x86/asm/tsc/sync: Use rdtsc_ordered() in check_tsc_warp() and drop extra barriers
[linux-2.6-block.git] / arch / x86 / kernel / tsc.c
CommitLineData
c767a54b
JP
1#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
bfc0f594 3#include <linux/kernel.h>
0ef95533
AK
4#include <linux/sched.h>
5#include <linux/init.h>
6#include <linux/module.h>
7#include <linux/timer.h>
bfc0f594 8#include <linux/acpi_pmtmr.h>
2dbe06fa 9#include <linux/cpufreq.h>
8fbbc4b4
AK
10#include <linux/delay.h>
11#include <linux/clocksource.h>
12#include <linux/percpu.h>
08604bd9 13#include <linux/timex.h>
10b033d4 14#include <linux/static_key.h>
bfc0f594
AK
15
16#include <asm/hpet.h>
8fbbc4b4
AK
17#include <asm/timer.h>
18#include <asm/vgtod.h>
19#include <asm/time.h>
20#include <asm/delay.h>
88b094fb 21#include <asm/hypervisor.h>
08047c4f 22#include <asm/nmi.h>
2d826404 23#include <asm/x86_init.h>
0ef95533 24
f24ade3a 25unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
0ef95533 26EXPORT_SYMBOL(cpu_khz);
f24ade3a
IM
27
28unsigned int __read_mostly tsc_khz;
0ef95533
AK
29EXPORT_SYMBOL(tsc_khz);
30
31/*
32 * TSC can be unstable due to cpufreq or due to unsynced TSCs
33 */
f24ade3a 34static int __read_mostly tsc_unstable;
0ef95533
AK
35
36/* native_sched_clock() is called before tsc_init(), so
37 we must start with the TSC soft disabled to prevent
38 erroneous rdtsc usage on !cpu_has_tsc processors */
f24ade3a 39static int __read_mostly tsc_disabled = -1;
0ef95533 40
10b033d4
PZ
41static struct static_key __use_tsc = STATIC_KEY_INIT;
42
28a00184 43int tsc_clocksource_reliable;
57c67da2 44
20d1c86a
PZ
45/*
46 * Use a ring-buffer like data structure, where a writer advances the head by
47 * writing a new data entry and a reader advances the tail when it observes a
48 * new entry.
49 *
50 * Writers are made to wait on readers until there's space to write a new
51 * entry.
52 *
53 * This means that we can always use an {offset, mul} pair to compute a ns
54 * value that is 'roughly' in the right direction, even if we're writing a new
55 * {offset, mul} pair during the clock read.
56 *
57 * The down-side is that we can no longer guarantee strict monotonicity anymore
58 * (assuming the TSC was that to begin with), because while we compute the
59 * intersection point of the two clock slopes and make sure the time is
60 * continuous at the point of switching; we can no longer guarantee a reader is
61 * strictly before or after the switch point.
62 *
63 * It does mean a reader no longer needs to disable IRQs in order to avoid
64 * CPU-Freq updates messing with his times, and similarly an NMI reader will
65 * no longer run the risk of hitting half-written state.
66 */
67
68struct cyc2ns {
69 struct cyc2ns_data data[2]; /* 0 + 2*24 = 48 */
70 struct cyc2ns_data *head; /* 48 + 8 = 56 */
71 struct cyc2ns_data *tail; /* 56 + 8 = 64 */
72}; /* exactly fits one cacheline */
73
74static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
75
76struct cyc2ns_data *cyc2ns_read_begin(void)
77{
78 struct cyc2ns_data *head;
79
80 preempt_disable();
81
82 head = this_cpu_read(cyc2ns.head);
83 /*
84 * Ensure we observe the entry when we observe the pointer to it.
85 * matches the wmb from cyc2ns_write_end().
86 */
87 smp_read_barrier_depends();
88 head->__count++;
89 barrier();
90
91 return head;
92}
93
94void cyc2ns_read_end(struct cyc2ns_data *head)
95{
96 barrier();
97 /*
98 * If we're the outer most nested read; update the tail pointer
99 * when we're done. This notifies possible pending writers
100 * that we've observed the head pointer and that the other
101 * entry is now free.
102 */
103 if (!--head->__count) {
104 /*
105 * x86-TSO does not reorder writes with older reads;
106 * therefore once this write becomes visible to another
107 * cpu, we must be finished reading the cyc2ns_data.
108 *
109 * matches with cyc2ns_write_begin().
110 */
111 this_cpu_write(cyc2ns.tail, head);
112 }
113 preempt_enable();
114}
115
116/*
117 * Begin writing a new @data entry for @cpu.
118 *
119 * Assumes some sort of write side lock; currently 'provided' by the assumption
120 * that cpufreq will call its notifiers sequentially.
121 */
122static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
123{
124 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
125 struct cyc2ns_data *data = c2n->data;
126
127 if (data == c2n->head)
128 data++;
129
130 /* XXX send an IPI to @cpu in order to guarantee a read? */
131
132 /*
133 * When we observe the tail write from cyc2ns_read_end(),
134 * the cpu must be done with that entry and its safe
135 * to start writing to it.
136 */
137 while (c2n->tail == data)
138 cpu_relax();
139
140 return data;
141}
142
143static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
144{
145 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
146
147 /*
148 * Ensure the @data writes are visible before we publish the
149 * entry. Matches the data-depencency in cyc2ns_read_begin().
