Commit | Line | Data |
---|---|---|
457c8996 | 1 | // SPDX-License-Identifier: GPL-2.0-only |
c767a54b JP |
2 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
3 | ||
bfc0f594 | 4 | #include <linux/kernel.h> |
0ef95533 | 5 | #include <linux/sched.h> |
e6017571 | 6 | #include <linux/sched/clock.h> |
0ef95533 | 7 | #include <linux/init.h> |
186f4360 | 8 | #include <linux/export.h> |
0ef95533 | 9 | #include <linux/timer.h> |
bfc0f594 | 10 | #include <linux/acpi_pmtmr.h> |
2dbe06fa | 11 | #include <linux/cpufreq.h> |
8fbbc4b4 AK |
12 | #include <linux/delay.h> |
13 | #include <linux/clocksource.h> | |
14 | #include <linux/percpu.h> | |
08604bd9 | 15 | #include <linux/timex.h> |
10b033d4 | 16 | #include <linux/static_key.h> |
a0e2bf7c | 17 | #include <linux/static_call.h> |
bfc0f594 | 18 | |
968e3000 | 19 | #include <asm/cpuid/api.h> |
bfc0f594 | 20 | #include <asm/hpet.h> |
8fbbc4b4 AK |
21 | #include <asm/timer.h> |
22 | #include <asm/vgtod.h> | |
23 | #include <asm/time.h> | |
24 | #include <asm/delay.h> | |
88b094fb | 25 | #include <asm/hypervisor.h> |
08047c4f | 26 | #include <asm/nmi.h> |
2d826404 | 27 | #include <asm/x86_init.h> |
03da3ff1 | 28 | #include <asm/geode.h> |
6731b0d6 | 29 | #include <asm/apic.h> |
f21b075b | 30 | #include <asm/cpu_device_id.h> |
30c7e5b1 | 31 | #include <asm/i8259.h> |
efef7f18 | 32 | #include <asm/msr.h> |
b4bac279 | 33 | #include <asm/topology.h> |
2647c43c | 34 | #include <asm/uv/uv.h> |
73bbf3b0 | 35 | #include <asm/sev.h> |
0ef95533 | 36 | |
f24ade3a | 37 | unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */ |
0ef95533 | 38 | EXPORT_SYMBOL(cpu_khz); |
f24ade3a IM |
39 | |
40 | unsigned int __read_mostly tsc_khz; | |
0ef95533 AK |
41 | EXPORT_SYMBOL(tsc_khz); |
42 | ||
cf7a63ef PT |
43 | #define KHZ 1000 |
44 | ||
0ef95533 AK |
45 | /* |
46 | * TSC can be unstable due to cpufreq or due to unsynced TSCs | |
47 | */ | |
f24ade3a | 48 | static int __read_mostly tsc_unstable; |
bd35c77e | 49 | static unsigned int __initdata tsc_early_khz; |
0ef95533 | 50 | |
79a4567b | 51 | static DEFINE_STATIC_KEY_FALSE_RO(__use_tsc); |
10b033d4 | 52 | |
28a00184 | 53 | int tsc_clocksource_reliable; |
57c67da2 | 54 | |
a7ec817d FT |
55 | static int __read_mostly tsc_force_recalibrate; |
56 | ||
3a52886c LS |
57 | static struct clocksource_base art_base_clk = { |
58 | .id = CSID_X86_ART, | |
59 | }; | |
a2c1fe72 | 60 | static bool have_art; |
f9677e0f | 61 | |
20d1c86a | 62 | struct cyc2ns { |
59eaef78 | 63 | struct cyc2ns_data data[2]; /* 0 + 2*16 = 32 */ |
a1f10661 | 64 | seqcount_latch_t seq; /* 32 + 4 = 36 */ |
20d1c86a | 65 | |
59eaef78 | 66 | }; /* fits one cacheline */ |
20d1c86a | 67 | |
59eaef78 | 68 | static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns); |
20d1c86a | 69 | |
bd35c77e KP |
70 | static int __init tsc_early_khz_setup(char *buf) |
71 | { | |
72 | return kstrtouint(buf, 0, &tsc_early_khz); | |
73 | } | |
74 | early_param("tsc_early_khz", tsc_early_khz_setup); | |
75 | ||
5c5e9a2b | 76 | __always_inline void __cyc2ns_read(struct cyc2ns_data *data) |
20d1c86a | 77 | { |
59eaef78 | 78 | int seq, idx; |
20d1c86a | 79 | |
59eaef78 | 80 | do { |
a1f10661 | 81 | seq = this_cpu_read(cyc2ns.seq.seqcount.sequence); |
59eaef78 | 82 | idx = seq & 1; |
20d1c86a | 83 | |
59eaef78 PZ |
84 | data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset); |
85 | data->cyc2ns_mul = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul); | |
86 | data->cyc2ns_shift = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift); | |
20d1c86a | 87 | |
a1f10661 | 88 | } while (unlikely(seq != this_cpu_read(cyc2ns.seq.seqcount.sequence))); |
20d1c86a PZ |
89 | } |
90 | ||
5c5e9a2b PZ |
91 | __always_inline void cyc2ns_read_begin(struct cyc2ns_data *data) |
92 | { | |
93 | preempt_disable_notrace(); | |
94 | __cyc2ns_read(data); | |
95 | } | |
96 | ||
83e83726 | 97 | __always_inline void cyc2ns_read_end(void) |
20d1c86a | 98 | { |
59eaef78 | 99 | preempt_enable_notrace(); |
20d1c86a PZ |
100 | } |
101 | ||
102 | /* | |
103 | * Accelerators for sched_clock() | |
57c67da2 PZ |
104 | * convert from cycles(64bits) => nanoseconds (64bits) |
105 | * basic equation: | |
106 | * ns = cycles / (freq / ns_per_sec) | |
107 | * ns = cycles * (ns_per_sec / freq) | |
108 | * ns = cycles * (10^9 / (cpu_khz * 10^3)) | |
109 | * ns = cycles * (10^6 / cpu_khz) | |
110 | * | |
111 | * Then we use scaling math (suggested by george@mvista.com) to get: | |
112 | * ns = cycles * (10^6 * SC / cpu_khz) / SC | |
113 | * ns = cycles * cyc2ns_scale / SC | |
114 | * | |
115 | * And since SC is a constant power of two, we can convert the div | |
b20112ed AH |
116 | * into a shift. The larger SC is, the more accurate the conversion, but |
117 | * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication | |
118 | * (64-bit result) can be used. | |
57c67da2 | 119 | * |
b20112ed | 120 | * We can use khz divisor instead of mhz to keep a better precision. |
57c67da2 PZ |
121 | * (mathieu.desnoyers@polymtl.ca) |
122 | * | |
123 | * -johnstul@us.ibm.com "math is hard, lets go shopping!" | |
124 | */ | |
125 | ||
5c5e9a2b | 126 | static __always_inline unsigned long long __cycles_2_ns(unsigned long long cyc) |
57c67da2 | 127 | { |
59eaef78 | 128 | struct cyc2ns_data data; |
20d1c86a PZ |
129 | unsigned long long ns; |
130 | ||
5c5e9a2b | 131 | __cyc2ns_read(&data); |
20d1c86a | 132 | |
59eaef78 PZ |
133 | ns = data.cyc2ns_offset; |
134 | ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift); | |
20d1c86a | 135 | |
5c5e9a2b PZ |
136 | return ns; |
137 | } | |
20d1c86a | 138 | |
5c5e9a2b PZ |
139 | static __always_inline unsigned long long cycles_2_ns(unsigned long long cyc) |
140 | { | |
141 | unsigned long long ns; | |
142 | preempt_disable_notrace(); | |
143 | ns = __cycles_2_ns(cyc); | |
144 | preempt_enable_notrace(); | |
57c67da2 PZ |
145 | return ns; |
146 | } | |
147 | ||
e2a9ca29 | 148 | static void __set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now) |
57c67da2 | 149 | { |
615cd033 | 150 | unsigned long long ns_now; |
59eaef78 PZ |
151 | struct cyc2ns_data data; |
152 | struct cyc2ns *c2n; | |
20d1c86a | 153 | |
57c67da2 PZ |
154 | ns_now = cycles_2_ns(tsc_now); |
155 | ||
20d1c86a PZ |
156 | /* |
157 | * Compute a new multiplier as per the above comment and ensure our | |
158 | * time function is continuous; see the comment near struct | |
159 | * cyc2ns_data. | |
160 | */ | |
59eaef78 | 161 | clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz, |
b20112ed AH |
162 | NSEC_PER_MSEC, 0); |
163 | ||
b9511cd7 AH |
164 | /* |
165 | * cyc2ns_shift is exported via arch_perf_update_userpage() where it is | |
166 | * not expected to be greater than 31 due to the original published | |
167 | * conversion algorithm shifting a 32-bit value (now specifies a 64-bit | |
168 | * value) - refer perf_event_mmap_page documentation in perf_event.h. | |
169 | */ | |
59eaef78 PZ |
170 | if (data.cyc2ns_shift == 32) { |
171 | data.cyc2ns_shift = 31; | |
172 | data.cyc2ns_mul >>= 1; | |
b9511cd7 AH |
173 | } |
174 | ||
59eaef78 PZ |
175 | data.cyc2ns_offset = ns_now - |
176 | mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift); | |
177 | ||
178 | c2n = per_cpu_ptr(&cyc2ns, cpu); | |
20d1c86a | 179 | |
93190bc3 | 180 | write_seqcount_latch_begin(&c2n->seq); |
59eaef78 | 181 | c2n->data[0] = data; |
93190bc3 | 182 | write_seqcount_latch(&c2n->seq); |
59eaef78 | 183 | c2n->data[1] = data; |
93190bc3 | 184 | write_seqcount_latch_end(&c2n->seq); |
e2a9ca29 PT |
185 | } |
186 | ||
187 | static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now) | |
188 | { | |
189 | unsigned long flags; | |
190 | ||
191 | local_irq_save(flags); | |
192 | sched_clock_idle_sleep_event(); | |
193 | ||
194 | if (khz) | |
195 | __set_cyc2ns_scale(khz, cpu, tsc_now); | |
57c67da2 | 196 | |
ac1e843f | 197 | sched_clock_idle_wakeup_event(); |
