pxafb: lcsr1 is unused without CONFIG_FB_PXA_OVERLAY
[linux-2.6-block.git] / arch / x86 / kernel / tsc.c
CommitLineData
bfc0f594 1#include <linux/kernel.h>
0ef95533
AK
2#include <linux/sched.h>
3#include <linux/init.h>
4#include <linux/module.h>
5#include <linux/timer.h>
bfc0f594 6#include <linux/acpi_pmtmr.h>
2dbe06fa 7#include <linux/cpufreq.h>
8fbbc4b4
AK
8#include <linux/dmi.h>
9#include <linux/delay.h>
10#include <linux/clocksource.h>
11#include <linux/percpu.h>
bfc0f594
AK
12
13#include <asm/hpet.h>
8fbbc4b4
AK
14#include <asm/timer.h>
15#include <asm/vgtod.h>
16#include <asm/time.h>
17#include <asm/delay.h>
88b094fb 18#include <asm/hypervisor.h>
0ef95533 19
f24ade3a 20unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
0ef95533 21EXPORT_SYMBOL(cpu_khz);
f24ade3a
IM
22
23unsigned int __read_mostly tsc_khz;
0ef95533
AK
24EXPORT_SYMBOL(tsc_khz);
25
26/*
27 * TSC can be unstable due to cpufreq or due to unsynced TSCs
28 */
f24ade3a 29static int __read_mostly tsc_unstable;
0ef95533
AK
30
31/* native_sched_clock() is called before tsc_init(), so
32 we must start with the TSC soft disabled to prevent
33 erroneous rdtsc usage on !cpu_has_tsc processors */
f24ade3a 34static int __read_mostly tsc_disabled = -1;
0ef95533 35
395628ef 36static int tsc_clocksource_reliable;
0ef95533
AK
37/*
38 * Scheduler clock - returns current time in nanosec units.
39 */
40u64 native_sched_clock(void)
41{
42 u64 this_offset;
43
44 /*
45 * Fall back to jiffies if there's no TSC available:
46 * ( But note that we still use it if the TSC is marked
47 * unstable. We do this because unlike Time Of Day,
48 * the scheduler clock tolerates small errors and it's
49 * very important for it to be as fast as the platform
50 * can achive it. )
51 */
52 if (unlikely(tsc_disabled)) {
53 /* No locking but a rare wrong value is not a big deal: */
54 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
55 }
56
57 /* read the Time Stamp Counter: */
58 rdtscll(this_offset);
59
60 /* return the value in ns */
7cbaef9c 61 return __cycles_2_ns(this_offset);
0ef95533
AK
62}
63
64/* We need to define a real function for sched_clock, to override the
65 weak default version */
66#ifdef CONFIG_PARAVIRT
67unsigned long long sched_clock(void)
68{
69 return paravirt_sched_clock();
70}
71#else
72unsigned long long
73sched_clock(void) __attribute__((alias("native_sched_clock")));
74#endif
75
76int check_tsc_unstable(void)
77{
78 return tsc_unstable;
79}
80EXPORT_SYMBOL_GPL(check_tsc_unstable);
81
82#ifdef CONFIG_X86_TSC
83int __init notsc_setup(char *str)
84{
85 printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
86 "cannot disable TSC completely.\n");
87 tsc_disabled = 1;
88 return 1;
89}
90#else
91/*
92 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
93 * in cpu/common.c
94 */
95int __init notsc_setup(char *str)
96{
97 setup_clear_cpu_cap(X86_FEATURE_TSC);
98 return 1;
99}
100#endif
101
102__setup("notsc", notsc_setup);
bfc0f594 103
395628ef
AK
104static int __init tsc_setup(char *str)
105{
106 if (!strcmp(str, "reliable"))
107 tsc_clocksource_reliable = 1;
108 return 1;
109}
110
111__setup("tsc=", tsc_setup);
112
bfc0f594