150 */
151 smp_wmb();
152
153 ACCESS_ONCE(c2n->head) = data;
154}
155
156/*
157 * Accelerators for sched_clock()
57c67da2
PZ
158 * convert from cycles(64bits) => nanoseconds (64bits)
159 * basic equation:
160 * ns = cycles / (freq / ns_per_sec)
161 * ns = cycles * (ns_per_sec / freq)
162 * ns = cycles * (10^9 / (cpu_khz * 10^3))
163 * ns = cycles * (10^6 / cpu_khz)
164 *
165 * Then we use scaling math (suggested by george@mvista.com) to get:
166 * ns = cycles * (10^6 * SC / cpu_khz) / SC
167 * ns = cycles * cyc2ns_scale / SC
168 *
169 * And since SC is a constant power of two, we can convert the div
170 * into a shift.
171 *
172 * We can use khz divisor instead of mhz to keep a better precision, since
173 * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
174 * (mathieu.desnoyers@polymtl.ca)
175 *
176 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
177 */
178
57c67da2
PZ
179#define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
180
20d1c86a
PZ
181static void cyc2ns_data_init(struct cyc2ns_data *data)
182{
5e3c1afd 183 data->cyc2ns_mul = 0;
20d1c86a
PZ
184 data->cyc2ns_shift = CYC2NS_SCALE_FACTOR;
185 data->cyc2ns_offset = 0;
186 data->__count = 0;
187}
188
189static void cyc2ns_init(int cpu)
190{
191 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
192
193 cyc2ns_data_init(&c2n->data[0]);
194 cyc2ns_data_init(&c2n->data[1]);
195
196 c2n->head = c2n->data;
197 c2n->tail = c2n->data;
198}
199
57c67da2
PZ
200static inline unsigned long long cycles_2_ns(unsigned long long cyc)
201{
20d1c86a
PZ
202 struct cyc2ns_data *data, *tail;
203 unsigned long long ns;
204
205 /*
206 * See cyc2ns_read_*() for details; replicated in order to avoid
207 * an extra few instructions that came with the abstraction.
208 * Notable, it allows us to only do the __count and tail update
209 * dance when its actually needed.
210 */
211
569d6557 212 preempt_disable_notrace();
20d1c86a
PZ
213 data = this_cpu_read(cyc2ns.head);
214 tail = this_cpu_read(cyc2ns.tail);
215
216 if (likely(data == tail)) {
217 ns = data->cyc2ns_offset;
218 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
219 } else {
220 data->__count++;
221
222 barrier();
223
224 ns = data->cyc2ns_offset;
225 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
226
227 barrier();
228
229 if (!--data->__count)
230 this_cpu_write(cyc2ns.tail, data);
231 }
569d6557 232 preempt_enable_notrace();
20d1c86a 233
57c67da2
PZ
234 return ns;
235}
236
237static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
238{
20d1c86a
PZ
239 unsigned long long tsc_now, ns_now;
240 struct cyc2ns_data *data;
241 unsigned long flags;
57c67da2
PZ
242
243 local_irq_save(flags);
244 sched_clock_idle_sleep_event();
245
20d1c86a
PZ
246 if (!cpu_khz)
247 goto done;
248
249 data = cyc2ns_write_begin(cpu);
57c67da2 250
4ea1636b 251 tsc_now = rdtsc();
57c67da2
PZ
252 ns_now = cycles_2_ns(tsc_now);
253
20d1c86a
PZ
254 /*
255 * Compute a new multiplier as per the above comment and ensure our
256 * time function is continuous; see the comment near struct
257 * cyc2ns_data.
258 */
89171579
MN
259 data->cyc2ns_mul =
260 DIV_ROUND_CLOSEST(NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR,
261 cpu_khz);
20d1c86a
PZ
262 data->cyc2ns_shift = CYC2NS_SCALE_FACTOR;
263 data->cyc2ns_offset = ns_now -
264 mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
265
266 cyc2ns_write_end(cpu, data);
57c67da2 267
20d1c86a 268done:
57c67da2
PZ
269 sched_clock_idle_wakeup_event(0);
270 local_irq_restore(flags);
271}
0ef95533
AK
272/*
273 * Scheduler clock - returns current time in nanosec units.
