
FW
1413
1414 prev_state = exception_enter();
0ac09f9f 1415 __do_page_fault(regs, error_code, address);
6c1e0256 1416 exception_exit(prev_state);
6ba3c97a 1417}
9326638c 1418NOKPROBE_SYMBOL(do_page_fault);
25c74b10 1419
d4078e23 1420#ifdef CONFIG_TRACING
9326638c
MH
1421static nokprobe_inline void
1422trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1423 unsigned long error_code)
d34603b0
SA
1424{
1425 if (user_mode(regs))
d4078e23 1426 trace_page_fault_user(address, regs, error_code);
d34603b0 1427 else
d4078e23 1428 trace_page_fault_kernel(address, regs, error_code);
d34603b0
SA
1429}
1430
9326638c 1431dotraplinkage void notrace
25c74b10
SA
1432trace_do_page_fault(struct pt_regs *regs, unsigned long error_code)
1433{
0ac09f9f
JO
1434 /*
1435 * The exception_enter and tracepoint processing could
1436 * trigger another page faults (user space callchain
1437 * reading) and destroy the original cr2 value, so read
1438 * the faulting address now.
1439 */
1440 unsigned long address = read_cr2();
d4078e23 1441 enum ctx_state prev_state;
25c74b10
SA
1442
1443 prev_state = exception_enter();
d4078e23 1444 trace_page_fault_entries(address, regs, error_code);
0ac09f9f 1445 __do_page_fault(regs, error_code, address);
25c74b10
SA
1446 exception_exit(prev_state);
1447}
9326638c 1448NOKPROBE_SYMBOL(trace_do_page_fault);
d4078e23 1449#endif /* CONFIG_TRACING */