AK
113#define MAX_RETRIES 5
114#define SMI_TRESHOLD 50000
115
116/*
117 * Read TSC and the reference counters. Take care of SMI disturbance
118 */
827014be 119static u64 tsc_read_refs(u64 *p, int hpet)
bfc0f594
AK
120{
121 u64 t1, t2;
122 int i;
123
124 for (i = 0; i < MAX_RETRIES; i++) {
125 t1 = get_cycles();
126 if (hpet)
827014be 127 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
bfc0f594 128 else
827014be 129 *p = acpi_pm_read_early();
bfc0f594
AK
130 t2 = get_cycles();
131 if ((t2 - t1) < SMI_TRESHOLD)
132 return t2;
133 }
134 return ULLONG_MAX;
135}
136
d683ef7a
TG
137/*
138 * Calculate the TSC frequency from HPET reference
bfc0f594 139 */
d683ef7a 140static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
bfc0f594 141{
d683ef7a 142 u64 tmp;
bfc0f594 143
d683ef7a
TG
144 if (hpet2 < hpet1)
145 hpet2 += 0x100000000ULL;
146 hpet2 -= hpet1;
147 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
148 do_div(tmp, 1000000);
149 do_div(deltatsc, tmp);
150
151 return (unsigned long) deltatsc;
152}
153
154/*
155 * Calculate the TSC frequency from PMTimer reference
156 */
157static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
158{
159 u64 tmp;
bfc0f594 160
d683ef7a
TG
161 if (!pm1 && !pm2)
162 return ULONG_MAX;
163
164 if (pm2 < pm1)
165 pm2 += (u64)ACPI_PM_OVRRUN;
166 pm2 -= pm1;
167 tmp = pm2 * 1000000000LL;
168 do_div(tmp, PMTMR_TICKS_PER_SEC);
169 do_div(deltatsc, tmp);
170
171 return (unsigned long) deltatsc;
172}
173
a977c400 174#define CAL_MS 10
cce3e057 175#define CAL_LATCH (CLOCK_TICK_RATE / (1000 / CAL_MS))
a977c400
TG
176#define CAL_PIT_LOOPS 1000
177
178#define CAL2_MS 50
179#define CAL2_LATCH (CLOCK_TICK_RATE / (1000 / CAL2_MS))
180#define CAL2_PIT_LOOPS 5000
181
cce3e057 182
ec0c15af
LT
183/*
184 * Try to calibrate the TSC against the Programmable
185 * Interrupt Timer and return the frequency of the TSC
186 * in kHz.
187 *
188 * Return ULONG_MAX on failure to calibrate.
189 */
a977c400 190static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
ec0c15af
LT
191{
192 u64 tsc, t1, t2, delta;
193 unsigned long tscmin, tscmax;
194 int pitcnt;
195
196 /* Set the Gate high, disable speaker */
197 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
198
199 /*
200 * Setup CTC channel 2* for mode 0, (interrupt on terminal
201 * count mode), binary count. Set the latch register to 50ms
202 * (LSB then MSB) to begin countdown.
203 */
204 outb(0xb0, 0x43);
a977c400
TG
205 outb(latch & 0xff, 0x42);
206 outb(latch >> 8, 0x42);
ec0c15af
LT
207
208 tsc = t1 = t2 = get_cycles();
209
210 pitcnt = 0;
211 tscmax = 0;
212 tscmin = ULONG_MAX;
213 while ((inb(0x61) & 0x20) == 0) {
214 t2 = get_cycles();
215 delta = t2 - tsc;
216 tsc = t2;
217 if ((unsigned long) delta < tscmin)
218 tscmin = (unsigned int) delta;
219 if ((unsigned long) delta > tscmax)
220 tscmax = (unsigned int) delta;
221 pitcnt++;
222 }
223
224 /*
225 * Sanity checks:
226 *
a977c400 227 * If we were not able to read the PIT more than loopmin
ec0c15af
LT
228 * times, then we have been hit by a massive SMI
229 *
230 * If the maximum is 10 times larger than the minimum,
231 * then we got hit by an SMI as well.