274 */
275u64 native_sched_clock(void)
276{
20d1c86a 277 u64 tsc_now;
0ef95533
AK
278
279 /*
280 * Fall back to jiffies if there's no TSC available:
281 * ( But note that we still use it if the TSC is marked
282 * unstable. We do this because unlike Time Of Day,
283 * the scheduler clock tolerates small errors and it's
284 * very important for it to be as fast as the platform
3ad2f3fb 285 * can achieve it. )
0ef95533 286 */
10b033d4 287 if (!static_key_false(&__use_tsc)) {
0ef95533
AK
288 /* No locking but a rare wrong value is not a big deal: */
289 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
290 }
291
292 /* read the Time Stamp Counter: */
4ea1636b 293 tsc_now = rdtsc();
0ef95533
AK
294
295 /* return the value in ns */
20d1c86a 296 return cycles_2_ns(tsc_now);
0ef95533
AK
297}
298
299/* We need to define a real function for sched_clock, to override the
300 weak default version */
301#ifdef CONFIG_PARAVIRT
302unsigned long long sched_clock(void)
303{
304 return paravirt_sched_clock();
305}
306#else
307unsigned long long
308sched_clock(void) __attribute__((alias("native_sched_clock")));
309#endif
310
311int check_tsc_unstable(void)
312{
313 return tsc_unstable;
314}
315EXPORT_SYMBOL_GPL(check_tsc_unstable);
316
c73deb6a
AH
317int check_tsc_disabled(void)
318{
319 return tsc_disabled;
320}
321EXPORT_SYMBOL_GPL(check_tsc_disabled);
322
0ef95533
AK
323#ifdef CONFIG_X86_TSC
324int __init notsc_setup(char *str)
325{
c767a54b 326 pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
0ef95533
AK
327 tsc_disabled = 1;
328 return 1;
329}
330#else
331/*
332 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
333 * in cpu/common.c
334 */
335int __init notsc_setup(char *str)
336{
337 setup_clear_cpu_cap(X86_FEATURE_TSC);
338 return 1;
339}
340#endif
341
342__setup("notsc", notsc_setup);
bfc0f594 343
e82b8e4e
VP
344static int no_sched_irq_time;
345
395628ef
AK
346static int __init tsc_setup(char *str)
347{
348 if (!strcmp(str, "reliable"))
349 tsc_clocksource_reliable = 1;
e82b8e4e
VP
350 if (!strncmp(str, "noirqtime", 9))
351 no_sched_irq_time = 1;
395628ef
AK
352 return 1;
353}
354
355__setup("tsc=", tsc_setup);
356
bfc0f594
AK
357#define MAX_RETRIES 5
358#define SMI_TRESHOLD 50000
359
360/*
361 * Read TSC and the reference counters. Take care of SMI disturbance
362 */
827014be 363static u64 tsc_read_refs(u64 *p, int hpet)
bfc0f594
AK
364{
365 u64 t1, t2;
366 int i;
367
368 for (i = 0; i < MAX_RETRIES; i++) {
369 t1 = get_cycles();
370 if (hpet)
827014be 371 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
bfc0f594 372 else
827014be 373 *p = acpi_pm_read_early();
bfc0f594
AK
374 t2 = get_cycles();
375 if ((t2 - t1) < SMI_TRESHOLD)
376 return t2;
377 }
378 return ULLONG_MAX;
379}
380
d683ef7a
TG
381/*
382 * Calculate the TSC frequency from HPET reference
bfc0f594 383 */
d683ef7a 384static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
bfc0f594 385{
d683ef7a 386 u64 tmp;
bfc0f594 387
d683ef7a
TG
388 if (hpet2 < hpet1)
389 hpet2 += 0x100000000ULL;
390 hpet2 -= hpet1;
391 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
392 do_div(tmp, 1000000);
393 do_div(deltatsc, tmp);
394
395 return (unsigned long) deltatsc;
396}
397
398/*
399 * Calculate the TSC frequency from PMTimer reference
400 */
401static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
402{
403 u64 tmp;
bfc0f594 404
d683ef7a
TG
405 if (!pm1 && !pm2)
406 return ULONG_MAX;
407
408 if (pm2 < pm1)
409 pm2 += (u64)ACPI_PM_OVRRUN;
410 pm2 -= pm1;
411 tmp = pm2 * 1000000000LL;
412 do_div(tmp, PMTMR_TICKS_PER_SEC);
413 do_div(deltatsc, tmp);
414
415 return (unsigned long) deltatsc;
416}
417
a977c400 418#define CAL_MS 10
b7743970 419#define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
a977c400
TG
420#define CAL_PIT_LOOPS 1000
421
422#define CAL2_MS 50
b7743970 423#define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
a977c400
TG
424#define CAL2_PIT_LOOPS 5000
425
cce3e057 426
ec0c15af
LT
427/*
428 * Try to calibrate the TSC against the Programmable
429 * Interrupt Timer and return the frequency of the TSC
430 * in kHz.
431 *
432 * Return ULONG_MAX on failure to calibrate.
433 */
a977c400 434static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
ec0c15af
LT
435{
436 u64 tsc, t1, t2, delta;
437 unsigned long tscmin, tscmax;
438 int pitcnt;
439
440 /* Set the Gate high, disable speaker */
441 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
442
443 /*
444 * Setup CTC channel 2* for mode 0, (interrupt on terminal
445 * count mode), binary count. Set the latch register to 50ms
446 * (LSB then MSB) to begin countdown.
447 */
448 outb(0xb0, 0x43);
a977c400
TG
449 outb(latch & 0xff, 0x42);
450 outb(latch >> 8, 0x42);
ec0c15af
LT
451
452 tsc = t1 = t2 = get_cycles();
453
454 pitcnt = 0;
455 tscmax = 0;
456 tscmin = ULONG_MAX;
457 while ((inb(0x61) & 0x20) == 0) {
458 t2 = get_cycles();
459 delta = t2 - tsc;
460 tsc = t2;
461 if ((unsigned long) delta < tscmin)
462 tscmin = (unsigned int) delta;
463 if ((unsigned long) delta > tscmax)
464 tscmax = (unsigned int) delta;
465 pitcnt++;
466 }
467
468 /*
469 * Sanity checks:
470 *
a977c400 471 * If we were not able to read the PIT more than loopmin
ec0c15af
LT
472 * times, then we have been hit by a massive SMI
473 *
474 * If the maximum is 10 times larger than the minimum,
475 * then we got hit by an SMI as well.
476 */
a977c400 477 if (pitcnt < loopmin || tscmax > 10 * tscmin)
ec0c15af
LT
478 return ULONG_MAX;
479
480 /* Calculate the PIT value */
481 delta = t2 - t1;
a977c400 482 do_div(delta, ms);
ec0c15af
LT
483 return delta;
484}
485
6ac40ed0
LT
486/*
487 * This reads the current MSB of the PIT counter, and
488 * checks if we are running on sufficiently fast and
489 * non-virtualized hardware.