57c67da2 PZ |
198 | local_irq_restore(flags); |
199 | } | |
615cd033 | 200 | |
e2a9ca29 PT |
201 | /* |
202 | * Initialize cyc2ns for boot cpu | |
203 | */ | |
204 | static void __init cyc2ns_init_boot_cpu(void) | |
205 | { | |
206 | struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns); | |
207 | ||
a1f10661 | 208 | seqcount_latch_init(&c2n->seq); |
e2a9ca29 PT |
209 | __set_cyc2ns_scale(tsc_khz, smp_processor_id(), rdtsc()); |
210 | } | |
211 | ||
212 | /* | |
608008a4 | 213 | * Secondary CPUs do not run through tsc_init(), so set up |
e2a9ca29 | 214 | * all the scale factors for all CPUs, assuming the same |
c208ac8f | 215 | * speed as the bootup CPU. |
e2a9ca29 PT |
216 | */ |
217 | static void __init cyc2ns_init_secondary_cpus(void) | |
218 | { | |
219 | unsigned int cpu, this_cpu = smp_processor_id(); | |
220 | struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns); | |
221 | struct cyc2ns_data *data = c2n->data; | |
222 | ||
223 | for_each_possible_cpu(cpu) { | |
224 | if (cpu != this_cpu) { | |
a1f10661 | 225 | seqcount_latch_init(&c2n->seq); |
e2a9ca29 PT |
226 | c2n = per_cpu_ptr(&cyc2ns, cpu); |
227 | c2n->data[0] = data[0]; | |
228 | c2n->data[1] = data[1]; | |
229 | } | |
230 | } | |
231 | } | |
232 | ||
0ef95533 AK |
233 | /* |
234 | * Scheduler clock - returns current time in nanosec units. | |
235 | */ | |
8739c681 | 236 | noinstr u64 native_sched_clock(void) |
0ef95533 | 237 | { |
3bbfafb7 PZ |
238 | if (static_branch_likely(&__use_tsc)) { |
239 | u64 tsc_now = rdtsc(); | |
240 | ||
241 | /* return the value in ns */ | |
5c5e9a2b | 242 | return __cycles_2_ns(tsc_now); |
3bbfafb7 | 243 | } |
0ef95533 AK |
244 | |
245 | /* | |
246 | * Fall back to jiffies if there's no TSC available: | |
247 | * ( But note that we still use it if the TSC is marked | |
248 | * unstable. We do this because unlike Time Of Day, | |
249 | * the scheduler clock tolerates small errors and it's | |
250 | * very important for it to be as fast as the platform | |
3ad2f3fb | 251 | * can achieve it. ) |
0ef95533 | 252 | */ |
0ef95533 | 253 | |
3bbfafb7 PZ |
254 | /* No locking but a rare wrong value is not a big deal: */ |
255 | return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ); | |
0ef95533 AK |
256 | } |
257 | ||
a94cab23 AK |
258 | /* |
259 | * Generate a sched_clock if you already have a TSC value. | |
260 | */ | |
261 | u64 native_sched_clock_from_tsc(u64 tsc) | |
262 | { | |
263 | return cycles_2_ns(tsc); | |
264 | } | |
265 | ||
0ef95533 AK |
266 | /* We need to define a real function for sched_clock, to override the |
267 | weak default version */ | |
268 | #ifdef CONFIG_PARAVIRT | |
5c5e9a2b | 269 | noinstr u64 sched_clock_noinstr(void) |
0ef95533 AK |
270 | { |
271 | return paravirt_sched_clock(); | |
272 | } | |
f94c8d11 | 273 | |
698eff63 | 274 | bool using_native_sched_clock(void) |
f94c8d11 | 275 | { |
a0e2bf7c | 276 | return static_call_query(pv_sched_clock) == native_sched_clock; |
f94c8d11 | 277 | } |
0ef95533 | 278 | #else |
5c5e9a2b | 279 | u64 sched_clock_noinstr(void) __attribute__((alias("native_sched_clock"))); |
f94c8d11 | 280 | |
698eff63 | 281 | bool using_native_sched_clock(void) { return true; } |
0ef95533 AK |
282 | #endif |
283 | ||
5c5e9a2b PZ |
284 | notrace u64 sched_clock(void) |
285 | { | |
286 | u64 now; | |
287 | preempt_disable_notrace(); | |
288 | now = sched_clock_noinstr(); | |
289 | preempt_enable_notrace(); | |
290 | return now; | |
291 | } | |
292 | ||
0ef95533 AK |
293 | int check_tsc_unstable(void) |
294 | { | |
295 | return tsc_unstable; | |
296 | } | |
297 | EXPORT_SYMBOL_GPL(check_tsc_unstable); | |
298 | ||
299 | #ifdef CONFIG_X86_TSC | |
300 | int __init notsc_setup(char *str) | |
301 | { | |
fe9af81e | 302 | mark_tsc_unstable("boot parameter notsc"); |
0ef95533 AK |
303 | return 1; |
304 | } | |
305 | #else | |
306 | /* | |
307 | * disable flag for tsc. Takes effect by clearing the TSC cpu flag | |
308 | * in cpu/common.c | |
309 | */ | |
310 | int __init notsc_setup(char *str) | |
311 | { | |
312 | setup_clear_cpu_cap(X86_FEATURE_TSC); | |
313 | return 1; | |
314 | } | |
315 | #endif | |
316 | ||
317 | __setup("notsc", notsc_setup); | |
bfc0f594 | 318 | |
e82b8e4e | 319 | static int no_sched_irq_time; |
0f0b7e1c | 320 | static int no_tsc_watchdog; |
0051293c | 321 | static int tsc_as_watchdog; |
e82b8e4e | 322 | |
395628ef AK |
323 | static int __init tsc_setup(char *str) |
324 | { | |
325 | if (!strcmp(str, "reliable")) | |
326 | tsc_clocksource_reliable = 1; | |
e82b8e4e VP |
327 | if (!strncmp(str, "noirqtime", 9)) |
328 | no_sched_irq_time = 1; | |
8309f86c PZ |
329 | if (!strcmp(str, "unstable")) |
330 | mark_tsc_unstable("boot parameter"); | |
0051293c | 331 | if (!strcmp(str, "nowatchdog")) { |
0f0b7e1c | 332 | no_tsc_watchdog = 1; |
0051293c PM |
333 | if (tsc_as_watchdog) |
334 | pr_alert("%s: Overriding earlier tsc=watchdog with tsc=nowatchdog\n", | |
335 | __func__); | |
336 | tsc_as_watchdog = 0; | |
337 | } | |
a7ec817d FT |
338 | if (!strcmp(str, "recalibrate")) |
339 | tsc_force_recalibrate = 1; | |
0051293c PM |
340 | if (!strcmp(str, "watchdog")) { |
341 | if (no_tsc_watchdog) | |
342 | pr_alert("%s: tsc=watchdog overridden by earlier tsc=nowatchdog\n", | |
343 | __func__); | |
344 | else | |
345 | tsc_as_watchdog = 1; | |
346 | } | |
395628ef AK |
347 | return 1; |
348 | } | |
349 | ||
350 | __setup("tsc=", tsc_setup); | |
351 | ||
a786ef15 DV |
352 | #define MAX_RETRIES 5 |
353 | #define TSC_DEFAULT_THRESHOLD 0x20000 | |
bfc0f594 AK |
354 | |
355 | /* | |
a786ef15 | 356 | * Read TSC and the reference counters. Take care of any disturbances |
bfc0f594 | 357 | */ |
827014be | 358 | static u64 tsc_read_refs(u64 *p, int hpet) |
bfc0f594 AK |
359 | { |
360 | u64 t1, t2; | |
a786ef15 | 361 | u64 thresh = tsc_khz ? tsc_khz >> 5 : TSC_DEFAULT_THRESHOLD; |
bfc0f594 AK |
362 | int i; |
363 | ||
364 | for (i = 0; i < MAX_RETRIES; i++) { | |
365 | t1 = get_cycles(); | |
366 | if (hpet) | |
827014be | 367 | *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF; |
bfc0f594 | 368 | else |
827014be | 369 | *p = acpi_pm_read_early(); |
bfc0f594 | 370 | t2 = get_cycles(); |
a786ef15 | 371 | if ((t2 - t1) < thresh) |
bfc0f594 AK |
372 | return t2; |
373 | } | |
374 | return ULLONG_MAX; | |
375 | } | |
376 | ||
d683ef7a TG |
377 | /* |
378 | * Calculate the TSC frequency from HPET reference | |
bfc0f594 | 379 | */ |
d683ef7a | 380 | static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2) |
bfc0f594 | 381 | { |
d683ef7a | 382 | u64 tmp; |
bfc0f594 | 383 | |
d683ef7a TG |
384 | if (hpet2 < hpet1) |
385 | hpet2 += 0x100000000ULL; | |
386 | hpet2 -= hpet1; | |
387 | tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD)); | |
388 | do_div(tmp, 1000000); | |
d3878e16 | 389 | deltatsc = div64_u64(deltatsc, tmp); |
d683ef7a TG |
390 | |
391 | return (unsigned long) deltatsc; | |
392 | } | |
393 | ||
394 | /* | |
395 | * Calculate the TSC frequency from PMTimer reference | |
396 | */ | |
397 | static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2) | |
398 | { | |
399 | u64 tmp; | |
bfc0f594 | 400 | |
d683ef7a TG |
401 | if (!pm1 && !pm2) |
402 | return ULONG_MAX; | |
403 | ||
404 | if (pm2 < pm1) | |
405 | pm2 += (u64)ACPI_PM_OVRRUN; | |
406 | pm2 -= pm1; | |
407 | tmp = pm2 * 1000000000LL; | |
408 | do_div(tmp, PMTMR_TICKS_PER_SEC); | |
409 | do_div(deltatsc, tmp); | |
410 | ||
411 | return (unsigned long) deltatsc; | |
412 | } | |
413 | ||
a977c400 | 414 | #define CAL_MS 10 |
b7743970 | 415 | #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS)) |
a977c400 TG |
416 | #define CAL_PIT_LOOPS 1000 |
417 | ||
418 | #define CAL2_MS 50 | |
b7743970 | 419 | #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS)) |
a977c400 TG |
420 | #define CAL2_PIT_LOOPS 5000 |
421 | ||
cce3e057 | 422 | |
ec0c15af LT |
423 | /* |
