x86: Add a synthetic TSC_RELIABLE feature bit.
[linux-2.6-block.git] / arch / x86 / kernel / tsc.c
CommitLineData
bfc0f594 1#include <linux/kernel.h>
0ef95533
AK
2#include <linux/sched.h>
3#include <linux/init.h>
4#include <linux/module.h>
5#include <linux/timer.h>
bfc0f594 6#include <linux/acpi_pmtmr.h>
2dbe06fa 7#include <linux/cpufreq.h>
8fbbc4b4
AK
8#include <linux/dmi.h>
9#include <linux/delay.h>
10#include <linux/clocksource.h>
11#include <linux/percpu.h>
bfc0f594
AK
12
13#include <asm/hpet.h>
8fbbc4b4
AK
14#include <asm/timer.h>
15#include <asm/vgtod.h>
16#include <asm/time.h>
17#include <asm/delay.h>
88b094fb 18#include <asm/hypervisor.h>
0ef95533
AK
19
20unsigned int cpu_khz; /* TSC clocks / usec, not used here */
21EXPORT_SYMBOL(cpu_khz);
22unsigned int tsc_khz;
23EXPORT_SYMBOL(tsc_khz);
24
25/*
26 * TSC can be unstable due to cpufreq or due to unsynced TSCs
27 */
8fbbc4b4 28static int tsc_unstable;
0ef95533
AK
29
30/* native_sched_clock() is called before tsc_init(), so
31 we must start with the TSC soft disabled to prevent
32 erroneous rdtsc usage on !cpu_has_tsc processors */
8fbbc4b4 33static int tsc_disabled = -1;
0ef95533
AK
34
35/*
36 * Scheduler clock - returns current time in nanosec units.
37 */
38u64 native_sched_clock(void)
39{
40 u64 this_offset;
41
42 /*
43 * Fall back to jiffies if there's no TSC available:
44 * ( But note that we still use it if the TSC is marked
45 * unstable. We do this because unlike Time Of Day,
46 * the scheduler clock tolerates small errors and it's
47 * very important for it to be as fast as the platform
48 * can achive it. )
49 */
50 if (unlikely(tsc_disabled)) {
51 /* No locking but a rare wrong value is not a big deal: */
52 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
53 }
54
55 /* read the Time Stamp Counter: */
56 rdtscll(this_offset);
57
58 /* return the value in ns */
59 return cycles_2_ns(this_offset);
60}
61
62/* We need to define a real function for sched_clock, to override the
63 weak default version */
64#ifdef CONFIG_PARAVIRT
65unsigned long long sched_clock(void)
66{
67 return paravirt_sched_clock();
68}
69#else
70unsigned long long
71sched_clock(void) __attribute__((alias("native_sched_clock")));
72#endif
73
74int check_tsc_unstable(void)
75{
76 return tsc_unstable;
77}
78EXPORT_SYMBOL_GPL(check_tsc_unstable);
79
80#ifdef CONFIG_X86_TSC
81int __init notsc_setup(char *str)
82{
83 printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
84 "cannot disable TSC completely.\n");
85 tsc_disabled = 1;
86 return 1;
87}
88#else
89/*
90 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
91 * in cpu/common.c
92 */
93int __init notsc_setup(char *str)
94{
95 setup_clear_cpu_cap(X86_FEATURE_TSC);
96 return 1;
97}
98#endif
99
100__setup("notsc", notsc_setup);
bfc0f594
AK
101
102#define MAX_RETRIES 5
103#define SMI_TRESHOLD 50000
104
105/*
106 * Read TSC and the reference counters. Take care of SMI disturbance
107 */
827014be 108static u64 tsc_read_refs(u64 *p, int hpet)
bfc0f594
AK
109{
110 u64 t1, t2;
111 int i;
112
113 for (i = 0; i < MAX_RETRIES; i++) {
114 t1 = get_cycles();
115 if (hpet)
827014be 116 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
bfc0f594 117 else
827014be 118 *p = acpi_pm_read_early();
bfc0f594
AK
119 t2 = get_cycles();
120 if ((t2 - t1) < SMI_TRESHOLD)
121 return t2;
122 }
123 return ULLONG_MAX;
124}
125
d683ef7a
TG
126/*
127 * Calculate the TSC frequency from HPET reference