490 *
491 * Our expectations are:
492 *
493 * - the PIT is running at roughly 1.19MHz
494 *
495 * - each IO is going to take about 1us on real hardware,
496 * but we allow it to be much faster (by a factor of 10) or
497 * _slightly_ slower (ie we allow up to a 2us read+counter
498 * update - anything else implies a unacceptably slow CPU
499 * or PIT for the fast calibration to work.
500 *
501 * - with 256 PIT ticks to read the value, we have 214us to
502 * see the same MSB (and overhead like doing a single TSC
503 * read per MSB value etc).
504 *
505 * - We're doing 2 reads per loop (LSB, MSB), and we expect
506 * them each to take about a microsecond on real hardware.
507 * So we expect a count value of around 100. But we'll be
508 * generous, and accept anything over 50.
509 *
510 * - if the PIT is stuck, and we see *many* more reads, we
511 * return early (and the next caller of pit_expect_msb()
512 * then consider it a failure when they don't see the
513 * next expected value).
514 *
515 * These expectations mean that we know that we have seen the
516 * transition from one expected value to another with a fairly
517 * high accuracy, and we didn't miss any events. We can thus
518 * use the TSC value at the transitions to calculate a pretty
519 * good value for the TSC frequencty.
520 */
b6e61eef
LT
521static inline int pit_verify_msb(unsigned char val)
522{
523 /* Ignore LSB */
524 inb(0x42);
525 return inb(0x42) == val;
526}
527
9e8912e0 528static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
6ac40ed0 529{
9e8912e0 530 int count;
68f30fbe 531 u64 tsc = 0, prev_tsc = 0;
bfc0f594 532
6ac40ed0 533 for (count = 0; count < 50000; count++) {
b6e61eef 534 if (!pit_verify_msb(val))
6ac40ed0 535 break;
68f30fbe 536 prev_tsc = tsc;
9e8912e0 537 tsc = get_cycles();
6ac40ed0 538 }
68f30fbe 539 *deltap = get_cycles() - prev_tsc;
9e8912e0
LT
540 *tscp = tsc;
541
542 /*
543 * We require _some_ success, but the quality control
544 * will be based on the error terms on the TSC values.
545 */
546 return count > 5;
6ac40ed0
LT
547}
548
549/*
9e8912e0
LT
550 * How many MSB values do we want to see? We aim for
551 * a maximum error rate of 500ppm (in practice the
552 * real error is much smaller), but refuse to spend
68f30fbe 553 * more than 50ms on it.
6ac40ed0 554 */
68f30fbe 555#define MAX_QUICK_PIT_MS 50
9e8912e0 556#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
bfc0f594 557
6ac40ed0
LT
558static unsigned long quick_pit_calibrate(void)
559{
9e8912e0
LT
560 int i;
561 u64 tsc, delta;
562 unsigned long d1, d2;
563
6ac40ed0 564 /* Set the Gate high, disable speaker */
bfc0f594
AK
565 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
566
6ac40ed0
LT
567 /*
568 * Counter 2, mode 0 (one-shot), binary count
569 *
570 * NOTE! Mode 2 decrements by two (and then the
571 * output is flipped each time, giving the same
572 * final output frequency as a decrement-by-one),
573 * so mode 0 is much better when looking at the
574 * individual counts.
575 */
bfc0f594 576 outb(0xb0, 0x43);
bfc0f594 577
6ac40ed0
LT
578 /* Start at 0xffff */
579 outb(0xff, 0x42);
580 outb(0xff, 0x42);
581
a6a80e1d
LT
582 /*
583 * The PIT starts counting at the next edge, so we
584 * need to delay for a microsecond. The easiest way
585 * to do that is to just read back the 16-bit counter
586 * once from the PIT.
587 */
b6e61eef 588 pit_verify_msb(0);
a6a80e1d 589
9e8912e0
LT
590 if (pit_expect_msb(0xff, &tsc, &d1)) {
591 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
592 if (!pit_expect_msb(0xff-i, &delta, &d2))
593 break;
594
595 /*
596 * Iterate until the error is less than 500 ppm
597 */
598 delta -= tsc;
b6e61eef
LT
599 if (d1+d2 >= delta >> 11)
600 continue;
601
602 /*
603 * Check the PIT one more time to verify that
604 * all TSC reads were stable wrt the PIT.
605 *
606 * This also guarantees serialization of the
607 * last cycle read ('d2') in pit_expect_msb.
608 */
609 if (!pit_verify_msb(0xfe - i))
610 break;
611 goto success;
6ac40ed0 612 }
6ac40ed0 613 }
52045217 614 pr_info("Fast TSC calibration failed\n");
6ac40ed0 615 return 0;
9e8912e0
LT
616
617success:
618 /*
619 * Ok, if we get here, then we've seen the
620 * MSB of the PIT decrement 'i' times, and the
621 * error has shrunk to less than 500 ppm.
622 *
623 * As a result, we can depend on there not being
624 * any odd delays anywhere, and the TSC reads are
68f30fbe 625 * reliable (within the error).