424 | * Try to calibrate the TSC against the Programmable | |
425 | * Interrupt Timer and return the frequency of the TSC | |
426 | * in kHz. | |
427 | * | |
428 | * Return ULONG_MAX on failure to calibrate. | |
429 | */ | |
a977c400 | 430 | static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin) |
ec0c15af LT |
431 | { |
432 | u64 tsc, t1, t2, delta; | |
433 | unsigned long tscmin, tscmax; | |
434 | int pitcnt; | |
435 | ||
30c7e5b1 PZ |
436 | if (!has_legacy_pic()) { |
437 | /* | |
438 | * Relies on tsc_early_delay_calibrate() to have given us semi | |
439 | * usable udelay(), wait for the same 50ms we would have with | |
440 | * the PIT loop below. | |
441 | */ | |
442 | udelay(10 * USEC_PER_MSEC); | |
443 | udelay(10 * USEC_PER_MSEC); | |
444 | udelay(10 * USEC_PER_MSEC); | |
445 | udelay(10 * USEC_PER_MSEC); | |
446 | udelay(10 * USEC_PER_MSEC); | |
447 | return ULONG_MAX; | |
448 | } | |
449 | ||
ec0c15af LT |
450 | /* Set the Gate high, disable speaker */ |
451 | outb((inb(0x61) & ~0x02) | 0x01, 0x61); | |
452 | ||
453 | /* | |
454 | * Setup CTC channel 2* for mode 0, (interrupt on terminal | |
455 | * count mode), binary count. Set the latch register to 50ms | |
456 | * (LSB then MSB) to begin countdown. | |
457 | */ | |
458 | outb(0xb0, 0x43); | |
a977c400 TG |
459 | outb(latch & 0xff, 0x42); |
460 | outb(latch >> 8, 0x42); | |
ec0c15af LT |
461 | |
462 | tsc = t1 = t2 = get_cycles(); | |
463 | ||
464 | pitcnt = 0; | |
465 | tscmax = 0; | |
466 | tscmin = ULONG_MAX; | |
467 | while ((inb(0x61) & 0x20) == 0) { | |
468 | t2 = get_cycles(); | |
469 | delta = t2 - tsc; | |
470 | tsc = t2; | |
471 | if ((unsigned long) delta < tscmin) | |
472 | tscmin = (unsigned int) delta; | |
473 | if ((unsigned long) delta > tscmax) | |
474 | tscmax = (unsigned int) delta; | |
475 | pitcnt++; | |
476 | } | |
477 | ||
478 | /* | |
479 | * Sanity checks: | |
480 | * | |
a977c400 | 481 | * If we were not able to read the PIT more than loopmin |
ec0c15af LT |
482 | * times, then we have been hit by a massive SMI |
483 | * | |
484 | * If the maximum is 10 times larger than the minimum, | |
485 | * then we got hit by an SMI as well. | |
486 | */ | |
a977c400 | 487 | if (pitcnt < loopmin || tscmax > 10 * tscmin) |
ec0c15af LT |
488 | return ULONG_MAX; |
489 | ||
490 | /* Calculate the PIT value */ | |
491 | delta = t2 - t1; | |
a977c400 | 492 | do_div(delta, ms); |
ec0c15af LT |
493 | return delta; |
494 | } | |
495 | ||
6ac40ed0 LT |
496 | /* |
497 | * This reads the current MSB of the PIT counter, and | |
498 | * checks if we are running on sufficiently fast and | |
499 | * non-virtualized hardware. | |
500 | * | |
501 | * Our expectations are: | |
502 | * | |
503 | * - the PIT is running at roughly 1.19MHz | |
504 | * | |
505 | * - each IO is going to take about 1us on real hardware, | |
506 | * but we allow it to be much faster (by a factor of 10) or | |
507 | * _slightly_ slower (ie we allow up to a 2us read+counter | |
508 | * update - anything else implies a unacceptably slow CPU | |
509 | * or PIT for the fast calibration to work. | |
510 | * | |
511 | * - with 256 PIT ticks to read the value, we have 214us to | |
512 | * see the same MSB (and overhead like doing a single TSC | |
513 | * read per MSB value etc). | |
514 | * | |
515 | * - We're doing 2 reads per loop (LSB, MSB), and we expect | |
516 | * them each to take about a microsecond on real hardware. | |
517 | * So we expect a count value of around 100. But we'll be | |
518 | * generous, and accept anything over 50. | |
519 | * | |
520 | * - if the PIT is stuck, and we see *many* more reads, we | |
521 | * return early (and the next caller of pit_expect_msb() | |
522 | * then consider it a failure when they don't see the | |
523 | * next expected value). | |
524 | * | |
525 | * These expectations mean that we know that we have seen the | |
526 | * transition from one expected value to another with a fairly | |
527 | * high accuracy, and we didn't miss any events. We can thus | |
528 | * use the TSC value at the transitions to calculate a pretty | |
4d1d0977 | 529 | * good value for the TSC frequency. |
6ac40ed0 | 530 | */ |
b6e61eef LT |
531 | static inline int pit_verify_msb(unsigned char val) |
532 | { | |
533 | /* Ignore LSB */ | |
534 | inb(0x42); | |
535 | return inb(0x42) == val; | |
536 | } | |
537 | ||
9e8912e0 | 538 | static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap) |
6ac40ed0 | 539 | { |
9e8912e0 | 540 | int count; |
68f30fbe | 541 | u64 tsc = 0, prev_tsc = 0; |
bfc0f594 | 542 | |
6ac40ed0 | 543 | for (count = 0; count < 50000; count++) { |
b6e61eef | 544 | if (!pit_verify_msb(val)) |
6ac40ed0 | 545 | break; |
68f30fbe | 546 | prev_tsc = tsc; |
9e8912e0 | 547 | tsc = get_cycles(); |
6ac40ed0 | 548 | } |
68f30fbe | 549 | *deltap = get_cycles() - prev_tsc; |
9e8912e0 LT |
550 | *tscp = tsc; |
551 | ||
552 | /* | |
553 | * We require _some_ success, but the quality control | |
554 | * will be based on the error terms on the TSC values. | |
555 | */ | |
556 | return count > 5; | |
6ac40ed0 LT |
557 | } |
558 | ||
559 | /* | |
9e8912e0 LT |
560 | * How many MSB values do we want to see? We aim for |
561 | * a maximum error rate of 500ppm (in practice the | |
562 | * real error is much smaller), but refuse to spend | |
68f30fbe | 563 | * more than 50ms on it. |
6ac40ed0 | 564 | */ |
68f30fbe | 565 | #define MAX_QUICK_PIT_MS 50 |
9e8912e0 | 566 | #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256) |
bfc0f594 | 567 | |
6ac40ed0 LT |
568 | static unsigned long quick_pit_calibrate(void) |
569 | { | |
9e8912e0 LT |
570 | int i; |
571 | u64 tsc, delta; | |
572 | unsigned long d1, d2; | |
573 | ||
30c7e5b1 PZ |
574 | if (!has_legacy_pic()) |
575 | return 0; | |
576 | ||
6ac40ed0 | 577 | /* Set the Gate high, disable speaker */ |
bfc0f594 AK |
578 | outb((inb(0x61) & ~0x02) | 0x01, 0x61); |
579 | ||
6ac40ed0 LT |
580 | /* |
581 | * Counter 2, mode 0 (one-shot), binary count | |
582 | * | |
583 | * NOTE! Mode 2 decrements by two (and then the | |
584 | * output is flipped each time, giving the same | |
585 | * final output frequency as a decrement-by-one), | |
586 | * so mode 0 is much better when looking at the | |
587 | * individual counts. | |
588 | */ | |
bfc0f594 | 589 | outb(0xb0, 0x43); |
bfc0f594 | 590 | |
6ac40ed0 LT |
591 | /* Start at 0xffff */ |
592 | outb(0xff, 0x42); | |
593 | outb(0xff, 0x42); | |
594 | ||
a6a80e1d LT |
595 | /* |
596 | * The PIT starts counting at the next edge, so we | |
597 | * need to delay for a microsecond. The easiest way | |
598 | * to do that is to just read back the 16-bit counter | |
599 | * once from the PIT. | |
600 | */ | |
b6e61eef | 601 | pit_verify_msb(0); |
a6a80e1d | 602 | |
9e8912e0 LT |
603 | if (pit_expect_msb(0xff, &tsc, &d1)) { |
604 | for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) { | |
605 | if (!pit_expect_msb(0xff-i, &delta, &d2)) | |
606 | break; | |
607 | ||
5aac644a AH |
608 | delta -= tsc; |
609 | ||
610 | /* | |
611 | * Extrapolate the error and fail fast if the error will | |
612 | * never be below 500 ppm. | |
613 | */ | |
614 | if (i == 1 && | |
615 | d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11) | |
616 | return 0; | |
617 | ||
9e8912e0 LT |
618 | /* |
619 | * Iterate until the error is less than 500 ppm | |
620 | */ | |
b6e61eef LT |
621 | if (d1+d2 >= delta >> 11) |
622 | continue; | |
623 | ||
624 | /* | |
625 | * Check the PIT one more time to verify that | |
626 | * all TSC reads were stable wrt the PIT. | |
627 | * | |
628 | * This also guarantees serialization of the | |
629 | * last cycle read ('d2') in pit_expect_msb. | |
630 | */ | |
631 | if (!pit_verify_msb(0xfe - i)) | |
632 | break; | |
633 | goto success; | |
6ac40ed0 | 634 | } |
6ac40ed0 | 635 | } |
52045217 | 636 | pr_info("Fast TSC calibration failed\n"); |
6ac40ed0 | 637 | return 0; |
9e8912e0 LT |
638 | |
