mm/gup: change GUP fast to use flags rather than a write 'bool'
[linux-2.6-block.git] / arch / x86 / kvm / paging_tmpl.h
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21/*
22 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
23 * so the code in this file is compiled twice, once per pte size.
24 */
25
26#if PTTYPE == 64
27 #define pt_element_t u64
28 #define guest_walker guest_walker64
29 #define FNAME(name) paging##64_##name
30 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
e04da980
JR
31 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
32 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
6aa8b732 33 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
c7addb90 34 #define PT_LEVEL_BITS PT64_LEVEL_BITS
d8089bac
GN
35 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
36 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
86407bcb 37 #define PT_HAVE_ACCESSED_DIRTY(mmu) true
cea0f0e7
AK
38 #ifdef CONFIG_X86_64
39 #define PT_MAX_FULL_LEVELS 4
b3e4e63f 40 #define CMPXCHG cmpxchg
cea0f0e7 41 #else
b3e4e63f 42 #define CMPXCHG cmpxchg64
cea0f0e7
AK
43 #define PT_MAX_FULL_LEVELS 2
44 #endif
6aa8b732
AK
45#elif PTTYPE == 32
46 #define pt_element_t u32
47 #define guest_walker guest_walker32
48 #define FNAME(name) paging##32_##name
49 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
e04da980
JR
50 #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
51 #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
6aa8b732 52 #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
c7addb90 53 #define PT_LEVEL_BITS PT32_LEVEL_BITS
cea0f0e7 54 #define PT_MAX_FULL_LEVELS 2
d8089bac
GN
55 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
56 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
86407bcb 57 #define PT_HAVE_ACCESSED_DIRTY(mmu) true
b3e4e63f 58 #define CMPXCHG cmpxchg
37406aaa
NHE
59#elif PTTYPE == PTTYPE_EPT
60 #define pt_element_t u64
61 #define guest_walker guest_walkerEPT
62 #define FNAME(name) ept_##name
63 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
64 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
65 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
66 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
67 #define PT_LEVEL_BITS PT64_LEVEL_BITS
ae1e2d10
PB
68 #define PT_GUEST_DIRTY_SHIFT 9
69 #define PT_GUEST_ACCESSED_SHIFT 8
70 #define PT_HAVE_ACCESSED_DIRTY(mmu) ((mmu)->ept_ad)
37406aaa
NHE
71 #define CMPXCHG cmpxchg64
72 #define PT_MAX_FULL_LEVELS 4
6aa8b732
AK
73#else
74 #error Invalid PTTYPE value
75#endif
76
ae1e2d10
PB
77#define PT_GUEST_DIRTY_MASK (1 << PT_GUEST_DIRTY_SHIFT)
78#define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT)
79
e04da980
JR
80#define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
81#define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
5fb07ddb 82
6aa8b732
AK
83/*
84 * The guest_walker structure emulates the behavior of the hardware page
85 * table walker.
86 */
87struct guest_walker {
88 int level;
8cbc7069 89 unsigned max_level;
cea0f0e7 90 gfn_t table_gfn[PT_MAX_FULL_LEVELS];
7819026e 91 pt_element_t ptes[PT_MAX_FULL_LEVELS];
189be38d 92 pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
7819026e 93 gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
8cbc7069 94 pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
ba6a3541 95 bool pte_writable[PT_MAX_FULL_LEVELS];
fe135d2c
AK
96 unsigned pt_access;
97 unsigned pte_access;
815af8d4 98 gfn_t gfn;
8c28d031 99 struct x86_exception fault;
6aa8b732
AK
100};
101
e04da980 102static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
5fb07ddb 103{
e04da980 104 return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
5fb07ddb
AK
105}
106
86407bcb
PB
107static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access,
108 unsigned gpte)
0ad805a0
NHE
109{
110 unsigned mask;
111
61719a8f 112 /* dirty bit is not supported, so no need to track it */
86407bcb 113 if (!PT_HAVE_ACCESSED_DIRTY(mmu))
61719a8f
GN
114 return;
115
0ad805a0
NHE
116 BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
117
118 mask = (unsigned)~ACC_WRITE_MASK;
119 /* Allow write access to dirty gptes */
d8089bac
GN
120 mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) &
121 PT_WRITABLE_MASK;
0ad805a0
NHE
122 *access &= mask;
123}
124
0ad805a0
NHE
125static inline int FNAME(is_present_gpte)(unsigned long pte)
126{
37406aaa 127#if PTTYPE != PTTYPE_EPT
812f30b2 128 return pte & PT_PRESENT_MASK;