9e8912e0
LT
626 *
627 * kHz = ticks / time-in-seconds / 1000;
628 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
629 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
630 */
9e8912e0
LT
631 delta *= PIT_TICK_RATE;
632 do_div(delta, i*256*1000);
c767a54b 633 pr_info("Fast TSC calibration using PIT\n");
9e8912e0 634 return delta;
6ac40ed0 635}
ec0c15af 636
bfc0f594 637/**
e93ef949 638 * native_calibrate_tsc - calibrate the tsc on boot
bfc0f594 639 */
e93ef949 640unsigned long native_calibrate_tsc(void)
bfc0f594 641{
827014be 642 u64 tsc1, tsc2, delta, ref1, ref2;
fbb16e24 643 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
2d826404 644 unsigned long flags, latch, ms, fast_calibrate;
a977c400 645 int hpet = is_hpet_enabled(), i, loopmin;
bfc0f594 646
7da7c156
BG
647 /* Calibrate TSC using MSR for Intel Atom SoCs */
648 local_irq_save(flags);
5f0e0309 649 fast_calibrate = try_msr_calibrate_tsc();
7da7c156 650 local_irq_restore(flags);
5f0e0309 651 if (fast_calibrate)
7da7c156 652 return fast_calibrate;
7da7c156 653
6ac40ed0
LT
654 local_irq_save(flags);
655 fast_calibrate = quick_pit_calibrate();
bfc0f594 656 local_irq_restore(flags);
6ac40ed0
LT
657 if (fast_calibrate)
658 return fast_calibrate;
bfc0f594 659
fbb16e24
TG
660 /*
661 * Run 5 calibration loops to get the lowest frequency value
662 * (the best estimate). We use two different calibration modes
663 * here:
664 *
665 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
666 * load a timeout of 50ms. We read the time right after we
667 * started the timer and wait until the PIT count down reaches
668 * zero. In each wait loop iteration we read the TSC and check
669 * the delta to the previous read. We keep track of the min
670 * and max values of that delta. The delta is mostly defined
671 * by the IO time of the PIT access, so we can detect when a
0d2eb44f 672 * SMI/SMM disturbance happened between the two reads. If the
fbb16e24
TG
673 * maximum time is significantly larger than the minimum time,
674 * then we discard the result and have another try.
675 *
676 * 2) Reference counter. If available we use the HPET or the
677 * PMTIMER as a reference to check the sanity of that value.
678 * We use separate TSC readouts and check inside of the
679 * reference read for a SMI/SMM disturbance. We dicard
680 * disturbed values here as well. We do that around the PIT
681 * calibration delay loop as we have to wait for a certain
682 * amount of time anyway.
683 */
a977c400
TG
684
685 /* Preset PIT loop values */
686 latch = CAL_LATCH;
687 ms = CAL_MS;
688 loopmin = CAL_PIT_LOOPS;
689
690 for (i = 0; i < 3; i++) {
ec0c15af 691 unsigned long tsc_pit_khz;
fbb16e24
TG
692
693 /*
694 * Read the start value and the reference count of
ec0c15af
LT
695 * hpet/pmtimer when available. Then do the PIT
696 * calibration, which will take at least 50ms, and
697 * read the end value.
fbb16e24 698 */
ec0c15af 699 local_irq_save(flags);
827014be 700 tsc1 = tsc_read_refs(&ref1, hpet);
a977c400 701 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
827014be 702 tsc2 = tsc_read_refs(&ref2, hpet);
fbb16e24
TG
703 local_irq_restore(flags);
704
ec0c15af
LT
705 /* Pick the lowest PIT TSC calibration so far */
706 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
fbb16e24
TG
707
708 /* hpet or pmtimer available ? */
62627bec 709 if (ref1 == ref2)
fbb16e24
TG
710 continue;
711
712 /* Check, whether the sampling was disturbed by an SMI */
713 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
714 continue;
715
716 tsc2 = (tsc2 - tsc1) * 1000000LL;
d683ef7a 717 if (hpet)
827014be 718 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
d683ef7a 719 else
827014be 720 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
fbb16e24 721
fbb16e24 722 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
a977c400
TG
723
724 /* Check the reference deviation */
725 delta = ((u64) tsc_pit_min) * 100;
726 do_div(delta, tsc_ref_min);
727
728 /*
729 * If both calibration results are inside a 10% window
730 * then we can be sure, that the calibration
731 * succeeded. We break out of the loop right away. We
732 * use the reference value, as it is more precise.
733 */
734 if (delta >= 90 && delta <= 110) {
c767a54b
JP
735 pr_info("PIT calibration matches %s. %d loops\n",
736 hpet ? "HPET" : "PMTIMER", i + 1);
a977c400 737 return tsc_ref_min;
fbb16e24
TG
738 }
739
a977c400
TG
740 /*
741 * Check whether PIT failed more than once. This
742 * happens in virtualized environments. We need to
743 * give the virtual PC a slightly longer timeframe for
744 * the HPET/PMTIMER to make the result precise.
745 */
746 if (i == 1 && tsc_pit_min == ULONG_MAX) {
747 latch = CAL2_LATCH;
748 ms = CAL2_MS;
749 loopmin = CAL2_PIT_LOOPS;
750 }
fbb16e24 751 }
bfc0f594
AK
752
753 /*
fbb16e24 754 * Now check the results.