232 */
a977c400 233 if (pitcnt < loopmin || tscmax > 10 * tscmin)
ec0c15af
LT
234 return ULONG_MAX;
235
236 /* Calculate the PIT value */
237 delta = t2 - t1;
a977c400 238 do_div(delta, ms);
ec0c15af
LT
239 return delta;
240}
241
6ac40ed0
LT
242/*
243 * This reads the current MSB of the PIT counter, and
244 * checks if we are running on sufficiently fast and
245 * non-virtualized hardware.
246 *
247 * Our expectations are:
248 *
249 * - the PIT is running at roughly 1.19MHz
250 *
251 * - each IO is going to take about 1us on real hardware,
252 * but we allow it to be much faster (by a factor of 10) or
253 * _slightly_ slower (ie we allow up to a 2us read+counter
254 * update - anything else implies a unacceptably slow CPU
255 * or PIT for the fast calibration to work.
256 *
257 * - with 256 PIT ticks to read the value, we have 214us to
258 * see the same MSB (and overhead like doing a single TSC
259 * read per MSB value etc).
260 *
261 * - We're doing 2 reads per loop (LSB, MSB), and we expect
262 * them each to take about a microsecond on real hardware.
263 * So we expect a count value of around 100. But we'll be
264 * generous, and accept anything over 50.
265 *
266 * - if the PIT is stuck, and we see *many* more reads, we
267 * return early (and the next caller of pit_expect_msb()
268 * then consider it a failure when they don't see the
269 * next expected value).
270 *
271 * These expectations mean that we know that we have seen the
272 * transition from one expected value to another with a fairly
273 * high accuracy, and we didn't miss any events. We can thus
274 * use the TSC value at the transitions to calculate a pretty
275 * good value for the TSC frequencty.
276 */
9e8912e0 277static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
6ac40ed0 278{
9e8912e0
LT
279 int count;
280 u64 tsc = 0;
bfc0f594 281
6ac40ed0
LT
282 for (count = 0; count < 50000; count++) {
283 /* Ignore LSB */
284 inb(0x42);
285 if (inb(0x42) != val)
286 break;
9e8912e0 287 tsc = get_cycles();
6ac40ed0 288 }
9e8912e0
LT
289 *deltap = get_cycles() - tsc;
290 *tscp = tsc;
291
292 /*
293 * We require _some_ success, but the quality control
294 * will be based on the error terms on the TSC values.
295 */
296 return count > 5;
6ac40ed0
LT
297}
298
299/*
9e8912e0
LT
300 * How many MSB values do we want to see? We aim for
301 * a maximum error rate of 500ppm (in practice the
302 * real error is much smaller), but refuse to spend
303 * more than 25ms on it.
6ac40ed0 304 */
9e8912e0
LT
305#define MAX_QUICK_PIT_MS 25
306#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
bfc0f594 307
6ac40ed0
LT
308static unsigned long quick_pit_calibrate(void)
309{
9e8912e0
LT
310 int i;
311 u64 tsc, delta;
312 unsigned long d1, d2;
313
6ac40ed0 314 /* Set the Gate high, disable speaker */
bfc0f594
AK
315 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
316
6ac40ed0
LT
317 /*
318 * Counter 2, mode 0 (one-shot), binary count
319 *
320 * NOTE! Mode 2 decrements by two (and then the
321 * output is flipped each time, giving the same
322 * final output frequency as a decrement-by-one),
323 * so mode 0 is much better when looking at the
324 * individual counts.
325 */
bfc0f594 326 outb(0xb0, 0x43);
bfc0f594 327
6ac40ed0
LT
328 /* Start at 0xffff */
329 outb(0xff, 0x42);
330 outb(0xff, 0x42);
331
a6a80e1d
LT
332 /*
333 * The PIT starts counting at the next edge, so we
334 * need to delay for a microsecond. The easiest way
335 * to do that is to just read back the 16-bit counter
336 * once from the PIT.