639 | success: | |
640 | /* | |
641 | * Ok, if we get here, then we've seen the | |
642 | * MSB of the PIT decrement 'i' times, and the | |
643 | * error has shrunk to less than 500 ppm. | |
644 | * | |
645 | * As a result, we can depend on there not being | |
646 | * any odd delays anywhere, and the TSC reads are | |
68f30fbe | 647 | * reliable (within the error). |
9e8912e0 LT |
648 | * |
649 | * kHz = ticks / time-in-seconds / 1000; | |
650 | * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000 | |
651 | * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000) | |
652 | */ | |
9e8912e0 LT |
653 | delta *= PIT_TICK_RATE; |
654 | do_div(delta, i*256*1000); | |
c767a54b | 655 | pr_info("Fast TSC calibration using PIT\n"); |
9e8912e0 | 656 | return delta; |
6ac40ed0 | 657 | } |
ec0c15af | 658 | |
bfc0f594 | 659 | /** |
c55cbfce | 660 | * native_calibrate_tsc - determine TSC frequency |
aa297292 | 661 | * Determine TSC frequency via CPUID, else return 0. |
bfc0f594 | 662 | */ |
e93ef949 | 663 | unsigned long native_calibrate_tsc(void) |
aa297292 LB |
664 | { |
665 | unsigned int eax_denominator, ebx_numerator, ecx_hz, edx; | |
666 | unsigned int crystal_khz; | |
667 | ||
668 | if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) | |
669 | return 0; | |
670 | ||
e5d3a578 | 671 | if (boot_cpu_data.cpuid_level < CPUID_LEAF_TSC) |
aa297292 LB |
672 | return 0; |
673 | ||
674 | eax_denominator = ebx_numerator = ecx_hz = edx = 0; | |
675 | ||
676 | /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */ | |
e5d3a578 | 677 | cpuid(CPUID_LEAF_TSC, &eax_denominator, &ebx_numerator, &ecx_hz, &edx); |
aa297292 LB |
678 | |
679 | if (ebx_numerator == 0 || eax_denominator == 0) | |
680 | return 0; | |
681 | ||
682 | crystal_khz = ecx_hz / 1000; | |
683 | ||
604dc917 DD |
684 | /* |
685 | * Denverton SoCs don't report crystal clock, and also don't support | |
e5d3a578 | 686 | * CPUID_LEAF_FREQ for the calculation below, so hardcode the 25MHz |
e558eadf | 687 | * crystal clock. |
604dc917 DD |
688 | */ |
689 | if (crystal_khz == 0 && | |
f21b075b | 690 | boot_cpu_data.x86_vfm == INTEL_ATOM_GOLDMONT_D) |
604dc917 | 691 | crystal_khz = 25000; |
aa297292 | 692 | |
4ca4df0b | 693 | /* |
604dc917 | 694 | * TSC frequency reported directly by CPUID is a "hardware reported" |
4ca4df0b BG |
695 | * frequency and is the most accurate one so far we have. This |
696 | * is considered a known frequency. | |
697 | */ | |
604dc917 DD |
698 | if (crystal_khz != 0) |
699 | setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ); | |
700 | ||
701 | /* | |
702 | * Some Intel SoCs like Skylake and Kabylake don't report the crystal | |
703 | * clock, but we can easily calculate it to a high degree of accuracy | |
704 | * by considering the crystal ratio and the CPU speed. | |
705 | */ | |
e5d3a578 | 706 | if (crystal_khz == 0 && boot_cpu_data.cpuid_level >= CPUID_LEAF_FREQ) { |
604dc917 DD |
707 | unsigned int eax_base_mhz, ebx, ecx, edx; |
708 | ||
e5d3a578 | 709 | cpuid(CPUID_LEAF_FREQ, &eax_base_mhz, &ebx, &ecx, &edx); |
604dc917 DD |
710 | crystal_khz = eax_base_mhz * 1000 * |
711 | eax_denominator / ebx_numerator; | |
712 | } | |
713 | ||
714 | if (crystal_khz == 0) | |
715 | return 0; | |
4ca4df0b | 716 | |
4635fdc6 BG |
717 | /* |
718 | * For Atom SoCs TSC is the only reliable clocksource. | |
719 | * Mark TSC reliable so no watchdog on it. | |
720 | */ | |
f21b075b | 721 | if (boot_cpu_data.x86_vfm == INTEL_ATOM_GOLDMONT) |
4635fdc6 BG |
722 | setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE); |
723 | ||
2420a0b1 DD |
724 | #ifdef CONFIG_X86_LOCAL_APIC |
725 | /* | |
726 | * The local APIC appears to be fed by the core crystal clock | |
727 | * (which sounds entirely sensible). We can set the global | |
728 | * lapic_timer_period here to avoid having to calibrate the APIC | |
729 | * timer later. | |
730 | */ | |
731 | lapic_timer_period = crystal_khz * 1000 / HZ; | |
732 | #endif | |
733 | ||
aa297292 LB |
734 | return crystal_khz * ebx_numerator / eax_denominator; |
735 | } | |
736 | ||
737 | static unsigned long cpu_khz_from_cpuid(void) | |
738 | { | |
739 | unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx; | |
740 | ||
741 | if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) | |
742 | return 0; | |
743 | ||
e5d3a578 | 744 | if (boot_cpu_data.cpuid_level < CPUID_LEAF_FREQ) |
aa297292 LB |
745 | return 0; |
746 | ||
747 | eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0; | |
748 | ||
e5d3a578 | 749 | cpuid(CPUID_LEAF_FREQ, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx); |
aa297292 LB |
750 | |
751 | return eax_base_mhz * 1000; | |
752 | } | |
753 | ||
03821f45 PT |
754 | /* |
755 | * calibrate cpu using pit, hpet, and ptimer methods. They are available | |
756 | * later in boot after acpi is initialized. | |
aa297292 | 757 | */ |
03821f45 | 758 | static unsigned long pit_hpet_ptimer_calibrate_cpu(void) |
bfc0f594 | 759 | { |
827014be | 760 | u64 tsc1, tsc2, delta, ref1, ref2; |
fbb16e24 | 761 | unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX; |
03821f45 | 762 | unsigned long flags, latch, ms; |
a977c400 | 763 | int hpet = is_hpet_enabled(), i, loopmin; |
bfc0f594 | 764 | |
fbb16e24 TG |
765 | /* |
766 | * Run 5 calibration loops to get the lowest frequency value | |
767 | * (the best estimate). We use two different calibration modes | |
768 | * here: | |
769 | * | |
770 | * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and | |
771 | * load a timeout of 50ms. We read the time right after we | |
772 | * started the timer and wait until the PIT count down reaches | |
773 | * zero. In each wait loop iteration we read the TSC and check | |
774 | * the delta to the previous read. We keep track of the min | |
775 | * and max values of that delta. The delta is mostly defined | |
a786ef15 DV |
776 | * by the IO time of the PIT access, so we can detect when |
777 | * any disturbance happened between the two reads. If the | |
fbb16e24 TG |
778 | * maximum time is significantly larger than the minimum time, |
779 | * then we discard the result and have another try. | |
780 | * | |
781 | * 2) Reference counter. If available we use the HPET or the | |
782 | * PMTIMER as a reference to check the sanity of that value. | |
783 | * We use separate TSC readouts and check inside of the | |
d9f6e12f | 784 | * reference read for any possible disturbance. We discard |
fbb16e24 TG |
785 | * disturbed values here as well. We do that around the PIT |
786 | * calibration delay loop as we have to wait for a certain | |
787 | * amount of time anyway. | |
788 | */ | |
a977c400 TG |
789 | |
790 | /* Preset PIT loop values */ | |
791 | latch = CAL_LATCH; | |
792 | ms = CAL_MS; | |
793 | loopmin = CAL_PIT_LOOPS; | |
794 | ||
795 | for (i = 0; i < 3; i++) { | |
ec0c15af | 796 | unsigned long tsc_pit_khz; |
fbb16e24 TG |
797 | |
798 | /* | |
799 | * Read the start value and the reference count of | |
ec0c15af LT |
800 | * hpet/pmtimer when available. Then do the PIT |
801 | * calibration, which will take at least 50ms, and | |
802 | * read the end value. | |
fbb16e24 | 803 | */ |
ec0c15af | 804 | local_irq_save(flags); |
827014be | 805 | tsc1 = tsc_read_refs(&ref1, hpet); |
a977c400 | 806 | tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin); |
827014be | 807 | tsc2 = tsc_read_refs(&ref2, hpet); |
fbb16e24 TG |
808 | local_irq_restore(flags); |
809 | ||
ec0c15af LT |
810 | /* Pick the lowest PIT TSC calibration so far */ |
811 | tsc_pit_min = min(tsc_pit_min, tsc_pit_khz); | |
fbb16e24 TG |
812 | |
813 | /* hpet or pmtimer available ? */ | |
62627bec | 814 | if (ref1 == ref2) |
fbb16e24 TG |
815 | continue; |
816 | ||
a786ef15 | 817 | /* Check, whether the sampling was disturbed */ |
fbb16e24 TG |
818 | if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX) |
819 | continue; | |
820 | ||