37406aaa
NHE
129#else
130 return pte & 7;
131#endif
0ad805a0
NHE
132}
133
a78484c6 134static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
c8cfbb55
TY
135 pt_element_t __user *ptep_user, unsigned index,
136 pt_element_t orig_pte, pt_element_t new_pte)
b3e4e63f 137{
c8cfbb55 138 int npages;
b3e4e63f
MT
139 pt_element_t ret;
140 pt_element_t *table;
141 struct page *page;
142
73b0140b 143 npages = get_user_pages_fast((unsigned long)ptep_user, 1, FOLL_WRITE, &page);
c8cfbb55
TY
144 /* Check if the user is doing something meaningless. */
145 if (unlikely(npages != 1))
a78484c6
RJ
146 return -EFAULT;
147
8fd75e12 148 table = kmap_atomic(page);
b3e4e63f 149 ret = CMPXCHG(&table[index], orig_pte, new_pte);
8fd75e12 150 kunmap_atomic(table);
b3e4e63f
MT
151
152 kvm_release_page_dirty(page);
153
154 return (ret != orig_pte);
155}
156
0ad805a0
NHE
157static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
158 struct kvm_mmu_page *sp, u64 *spte,
159 u64 gpte)
160{
44dd3ffa 161 if (is_rsvd_bits_set(vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
0ad805a0
NHE
162 goto no_present;
163
164 if (!FNAME(is_present_gpte)(gpte))
165 goto no_present;
166
61719a8f 167 /* if accessed bit is not supported prefetch non accessed gpte */
44dd3ffa
VK
168 if (PT_HAVE_ACCESSED_DIRTY(vcpu->arch.mmu) &&
169 !(gpte & PT_GUEST_ACCESSED_MASK))
0ad805a0
NHE
170 goto no_present;
171
172 return false;
173
174no_present:
175 drop_spte(vcpu->kvm, spte);
176 return true;
177}
178
d95c5568
BD
179/*
180 * For PTTYPE_EPT, a page table can be executable but not readable
181 * on supported processors. Therefore, set_spte does not automatically
182 * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK
183 * to signify readability since it isn't used in the EPT case
184 */
42522d08 185static inline unsigned FNAME(gpte_access)(u64 gpte)
0ad805a0
NHE
186{
187 unsigned access;
37406aaa
NHE
188#if PTTYPE == PTTYPE_EPT
189 access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) |
190 ((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) |
d95c5568 191 ((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0);
37406aaa 192#else
bb9eadf0
PB
193 BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK);
194 BUILD_BUG_ON(ACC_EXEC_MASK != 1);
195 access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK);
196 /* Combine NX with P (which is set here) to get ACC_EXEC_MASK. */
197 access ^= (gpte >> PT64_NX_SHIFT);
37406aaa 198#endif
0ad805a0
NHE
199
200 return access;
201}
202
8cbc7069
AK
203static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
204 struct kvm_mmu *mmu,
205 struct guest_walker *walker,
206 int write_fault)
207{
208 unsigned level, index;
209 pt_element_t pte, orig_pte;
210 pt_element_t __user *ptep_user;
211 gfn_t table_gfn;
212 int ret;
213
61719a8f 214 /* dirty/accessed bits are not supported, so no need to update them */
86407bcb 215 if (!PT_HAVE_ACCESSED_DIRTY(mmu))
61719a8f
GN
216 return 0;
217
8cbc7069
AK
218 for (level = walker->max_level; level >= walker->level; --level) {
219 pte = orig_pte = walker->ptes[level - 1];
220 table_gfn = walker->table_gfn[level - 1];
221 ptep_user = walker->ptep_user[level - 1];
222 index = offset_in_page(ptep_user) / sizeof(pt_element_t);
d8089bac 223 if (!(pte & PT_GUEST_ACCESSED_MASK)) {
8cbc7069 224 trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
d8089bac 225 pte |= PT_GUEST_ACCESSED_MASK;
8cbc7069 226 }
0ad805a0 227 if (level == walker->level && write_fault &&
d8089bac 228 !(pte & PT_GUEST_DIRTY_MASK)) {
8cbc7069 229 trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
bab4165e
BD
230#if PTTYPE == PTTYPE_EPT
231 if (kvm_arch_write_log_dirty(vcpu))
232 return -EINVAL;
233#endif
d8089bac 234 pte |= PT_GUEST_DIRTY_MASK;
8cbc7069
AK
235 }
236 if (pte == orig_pte)
237 continue;
238
ba6a3541
PB
239 /*
240 * If the slot is read-only, simply do not process the accessed
241 * and dirty bits. This is the correct thing to do if the slot
242 * is ROM, and page tables in read-as-ROM/write-as-MMIO slots
243 * are only supported if the accessed and dirty bits are already
244 * set in the ROM (so that MMIO writes are never needed).
245 *
246 * Note that NPT does not allow this at all and faults, since
247 * it always wants nested page table entries for the guest
248 * page tables to be writable. And EPT works but will simply
249 * overwrite the read-only memory to set the accessed and dirty
250 * bits.