bfc0f594 128 */
d683ef7a 129static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
bfc0f594 130{
d683ef7a 131 u64 tmp;
bfc0f594 132
d683ef7a
TG
133 if (hpet2 < hpet1)
134 hpet2 += 0x100000000ULL;
135 hpet2 -= hpet1;
136 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
137 do_div(tmp, 1000000);
138 do_div(deltatsc, tmp);
139
140 return (unsigned long) deltatsc;
141}
142
143/*
144 * Calculate the TSC frequency from PMTimer reference
145 */
146static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
147{
148 u64 tmp;
bfc0f594 149
d683ef7a
TG
150 if (!pm1 && !pm2)
151 return ULONG_MAX;
152
153 if (pm2 < pm1)
154 pm2 += (u64)ACPI_PM_OVRRUN;
155 pm2 -= pm1;
156 tmp = pm2 * 1000000000LL;
157 do_div(tmp, PMTMR_TICKS_PER_SEC);
158 do_div(deltatsc, tmp);
159
160 return (unsigned long) deltatsc;
161}
162
a977c400 163#define CAL_MS 10
cce3e057 164#define CAL_LATCH (CLOCK_TICK_RATE / (1000 / CAL_MS))
a977c400
TG
165#define CAL_PIT_LOOPS 1000
166
167#define CAL2_MS 50
168#define CAL2_LATCH (CLOCK_TICK_RATE / (1000 / CAL2_MS))
169#define CAL2_PIT_LOOPS 5000
170
cce3e057 171
ec0c15af
LT
172/*
173 * Try to calibrate the TSC against the Programmable
174 * Interrupt Timer and return the frequency of the TSC
175 * in kHz.
176 *
177 * Return ULONG_MAX on failure to calibrate.
178 */
a977c400 179static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
ec0c15af
LT
180{
181 u64 tsc, t1, t2, delta;
182 unsigned long tscmin, tscmax;
183 int pitcnt;
184
185 /* Set the Gate high, disable speaker */
186 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
187
188 /*
189 * Setup CTC channel 2* for mode 0, (interrupt on terminal
190 * count mode), binary count. Set the latch register to 50ms
191 * (LSB then MSB) to begin countdown.
192 */
193 outb(0xb0, 0x43);
a977c400
TG
194 outb(latch & 0xff, 0x42);
195 outb(latch >> 8, 0x42);
ec0c15af
LT
196
197 tsc = t1 = t2 = get_cycles();
198
199 pitcnt = 0;
200 tscmax = 0;
201 tscmin = ULONG_MAX;
202 while ((inb(0x61) & 0x20) == 0) {
203 t2 = get_cycles();
204 delta = t2 - tsc;
205 tsc = t2;
206 if ((unsigned long) delta < tscmin)
207 tscmin = (unsigned int) delta;
208 if ((unsigned long) delta > tscmax)
209 tscmax = (unsigned int) delta;
210 pitcnt++;
211 }
212
213 /*
214 * Sanity checks:
215 *
a977c400 216 * If we were not able to read the PIT more than loopmin
ec0c15af
LT
217 * times, then we have been hit by a massive SMI
218 *
219 * If the maximum is 10 times larger than the minimum,
220 * then we got hit by an SMI as well.
221 */
a977c400 222 if (pitcnt < loopmin || tscmax > 10 * tscmin)
ec0c15af
LT
223 return ULONG_MAX;
224
225 /* Calculate the PIT value */
226 delta = t2 - t1;
a977c400 227 do_div(delta, ms);
ec0c15af
LT
228 return delta;
229}
230
6ac40ed0
LT
231/*
232 * This reads the current MSB of the PIT counter, and
233 * checks if we are running on sufficiently fast and
234 * non-virtualized hardware.
235 *
236 * Our expectations are:
237 *
238 * - the PIT is running at roughly 1.19MHz
239 *
240 * - each IO is going to take about 1us on real hardware,
241 * but we allow it to be much faster (by a factor of 10) or
242 * _slightly_ slower (ie we allow up to a 2us read+counter
243 * update - anything else implies a unacceptably slow CPU
244 * or PIT for the fast calibration to work.
245 *
246 * - with 256 PIT ticks to read the value, we have 214us to
247 * see the same MSB (and overhead like doing a single TSC
248 * read per MSB value etc).