821 | tsc2 = (tsc2 - tsc1) * 1000000LL; | |
d683ef7a | 822 | if (hpet) |
827014be | 823 | tsc2 = calc_hpet_ref(tsc2, ref1, ref2); |
d683ef7a | 824 | else |
827014be | 825 | tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2); |
fbb16e24 | 826 | |
fbb16e24 | 827 | tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2); |
a977c400 TG |
828 | |
829 | /* Check the reference deviation */ | |
830 | delta = ((u64) tsc_pit_min) * 100; | |
831 | do_div(delta, tsc_ref_min); | |
832 | ||
833 | /* | |
834 | * If both calibration results are inside a 10% window | |
835 | * then we can be sure, that the calibration | |
836 | * succeeded. We break out of the loop right away. We | |
837 | * use the reference value, as it is more precise. | |
838 | */ | |
839 | if (delta >= 90 && delta <= 110) { | |
c767a54b JP |
840 | pr_info("PIT calibration matches %s. %d loops\n", |
841 | hpet ? "HPET" : "PMTIMER", i + 1); | |
a977c400 | 842 | return tsc_ref_min; |
fbb16e24 TG |
843 | } |
844 | ||
a977c400 TG |
845 | /* |
846 | * Check whether PIT failed more than once. This | |
847 | * happens in virtualized environments. We need to | |
848 | * give the virtual PC a slightly longer timeframe for | |
849 | * the HPET/PMTIMER to make the result precise. | |
850 | */ | |
851 | if (i == 1 && tsc_pit_min == ULONG_MAX) { | |
852 | latch = CAL2_LATCH; | |
853 | ms = CAL2_MS; | |
854 | loopmin = CAL2_PIT_LOOPS; | |
855 | } | |
fbb16e24 | 856 | } |
bfc0f594 AK |
857 | |
858 | /* | |
fbb16e24 | 859 | * Now check the results. |
bfc0f594 | 860 | */ |
fbb16e24 TG |
861 | if (tsc_pit_min == ULONG_MAX) { |
862 | /* PIT gave no useful value */ | |
c767a54b | 863 | pr_warn("Unable to calibrate against PIT\n"); |
fbb16e24 TG |
864 | |
865 | /* We don't have an alternative source, disable TSC */ | |
827014be | 866 | if (!hpet && !ref1 && !ref2) { |
c767a54b | 867 | pr_notice("No reference (HPET/PMTIMER) available\n"); |
fbb16e24 TG |
868 | return 0; |
869 | } | |
870 | ||
871 | /* The alternative source failed as well, disable TSC */ | |
872 | if (tsc_ref_min == ULONG_MAX) { | |
c767a54b | 873 | pr_warn("HPET/PMTIMER calibration failed\n"); |
fbb16e24 TG |
874 | return 0; |
875 | } | |
876 | ||
877 | /* Use the alternative source */ | |
c767a54b JP |
878 | pr_info("using %s reference calibration\n", |
879 | hpet ? "HPET" : "PMTIMER"); | |
fbb16e24 TG |
880 | |
881 | return tsc_ref_min; | |
882 | } | |
bfc0f594 | 883 | |
fbb16e24 | 884 | /* We don't have an alternative source, use the PIT calibration value */ |
827014be | 885 | if (!hpet && !ref1 && !ref2) { |
c767a54b | 886 | pr_info("Using PIT calibration value\n"); |
fbb16e24 | 887 | return tsc_pit_min; |
bfc0f594 AK |
888 | } |
889 | ||
fbb16e24 TG |
890 | /* The alternative source failed, use the PIT calibration value */ |
891 | if (tsc_ref_min == ULONG_MAX) { | |
c767a54b | 892 | pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n"); |
fbb16e24 | 893 | return tsc_pit_min; |
bfc0f594 AK |
894 | } |
895 | ||
fbb16e24 TG |
896 | /* |
897 | * The calibration values differ too much. In doubt, we use | |
898 | * the PIT value as we know that there are PMTIMERs around | |
a977c400 | 899 | * running at double speed. At least we let the user know: |
fbb16e24 | 900 | */ |
c767a54b JP |
901 | pr_warn("PIT calibration deviates from %s: %lu %lu\n", |
902 | hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min); | |
903 | pr_info("Using PIT calibration value\n"); | |
fbb16e24 | 904 | return tsc_pit_min; |
bfc0f594 AK |
905 | } |
906 | ||
03821f45 PT |
907 | /** |
908 | * native_calibrate_cpu_early - can calibrate the cpu early in boot | |
909 | */ | |
910 | unsigned long native_calibrate_cpu_early(void) | |
911 | { | |
912 | unsigned long flags, fast_calibrate = cpu_khz_from_cpuid(); | |
913 | ||
914 | if (!fast_calibrate) | |
915 | fast_calibrate = cpu_khz_from_msr(); | |
916 | if (!fast_calibrate) { | |
917 | local_irq_save(flags); | |
918 | fast_calibrate = quick_pit_calibrate(); | |
919 | local_irq_restore(flags); | |
920 | } | |
921 | return fast_calibrate; | |
922 | } | |
923 | ||
924 | ||
925 | /** | |
926 | * native_calibrate_cpu - calibrate the cpu | |
927 | */ | |
8dbe4385 | 928 | static unsigned long native_calibrate_cpu(void) |
03821f45 PT |
929 | { |
930 | unsigned long tsc_freq = native_calibrate_cpu_early(); | |
931 | ||
932 | if (!tsc_freq) | |
933 | tsc_freq = pit_hpet_ptimer_calibrate_cpu(); | |
934 | ||
935 | return tsc_freq; | |
936 | } | |
937 | ||
af576850 | 938 | void recalibrate_cpu_khz(void) |
bfc0f594 AK |
939 | { |
940 | #ifndef CONFIG_SMP | |
941 | unsigned long cpu_khz_old = cpu_khz; | |
942 | ||
eff4677e | 943 | if (!boot_cpu_has(X86_FEATURE_TSC)) |
af576850 | 944 | return; |
eff4677e | 945 | |
aa297292 | 946 | cpu_khz = x86_platform.calibrate_cpu(); |
eff4677e | 947 | tsc_khz = x86_platform.calibrate_tsc(); |
aa297292 LB |
948 | if (tsc_khz == 0) |
949 | tsc_khz = cpu_khz; | |
ff4c8663 LB |
950 | else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz) |
951 | cpu_khz = tsc_khz; | |
eff4677e BP |
952 | cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy, |
953 | cpu_khz_old, cpu_khz); | |
bfc0f594 AK |
954 | #endif |
955 | } | |
8fe6d849 | 956 | EXPORT_SYMBOL_GPL(recalibrate_cpu_khz); |
bfc0f594 | 957 | |
2dbe06fa | 958 | |
cd7240c0 SS |
959 | static unsigned long long cyc2ns_suspend; |
960 | ||
b74f05d6 | 961 | void tsc_save_sched_clock_state(void) |
cd7240c0 | 962 | { |
d90c9de9 | 963 | if (!static_branch_likely(&__use_tsc) && !sched_clock_stable()) |
cd7240c0 SS |
964 | return; |
965 | ||
966 | cyc2ns_suspend = sched_clock(); | |
967 | } | |
968 | ||
969 | /* | |
970 | * Even on processors with invariant TSC, TSC gets reset in some the | |
971 | * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to | |
972 | * arbitrary value (still sync'd across cpu's) during resume from such sleep | |
973 | * states. To cope up with this, recompute the cyc2ns_offset for each cpu so | |
974 | * that sched_clock() continues from the point where it was left off during | |
975 | * suspend. | |
976 | */ | |
b74f05d6 | 977 | void tsc_restore_sched_clock_state(void) |
cd7240c0 SS |
978 | { |
979 | unsigned long long offset; | |
980 | unsigned long flags; | |
981 | int cpu; | |
982 | ||
d90c9de9 | 983 | if (!static_branch_likely(&__use_tsc) && !sched_clock_stable()) |
cd7240c0 SS |
984 | return; |
985 | ||
986 | local_irq_save(flags); | |
987 | ||
20d1c86a | 988 | /* |
6a6256f9 | 989 | * We're coming out of suspend, there's no concurrency yet; don't |
20d1c86a PZ |
990 | * bother being nice about the RCU stuff, just write to both |
991 | * data fields. | |
992 | */ | |
993 | ||
994 | this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0); | |
995 | this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0); | |
996 | ||
cd7240c0 SS |
997 | offset = cyc2ns_suspend - sched_clock(); |
998 | ||
20d1c86a PZ |
999 | for_each_possible_cpu(cpu) { |
1000 | per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset; | |
1001 | per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset; | |
1002 | } | |
cd7240c0 SS |
1003 | |
1004 | local_irq_restore(flags); | |
1005 | } | |
1006 | ||
2dbe06fa | 1007 | #ifdef CONFIG_CPU_FREQ |
c208ac8f RW |
1008 | /* |
1009 | * Frequency scaling support. Adjust the TSC based timer when the CPU frequency | |
2dbe06fa AK |
1010 | * changes. |
1011 | * | |
c208ac8f RW |
1012 | * NOTE: On SMP the situation is not fixable in general, so simply mark the TSC |
1013 | * as unstable and give up in those cases. | |
2dbe06fa AK |
1014 | * |
1015 | * Should fix up last_tsc too. Currently gettimeofday in the | |
1016 | * first tick after the change will be slightly wrong. | |
1017 | */ | |
1018 | ||
1019 | static unsigned int ref_freq; | |
1020 | static unsigned long loops_per_jiffy_ref; | |
1021 | static unsigned long tsc_khz_ref; | |
1022 | ||