337 */
338 inb(0x42);
339 inb(0x42);
340
9e8912e0
LT
341 if (pit_expect_msb(0xff, &tsc, &d1)) {
342 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
343 if (!pit_expect_msb(0xff-i, &delta, &d2))
344 break;
345
346 /*
347 * Iterate until the error is less than 500 ppm
348 */
349 delta -= tsc;
350 if (d1+d2 < delta >> 11)
351 goto success;
6ac40ed0 352 }
6ac40ed0 353 }
9e8912e0 354 printk("Fast TSC calibration failed\n");
6ac40ed0 355 return 0;
9e8912e0
LT
356
357success:
358 /*
359 * Ok, if we get here, then we've seen the
360 * MSB of the PIT decrement 'i' times, and the
361 * error has shrunk to less than 500 ppm.
362 *
363 * As a result, we can depend on there not being
364 * any odd delays anywhere, and the TSC reads are
365 * reliable (within the error). We also adjust the
366 * delta to the middle of the error bars, just
367 * because it looks nicer.
368 *
369 * kHz = ticks / time-in-seconds / 1000;
370 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
371 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
372 */
373 delta += (long)(d2 - d1)/2;
374 delta *= PIT_TICK_RATE;
375 do_div(delta, i*256*1000);
376 printk("Fast TSC calibration using PIT\n");
377 return delta;
6ac40ed0 378}
ec0c15af 379
bfc0f594 380/**
e93ef949 381 * native_calibrate_tsc - calibrate the tsc on boot
bfc0f594 382 */
e93ef949 383unsigned long native_calibrate_tsc(void)
bfc0f594 384{
827014be 385 u64 tsc1, tsc2, delta, ref1, ref2;
fbb16e24 386 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
88b094fb 387 unsigned long flags, latch, ms, fast_calibrate, tsc_khz;
a977c400 388 int hpet = is_hpet_enabled(), i, loopmin;
bfc0f594 389
88b094fb
AK
390 tsc_khz = get_hypervisor_tsc_freq();
391 if (tsc_khz) {
392 printk(KERN_INFO "TSC: Frequency read from the hypervisor\n");
393 return tsc_khz;
394 }
395
6ac40ed0
LT
396 local_irq_save(flags);
397 fast_calibrate = quick_pit_calibrate();
bfc0f594 398 local_irq_restore(flags);
6ac40ed0
LT
399 if (fast_calibrate)
400 return fast_calibrate;
bfc0f594 401
fbb16e24
TG
402 /*
403 * Run 5 calibration loops to get the lowest frequency value
404 * (the best estimate). We use two different calibration modes
405 * here:
406 *
407 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
408 * load a timeout of 50ms. We read the time right after we
409 * started the timer and wait until the PIT count down reaches
410 * zero. In each wait loop iteration we read the TSC and check
411 * the delta to the previous read. We keep track of the min
412 * and max values of that delta. The delta is mostly defined
413 * by the IO time of the PIT access, so we can detect when a
414 * SMI/SMM disturbance happend between the two reads. If the
415 * maximum time is significantly larger than the minimum time,
416 * then we discard the result and have another try.
417 *
418 * 2) Reference counter. If available we use the HPET or the
419 * PMTIMER as a reference to check the sanity of that value.
420 * We use separate TSC readouts and check inside of the
421 * reference read for a SMI/SMM disturbance. We dicard
422 * disturbed values here as well. We do that around the PIT
423 * calibration delay loop as we have to wait for a certain
424 * amount of time anyway.