249 *
250 * - We're doing 2 reads per loop (LSB, MSB), and we expect
251 * them each to take about a microsecond on real hardware.
252 * So we expect a count value of around 100. But we'll be
253 * generous, and accept anything over 50.
254 *
255 * - if the PIT is stuck, and we see *many* more reads, we
256 * return early (and the next caller of pit_expect_msb()
257 * then consider it a failure when they don't see the
258 * next expected value).
259 *
260 * These expectations mean that we know that we have seen the
261 * transition from one expected value to another with a fairly
262 * high accuracy, and we didn't miss any events. We can thus
263 * use the TSC value at the transitions to calculate a pretty
264 * good value for the TSC frequencty.
265 */
266static inline int pit_expect_msb(unsigned char val)
267{
268 int count = 0;
bfc0f594 269
6ac40ed0
LT
270 for (count = 0; count < 50000; count++) {
271 /* Ignore LSB */
272 inb(0x42);
273 if (inb(0x42) != val)
274 break;
275 }
276 return count > 50;
277}
278
279/*
280 * How many MSB values do we want to see? We aim for a
281 * 15ms calibration, which assuming a 2us counter read
282 * error should give us roughly 150 ppm precision for
283 * the calibration.
284 */
285#define QUICK_PIT_MS 15
286#define QUICK_PIT_ITERATIONS (QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
bfc0f594 287
6ac40ed0
LT
288static unsigned long quick_pit_calibrate(void)
289{
290 /* Set the Gate high, disable speaker */
bfc0f594
AK
291 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
292
6ac40ed0
LT
293 /*
294 * Counter 2, mode 0 (one-shot), binary count
295 *
296 * NOTE! Mode 2 decrements by two (and then the
297 * output is flipped each time, giving the same
298 * final output frequency as a decrement-by-one),
299 * so mode 0 is much better when looking at the
300 * individual counts.
301 */
bfc0f594 302 outb(0xb0, 0x43);
bfc0f594 303
6ac40ed0
LT
304 /* Start at 0xffff */
305 outb(0xff, 0x42);
306 outb(0xff, 0x42);
307
308 if (pit_expect_msb(0xff)) {
309 int i;
310 u64 t1, t2, delta;
311 unsigned char expect = 0xfe;
312
313 t1 = get_cycles();
314 for (i = 0; i < QUICK_PIT_ITERATIONS; i++, expect--) {
315 if (!pit_expect_msb(expect))
316 goto failed;
317 }
318 t2 = get_cycles();
319
4156e9a8
IM
320 /*
321 * Make sure we can rely on the second TSC timestamp:
322 */
5df45515 323 if (!pit_expect_msb(expect))
4156e9a8
IM
324 goto failed;
325
6ac40ed0
LT
326 /*
327 * Ok, if we get here, then we've seen the
328 * MSB of the PIT decrement QUICK_PIT_ITERATIONS
329 * times, and each MSB had many hits, so we never
330 * had any sudden jumps.
331 *
332 * As a result, we can depend on there not being
333 * any odd delays anywhere, and the TSC reads are
334 * reliable.
335 *
336 * kHz = ticks / time-in-seconds / 1000;
337 * kHz = (t2 - t1) / (QPI * 256 / PIT_TICK_RATE) / 1000
338 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (QPI * 256 * 1000)
339 */
340 delta = (t2 - t1)*PIT_TICK_RATE;
341 do_div(delta, QUICK_PIT_ITERATIONS*256*1000);
342 printk("Fast TSC calibration using PIT\n");
343 return delta;
344 }
345failed:
346 return 0;
347}
ec0c15af 348
bfc0f594 349/**
e93ef949 350 * native_calibrate_tsc - calibrate the tsc on boot
bfc0f594 351 */
e93ef949 352unsigned long native_calibrate_tsc(void)
bfc0f594 353{
827014be 354 u64 tsc1, tsc2, delta, ref1, ref2;
fbb16e24 355 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
88b094fb 356 unsigned long flags, latch, ms, fast_calibrate, tsc_khz;
a977c400 357 int hpet = is_hpet_enabled(), i, loopmin;
bfc0f594 358
88b094fb
AK
359 tsc_khz = get_hypervisor_tsc_freq();
360 if (tsc_khz) {
361 printk(KERN_INFO "TSC: Frequency read from the hypervisor\n");
362 return tsc_khz;
363 }
364
6ac40ed0
LT
365 local_irq_save(flags);
366 fast_calibrate = quick_pit_calibrate();
bfc0f594 367 local_irq_restore(flags);
6ac40ed0
LT
368 if (fast_calibrate)
369 return fast_calibrate;
bfc0f594 370
fbb16e24
TG
371 /*
372 * Run 5 calibration loops to get the lowest frequency value
373 * (the best estimate). We use two different calibration modes
374 * here:
375 *
376 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
377 * load a timeout of 50ms. We read the time right after we
378 * started the timer and wait until the PIT count down reaches
379 * zero. In each wait loop iteration we read the TSC and check
380 * the delta to the previous read. We keep track of the min
381 * and max values of that delta. The delta is mostly defined
382 * by the IO time of the PIT access, so we can detect when a
383 * SMI/SMM disturbance happend between the two reads. If the
384 * maximum time is significantly larger than the minimum time,
385 * then we discard the result and have another try.