251 */
252 if (unlikely(!walker->pte_writable[level - 1]))
253 continue;
254
8cbc7069
AK
255 ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte);
256 if (ret)
257 return ret;
258
54bf36aa 259 kvm_vcpu_mark_page_dirty(vcpu, table_gfn);
17e4bce0 260 walker->ptes[level - 1] = pte;
8cbc7069
AK
261 }
262 return 0;
263}
264
be94f6b7
HH
265static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte)
266{
267 unsigned pkeys = 0;
268#if PTTYPE == 64
269 pte_t pte = {.pte = gpte};
270
271 pkeys = pte_flags_pkey(pte_flags(pte));
272#endif
273 return pkeys;
274}
275
ac79c978
AK
276/*
277 * Fetch a guest pte for a guest virtual address
278 */
1e301feb
JR
279static int FNAME(walk_addr_generic)(struct guest_walker *walker,
280 struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
33770780 281 gva_t addr, u32 access)
6aa8b732 282{
8cbc7069 283 int ret;
42bf3f0a 284 pt_element_t pte;
b7233635 285 pt_element_t __user *uninitialized_var(ptep_user);
cea0f0e7 286 gfn_t table_gfn;
0780516a
PB
287 u64 pt_access, pte_access;
288 unsigned index, accessed_dirty, pte_pkey;
ae1e2d10 289 unsigned nested_access;
42bf3f0a 290 gpa_t pte_gpa;
86407bcb 291 bool have_ad;
134291bf 292 int offset;
0780516a 293 u64 walk_nx_mask = 0;
134291bf
TY
294 const int write_fault = access & PFERR_WRITE_MASK;
295 const int user_fault = access & PFERR_USER_MASK;
296 const int fetch_fault = access & PFERR_FETCH_MASK;
297 u16 errcode = 0;
13d22b6a
AK
298 gpa_t real_gpa;
299 gfn_t gfn;
6aa8b732 300
6fbc2770 301 trace_kvm_mmu_pagetable_walk(addr, access);
92c1c1e8 302retry_walk:
1e301feb
JR
303 walker->level = mmu->root_level;
304 pte = mmu->get_cr3(vcpu);
86407bcb 305 have_ad = PT_HAVE_ACCESSED_DIRTY(mmu);
1e301feb 306
1b0973bd 307#if PTTYPE == 64
0780516a 308 walk_nx_mask = 1ULL << PT64_NX_SHIFT;
1e301feb 309 if (walker->level == PT32E_ROOT_LEVEL) {
e4e517b4 310 pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
07420171 311 trace_kvm_mmu_paging_element(pte, walker->level);
0ad805a0 312 if (!FNAME(is_present_gpte)(pte))
f59c1d2d 313 goto error;
1b0973bd
AK
314 --walker->level;
315 }
316#endif
8cbc7069 317 walker->max_level = walker->level;
1715d0dc 318 ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu)));
6aa8b732 319
ae1e2d10
PB
320 /*
321 * FIXME: on Intel processors, loads of the PDPTE registers for PAE paging
322 * by the MOV to CR instruction are treated as reads and do not cause the
323 * processor to set the dirty flag in any EPT paging-structure entry.
324 */
325 nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK;
326
0780516a 327 pte_access = ~0;
13d22b6a 328 ++walker->level;
ac79c978 329
13d22b6a 330 do {
6e2ca7d1
TY
331 gfn_t real_gfn;
332 unsigned long host_addr;
333
0780516a 334 pt_access = pte_access;
13d22b6a
AK
335 --walker->level;
336
42bf3f0a 337 index = PT_INDEX(addr, walker->level);
5fb07ddb 338 table_gfn = gpte_to_gfn(pte);
2329d46d
JR
339 offset = index * sizeof(pt_element_t);
340 pte_gpa = gfn_to_gpa(table_gfn) + offset;
829ee279
LP
341
342 BUG_ON(walker->level < 1);
42bf3f0a 343 walker->table_gfn[walker->level - 1] = table_gfn;
7819026e 344 walker->pte_gpa[walker->level - 1] = pte_gpa;
42bf3f0a 345
6e2ca7d1 346 real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
ae1e2d10 347 nested_access,
54987b7a 348 &walker->fault);
5e352519
PB
349
350 /*
351 * FIXME: This can happen if emulation (for of an INS/OUTS
352 * instruction) triggers a nested page fault. The exit
353 * qualification / exit info field will incorrectly have
354 * "guest page access" as the nested page fault's cause,
355 * instead of "guest page structure access". To fix this,
356 * the x86_exception struct should be augmented with enough
357 * information to fix the exit_qualification or exit_info_1
358 * fields.
359 */
134291bf 360 if (unlikely(real_gfn == UNMAPPED_GVA))
54987b7a 361 return 0;
5e352519 362
6e2ca7d1
TY
363 real_gfn = gpa_to_gfn(real_gfn);
364
54bf36aa 365 host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, real_gfn,
ba6a3541 366 &walker->pte_writable[walker->level - 1]);
134291bf
TY
367 if (unlikely(kvm_is_error_hva(host_addr)))
368 goto error;
6e2ca7d1
TY
369
370 ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
134291bf
TY
371 if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte))))
372 goto error;
8cbc7069 373 walker->ptep_user[walker->level - 1] = ptep_user;
a6085fba 374
07420171 375 trace_kvm_mmu_paging_element(pte, walker->level);
42bf3f0a 376
0780516a
PB
377 /*
378 * Inverting the NX it lets us AND it like other
379 * permission bits.