425 */
a977c400
TG
426
427 /* Preset PIT loop values */
428 latch = CAL_LATCH;
429 ms = CAL_MS;
430 loopmin = CAL_PIT_LOOPS;
431
432 for (i = 0; i < 3; i++) {
ec0c15af 433 unsigned long tsc_pit_khz;
fbb16e24
TG
434
435 /*
436 * Read the start value and the reference count of
ec0c15af
LT
437 * hpet/pmtimer when available. Then do the PIT
438 * calibration, which will take at least 50ms, and
439 * read the end value.
fbb16e24 440 */
ec0c15af 441 local_irq_save(flags);
827014be 442 tsc1 = tsc_read_refs(&ref1, hpet);
a977c400 443 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
827014be 444 tsc2 = tsc_read_refs(&ref2, hpet);
fbb16e24
TG
445 local_irq_restore(flags);
446
ec0c15af
LT
447 /* Pick the lowest PIT TSC calibration so far */
448 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
fbb16e24
TG
449
450 /* hpet or pmtimer available ? */
827014be 451 if (!hpet && !ref1 && !ref2)
fbb16e24
TG
452 continue;
453
454 /* Check, whether the sampling was disturbed by an SMI */
455 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
456 continue;
457
458 tsc2 = (tsc2 - tsc1) * 1000000LL;
d683ef7a 459 if (hpet)
827014be 460 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
d683ef7a 461 else
827014be 462 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
fbb16e24 463
fbb16e24 464 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
a977c400
TG
465
466 /* Check the reference deviation */
467 delta = ((u64) tsc_pit_min) * 100;
468 do_div(delta, tsc_ref_min);
469
470 /*
471 * If both calibration results are inside a 10% window
472 * then we can be sure, that the calibration
473 * succeeded. We break out of the loop right away. We
474 * use the reference value, as it is more precise.
475 */
476 if (delta >= 90 && delta <= 110) {
477 printk(KERN_INFO
478 "TSC: PIT calibration matches %s. %d loops\n",
479 hpet ? "HPET" : "PMTIMER", i + 1);
480 return tsc_ref_min;
fbb16e24
TG
481 }
482
a977c400
TG
483 /*
484 * Check whether PIT failed more than once. This
485 * happens in virtualized environments. We need to
486 * give the virtual PC a slightly longer timeframe for
487 * the HPET/PMTIMER to make the result precise.
488 */
489 if (i == 1 && tsc_pit_min == ULONG_MAX) {
490 latch = CAL2_LATCH;
491 ms = CAL2_MS;
492 loopmin = CAL2_PIT_LOOPS;
493 }
fbb16e24 494 }
bfc0f594
AK
495
496 /*
fbb16e24 497 * Now check the results.
bfc0f594 498 */
fbb16e24
TG
499 if (tsc_pit_min == ULONG_MAX) {
500 /* PIT gave no useful value */
de014d61 501 printk(KERN_WARNING "TSC: Unable to calibrate against PIT\n");
fbb16e24
TG
502
503 /* We don't have an alternative source, disable TSC */
827014be 504 if (!hpet && !ref1 && !ref2) {
fbb16e24
TG
505 printk("TSC: No reference (HPET/PMTIMER) available\n");
506 return 0;
507 }
508
509 /* The alternative source failed as well, disable TSC */
510 if (tsc_ref_min == ULONG_MAX) {
511 printk(KERN_WARNING "TSC: HPET/PMTIMER calibration "
a977c400 512 "failed.\n");
fbb16e24
TG
513 return 0;
514 }
515
516 /* Use the alternative source */
517 printk(KERN_INFO "TSC: using %s reference calibration\n",
518 hpet ? "HPET" : "PMTIMER");
519
520 return tsc_ref_min;
521 }
bfc0f594 522