386 *
387 * 2) Reference counter. If available we use the HPET or the
388 * PMTIMER as a reference to check the sanity of that value.
389 * We use separate TSC readouts and check inside of the
390 * reference read for a SMI/SMM disturbance. We dicard
391 * disturbed values here as well. We do that around the PIT
392 * calibration delay loop as we have to wait for a certain
393 * amount of time anyway.
394 */
a977c400
TG
395
396 /* Preset PIT loop values */
397 latch = CAL_LATCH;
398 ms = CAL_MS;
399 loopmin = CAL_PIT_LOOPS;
400
401 for (i = 0; i < 3; i++) {
ec0c15af 402 unsigned long tsc_pit_khz;
fbb16e24
TG
403
404 /*
405 * Read the start value and the reference count of
ec0c15af
LT
406 * hpet/pmtimer when available. Then do the PIT
407 * calibration, which will take at least 50ms, and
408 * read the end value.
fbb16e24 409 */
ec0c15af 410 local_irq_save(flags);
827014be 411 tsc1 = tsc_read_refs(&ref1, hpet);
a977c400 412 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
827014be 413 tsc2 = tsc_read_refs(&ref2, hpet);
fbb16e24
TG
414 local_irq_restore(flags);
415
ec0c15af
LT
416 /* Pick the lowest PIT TSC calibration so far */
417 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
fbb16e24
TG
418
419 /* hpet or pmtimer available ? */
827014be 420 if (!hpet && !ref1 && !ref2)
fbb16e24
TG
421 continue;
422
423 /* Check, whether the sampling was disturbed by an SMI */
424 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
425 continue;
426
427 tsc2 = (tsc2 - tsc1) * 1000000LL;
d683ef7a 428 if (hpet)
827014be 429 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
d683ef7a 430 else
827014be 431 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
fbb16e24 432
fbb16e24 433 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
a977c400
TG
434
435 /* Check the reference deviation */
436 delta = ((u64) tsc_pit_min) * 100;
437 do_div(delta, tsc_ref_min);
438
439 /*
440 * If both calibration results are inside a 10% window
441 * then we can be sure, that the calibration
442 * succeeded. We break out of the loop right away. We
443 * use the reference value, as it is more precise.
444 */
445 if (delta >= 90 && delta <= 110) {
446 printk(KERN_INFO
447 "TSC: PIT calibration matches %s. %d loops\n",
448 hpet ? "HPET" : "PMTIMER", i + 1);
449 return tsc_ref_min;
fbb16e24
TG
450 }
451
a977c400
TG
452 /*
453 * Check whether PIT failed more than once. This
454 * happens in virtualized environments. We need to
455 * give the virtual PC a slightly longer timeframe for
456 * the HPET/PMTIMER to make the result precise.