bfc0f594 755 */
fbb16e24
TG
756 if (tsc_pit_min == ULONG_MAX) {
757 /* PIT gave no useful value */
c767a54b 758 pr_warn("Unable to calibrate against PIT\n");
fbb16e24
TG
759
760 /* We don't have an alternative source, disable TSC */
827014be 761 if (!hpet && !ref1 && !ref2) {
c767a54b 762 pr_notice("No reference (HPET/PMTIMER) available\n");
fbb16e24
TG
763 return 0;
764 }
765
766 /* The alternative source failed as well, disable TSC */
767 if (tsc_ref_min == ULONG_MAX) {
c767a54b 768 pr_warn("HPET/PMTIMER calibration failed\n");
fbb16e24
TG
769 return 0;
770 }
771
772 /* Use the alternative source */
c767a54b
JP
773 pr_info("using %s reference calibration\n",
774 hpet ? "HPET" : "PMTIMER");
fbb16e24
TG
775
776 return tsc_ref_min;
777 }
bfc0f594 778
fbb16e24 779 /* We don't have an alternative source, use the PIT calibration value */
827014be 780 if (!hpet && !ref1 && !ref2) {
c767a54b 781 pr_info("Using PIT calibration value\n");
fbb16e24 782 return tsc_pit_min;
bfc0f594
AK
783 }
784
fbb16e24
TG
785 /* The alternative source failed, use the PIT calibration value */
786 if (tsc_ref_min == ULONG_MAX) {
c767a54b 787 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
fbb16e24 788 return tsc_pit_min;
bfc0f594
AK
789 }
790
fbb16e24
TG
791 /*
792 * The calibration values differ too much. In doubt, we use
793 * the PIT value as we know that there are PMTIMERs around
a977c400 794 * running at double speed. At least we let the user know:
fbb16e24 795 */
c767a54b
JP
796 pr_warn("PIT calibration deviates from %s: %lu %lu\n",
797 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
798 pr_info("Using PIT calibration value\n");
fbb16e24 799 return tsc_pit_min;
bfc0f594
AK
800}
801
bfc0f594
AK
802int recalibrate_cpu_khz(void)
803{
804#ifndef CONFIG_SMP
805 unsigned long cpu_khz_old = cpu_khz;
806
807 if (cpu_has_tsc) {
2d826404 808 tsc_khz = x86_platform.calibrate_tsc();
e93ef949 809 cpu_khz = tsc_khz;
bfc0f594
AK
810 cpu_data(0).loops_per_jiffy =
811 cpufreq_scale(cpu_data(0).loops_per_jiffy,
812 cpu_khz_old, cpu_khz);
813 return 0;
814 } else
815 return -ENODEV;
816#else
817 return -ENODEV;
818#endif
819}
820
821EXPORT_SYMBOL(recalibrate_cpu_khz);
822
2dbe06fa 823
cd7240c0
SS
824static unsigned long long cyc2ns_suspend;
825
b74f05d6 826void tsc_save_sched_clock_state(void)
cd7240c0 827{
35af99e6 828 if (!sched_clock_stable())
cd7240c0
SS
829 return;
830
831 cyc2ns_suspend = sched_clock();
832}
833
834/*
835 * Even on processors with invariant TSC, TSC gets reset in some the
836 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
837 * arbitrary value (still sync'd across cpu's) during resume from such sleep
838 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
839 * that sched_clock() continues from the point where it was left off during
840 * suspend.
841 */
b74f05d6 842void tsc_restore_sched_clock_state(void)
cd7240c0
SS
843{
844 unsigned long long offset;
845 unsigned long flags;
846 int cpu;
847
35af99e6 848 if (!sched_clock_stable())
cd7240c0
SS
849 return;
850
851 local_irq_save(flags);
852
20d1c86a
PZ
853 /*
854 * We're comming out of suspend, there's no concurrency yet; don't
855 * bother being nice about the RCU stuff, just write to both
856 * data fields.
857 */
858
859 this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
860 this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
861
cd7240c0
SS
862 offset = cyc2ns_suspend - sched_clock();
863
20d1c86a
PZ
864 for_each_possible_cpu(cpu) {
865 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
866 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
867 }
cd7240c0
SS
868
869 local_irq_restore(flags);
870}
871
2dbe06fa
AK
872#ifdef CONFIG_CPU_FREQ
873
874/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
875 * changes.
876 *
877 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
878 * not that important because current Opteron setups do not support
879 * scaling on SMP anyroads.
880 *
881 * Should fix up last_tsc too. Currently gettimeofday in the
882 * first tick after the change will be slightly wrong.
883 */
884
885static unsigned int ref_freq;
886static unsigned long loops_per_jiffy_ref;
887static unsigned long tsc_khz_ref;
888
889static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
890 void *data)
891{
892 struct cpufreq_freqs *freq = data;
931db6a3 893 unsigned long *lpj;
2dbe06fa
AK
894
895 if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
896 return 0;
897
931db6a3 898 lpj = &boot_cpu_data.loops_per_jiffy;
2dbe06fa 899#ifdef CONFIG_SMP
931db6a3 900 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
2dbe06fa 901 lpj = &cpu_data(freq->cpu).loops_per_jiffy;
2dbe06fa
AK
902#endif
903
904 if (!ref_freq) {
905 ref_freq = freq->old;
906 loops_per_jiffy_ref = *lpj;
907 tsc_khz_ref = tsc_khz;
908 }
909 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
0b443ead 910 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
878f4f53 911 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
2dbe06fa
AK
912
913 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
914 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
915 mark_tsc_unstable("cpufreq changes");
2dbe06fa 916
3896c329
PZ
917 set_cyc2ns_scale(tsc_khz, freq->cpu);
918 }
2dbe06fa
AK
919
920 return 0;
921}
922
923static struct notifier_block time_cpufreq_notifier_block = {
924 .notifier_call = time_cpufreq_notifier
925};
926
927static int __init cpufreq_tsc(void)
928{
060700b5
LT
929 if (!cpu_has_tsc)
930 return 0;
931 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
932 return 0;
2dbe06fa
AK
933 cpufreq_register_notifier(&time_cpufreq_notifier_block,
934 CPUFREQ_TRANSITION_NOTIFIER);
935 return 0;
936}
937
938core_initcall(cpufreq_tsc);
939
940#endif /* CONFIG_CPU_FREQ */
8fbbc4b4
AK
941
942/* clocksource code */
943
944static struct clocksource clocksource_tsc;
945
946/*
09ec5442 947 * We used to compare the TSC to the cycle_last value in the clocksource
8fbbc4b4
AK
948 * structure to avoid a nasty time-warp. This can be observed in a
949 * very small window right after one CPU updated cycle_last under
950 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
951 * is smaller than the cycle_last reference value due to a TSC which
952 * is slighty behind. This delta is nowhere else observable, but in
953 * that case it results in a forward time jump in the range of hours
954 * due to the unsigned delta calculation of the time keeping core
955 * code, which is necessary to support wrapping clocksources like pm
956 * timer.