1023 | static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, | |
1024 | void *data) | |
1025 | { | |
1026 | struct cpufreq_freqs *freq = data; | |
2dbe06fa | 1027 | |
c208ac8f RW |
1028 | if (num_online_cpus() > 1) { |
1029 | mark_tsc_unstable("cpufreq changes on SMP"); | |
1030 | return 0; | |
1031 | } | |
2dbe06fa AK |
1032 | |
1033 | if (!ref_freq) { | |
1034 | ref_freq = freq->old; | |
c208ac8f | 1035 | loops_per_jiffy_ref = boot_cpu_data.loops_per_jiffy; |
2dbe06fa AK |
1036 | tsc_khz_ref = tsc_khz; |
1037 | } | |
c208ac8f | 1038 | |
2dbe06fa | 1039 | if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || |
c208ac8f RW |
1040 | (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) { |
1041 | boot_cpu_data.loops_per_jiffy = | |
1042 | cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new); | |
2dbe06fa AK |
1043 | |
1044 | tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new); | |
1045 | if (!(freq->flags & CPUFREQ_CONST_LOOPS)) | |
1046 | mark_tsc_unstable("cpufreq changes"); | |
2dbe06fa | 1047 | |
df24014a | 1048 | set_cyc2ns_scale(tsc_khz, freq->policy->cpu, rdtsc()); |
3896c329 | 1049 | } |
2dbe06fa AK |
1050 | |
1051 | return 0; | |
1052 | } | |
1053 | ||
1054 | static struct notifier_block time_cpufreq_notifier_block = { | |
1055 | .notifier_call = time_cpufreq_notifier | |
1056 | }; | |
1057 | ||
a841cca7 | 1058 | static int __init cpufreq_register_tsc_scaling(void) |
2dbe06fa | 1059 | { |
59e21e3d | 1060 | if (!boot_cpu_has(X86_FEATURE_TSC)) |
060700b5 LT |
1061 | return 0; |
1062 | if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) | |
1063 | return 0; | |
2dbe06fa AK |
1064 | cpufreq_register_notifier(&time_cpufreq_notifier_block, |
1065 | CPUFREQ_TRANSITION_NOTIFIER); | |
1066 | return 0; | |
1067 | } | |
1068 | ||
a841cca7 | 1069 | core_initcall(cpufreq_register_tsc_scaling); |
2dbe06fa AK |
1070 | |
1071 | #endif /* CONFIG_CPU_FREQ */ | |
8fbbc4b4 | 1072 | |
f9677e0f CH |
1073 | #define ART_MIN_DENOMINATOR (1) |
1074 | ||
f9677e0f CH |
1075 | /* |
1076 | * If ART is present detect the numerator:denominator to convert to TSC | |
1077 | */ | |
120fc3fb | 1078 | static void __init detect_art(void) |
f9677e0f | 1079 | { |
3a52886c | 1080 | unsigned int unused; |
f9677e0f | 1081 | |
e5d3a578 | 1082 | if (boot_cpu_data.cpuid_level < CPUID_LEAF_TSC) |
f9677e0f CH |
1083 | return; |
1084 | ||
6c66350d | 1085 | /* |
1086 | * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required, | |
1087 | * and the TSC counter resets must not occur asynchronously. | |
1088 | */ | |
f9677e0f CH |
1089 | if (boot_cpu_has(X86_FEATURE_HYPERVISOR) || |
1090 | !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) || | |
6c66350d | 1091 | !boot_cpu_has(X86_FEATURE_TSC_ADJUST) || |
1092 | tsc_async_resets) | |
f9677e0f CH |
1093 | return; |
1094 | ||
e5d3a578 | 1095 | cpuid(CPUID_LEAF_TSC, &art_base_clk.denominator, |
3a52886c | 1096 | &art_base_clk.numerator, &art_base_clk.freq_khz, &unused); |
7b3d2f6e | 1097 | |
3a52886c LS |
1098 | art_base_clk.freq_khz /= KHZ; |
1099 | if (art_base_clk.denominator < ART_MIN_DENOMINATOR) | |
f9677e0f CH |
1100 | return; |
1101 | ||
c435e608 | 1102 | rdmsrq(MSR_IA32_TSC_ADJUST, art_base_clk.offset); |
7b3d2f6e | 1103 | |
f9677e0f CH |
1104 | /* Make this sticky over multiple CPU init calls */ |
1105 | setup_force_cpu_cap(X86_FEATURE_ART); | |
1106 | } | |
1107 | ||
1108 | ||
8fbbc4b4 AK |
1109 | /* clocksource code */ |
1110 | ||
6a369583 TG |
1111 | static void tsc_resume(struct clocksource *cs) |
1112 | { | |
1113 | tsc_verify_tsc_adjust(true); | |
1114 | } | |
1115 | ||
8fbbc4b4 | 1116 | /* |
09ec5442 | 1117 | * We used to compare the TSC to the cycle_last value in the clocksource |
8fbbc4b4 AK |
1118 | * structure to avoid a nasty time-warp. This can be observed in a |
1119 | * very small window right after one CPU updated cycle_last under | |
1120 | * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which | |
1121 | * is smaller than the cycle_last reference value due to a TSC which | |
d9f6e12f | 1122 | * is slightly behind. This delta is nowhere else observable, but in |
8fbbc4b4 AK |
1123 | * that case it results in a forward time jump in the range of hours |
1124 | * due to the unsigned delta calculation of the time keeping core | |
1125 | * code, which is necessary to support wrapping clocksources like pm | |
1126 | * timer. | |
09ec5442 TG |
1127 | * |
1128 | * This sanity check is now done in the core timekeeping code. | |
1129 | * checking the result of read_tsc() - cycle_last for being negative. | |
1130 | * That works because CLOCKSOURCE_MASK(64) does not mask out any bit. | |
8fbbc4b4 | 1131 | */ |
a5a1d1c2 | 1132 | static u64 read_tsc(struct clocksource *cs) |
8fbbc4b4 | 1133 | { |
a5a1d1c2 | 1134 | return (u64)rdtsc_ordered(); |
1be39679 MS |
1135 | } |
1136 | ||
12907fbb TG |
1137 | static void tsc_cs_mark_unstable(struct clocksource *cs) |
1138 | { | |
1139 | if (tsc_unstable) | |
1140 | return; | |
f94c8d11 | 1141 | |
12907fbb | 1142 | tsc_unstable = 1; |
f94c8d11 PZ |
1143 | if (using_native_sched_clock()) |
1144 | clear_sched_clock_stable(); | |
12907fbb TG |
1145 | disable_sched_clock_irqtime(); |
1146 | pr_info("Marking TSC unstable due to clocksource watchdog\n"); | |
1147 | } | |
1148 | ||
b421b22b PZ |
1149 | static void tsc_cs_tick_stable(struct clocksource *cs) |
1150 | { | |
1151 | if (tsc_unstable) | |
1152 | return; | |
1153 | ||
1154 | if (using_native_sched_clock()) | |
1155 | sched_clock_tick_stable(); | |
1156 | } | |
1157 | ||
eec399dd TG |
1158 | static int tsc_cs_enable(struct clocksource *cs) |
1159 | { | |
b95a8a27 | 1160 | vclocks_set_used(VDSO_CLOCKMODE_TSC); |
eec399dd TG |
1161 | return 0; |
1162 | } | |
1163 | ||
09ec5442 TG |
1164 | /* |
1165 | * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc() | |
1166 | */ | |
aa83c457 | 1167 | static struct clocksource clocksource_tsc_early = { |
eec399dd TG |
1168 | .name = "tsc-early", |
1169 | .rating = 299, | |
2e27e793 | 1170 | .uncertainty_margin = 32 * NSEC_PER_MSEC, |
eec399dd TG |
1171 | .read = read_tsc, |
1172 | .mask = CLOCKSOURCE_MASK(64), | |
1173 | .flags = CLOCK_SOURCE_IS_CONTINUOUS | | |
aa83c457 | 1174 | CLOCK_SOURCE_MUST_VERIFY, |
a2c1fe72 | 1175 | .id = CSID_X86_TSC_EARLY, |
b95a8a27 | 1176 | .vdso_clock_mode = VDSO_CLOCKMODE_TSC, |
eec399dd | 1177 | .enable = tsc_cs_enable, |
aa83c457 PZ |
1178 | .resume = tsc_resume, |
1179 | .mark_unstable = tsc_cs_mark_unstable, | |
1180 | .tick_stable = tsc_cs_tick_stable, | |
e3b4f790 | 1181 | .list = LIST_HEAD_INIT(clocksource_tsc_early.list), |
aa83c457 PZ |
1182 | }; |
1183 | ||
1184 | /* | |
1185 | * Must mark VALID_FOR_HRES early such that when we unregister tsc_early | |
1186 | * this one will immediately take over. We will only register if TSC has | |
1187 | * been found good. | |
1188 | */ | |
8fbbc4b4 | 1189 | static struct clocksource clocksource_tsc = { |
eec399dd TG |
1190 | .name = "tsc", |
1191 | .rating = 300, | |
1192 | .read = read_tsc, | |
1193 | .mask = CLOCKSOURCE_MASK(64), | |
1194 | .flags = CLOCK_SOURCE_IS_CONTINUOUS | | |
aa83c457 | 1195 | CLOCK_SOURCE_VALID_FOR_HRES | |
7560c02b PM |
1196 | CLOCK_SOURCE_MUST_VERIFY | |
1197 | CLOCK_SOURCE_VERIFY_PERCPU, | |
a2c1fe72 | 1198 | .id = CSID_X86_TSC, |
b95a8a27 | 1199 | .vdso_clock_mode = VDSO_CLOCKMODE_TSC, |
eec399dd | 1200 | .enable = tsc_cs_enable, |
6a369583 | 1201 | .resume = tsc_resume, |
12907fbb | 1202 | .mark_unstable = tsc_cs_mark_unstable, |
b421b22b | 1203 | .tick_stable = tsc_cs_tick_stable, |
e3b4f790 | 1204 | .list = LIST_HEAD_INIT(clocksource_tsc.list), |
8fbbc4b4 AK |
1205 | }; |
1206 | ||
1207 | void mark_tsc_unstable(char *reason) | |
1208 | { | |
f94c8d11 PZ |
1209 | if (tsc_unstable) |
1210 | return; | |
1211 | ||
1212 | tsc_unstable = 1; | |
1213 | if (using_native_sched_clock()) | |
35af99e6 | 1214 | clear_sched_clock_stable(); |
f94c8d11 PZ |