fbb16e24 523 /* We don't have an alternative source, use the PIT calibration value */
827014be 524 if (!hpet && !ref1 && !ref2) {
fbb16e24
TG
525 printk(KERN_INFO "TSC: Using PIT calibration value\n");
526 return tsc_pit_min;
bfc0f594
AK
527 }
528
fbb16e24
TG
529 /* The alternative source failed, use the PIT calibration value */
530 if (tsc_ref_min == ULONG_MAX) {
a977c400
TG
531 printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed. "
532 "Using PIT calibration\n");
fbb16e24 533 return tsc_pit_min;
bfc0f594
AK
534 }
535
fbb16e24
TG
536 /*
537 * The calibration values differ too much. In doubt, we use
538 * the PIT value as we know that there are PMTIMERs around
a977c400 539 * running at double speed. At least we let the user know:
fbb16e24 540 */
a977c400
TG
541 printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n",
542 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
fbb16e24
TG
543 printk(KERN_INFO "TSC: Using PIT calibration value\n");
544 return tsc_pit_min;
bfc0f594
AK
545}
546
bfc0f594
AK
547int recalibrate_cpu_khz(void)
548{
549#ifndef CONFIG_SMP
550 unsigned long cpu_khz_old = cpu_khz;
551
552 if (cpu_has_tsc) {
e93ef949
AK
553 tsc_khz = calibrate_tsc();
554 cpu_khz = tsc_khz;
bfc0f594
AK
555 cpu_data(0).loops_per_jiffy =
556 cpufreq_scale(cpu_data(0).loops_per_jiffy,
557 cpu_khz_old, cpu_khz);
558 return 0;
559 } else
560 return -ENODEV;
561#else
562 return -ENODEV;
563#endif
564}
565
566EXPORT_SYMBOL(recalibrate_cpu_khz);
567
2dbe06fa
AK
568
569/* Accelerators for sched_clock()
570 * convert from cycles(64bits) => nanoseconds (64bits)
571 * basic equation:
572 * ns = cycles / (freq / ns_per_sec)
573 * ns = cycles * (ns_per_sec / freq)
574 * ns = cycles * (10^9 / (cpu_khz * 10^3))
575 * ns = cycles * (10^6 / cpu_khz)
576 *
577 * Then we use scaling math (suggested by george@mvista.com) to get:
578 * ns = cycles * (10^6 * SC / cpu_khz) / SC
579 * ns = cycles * cyc2ns_scale / SC
580 *
581 * And since SC is a constant power of two, we can convert the div
582 * into a shift.
583 *
584 * We can use khz divisor instead of mhz to keep a better precision, since
585 * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
586 * (mathieu.desnoyers@polymtl.ca)
587 *
588 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
589 */
590
591DEFINE_PER_CPU(unsigned long, cyc2ns);
592
8fbbc4b4 593static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
2dbe06fa
AK
594{
595 unsigned long long tsc_now, ns_now;
596 unsigned long flags, *scale;
597
598 local_irq_save(flags);
599 sched_clock_idle_sleep_event();
600
601 scale = &per_cpu(cyc2ns, cpu);
602
603 rdtscll(tsc_now);
604 ns_now = __cycles_2_ns(tsc_now);
605
606 if (cpu_khz)
607 *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
608
609 sched_clock_idle_wakeup_event(0);
610 local_irq_restore(flags);
611}
612
613#ifdef CONFIG_CPU_FREQ
614
615/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
616 * changes.
617 *
618 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
619 * not that important because current Opteron setups do not support
620 * scaling on SMP anyroads.
621 *
622 * Should fix up last_tsc too. Currently gettimeofday in the
623 * first tick after the change will be slightly wrong.