09ec5442
TG
957 *
958 * This sanity check is now done in the core timekeeping code.
959 * checking the result of read_tsc() - cycle_last for being negative.
960 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
8fbbc4b4 961 */
8e19608e 962static cycle_t read_tsc(struct clocksource *cs)
8fbbc4b4 963{
09ec5442 964 return (cycle_t)get_cycles();
1be39679
MS
965}
966
09ec5442
TG
967/*
968 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
969 */
8fbbc4b4
AK
970static struct clocksource clocksource_tsc = {
971 .name = "tsc",
972 .rating = 300,
973 .read = read_tsc,
974 .mask = CLOCKSOURCE_MASK(64),
8fbbc4b4
AK
975 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
976 CLOCK_SOURCE_MUST_VERIFY,
98d0ac38 977 .archdata = { .vclock_mode = VCLOCK_TSC },
8fbbc4b4
AK
978};
979
980void mark_tsc_unstable(char *reason)
981{
982 if (!tsc_unstable) {
983 tsc_unstable = 1;
35af99e6 984 clear_sched_clock_stable();
e82b8e4e 985 disable_sched_clock_irqtime();
c767a54b 986 pr_info("Marking TSC unstable due to %s\n", reason);
8fbbc4b4
AK
987 /* Change only the rating, when not registered */
988 if (clocksource_tsc.mult)
7285dd7f
TG
989 clocksource_mark_unstable(&clocksource_tsc);
990 else {
991 clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
8fbbc4b4 992 clocksource_tsc.rating = 0;
7285dd7f 993 }
8fbbc4b4
AK
994 }
995}
996
997EXPORT_SYMBOL_GPL(mark_tsc_unstable);
998
395628ef
AK
999static void __init check_system_tsc_reliable(void)
1000{
8fbbc4b4 1001#ifdef CONFIG_MGEODE_LX
395628ef 1002 /* RTSC counts during suspend */
8fbbc4b4 1003#define RTSC_SUSP 0x100
8fbbc4b4
AK
1004 unsigned long res_low, res_high;
1005
1006 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
00097c4f 1007 /* Geode_LX - the OLPC CPU has a very reliable TSC */
8fbbc4b4 1008 if (res_low & RTSC_SUSP)
395628ef 1009 tsc_clocksource_reliable = 1;
8fbbc4b4 1010#endif
395628ef
AK
1011 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1012 tsc_clocksource_reliable = 1;
1013}
8fbbc4b4
AK
1014
1015/*
1016 * Make an educated guess if the TSC is trustworthy and synchronized
1017 * over all CPUs.
1018 */
148f9bb8 1019int unsynchronized_tsc(void)
8fbbc4b4
AK
1020{
1021 if (!cpu_has_tsc || tsc_unstable)
1022 return 1;
1023
3e5095d1 1024#ifdef CONFIG_SMP
8fbbc4b4
AK
1025 if (apic_is_clustered_box())
1026 return 1;
1027#endif
1028
1029 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1030 return 0;
d3b8f889 1031
1032 if (tsc_clocksource_reliable)
1033 return 0;
8fbbc4b4
AK
1034 /*
1035 * Intel systems are normally all synchronized.
1036 * Exceptions must mark TSC as unstable:
1037 */
1038 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1039 /* assume multi socket systems are not synchronized: */
1040 if (num_possible_cpus() > 1)
d3b8f889 1041 return 1;
8fbbc4b4
AK
1042 }
1043
d3b8f889 1044 return 0;
8fbbc4b4
AK
1045}
1046
08ec0c58
JS
1047
1048static void tsc_refine_calibration_work(struct work_struct *work);
1049static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1050/**
1051 * tsc_refine_calibration_work - Further refine tsc freq calibration
1052 * @work - ignored.
1053 *
1054 * This functions uses delayed work over a period of a
1055 * second to further refine the TSC freq value. Since this is
1056 * timer based, instead of loop based, we don't block the boot
1057 * process while this longer calibration is done.
1058 *
0d2eb44f 1059 * If there are any calibration anomalies (too many SMIs, etc),
08ec0c58
JS
1060 * or the refined calibration is off by 1% of the fast early
1061 * calibration, we throw out the new calibration and use the
1062 * early calibration.
1063 */
1064static void tsc_refine_calibration_work(struct work_struct *work)
1065{
1066 static u64 tsc_start = -1, ref_start;
1067 static int hpet;
1068 u64 tsc_stop, ref_stop, delta;
1069 unsigned long freq;
1070
1071 /* Don't bother refining TSC on unstable systems */
1072 if (check_tsc_unstable())
1073 goto out;
1074
1075 /*
1076 * Since the work is started early in boot, we may be
1077 * delayed the first time we expire. So set the workqueue
1078 * again once we know timers are working.
1079 */
1080 if (tsc_start == -1) {
1081 /*
1082 * Only set hpet once, to avoid mixing hardware
1083 * if the hpet becomes enabled later.