380 */
381 pte_access = pt_access & (pte ^ walk_nx_mask);
382
0ad805a0 383 if (unlikely(!FNAME(is_present_gpte)(pte)))
134291bf 384 goto error;
7993ba43 385
d2b0f981 386 if (unlikely(is_rsvd_bits_set(mmu, pte, walker->level))) {
7a98205d 387 errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
134291bf 388 goto error;
f59c1d2d 389 }
82725b20 390
7819026e 391 walker->ptes[walker->level - 1] = pte;
6fd01b71 392 } while (!is_last_gpte(mmu, walker->level, pte));
42bf3f0a 393
be94f6b7 394 pte_pkey = FNAME(gpte_pkeys)(vcpu, pte);
0780516a
PB
395 accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0;
396
397 /* Convert to ACC_*_MASK flags for struct guest_walker. */
42522d08
PX
398 walker->pt_access = FNAME(gpte_access)(pt_access ^ walk_nx_mask);
399 walker->pte_access = FNAME(gpte_access)(pte_access ^ walk_nx_mask);
0780516a 400 errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access);
f13577e8 401 if (unlikely(errcode))
f59c1d2d
AK
402 goto error;
403
13d22b6a
AK
404 gfn = gpte_to_gfn_lvl(pte, walker->level);
405 gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
406
407 if (PTTYPE == 32 && walker->level == PT_DIRECTORY_LEVEL && is_cpuid_PSE36())
408 gfn += pse36_gfn_delta(pte);
409
54987b7a 410 real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access, &walker->fault);
13d22b6a
AK
411 if (real_gpa == UNMAPPED_GVA)
412 return 0;
413
414 walker->gfn = real_gpa >> PAGE_SHIFT;
415
8ea667f2 416 if (!write_fault)
0780516a 417 FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte);
908e7d79
GN
418 else
419 /*
61719a8f
GN
420 * On a write fault, fold the dirty bit into accessed_dirty.
421 * For modes without A/D bits support accessed_dirty will be
422 * always clear.
908e7d79 423 */
d8089bac
GN
424 accessed_dirty &= pte >>
425 (PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT);
b514c30f
AK
426
427 if (unlikely(!accessed_dirty)) {
428 ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, write_fault);
429 if (unlikely(ret < 0))
430 goto error;
431 else if (ret)
432 goto retry_walk;
433 }
42bf3f0a 434
fe135d2c 435 pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
0780516a 436 __func__, (u64)pte, walker->pte_access, walker->pt_access);
7993ba43
AK
437 return 1;
438
f59c1d2d 439error:
134291bf 440 errcode |= write_fault | user_fault;
e57d4a35
YW
441 if (fetch_fault && (mmu->nx ||
442 kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)))
134291bf 443 errcode |= PFERR_FETCH_MASK;
8df25a32 444
134291bf
TY
445 walker->fault.vector = PF_VECTOR;
446 walker->fault.error_code_valid = true;
447 walker->fault.error_code = errcode;
25d92081
YZ
448
449#if PTTYPE == PTTYPE_EPT
450 /*
451 * Use PFERR_RSVD_MASK in error_code to to tell if EPT
452 * misconfiguration requires to be injected. The detection is
453 * done by is_rsvd_bits_set() above.
454 *
455 * We set up the value of exit_qualification to inject:
ddd6f0e9
KA
456 * [2:0] - Derive from the access bits. The exit_qualification might be
457 * out of date if it is serving an EPT misconfiguration.
25d92081
YZ
458 * [5:3] - Calculated by the page walk of the guest EPT page tables
459 * [7:8] - Derived from [7:8] of real exit_qualification
460 *
461 * The other bits are set to 0.
462 */
463 if (!(errcode & PFERR_RSVD_MASK)) {
ddd6f0e9
KA
464 vcpu->arch.exit_qualification &= 0x180;
465 if (write_fault)
466 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_WRITE;
467 if (user_fault)
468 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_READ;
469 if (fetch_fault)
470 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_INSTR;
0780516a 471 vcpu->arch.exit_qualification |= (pte_access & 0x7) << 3;
25d92081
YZ
472 }
473#endif
6389ee94
AK
474 walker->fault.address = addr;
475 walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
8df25a32 476
8c28d031 477 trace_kvm_mmu_walker_error(walker->fault.error_code);
fe551881 478 return 0;
6aa8b732
AK
479}
480
1e301feb 481static int FNAME(walk_addr)(struct guest_walker *walker,
33770780 482 struct kvm_vcpu *vcpu, gva_t addr, u32 access)
1e301feb 483{
44dd3ffa 484 return FNAME(walk_addr_generic)(walker, vcpu, vcpu->arch.mmu, addr,
33770780 485 access);
1e301feb
JR
486}
487
37406aaa 488#if PTTYPE != PTTYPE_EPT
6539e738
JR
489static int FNAME(walk_addr_nested)(struct guest_walker *walker,
490 struct kvm_vcpu *vcpu, gva_t addr,
33770780 491 u32 access)
6539e738
JR
492{
493 return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
33770780 494 addr, access);
6539e738 495}
37406aaa 496#endif
6539e738 497
bd6360cc
XG
498static bool
499FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
500 u64 *spte, pt_element_t gpte, bool no_dirty_log)
0028425f 501{
41074d07 502 unsigned pte_access;
bd6360cc 503 gfn_t gfn;
ba049e93 504 kvm_pfn_t pfn;
0028425f 505
0ad805a0 506 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
bd6360cc 507 return false;
407c61c6 508
b8688d51 509 pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
bd6360cc
XG
510
511 gfn = gpte_to_gfn(gpte);
42522d08 512 pte_access = sp->role.access & FNAME(gpte_access)(gpte);
44dd3ffa 513 FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
bd6360cc
XG
514 pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
515 no_dirty_log && (pte_access & ACC_WRITE_MASK));
81c52c56 516 if (is_error_pfn(pfn))
bd6360cc 517 return false;
0f53b5b1 518
1403283a 519 /*
bd6360cc
XG
520 * we call mmu_set_spte() with host_writable = true because
521 * pte_prefetch_gfn_to_pfn always gets a writable pfn.