1215 | disable_sched_clock_irqtime(); |
1216 | pr_info("Marking TSC unstable due to %s\n", reason); | |
e3b4f790 PZ |
1217 | |
1218 | clocksource_mark_unstable(&clocksource_tsc_early); | |
1219 | clocksource_mark_unstable(&clocksource_tsc); | |
8fbbc4b4 AK |
1220 | } |
1221 | ||
1222 | EXPORT_SYMBOL_GPL(mark_tsc_unstable); | |
1223 | ||
b50db709 FT |
1224 | static void __init tsc_disable_clocksource_watchdog(void) |
1225 | { | |
1226 | clocksource_tsc_early.flags &= ~CLOCK_SOURCE_MUST_VERIFY; | |
1227 | clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY; | |
1228 | } | |
1229 | ||
efc8b329 PM |
1230 | bool tsc_clocksource_watchdog_disabled(void) |
1231 | { | |
0051293c PM |
1232 | return !(clocksource_tsc.flags & CLOCK_SOURCE_MUST_VERIFY) && |
1233 | tsc_as_watchdog && !no_tsc_watchdog; | |
efc8b329 PM |
1234 | } |
1235 | ||
395628ef AK |
1236 | static void __init check_system_tsc_reliable(void) |
1237 | { | |
03da3ff1 DW |
1238 | #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC) |
1239 | if (is_geode_lx()) { | |
1240 | /* RTSC counts during suspend */ | |
8fbbc4b4 | 1241 | #define RTSC_SUSP 0x100 |
03da3ff1 | 1242 | unsigned long res_low, res_high; |
8fbbc4b4 | 1243 | |
03da3ff1 DW |
1244 | rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high); |
1245 | /* Geode_LX - the OLPC CPU has a very reliable TSC */ | |
1246 | if (res_low & RTSC_SUSP) | |
1247 | tsc_clocksource_reliable = 1; | |
1248 | } | |
8fbbc4b4 | 1249 | #endif |
395628ef AK |
1250 | if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) |
1251 | tsc_clocksource_reliable = 1; | |
b50db709 FT |
1252 | |
1253 | /* | |
1254 | * Disable the clocksource watchdog when the system has: | |
1255 | * - TSC running at constant frequency | |
1256 | * - TSC which does not stop in C-States | |
1257 | * - the TSC_ADJUST register which allows to detect even minimal | |
1258 | * modifications | |
b4bac279 | 1259 | * - not more than four packages |
b50db709 FT |
1260 | */ |
1261 | if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC) && | |
1262 | boot_cpu_has(X86_FEATURE_NONSTOP_TSC) && | |
1263 | boot_cpu_has(X86_FEATURE_TSC_ADJUST) && | |
b4bac279 | 1264 | topology_max_packages() <= 4) |
b50db709 | 1265 | tsc_disable_clocksource_watchdog(); |
395628ef | 1266 | } |
8fbbc4b4 AK |
1267 | |
1268 | /* | |
1269 | * Make an educated guess if the TSC is trustworthy and synchronized | |
1270 | * over all CPUs. | |
1271 | */ | |
148f9bb8 | 1272 | int unsynchronized_tsc(void) |
8fbbc4b4 | 1273 | { |
59e21e3d | 1274 | if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable) |
8fbbc4b4 AK |
1275 | return 1; |
1276 | ||
3e5095d1 | 1277 | #ifdef CONFIG_SMP |
8fbbc4b4 AK |
1278 | if (apic_is_clustered_box()) |
1279 | return 1; | |
1280 | #endif | |
1281 | ||
1282 | if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) | |
1283 | return 0; | |
d3b8f889 | 1284 | |
1285 | if (tsc_clocksource_reliable) | |
1286 | return 0; | |
8fbbc4b4 AK |
1287 | /* |
1288 | * Intel systems are normally all synchronized. | |
1289 | * Exceptions must mark TSC as unstable: | |
1290 | */ | |
1291 | if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) { | |
1292 | /* assume multi socket systems are not synchronized: */ | |
e7ff4ebf | 1293 | if (topology_max_packages() > 1) |
d3b8f889 | 1294 | return 1; |
8fbbc4b4 AK |
1295 | } |
1296 | ||
d3b8f889 | 1297 | return 0; |
8fbbc4b4 AK |
1298 | } |
1299 | ||
08ec0c58 JS |
1300 | static void tsc_refine_calibration_work(struct work_struct *work); |
1301 | static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work); | |
1302 | /** | |
1303 | * tsc_refine_calibration_work - Further refine tsc freq calibration | |
c55cbfce | 1304 | * @work: ignored. |
08ec0c58 JS |
1305 | * |
1306 | * This functions uses delayed work over a period of a | |
1307 | * second to further refine the TSC freq value. Since this is | |
1308 | * timer based, instead of loop based, we don't block the boot | |
1309 | * process while this longer calibration is done. | |
1310 | * | |
0d2eb44f | 1311 | * If there are any calibration anomalies (too many SMIs, etc), |
08ec0c58 JS |
1312 | * or the refined calibration is off by 1% of the fast early |
1313 | * calibration, we throw out the new calibration and use the | |
1314 | * early calibration. | |
1315 | */ | |
1316 | static void tsc_refine_calibration_work(struct work_struct *work) | |
1317 | { | |
a786ef15 | 1318 | static u64 tsc_start = ULLONG_MAX, ref_start; |
08ec0c58 JS |
1319 | static int hpet; |
1320 | u64 tsc_stop, ref_stop, delta; | |
1321 | unsigned long freq; | |
aa7b630e | 1322 | int cpu; |
08ec0c58 JS |
1323 | |
1324 | /* Don't bother refining TSC on unstable systems */ | |
aa83c457 | 1325 | if (tsc_unstable) |
e9088add | 1326 | goto unreg; |
08ec0c58 JS |
1327 | |
1328 | /* | |
1329 | * Since the work is started early in boot, we may be | |
1330 | * delayed the first time we expire. So set the workqueue | |
1331 | * again once we know timers are working. | |
1332 | */ | |
a786ef15 DV |
1333 | if (tsc_start == ULLONG_MAX) { |
1334 | restart: | |
08ec0c58 JS |
1335 | /* |
1336 | * Only set hpet once, to avoid mixing hardware | |
1337 | * if the hpet becomes enabled later. | |
1338 | */ | |
1339 | hpet = is_hpet_enabled(); | |
08ec0c58 | 1340 | tsc_start = tsc_read_refs(&ref_start, hpet); |
a786ef15 | 1341 | schedule_delayed_work(&tsc_irqwork, HZ); |
08ec0c58 JS |
1342 | return; |
1343 | } | |
1344 | ||
1345 | tsc_stop = tsc_read_refs(&ref_stop, hpet); | |
1346 | ||
1347 | /* hpet or pmtimer available ? */ | |
62627bec | 1348 | if (ref_start == ref_stop) |
08ec0c58 JS |
1349 | goto out; |
1350 | ||
a786ef15 DV |
1351 | /* Check, whether the sampling was disturbed */ |
1352 | if (tsc_stop == ULLONG_MAX) | |
1353 | goto restart; | |
08ec0c58 JS |
1354 | |
1355 | delta = tsc_stop - tsc_start; | |
1356 | delta *= 1000000LL; | |
1357 | if (hpet) | |
1358 | freq = calc_hpet_ref(delta, ref_start, ref_stop); | |
1359 | else | |
1360 | freq = calc_pmtimer_ref(delta, ref_start, ref_stop); | |
1361 | ||
a7ec817d FT |
1362 | /* Will hit this only if tsc_force_recalibrate has been set */ |
1363 | if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) { | |
1364 | ||
1365 | /* Warn if the deviation exceeds 500 ppm */ | |
1366 | if (abs(tsc_khz - freq) > (tsc_khz >> 11)) { | |
1367 | pr_warn("Warning: TSC freq calibrated by CPUID/MSR differs from what is calibrated by HW timer, please check with vendor!!\n"); | |
1368 | pr_info("Previous calibrated TSC freq:\t %lu.%03lu MHz\n", | |
1369 | (unsigned long)tsc_khz / 1000, | |
1370 | (unsigned long)tsc_khz % 1000); | |
1371 | } | |
1372 | ||
1373 | pr_info("TSC freq recalibrated by [%s]:\t %lu.%03lu MHz\n", | |
1374 | hpet ? "HPET" : "PM_TIMER", | |
1375 | (unsigned long)freq / 1000, | |
1376 | (unsigned long)freq % 1000); | |
1377 | ||
1378 | return; | |
1379 | } | |
1380 | ||
08ec0c58 JS |
1381 | /* Make sure we're within 1% */ |
1382 | if (abs(tsc_khz - freq) > tsc_khz/100) | |
1383 | goto out; | |
1384 | ||
1385 | tsc_khz = freq; | |
c767a54b JP |
1386 | pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n", |
1387 | (unsigned long)tsc_khz / 1000, | |
1388 | (unsigned long)tsc_khz % 1000); | |
08ec0c58 | 1389 | |
6731b0d6 NS |
1390 | /* Inform the TSC deadline clockevent devices about the recalibration */ |
1391 | lapic_update_tsc_freq(); | |
1392 | ||
aa7b630e PZ |
1393 | /* Update the sched_clock() rate to match the clocksource one */ |
1394 | for_each_possible_cpu(cpu) | |
5c3c2ea6 | 1395 | set_cyc2ns_scale(tsc_khz, cpu, tsc_stop); |
aa7b630e | 1396 | |
08ec0c58 | 1397 | out: |
aa83c457 | 1398 | if (tsc_unstable) |
e9088add | 1399 | goto unreg; |
aa83c457 | 1400 | |
3a52886c | 1401 | if (boot_cpu_has(X86_FEATURE_ART)) { |
a2c1fe72 | 1402 | have_art = true; |
3a52886c LS |
1403 | clocksource_tsc.base = &art_base_clk; |
1404 | } | |