457 */
458 if (i == 1 && tsc_pit_min == ULONG_MAX) {
459 latch = CAL2_LATCH;
460 ms = CAL2_MS;
461 loopmin = CAL2_PIT_LOOPS;
462 }
fbb16e24 463 }
bfc0f594
AK
464
465 /*
fbb16e24 466 * Now check the results.
bfc0f594 467 */
fbb16e24
TG
468 if (tsc_pit_min == ULONG_MAX) {
469 /* PIT gave no useful value */
de014d61 470 printk(KERN_WARNING "TSC: Unable to calibrate against PIT\n");
fbb16e24
TG
471
472 /* We don't have an alternative source, disable TSC */
827014be 473 if (!hpet && !ref1 && !ref2) {
fbb16e24
TG
474 printk("TSC: No reference (HPET/PMTIMER) available\n");
475 return 0;
476 }
477
478 /* The alternative source failed as well, disable TSC */
479 if (tsc_ref_min == ULONG_MAX) {
480 printk(KERN_WARNING "TSC: HPET/PMTIMER calibration "
a977c400 481 "failed.\n");
fbb16e24
TG
482 return 0;
483 }
484
485 /* Use the alternative source */
486 printk(KERN_INFO "TSC: using %s reference calibration\n",
487 hpet ? "HPET" : "PMTIMER");
488
489 return tsc_ref_min;
490 }
bfc0f594 491
fbb16e24 492 /* We don't have an alternative source, use the PIT calibration value */
827014be 493 if (!hpet && !ref1 && !ref2) {
fbb16e24
TG
494 printk(KERN_INFO "TSC: Using PIT calibration value\n");
495 return tsc_pit_min;
bfc0f594
AK
496 }
497
fbb16e24
TG
498 /* The alternative source failed, use the PIT calibration value */
499 if (tsc_ref_min == ULONG_MAX) {
a977c400
TG
500 printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed. "
501 "Using PIT calibration\n");
fbb16e24 502 return tsc_pit_min;
bfc0f594
AK
503 }
504
fbb16e24
TG
505 /*
506 * The calibration values differ too much. In doubt, we use
507 * the PIT value as we know that there are PMTIMERs around
a977c400 508 * running at double speed. At least we let the user know:
fbb16e24 509 */
a977c400
TG
510 printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n",
511 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
fbb16e24
TG
512 printk(KERN_INFO "TSC: Using PIT calibration value\n");
513 return tsc_pit_min;
bfc0f594
AK
514}
515
bfc0f594
AK
516#ifdef CONFIG_X86_32
517/* Only called from the Powernow K7 cpu freq driver */
518int recalibrate_cpu_khz(void)
519{
520#ifndef CONFIG_SMP
521 unsigned long cpu_khz_old = cpu_khz;
522
523 if (cpu_has_tsc) {
e93ef949
AK
524 tsc_khz = calibrate_tsc();
525 cpu_khz = tsc_khz;
bfc0f594
AK
526 cpu_data(0).loops_per_jiffy =
527 cpufreq_scale(cpu_data(0).loops_per_jiffy,
528 cpu_khz_old, cpu_khz);
529 return 0;
530 } else
531 return -ENODEV;
532#else
533 return -ENODEV;
534#endif
535}
536
537EXPORT_SYMBOL(recalibrate_cpu_khz);
538
539#endif /* CONFIG_X86_32 */
2dbe06fa
AK
540
541/* Accelerators for sched_clock()
542 * convert from cycles(64bits) => nanoseconds (64bits)
543 * basic equation:
544 * ns = cycles / (freq / ns_per_sec)
545 * ns = cycles * (ns_per_sec / freq)
546 * ns = cycles * (10^9 / (cpu_khz * 10^3))
547 * ns = cycles * (10^6 / cpu_khz)
548 *
549 * Then we use scaling math (suggested by george@mvista.com) to get:
550 * ns = cycles * (10^6 * SC / cpu_khz) / SC
551 * ns = cycles * cyc2ns_scale / SC
552 *
553 * And since SC is a constant power of two, we can convert the div
554 * into a shift.
555 *
556 * We can use khz divisor instead of mhz to keep a better precision, since
557 * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
558 * (mathieu.desnoyers@polymtl.ca)
559 *
560 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
561 */
562
563DEFINE_PER_CPU(unsigned long, cyc2ns);
564
8fbbc4b4 565static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
2dbe06fa
AK
566{
567 unsigned long long tsc_now, ns_now;
568 unsigned long flags, *scale;
569
570 local_irq_save(flags);
571 sched_clock_idle_sleep_event();
572
573 scale = &per_cpu(cyc2ns, cpu);
574
575 rdtscll(tsc_now);
576 ns_now = __cycles_2_ns(tsc_now);
577
578 if (cpu_khz)
579 *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
580
581 sched_clock_idle_wakeup_event(0);
582 local_irq_restore(flags);
583}
584
585#ifdef CONFIG_CPU_FREQ
586
587/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
588 * changes.