1403283a 522 */
029499b4
TY
523 mmu_set_spte(vcpu, spte, pte_access, 0, PT_PAGE_TABLE_LEVEL, gfn, pfn,
524 true, true);
bd6360cc
XG
525
526 return true;
527}
528
529static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
530 u64 *spte, const void *pte)
531{
532 pt_element_t gpte = *(const pt_element_t *)pte;
533
534 FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false);
0028425f
AK
535}
536
39c8c672
AK
537static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
538 struct guest_walker *gw, int level)
539{
39c8c672 540 pt_element_t curr_pte;
189be38d
XG
541 gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
542 u64 mask;
543 int r, index;
544
545 if (level == PT_PAGE_TABLE_LEVEL) {
546 mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
547 base_gpa = pte_gpa & ~mask;
548 index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
549
54bf36aa 550 r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa,
189be38d
XG
551 gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
552 curr_pte = gw->prefetch_ptes[index];
553 } else
54bf36aa 554 r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa,
39c8c672 555 &curr_pte, sizeof(curr_pte));
189be38d 556
39c8c672
AK
557 return r || curr_pte != gw->ptes[level - 1];
558}
559
189be38d
XG
560static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
561 u64 *sptep)
957ed9ef
XG
562{
563 struct kvm_mmu_page *sp;
189be38d 564 pt_element_t *gptep = gw->prefetch_ptes;
957ed9ef 565 u64 *spte;
189be38d 566 int i;
957ed9ef
XG
567
568 sp = page_header(__pa(sptep));
569
570 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
571 return;
572
573 if (sp->role.direct)
574 return __direct_pte_prefetch(vcpu, sp, sptep);
575
576 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
957ed9ef
XG
577 spte = sp->spt + i;
578
579 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
957ed9ef
XG
580 if (spte == sptep)
581 continue;
582
c3707958 583 if (is_shadow_present_pte(*spte))
957ed9ef
XG
584 continue;
585
bd6360cc 586 if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true))
957ed9ef 587 break;
957ed9ef
XG
588 }
589}
590
6aa8b732
AK
591/*
592 * Fetch a shadow pte for a specific level in the paging hierarchy.
d4878f24
XG
593 * If the guest tries to write a write-protected page, we need to
594 * emulate this operation, return 1 to indicate this case.
6aa8b732 595 */
d4878f24 596static int FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
e7a04c99 597 struct guest_walker *gw,
c2288505 598 int write_fault, int hlevel,
ba049e93 599 kvm_pfn_t pfn, bool map_writable, bool prefault)
6aa8b732 600{
5991b332 601 struct kvm_mmu_page *sp = NULL;
24157aaf 602 struct kvm_shadow_walk_iterator it;
d4878f24 603 unsigned direct_access, access = gw->pt_access;
9b8ebbdb 604 int top_level, ret;
abb9e0b8 605
b36c7a7c 606 direct_access = gw->pte_access;
84754cd8 607
44dd3ffa 608 top_level = vcpu->arch.mmu->root_level;
5991b332
AK
609 if (top_level == PT32E_ROOT_LEVEL)
610 top_level = PT32_ROOT_LEVEL;
611 /*
612 * Verify that the top-level gpte is still there. Since the page
613 * is a root page, it is either write protected (and cannot be
614 * changed from now on) or it is invalid (in which case, we don't
615 * really care if it changes underneath us after this point).
616 */
617 if (FNAME(gpte_changed)(vcpu, gw, top_level))
618 goto out_gpte_changed;
619
44dd3ffa 620 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
37f6a4e2
MT
621 goto out_gpte_changed;
622
24157aaf
AK
623 for (shadow_walk_init(&it, vcpu, addr);
624 shadow_walk_okay(&it) && it.level > gw->level;
625 shadow_walk_next(&it)) {
0b3c9333
AK
626 gfn_t table_gfn;
627
a30f47cb 628 clear_sp_write_flooding_count(it.sptep);
24157aaf 629 drop_large_spte(vcpu, it.sptep);
ef0197e8 630
5991b332 631 sp = NULL;
24157aaf
AK
632 if (!is_shadow_present_pte(*it.sptep)) {
633 table_gfn = gw->table_gfn[it.level - 2];
634 sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
bb11c6c9 635 false, access);
5991b332 636 }
0b3c9333
AK
637
638 /*
639 * Verify that the gpte in the page we've just write
640 * protected is still there.