08ec0c58 | 1405 | clocksource_register_khz(&clocksource_tsc, tsc_khz); |
e9088add | 1406 | unreg: |
aa83c457 | 1407 | clocksource_unregister(&clocksource_tsc_early); |
08ec0c58 JS |
1408 | } |
1409 | ||
1410 | ||
1411 | static int __init init_tsc_clocksource(void) | |
8fbbc4b4 | 1412 | { |
fe9af81e | 1413 | if (!boot_cpu_has(X86_FEATURE_TSC) || !tsc_khz) |
a8760eca TG |
1414 | return 0; |
1415 | ||
a7ec817d FT |
1416 | if (tsc_unstable) { |
1417 | clocksource_unregister(&clocksource_tsc_early); | |
1418 | return 0; | |
1419 | } | |
aa83c457 | 1420 | |
82f9c080 FT |
1421 | if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3)) |
1422 | clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP; | |
1423 | ||
57779dc2 | 1424 | /* |
47c95a46 BG |
1425 | * When TSC frequency is known (retrieved via MSR or CPUID), we skip |
1426 | * the refined calibration and directly register it as a clocksource. | |
57779dc2 | 1427 | */ |
984feceb | 1428 | if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) { |
3a52886c | 1429 | if (boot_cpu_has(X86_FEATURE_ART)) { |
a2c1fe72 | 1430 | have_art = true; |
3a52886c LS |
1431 | clocksource_tsc.base = &art_base_clk; |
1432 | } | |
57779dc2 | 1433 | clocksource_register_khz(&clocksource_tsc, tsc_khz); |
aa83c457 | 1434 | clocksource_unregister(&clocksource_tsc_early); |
a7ec817d FT |
1435 | |
1436 | if (!tsc_force_recalibrate) | |
1437 | return 0; | |
57779dc2 AK |
1438 | } |
1439 | ||
08ec0c58 JS |
1440 | schedule_delayed_work(&tsc_irqwork, 0); |
1441 | return 0; | |
8fbbc4b4 | 1442 | } |
08ec0c58 JS |
1443 | /* |
1444 | * We use device_initcall here, to ensure we run after the hpet | |
1445 | * is fully initialized, which may occur at fs_initcall time. | |
1446 | */ | |
1447 | device_initcall(init_tsc_clocksource); | |
8fbbc4b4 | 1448 | |
8dbe4385 | 1449 | static bool __init determine_cpu_tsc_frequencies(bool early) |
8fbbc4b4 | 1450 | { |
cf7a63ef PT |
1451 | /* Make sure that cpu and tsc are not already calibrated */ |
1452 | WARN_ON(cpu_khz || tsc_khz); | |
8fbbc4b4 | 1453 | |
8dbe4385 PT |
1454 | if (early) { |
1455 | cpu_khz = x86_platform.calibrate_cpu(); | |
3a52886c | 1456 | if (tsc_early_khz) { |
bd35c77e | 1457 | tsc_khz = tsc_early_khz; |
3a52886c | 1458 | } else { |
bd35c77e | 1459 | tsc_khz = x86_platform.calibrate_tsc(); |
3a52886c LS |
1460 | clocksource_tsc.freq_khz = tsc_khz; |
1461 | } | |
8dbe4385 PT |
1462 | } else { |
1463 | /* We should not be here with non-native cpu calibration */ | |
1464 | WARN_ON(x86_platform.calibrate_cpu != native_calibrate_cpu); | |
1465 | cpu_khz = pit_hpet_ptimer_calibrate_cpu(); | |
1466 | } | |
ff4c8663 LB |
1467 | |
1468 | /* | |
608008a4 | 1469 | * Trust non-zero tsc_khz as authoritative, |
ff4c8663 LB |
1470 | * and use it to sanity check cpu_khz, |
1471 | * which will be off if system timer is off. | |
1472 | */ | |
aa297292 LB |
1473 | if (tsc_khz == 0) |
1474 | tsc_khz = cpu_khz; | |
ff4c8663 LB |
1475 | else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz) |
1476 | cpu_khz = tsc_khz; | |
8fbbc4b4 | 1477 | |
cf7a63ef PT |
1478 | if (tsc_khz == 0) |
1479 | return false; | |
8fbbc4b4 | 1480 | |
c767a54b | 1481 | pr_info("Detected %lu.%03lu MHz processor\n", |
cf7a63ef PT |
1482 | (unsigned long)cpu_khz / KHZ, |
1483 | (unsigned long)cpu_khz % KHZ); | |
8fbbc4b4 | 1484 | |
4b5b2127 LB |
1485 | if (cpu_khz != tsc_khz) { |
1486 | pr_info("Detected %lu.%03lu MHz TSC", | |
cf7a63ef PT |
1487 | (unsigned long)tsc_khz / KHZ, |
1488 | (unsigned long)tsc_khz % KHZ); | |
1489 | } | |
1490 | return true; | |
1491 | } | |
1492 | ||
1493 | static unsigned long __init get_loops_per_jiffy(void) | |
1494 | { | |
17f6bac2 | 1495 | u64 lpj = (u64)tsc_khz * KHZ; |
cf7a63ef PT |
1496 | |
1497 | do_div(lpj, HZ); | |
1498 | return lpj; | |
1499 | } | |
1500 | ||
608008a4 DL |
1501 | static void __init tsc_enable_sched_clock(void) |
1502 | { | |
69f8aeab PZ |
1503 | loops_per_jiffy = get_loops_per_jiffy(); |
1504 | use_tsc_delay(); | |
1505 | ||
608008a4 DL |
1506 | /* Sanitize TSC ADJUST before cyc2ns gets initialized */ |
1507 | tsc_store_and_check_tsc_adjust(true); | |
1508 | cyc2ns_init_boot_cpu(); | |
1509 | static_branch_enable(&__use_tsc); | |
1510 | } | |
1511 | ||
cf7a63ef PT |
1512 | void __init tsc_early_init(void) |
1513 | { | |
1514 | if (!boot_cpu_has(X86_FEATURE_TSC)) | |
1515 | return; | |
2647c43c MT |
1516 | /* Don't change UV TSC multi-chassis synchronization */ |
1517 | if (is_early_uv_system()) | |
1518 | return; | |
73bbf3b0 ND |
1519 | |
1520 | snp_secure_tsc_init(); | |
1521 | ||
8dbe4385 | 1522 | if (!determine_cpu_tsc_frequencies(true)) |
cf7a63ef | 1523 | return; |
608008a4 | 1524 | tsc_enable_sched_clock(); |
cf7a63ef PT |
1525 | } |
1526 | ||
1527 | void __init tsc_init(void) | |
1528 | { | |
6b8d5dde BPA |
1529 | if (!cpu_feature_enabled(X86_FEATURE_TSC)) { |
1530 | setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); | |
1531 | return; | |
1532 | } | |
1533 | ||
8dbe4385 PT |
1534 | /* |
1535 | * native_calibrate_cpu_early can only calibrate using methods that are | |
1536 | * available early in boot. | |
1537 | */ | |
1538 | if (x86_platform.calibrate_cpu == native_calibrate_cpu_early) | |
1539 | x86_platform.calibrate_cpu = native_calibrate_cpu; | |
1540 | ||
cf7a63ef PT |
1541 | if (!tsc_khz) { |
1542 | /* We failed to determine frequencies earlier, try again */ | |
8dbe4385 | 1543 | if (!determine_cpu_tsc_frequencies(false)) { |
cf7a63ef PT |
1544 | mark_tsc_unstable("could not calculate TSC khz"); |
1545 | setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); | |
1546 | return; | |
1547 | } | |
608008a4 | 1548 | tsc_enable_sched_clock(); |
4b5b2127 LB |
1549 | } |
1550 | ||
e2a9ca29 | 1551 | cyc2ns_init_secondary_cpus(); |
8fbbc4b4 | 1552 | |
e82b8e4e VP |
1553 | if (!no_sched_irq_time) |
1554 | enable_sched_clock_irqtime(); | |
1555 | ||
cf7a63ef | 1556 | lpj_fine = get_loops_per_jiffy(); |
8fbbc4b4 | 1557 | |
a1272dd5 ZD |
1558 | check_system_tsc_reliable(); |
1559 | ||
aa83c457 | 1560 | if (unsynchronized_tsc()) { |
8fbbc4b4 | 1561 | mark_tsc_unstable("TSCs unsynchronized"); |
aa83c457 PZ |
1562 | return; |
1563 | } | |
8fbbc4b4 | 1564 | |
63ec58b4 | 1565 | if (tsc_clocksource_reliable || no_tsc_watchdog) |
b50db709 | 1566 | tsc_disable_clocksource_watchdog(); |
63ec58b4 | 1567 | |
aa83c457 | 1568 | clocksource_register_khz(&clocksource_tsc_early, tsc_khz); |
f9677e0f | 1569 | detect_art(); |
8fbbc4b4 AK |
1570 | } |
1571 | ||
b565201c JS |
1572 | #ifdef CONFIG_SMP |
1573 | /* | |
134a1282 | 1574 | * Check whether existing calibration data can be reused. |
b565201c | 1575 | */ |
148f9bb8 | 1576 | unsigned long calibrate_delay_is_known(void) |
b565201c | 1577 | { |
c25323c0 | 1578 | int sibling, cpu = smp_processor_id(); |
76ce7cfe PT |
1579 | int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC); |
1580 | const struct cpumask *mask = topology_core_cpumask(cpu); | |
b565201c | 1581 | |
134a1282 TG |
1582 | /* |
1583 | * If TSC has constant frequency and TSC is synchronized across | |
1584 | * sockets then reuse CPU0 calibration. | |
1585 | */ | |
1586 | if (constant_tsc && !tsc_unstable) | |
1587 | return cpu_data(0).loops_per_jiffy; | |
1588 | ||
1589 | /* | |
1590 | * If TSC has constant frequency and TSC is not synchronized across | |
1591 | * sockets and this is not the first CPU in the socket, then reuse | |
1592 | * the calibration value of an already online CPU on that socket. | |
1593 | * | |
1594 | * This assumes that CONSTANT_TSC is consistent for all CPUs in a | |
1595 | * socket. | |
1596 | */ | |
fe9af81e | 1597 | if (!constant_tsc || !mask) |
f508a5ba TG |
1598 | return 0; |
1599 | ||
1600 | sibling = cpumask_any_but(mask, cpu); | |
c25323c0 TG |
1601 | if (sibling < nr_cpu_ids) |
1602 | return cpu_data(sibling).loops_per_jiffy; | |
b565201c JS |
1603 | return 0; |
1604 | } | |
1605 | #endif |