589 *
590 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
591 * not that important because current Opteron setups do not support
592 * scaling on SMP anyroads.
593 *
594 * Should fix up last_tsc too. Currently gettimeofday in the
595 * first tick after the change will be slightly wrong.
596 */
597
598static unsigned int ref_freq;
599static unsigned long loops_per_jiffy_ref;
600static unsigned long tsc_khz_ref;
601
602static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
603 void *data)
604{
605 struct cpufreq_freqs *freq = data;
606 unsigned long *lpj, dummy;
607
608 if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
609 return 0;
610
611 lpj = &dummy;
612 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
613#ifdef CONFIG_SMP
614 lpj = &cpu_data(freq->cpu).loops_per_jiffy;
615#else
616 lpj = &boot_cpu_data.loops_per_jiffy;
617#endif
618
619 if (!ref_freq) {
620 ref_freq = freq->old;
621 loops_per_jiffy_ref = *lpj;
622 tsc_khz_ref = tsc_khz;
623 }
624 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
625 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
626 (val == CPUFREQ_RESUMECHANGE)) {
627 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
628
629 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
630 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
631 mark_tsc_unstable("cpufreq changes");
632 }
633
52a8968c 634 set_cyc2ns_scale(tsc_khz, freq->cpu);
2dbe06fa
AK
635
636 return 0;
637}
638
639static struct notifier_block time_cpufreq_notifier_block = {
640 .notifier_call = time_cpufreq_notifier
641};
642
643static int __init cpufreq_tsc(void)
644{
060700b5
LT
645 if (!cpu_has_tsc)
646 return 0;
647 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
648 return 0;
2dbe06fa
AK
649 cpufreq_register_notifier(&time_cpufreq_notifier_block,
650 CPUFREQ_TRANSITION_NOTIFIER);
651 return 0;
652}
653
654core_initcall(cpufreq_tsc);
655
656#endif /* CONFIG_CPU_FREQ */
8fbbc4b4
AK
657
658/* clocksource code */
659
660static struct clocksource clocksource_tsc;
661
662/*
663 * We compare the TSC to the cycle_last value in the clocksource
664 * structure to avoid a nasty time-warp. This can be observed in a
665 * very small window right after one CPU updated cycle_last under
666 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
667 * is smaller than the cycle_last reference value due to a TSC which
668 * is slighty behind. This delta is nowhere else observable, but in
669 * that case it results in a forward time jump in the range of hours
670 * due to the unsigned delta calculation of the time keeping core
671 * code, which is necessary to support wrapping clocksources like pm
672 * timer.
673 */
674static cycle_t read_tsc(void)
675{
676 cycle_t ret = (cycle_t)get_cycles();
677
678 return ret >= clocksource_tsc.cycle_last ?
679 ret : clocksource_tsc.cycle_last;
680}
681
431ceb83 682#ifdef CONFIG_X86_64
8fbbc4b4
AK
683static cycle_t __vsyscall_fn vread_tsc(void)
684{
685 cycle_t ret = (cycle_t)vget_cycles();
686
687 return ret >= __vsyscall_gtod_data.clock.cycle_last ?