641 */
24157aaf 642 if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
0b3c9333 643 goto out_gpte_changed;
abb9e0b8 644
5991b332 645 if (sp)
98bba238 646 link_shadow_page(vcpu, it.sptep, sp);
e7a04c99 647 }
050e6499 648
0b3c9333 649 for (;
24157aaf
AK
650 shadow_walk_okay(&it) && it.level > hlevel;
651 shadow_walk_next(&it)) {
0b3c9333
AK
652 gfn_t direct_gfn;
653
a30f47cb 654 clear_sp_write_flooding_count(it.sptep);
24157aaf 655 validate_direct_spte(vcpu, it.sptep, direct_access);
0b3c9333 656
24157aaf 657 drop_large_spte(vcpu, it.sptep);
0b3c9333 658
24157aaf 659 if (is_shadow_present_pte(*it.sptep))
0b3c9333
AK
660 continue;
661
24157aaf 662 direct_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
0b3c9333 663
24157aaf 664 sp = kvm_mmu_get_page(vcpu, direct_gfn, addr, it.level-1,
bb11c6c9 665 true, direct_access);
98bba238 666 link_shadow_page(vcpu, it.sptep, sp);
0b3c9333
AK
667 }
668
a30f47cb 669 clear_sp_write_flooding_count(it.sptep);
9b8ebbdb
PB
670 ret = mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault,
671 it.level, gw->gfn, pfn, prefault, map_writable);
189be38d 672 FNAME(pte_prefetch)(vcpu, gw, it.sptep);
0b3c9333 673
9b8ebbdb 674 return ret;
0b3c9333
AK
675
676out_gpte_changed:
0b3c9333 677 kvm_release_pfn_clean(pfn);
9b8ebbdb 678 return RET_PF_RETRY;
6aa8b732
AK
679}
680
7751babd
XG
681 /*
682 * To see whether the mapped gfn can write its page table in the current
683 * mapping.
684 *
685 * It is the helper function of FNAME(page_fault). When guest uses large page
686 * size to map the writable gfn which is used as current page table, we should
687 * force kvm to use small page size to map it because new shadow page will be
688 * created when kvm establishes shadow page table that stop kvm using large
689 * page size. Do it early can avoid unnecessary #PF and emulation.
690 *
93c05d3e
XG
691 * @write_fault_to_shadow_pgtable will return true if the fault gfn is
692 * currently used as its page table.
693 *
7751babd
XG
694 * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok
695 * since the PDPT is always shadowed, that means, we can not use large page
696 * size to map the gfn which is used as PDPT.
697 */
698static bool
699FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu,
93c05d3e
XG
700 struct guest_walker *walker, int user_fault,
701 bool *write_fault_to_shadow_pgtable)
7751babd
XG
702{
703 int level;
704 gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1);
93c05d3e 705 bool self_changed = false;
7751babd
XG
706
707 if (!(walker->pte_access & ACC_WRITE_MASK ||
708 (!is_write_protection(vcpu) && !user_fault)))
709 return false;
710
93c05d3e
XG
711 for (level = walker->level; level <= walker->max_level; level++) {
712 gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1];
713
714 self_changed |= !(gfn & mask);
715 *write_fault_to_shadow_pgtable |= !gfn;
716 }
7751babd 717
93c05d3e 718 return self_changed;
7751babd
XG
719}
720
6aa8b732
AK
721/*
722 * Page fault handler. There are several causes for a page fault:
723 * - there is no shadow pte for the guest pte
724 * - write access through a shadow pte marked read only so that we can set
725 * the dirty bit
726 * - write access to a shadow pte marked read only so we can update the page
727 * dirty bitmap, when userspace requests it
728 * - mmio access; in this case we will never install a present shadow pte
729 * - normal guest page fault due to the guest pte marked not present, not
730 * writable, or not executable
731 *
e2dec939
AK
732 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
733 * a negative value on error.
6aa8b732 734 */
56028d08 735static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,
78b2c54a 736 bool prefault)
6aa8b732
AK
737{
738 int write_fault = error_code & PFERR_WRITE_MASK;
6aa8b732
AK
739 int user_fault = error_code & PFERR_USER_MASK;
740 struct guest_walker walker;
e2dec939 741 int r;
ba049e93 742 kvm_pfn_t pfn;
7e4e4056 743 int level = PT_PAGE_TABLE_LEVEL;
8c85ac1c 744 bool force_pt_level = false;
e930bffe 745 unsigned long mmu_seq;
93c05d3e 746 bool map_writable, is_self_change_mapping;
6aa8b732 747
b8688d51 748 pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
714b93da 749
e2dec939
AK
750 r = mmu_topup_memory_caches(vcpu);
751 if (r)
752 return r;
714b93da 753
e9ee956e
TY
754 /*
755 * If PFEC.RSVD is set, this is a shadow page fault.
756 * The bit needs to be cleared before walking guest page tables.
757 */
758 error_code &= ~PFERR_RSVD_MASK;
759
6aa8b732 760 /*
a8b876b1 761 * Look up the guest pte for the faulting address.
6aa8b732 762 */
33770780 763 r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
6aa8b732
AK
764
765 /*
766 * The page is not mapped by the guest. Let the guest handle it.
767 */
7993ba43 768 if (!r) {
b8688d51 769 pgprintk("%s: guest page fault\n", __func__);
a30f47cb 770 if (!prefault)
fb67e14f 771 inject_page_fault(vcpu, &walker.fault);
a30f47cb 772
9b8ebbdb 773 return RET_PF_RETRY;
6aa8b732
AK
774 }
775
e5691a81
XG
776 if (page_fault_handle_page_track(vcpu, error_code, walker.gfn)) {
777 shadow_page_table_clear_flood(vcpu, addr);
9b8ebbdb 778 return RET_PF_EMULATE;
e5691a81 779 }
3d0c27ad 780
93c05d3e
XG
781 vcpu->arch.write_fault_to_shadow_pgtable = false;
782
783 is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu,
784 &walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable);
785
5ed5c5c8 786 if (walker.level >= PT_DIRECTORY_LEVEL && !is_self_change_mapping) {
fd136902
TY
787 level = mapping_level(vcpu, walker.gfn, &force_pt_level);
788 if (likely(!force_pt_level)) {
789 level = min(walker.level, level);
5ed5c5c8
TY
790 walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
791 }
792 } else
cd1872f0 793 force_pt_level = true;
7e4e4056 794
e930bffe 795 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 796 smp_rmb();
af585b92 797
78b2c54a 798 if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
612819c3 799 &map_writable))
9b8ebbdb 800 return RET_PF_RETRY;
d7824fff 801
9034e6e8 802 if (handle_abnormal_pfn(vcpu, addr, walker.gfn, pfn, walker.pte_access, &r))
d7c55201
XG
803 return r;
804
c2288505
XG
805 /*
806 * Do not change pte_access if the pfn is a mmio page, otherwise
807 * we will cache the incorrect access into mmio spte.