1084 */
1085 hpet = is_hpet_enabled();
1086 schedule_delayed_work(&tsc_irqwork, HZ);
1087 tsc_start = tsc_read_refs(&ref_start, hpet);
1088 return;
1089 }
1090
1091 tsc_stop = tsc_read_refs(&ref_stop, hpet);
1092
1093 /* hpet or pmtimer available ? */
62627bec 1094 if (ref_start == ref_stop)
08ec0c58
JS
1095 goto out;
1096
1097 /* Check, whether the sampling was disturbed by an SMI */
1098 if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1099 goto out;
1100
1101 delta = tsc_stop - tsc_start;
1102 delta *= 1000000LL;
1103 if (hpet)
1104 freq = calc_hpet_ref(delta, ref_start, ref_stop);
1105 else
1106 freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1107
1108 /* Make sure we're within 1% */
1109 if (abs(tsc_khz - freq) > tsc_khz/100)
1110 goto out;
1111
1112 tsc_khz = freq;
c767a54b
JP
1113 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1114 (unsigned long)tsc_khz / 1000,
1115 (unsigned long)tsc_khz % 1000);
08ec0c58
JS
1116
1117out:
1118 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1119}
1120
1121
1122static int __init init_tsc_clocksource(void)
8fbbc4b4 1123{
29fe359c 1124 if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
a8760eca
TG
1125 return 0;
1126
395628ef
AK
1127 if (tsc_clocksource_reliable)
1128 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
8fbbc4b4
AK
1129 /* lower the rating if we already know its unstable: */
1130 if (check_tsc_unstable()) {
1131 clocksource_tsc.rating = 0;
1132 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
1133 }
57779dc2 1134
82f9c080
FT
1135 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1136 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1137
57779dc2
AK
1138 /*
1139 * Trust the results of the earlier calibration on systems
1140 * exporting a reliable TSC.
1141 */
1142 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
1143 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1144 return 0;
1145 }
1146
08ec0c58
JS
1147 schedule_delayed_work(&tsc_irqwork, 0);
1148 return 0;
8fbbc4b4 1149}
08ec0c58
JS
1150/*
1151 * We use device_initcall here, to ensure we run after the hpet
1152 * is fully initialized, which may occur at fs_initcall time.
1153 */
1154device_initcall(init_tsc_clocksource);
8fbbc4b4
AK
1155
1156void __init tsc_init(void)
1157{
1158 u64 lpj;
1159 int cpu;
1160
845b3944
TG
1161 x86_init.timers.tsc_pre_init();
1162
b47dcbdc
AL
1163 if (!cpu_has_tsc) {
1164 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
8fbbc4b4 1165 return;
b47dcbdc 1166 }
8fbbc4b4 1167
2d826404 1168 tsc_khz = x86_platform.calibrate_tsc();
e93ef949 1169 cpu_khz = tsc_khz;
8fbbc4b4 1170
e93ef949 1171 if (!tsc_khz) {
8fbbc4b4 1172 mark_tsc_unstable("could not calculate TSC khz");
b47dcbdc 1173 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
8fbbc4b4
AK
1174 return;
1175 }
1176
c767a54b
JP
1177 pr_info("Detected %lu.%03lu MHz processor\n",
1178 (unsigned long)cpu_khz / 1000,
1179 (unsigned long)cpu_khz % 1000);
8fbbc4b4
AK
1180
1181 /*
1182 * Secondary CPUs do not run through tsc_init(), so set up
1183 * all the scale factors for all CPUs, assuming the same
1184 * speed as the bootup CPU. (cpufreq notifiers will fix this
1185 * up if their speed diverges)
1186 */
20d1c86a
PZ
1187 for_each_possible_cpu(cpu) {
1188 cyc2ns_init(cpu);
8fbbc4b4 1189 set_cyc2ns_scale(cpu_khz, cpu);
20d1c86a 1190 }
8fbbc4b4
AK
1191
1192 if (tsc_disabled > 0)
1193 return;
1194
1195 /* now allow native_sched_clock() to use rdtsc */
10b033d4 1196
8fbbc4b4 1197 tsc_disabled = 0;
10b033d4 1198 static_key_slow_inc(&__use_tsc);
8fbbc4b4 1199
e82b8e4e
VP
1200 if (!no_sched_irq_time)
1201 enable_sched_clock_irqtime();
1202
70de9a97
AK
1203 lpj = ((u64)tsc_khz * 1000);
1204 do_div(lpj, HZ);
1205 lpj_fine = lpj;
1206
8fbbc4b4 1207 use_tsc_delay();
8fbbc4b4
AK
1208
1209 if (unsynchronized_tsc())
1210 mark_tsc_unstable("TSCs unsynchronized");
1211
395628ef 1212 check_system_tsc_reliable();
8fbbc4b4
AK
1213}
1214
b565201c
JS
1215#ifdef CONFIG_SMP
1216/*
1217 * If we have a constant TSC and are using the TSC for the delay loop,
1218 * we can skip clock calibration if another cpu in the same socket has already
1219 * been calibrated. This assumes that CONSTANT_TSC applies to all
1220 * cpus in the socket - this should be a safe assumption.
1221 */
148f9bb8 1222unsigned long calibrate_delay_is_known(void)
b565201c
JS
1223{
1224 int i, cpu = smp_processor_id();
1225
1226 if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
1227 return 0;
1228
1229 for_each_online_cpu(i)
1230 if (cpu_data(i).phys_proc_id == cpu_data(cpu).phys_proc_id)
1231 return cpu_data(i).loops_per_jiffy;
1232 return 0;
1233}
1234#endif