688 ret : __vsyscall_gtod_data.clock.cycle_last;
689}
431ceb83 690#endif
8fbbc4b4
AK
691
692static struct clocksource clocksource_tsc = {
693 .name = "tsc",
694 .rating = 300,
695 .read = read_tsc,
696 .mask = CLOCKSOURCE_MASK(64),
697 .shift = 22,
698 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
699 CLOCK_SOURCE_MUST_VERIFY,
700#ifdef CONFIG_X86_64
701 .vread = vread_tsc,
702#endif
703};
704
705void mark_tsc_unstable(char *reason)
706{
707 if (!tsc_unstable) {
708 tsc_unstable = 1;
709 printk("Marking TSC unstable due to %s\n", reason);
710 /* Change only the rating, when not registered */
711 if (clocksource_tsc.mult)
712 clocksource_change_rating(&clocksource_tsc, 0);
713 else
714 clocksource_tsc.rating = 0;
715 }
716}
717
718EXPORT_SYMBOL_GPL(mark_tsc_unstable);
719
720static int __init dmi_mark_tsc_unstable(const struct dmi_system_id *d)
721{
722 printk(KERN_NOTICE "%s detected: marking TSC unstable.\n",
723 d->ident);
724 tsc_unstable = 1;
725 return 0;
726}
727
728/* List of systems that have known TSC problems */
729static struct dmi_system_id __initdata bad_tsc_dmi_table[] = {
730 {
731 .callback = dmi_mark_tsc_unstable,
732 .ident = "IBM Thinkpad 380XD",
733 .matches = {
734 DMI_MATCH(DMI_BOARD_VENDOR, "IBM"),
735 DMI_MATCH(DMI_BOARD_NAME, "2635FA0"),
736 },
737 },
738 {}
739};
740
741/*
742 * Geode_LX - the OLPC CPU has a possibly a very reliable TSC
743 */
744#ifdef CONFIG_MGEODE_LX
745/* RTSC counts during suspend */
746#define RTSC_SUSP 0x100
747
748static void __init check_geode_tsc_reliable(void)
749{
750 unsigned long res_low, res_high;
751
752 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
753 if (res_low & RTSC_SUSP)
754 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
755}
756#else
757static inline void check_geode_tsc_reliable(void) { }
758#endif
759
760/*
761 * Make an educated guess if the TSC is trustworthy and synchronized
762 * over all CPUs.
763 */
764__cpuinit int unsynchronized_tsc(void)
765{
766 if (!cpu_has_tsc || tsc_unstable)
767 return 1;
768
017d9d20 769#ifdef CONFIG_X86_SMP
8fbbc4b4
AK
770 if (apic_is_clustered_box())
771 return 1;
772#endif
773
774 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
775 return 0;
776 /*
777 * Intel systems are normally all synchronized.
778 * Exceptions must mark TSC as unstable:
779 */
780 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
781 /* assume multi socket systems are not synchronized: */
782 if (num_possible_cpus() > 1)
783 tsc_unstable = 1;
784 }
785
786 return tsc_unstable;
787}
788
789static void __init init_tsc_clocksource(void)
790{
791 clocksource_tsc.mult = clocksource_khz2mult(tsc_khz,
792 clocksource_tsc.shift);
793 /* lower the rating if we already know its unstable: */
794 if (check_tsc_unstable()) {
795 clocksource_tsc.rating = 0;
796 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
797 }
798 clocksource_register(&clocksource_tsc);
799}
800
801void __init tsc_init(void)
802{
803 u64 lpj;
804 int cpu;
805
806 if (!cpu_has_tsc)
807 return;
808
e93ef949
AK
809 tsc_khz = calibrate_tsc();
810 cpu_khz = tsc_khz;
8fbbc4b4 811
e93ef949 812 if (!tsc_khz) {
8fbbc4b4
AK
813 mark_tsc_unstable("could not calculate TSC khz");
814 return;
815 }
816
817#ifdef CONFIG_X86_64
818 if (cpu_has(&boot_cpu_data, X86_FEATURE_CONSTANT_TSC) &&
819 (boot_cpu_data.x86_vendor == X86_VENDOR_AMD))
820 cpu_khz = calibrate_cpu();
821#endif
822
823 lpj = ((u64)tsc_khz * 1000);
824 do_div(lpj, HZ);
825 lpj_fine = lpj;
826
827 printk("Detected %lu.%03lu MHz processor.\n",
828 (unsigned long)cpu_khz / 1000,
829 (unsigned long)cpu_khz % 1000);
830
831 /*
832 * Secondary CPUs do not run through tsc_init(), so set up
833 * all the scale factors for all CPUs, assuming the same
834 * speed as the bootup CPU. (cpufreq notifiers will fix this
835 * up if their speed diverges)
836 */
837 for_each_possible_cpu(cpu)
838 set_cyc2ns_scale(cpu_khz, cpu);
839
840 if (tsc_disabled > 0)
841 return;
842
843 /* now allow native_sched_clock() to use rdtsc */
844 tsc_disabled = 0;
845
846 use_tsc_delay();
847 /* Check and install the TSC clocksource */
848 dmi_check_system(bad_tsc_dmi_table);
849
850 if (unsynchronized_tsc())
851 mark_tsc_unstable("TSCs unsynchronized");
852
853 check_geode_tsc_reliable();
854 init_tsc_clocksource();
855}
856