808 */
809 if (write_fault && !(walker.pte_access & ACC_WRITE_MASK) &&
810 !is_write_protection(vcpu) && !user_fault &&
811 !is_noslot_pfn(pfn)) {
812 walker.pte_access |= ACC_WRITE_MASK;
813 walker.pte_access &= ~ACC_USER_MASK;
814
815 /*
816 * If we converted a user page to a kernel page,
817 * so that the kernel can write to it when cr0.wp=0,
818 * then we should prevent the kernel from executing it
819 * if SMEP is enabled.
820 */
821 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
822 walker.pte_access &= ~ACC_EXEC_MASK;
823 }
824
aaee2c94 825 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 826 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 827 goto out_unlock;
bc32ce21 828
0375f7fa 829 kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
26eeb53c
WL
830 if (make_mmu_pages_available(vcpu) < 0)
831 goto out_unlock;
936a5fe6
AA
832 if (!force_pt_level)
833 transparent_hugepage_adjust(vcpu, &walker.gfn, &pfn, &level);
c2288505 834 r = FNAME(fetch)(vcpu, addr, &walker, write_fault,
d4878f24 835 level, pfn, map_writable, prefault);
1165f5fe 836 ++vcpu->stat.pf_fixed;
0375f7fa 837 kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
aaee2c94 838 spin_unlock(&vcpu->kvm->mmu_lock);
6aa8b732 839
d4878f24 840 return r;
e930bffe
AA
841
842out_unlock:
843 spin_unlock(&vcpu->kvm->mmu_lock);
844 kvm_release_pfn_clean(pfn);
9b8ebbdb 845 return RET_PF_RETRY;
6aa8b732
AK
846}
847
505aef8f
XG
848static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
849{
850 int offset = 0;
851
f71fa31f 852 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
505aef8f
XG
853
854 if (PTTYPE == 32)
855 offset = sp->role.quadrant << PT64_LEVEL_BITS;
856
857 return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
858}
859
7eb77e9f 860static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa)
a7052897 861{
a461930b 862 struct kvm_shadow_walk_iterator iterator;
f78978aa 863 struct kvm_mmu_page *sp;
a461930b
AK
864 int level;
865 u64 *sptep;
866
bebb106a
XG
867 vcpu_clear_mmio_info(vcpu, gva);
868
f57f2ef5
XG
869 /*
870 * No need to check return value here, rmap_can_add() can
871 * help us to skip pte prefetch later.
872 */
873 mmu_topup_memory_caches(vcpu);
a7052897 874
7eb77e9f 875 if (!VALID_PAGE(root_hpa)) {
37f6a4e2
MT
876 WARN_ON(1);
877 return;
878 }
879
f57f2ef5 880 spin_lock(&vcpu->kvm->mmu_lock);
7eb77e9f 881 for_each_shadow_entry_using_root(vcpu, root_hpa, gva, iterator) {
a461930b
AK
882 level = iterator.level;
883 sptep = iterator.sptep;
ad218f85 884
f78978aa 885 sp = page_header(__pa(sptep));
884a0ff0 886 if (is_last_spte(*sptep, level)) {
f57f2ef5
XG
887 pt_element_t gpte;
888 gpa_t pte_gpa;
889
f78978aa
XG
890 if (!sp->unsync)
891 break;
892
505aef8f 893 pte_gpa = FNAME(get_level1_sp_gpa)(sp);
08e850c6 894 pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
a461930b 895
505aef8f 896 if (mmu_page_zap_pte(vcpu->kvm, sp, sptep))
c3134ce2
LT
897 kvm_flush_remote_tlbs_with_address(vcpu->kvm,
898 sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
f57f2ef5
XG
899
900 if (!rmap_can_add(vcpu))
901 break;
902
54bf36aa
PB
903 if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
904 sizeof(pt_element_t)))
f57f2ef5
XG
905 break;
906
907 FNAME(update_pte)(vcpu, sp, sptep, &gpte);
87917239 908 }
a7052897 909
f78978aa 910 if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
a461930b
AK
911 break;
912 }
ad218f85 913 spin_unlock(&vcpu->kvm->mmu_lock);
a7052897
MT
914}
915
1871c602 916static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access,
ab9ae313 917 struct x86_exception *exception)
6aa8b732
AK
918{
919 struct guest_walker walker;
e119d117
AK
920 gpa_t gpa = UNMAPPED_GVA;
921 int r;
6aa8b732 922
33770780 923 r = FNAME(walk_addr)(&walker, vcpu, vaddr, access);
6aa8b732 924
e119d117 925 if (r) {
1755fbcc 926 gpa = gfn_to_gpa(walker.gfn);
e119d117 927 gpa |= vaddr & ~PAGE_MASK;
8c28d031
AK
928 } else if (exception)
929 *exception = walker.fault;
6aa8b732
AK
930
931 return gpa;
932}
933
37406aaa 934#if PTTYPE != PTTYPE_EPT
6539e738 935static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
936 u32 access,
937 struct x86_exception *exception)
6539e738
JR
938{
939 struct guest_walker walker;
940 gpa_t gpa = UNMAPPED_GVA;
941 int r;
942
33770780 943 r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
6539e738
JR
944
945 if (r) {
946 gpa = gfn_to_gpa(walker.gfn);
947 gpa |= vaddr & ~PAGE_MASK;
8c28d031
AK
948 } else if (exception)
949 *exception = walker.fault;
6539e738
JR
950
951 return gpa;
952}
37406aaa 953#endif
6539e738 954
e8bc217a
MT
955/*
956 * Using the cached information from sp->gfns is safe because:
957 * - The spte has a reference to the struct page, so the pfn for a given gfn
958 * can't change unless all sptes pointing to it are nuked first.