624 */
625
626static unsigned int ref_freq;
627static unsigned long loops_per_jiffy_ref;
628static unsigned long tsc_khz_ref;
629
630static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
631 void *data)
632{
633 struct cpufreq_freqs *freq = data;
634 unsigned long *lpj, dummy;
635
636 if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
637 return 0;
638
639 lpj = &dummy;
640 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
641#ifdef CONFIG_SMP
642 lpj = &cpu_data(freq->cpu).loops_per_jiffy;
643#else
644 lpj = &boot_cpu_data.loops_per_jiffy;
645#endif
646
647 if (!ref_freq) {
648 ref_freq = freq->old;
649 loops_per_jiffy_ref = *lpj;
650 tsc_khz_ref = tsc_khz;
651 }
652 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
653 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
654 (val == CPUFREQ_RESUMECHANGE)) {
655 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
656
657 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
658 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
659 mark_tsc_unstable("cpufreq changes");
660 }
661
52a8968c 662 set_cyc2ns_scale(tsc_khz, freq->cpu);
2dbe06fa
AK
663
664 return 0;
665}
666
667static struct notifier_block time_cpufreq_notifier_block = {
668 .notifier_call = time_cpufreq_notifier
669};
670
671static int __init cpufreq_tsc(void)
672{
060700b5
LT
673 if (!cpu_has_tsc)
674 return 0;
675 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
676 return 0;
2dbe06fa
AK
677 cpufreq_register_notifier(&time_cpufreq_notifier_block,
678 CPUFREQ_TRANSITION_NOTIFIER);
679 return 0;
680}
681
682core_initcall(cpufreq_tsc);
683
684#endif /* CONFIG_CPU_FREQ */
8fbbc4b4
AK
685
686/* clocksource code */
687
688static struct clocksource clocksource_tsc;
689
690/*
691 * We compare the TSC to the cycle_last value in the clocksource
692 * structure to avoid a nasty time-warp. This can be observed in a
693 * very small window right after one CPU updated cycle_last under
694 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
695 * is smaller than the cycle_last reference value due to a TSC which
696 * is slighty behind. This delta is nowhere else observable, but in
697 * that case it results in a forward time jump in the range of hours
698 * due to the unsigned delta calculation of the time keeping core
699 * code, which is necessary to support wrapping clocksources like pm
700 * timer.
701 */
702static cycle_t read_tsc(void)
703{
704 cycle_t ret = (cycle_t)get_cycles();
705
706 return ret >= clocksource_tsc.cycle_last ?
707 ret : clocksource_tsc.cycle_last;
708}
709
431ceb83 710#ifdef CONFIG_X86_64
8fbbc4b4
AK
711static cycle_t __vsyscall_fn vread_tsc(void)
712{
713 cycle_t ret = (cycle_t)vget_cycles();
714
715 return ret >= __vsyscall_gtod_data.clock.cycle_last ?
716 ret : __vsyscall_gtod_data.clock.cycle_last;
717}
431ceb83 718#endif
8fbbc4b4
AK
719
720static struct clocksource clocksource_tsc = {
721 .name = "tsc",
722 .rating = 300,
723 .read = read_tsc,
724 .mask = CLOCKSOURCE_MASK(64),
725 .shift = 22,
726 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
727 CLOCK_SOURCE_MUST_VERIFY,
728#ifdef CONFIG_X86_64
729 .vread = vread_tsc,
730#endif
731};
732
733void mark_tsc_unstable(char *reason)
734{
735 if (!tsc_unstable) {
736 tsc_unstable = 1;
737 printk("Marking TSC unstable due to %s\n", reason);
738 /* Change only the rating, when not registered */
739 if (clocksource_tsc.mult)
740 clocksource_change_rating(&clocksource_tsc, 0);
741 else
742 clocksource_tsc.rating = 0;
743 }
744}
745
746EXPORT_SYMBOL_GPL(mark_tsc_unstable);
747
748static int __init dmi_mark_tsc_unstable(const struct dmi_system_id *d)
749{
750 printk(KERN_NOTICE "%s detected: marking TSC unstable.\n",
751 d->ident);
752 tsc_unstable = 1;
753 return 0;
754}
755
756/* List of systems that have known TSC problems */
757static struct dmi_system_id __initdata bad_tsc_dmi_table[] = {
758 {
759 .callback = dmi_mark_tsc_unstable,
760 .ident = "IBM Thinkpad 380XD",
761 .matches = {
762 DMI_MATCH(DMI_BOARD_VENDOR, "IBM"),
763 DMI_MATCH(DMI_BOARD_NAME, "2635FA0"),
764 },
765 },
766 {}
767};
768
395628ef
AK
769static void __init check_system_tsc_reliable(void)
770{
8fbbc4b4 771#ifdef CONFIG_MGEODE_LX
395628ef 772 /* RTSC counts during suspend */
8fbbc4b4 773#define RTSC_SUSP 0x100
8fbbc4b4
AK
774 unsigned long res_low, res_high;
775
776 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
395628ef 777 /* Geode_LX - the OLPC CPU has a possibly a very reliable TSC */
8fbbc4b4 778 if (res_low & RTSC_SUSP)
395628ef 779 tsc_clocksource_reliable = 1;
8fbbc4b4 780#endif
395628ef
AK
781 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
782 tsc_clocksource_reliable = 1;
783}
8fbbc4b4
AK
784
785/*
786 * Make an educated guess if the TSC is trustworthy and synchronized
787 * over all CPUs.