a4ee1ca4
XG
959 *
960 * Note:
961 * We should flush all tlbs if spte is dropped even though guest is
962 * responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
963 * and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
964 * used by guest then tlbs are not flushed, so guest is allowed to access the
965 * freed pages.
a086f6a1 966 * And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
e8bc217a 967 */
a4a8e6f7 968static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
e8bc217a 969{
505aef8f 970 int i, nr_present = 0;
9bdbba13 971 bool host_writable;
51fb60d8 972 gpa_t first_pte_gpa;
5ce4786f 973 int set_spte_ret = 0;
e8bc217a 974
2032a93d
LJ
975 /* direct kvm_mmu_page can not be unsync. */
976 BUG_ON(sp->role.direct);
977
505aef8f 978 first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
51fb60d8 979
e8bc217a
MT
980 for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
981 unsigned pte_access;
982 pt_element_t gpte;
983 gpa_t pte_gpa;
f55c3f41 984 gfn_t gfn;
e8bc217a 985
ce88decf 986 if (!sp->spt[i])
e8bc217a
MT
987 continue;
988
51fb60d8 989 pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
e8bc217a 990
54bf36aa
PB
991 if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
992 sizeof(pt_element_t)))
1f50f1b3 993 return 0;
e8bc217a 994
0ad805a0 995 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
7bfdf217
LT
996 /*
997 * Update spte before increasing tlbs_dirty to make
998 * sure no tlb flush is lost after spte is zapped; see
999 * the comments in kvm_flush_remote_tlbs().
1000 */
1001 smp_wmb();
a086f6a1 1002 vcpu->kvm->tlbs_dirty++;
407c61c6
XG
1003 continue;
1004 }
1005
ce88decf
XG
1006 gfn = gpte_to_gfn(gpte);
1007 pte_access = sp->role.access;
42522d08 1008 pte_access &= FNAME(gpte_access)(gpte);
44dd3ffa 1009 FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
ce88decf 1010
54bf36aa 1011 if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access,
f2fd125d 1012 &nr_present))
ce88decf
XG
1013 continue;
1014
407c61c6 1015 if (gfn != sp->gfns[i]) {
c3707958 1016 drop_spte(vcpu->kvm, &sp->spt[i]);
7bfdf217
LT
1017 /*
1018 * The same as above where we are doing
1019 * prefetch_invalid_gpte().
1020 */
1021 smp_wmb();
a086f6a1 1022 vcpu->kvm->tlbs_dirty++;
e8bc217a
MT
1023 continue;
1024 }
1025
1026 nr_present++;
ce88decf 1027
f8e453b0
XG
1028 host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
1029
5ce4786f
JS
1030 set_spte_ret |= set_spte(vcpu, &sp->spt[i],
1031 pte_access, PT_PAGE_TABLE_LEVEL,
1032 gfn, spte_to_pfn(sp->spt[i]),
1033 true, false, host_writable);
e8bc217a
MT
1034 }
1035
5ce4786f
JS
1036 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH)
1037 kvm_flush_remote_tlbs(vcpu->kvm);
1038
1f50f1b3 1039 return nr_present;
e8bc217a
MT
1040}
1041
6aa8b732
AK
1042#undef pt_element_t
1043#undef guest_walker
1044#undef FNAME
1045#undef PT_BASE_ADDR_MASK
1046#undef PT_INDEX
e04da980
JR
1047#undef PT_LVL_ADDR_MASK
1048#undef PT_LVL_OFFSET_MASK
c7addb90 1049#undef PT_LEVEL_BITS
cea0f0e7 1050#undef PT_MAX_FULL_LEVELS
5fb07ddb 1051#undef gpte_to_gfn
e04da980 1052#undef gpte_to_gfn_lvl
b3e4e63f 1053#undef CMPXCHG
d8089bac
GN
1054#undef PT_GUEST_ACCESSED_MASK
1055#undef PT_GUEST_DIRTY_MASK
1056#undef PT_GUEST_DIRTY_SHIFT
1057#undef PT_GUEST_ACCESSED_SHIFT
86407bcb 1058#undef PT_HAVE_ACCESSED_DIRTY