788 */
789__cpuinit int unsynchronized_tsc(void)
790{
791 if (!cpu_has_tsc || tsc_unstable)
792 return 1;
793
3e5095d1 794#ifdef CONFIG_SMP
8fbbc4b4
AK
795 if (apic_is_clustered_box())
796 return 1;
797#endif
798
799 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
800 return 0;
801 /*
802 * Intel systems are normally all synchronized.
803 * Exceptions must mark TSC as unstable:
804 */
805 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
806 /* assume multi socket systems are not synchronized: */
807 if (num_possible_cpus() > 1)
808 tsc_unstable = 1;
809 }
810
811 return tsc_unstable;
812}
813
814static void __init init_tsc_clocksource(void)
815{
816 clocksource_tsc.mult = clocksource_khz2mult(tsc_khz,
817 clocksource_tsc.shift);
395628ef
AK
818 if (tsc_clocksource_reliable)
819 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
8fbbc4b4
AK
820 /* lower the rating if we already know its unstable: */
821 if (check_tsc_unstable()) {
822 clocksource_tsc.rating = 0;
823 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
824 }
825 clocksource_register(&clocksource_tsc);
826}
827
828void __init tsc_init(void)
829{
830 u64 lpj;
831 int cpu;
832
833 if (!cpu_has_tsc)
834 return;
835
e93ef949
AK
836 tsc_khz = calibrate_tsc();
837 cpu_khz = tsc_khz;
8fbbc4b4 838
e93ef949 839 if (!tsc_khz) {
8fbbc4b4
AK
840 mark_tsc_unstable("could not calculate TSC khz");
841 return;
842 }
843
844#ifdef CONFIG_X86_64
845 if (cpu_has(&boot_cpu_data, X86_FEATURE_CONSTANT_TSC) &&
846 (boot_cpu_data.x86_vendor == X86_VENDOR_AMD))
847 cpu_khz = calibrate_cpu();
848#endif
849
8fbbc4b4
AK
850 printk("Detected %lu.%03lu MHz processor.\n",
851 (unsigned long)cpu_khz / 1000,
852 (unsigned long)cpu_khz % 1000);
853
854 /*
855 * Secondary CPUs do not run through tsc_init(), so set up
856 * all the scale factors for all CPUs, assuming the same
857 * speed as the bootup CPU. (cpufreq notifiers will fix this
858 * up if their speed diverges)
859 */
860 for_each_possible_cpu(cpu)
861 set_cyc2ns_scale(cpu_khz, cpu);
862
863 if (tsc_disabled > 0)
864 return;
865
866 /* now allow native_sched_clock() to use rdtsc */
867 tsc_disabled = 0;
868
70de9a97
AK
869 lpj = ((u64)tsc_khz * 1000);
870 do_div(lpj, HZ);
871 lpj_fine = lpj;
872
8fbbc4b4
AK
873 use_tsc_delay();
874 /* Check and install the TSC clocksource */
875 dmi_check_system(bad_tsc_dmi_table);
876
877 if (unsynchronized_tsc())
878 mark_tsc_unstable("TSCs unsynchronized");
879
395628ef 880 check_system_tsc_reliable();
8fbbc4b4
AK
881 init_tsc_clocksource();
882}
883