x86/tsc: Calibrate tsc only once
[linux-2.6-block.git] / arch / x86 / kernel / tsc.c
CommitLineData
c767a54b
JP
1#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
bfc0f594 3#include <linux/kernel.h>
0ef95533 4#include <linux/sched.h>
e6017571 5#include <linux/sched/clock.h>
0ef95533 6#include <linux/init.h>
186f4360 7#include <linux/export.h>
0ef95533 8#include <linux/timer.h>
bfc0f594 9#include <linux/acpi_pmtmr.h>
2dbe06fa 10#include <linux/cpufreq.h>
8fbbc4b4
AK
11#include <linux/delay.h>
12#include <linux/clocksource.h>
13#include <linux/percpu.h>
08604bd9 14#include <linux/timex.h>
10b033d4 15#include <linux/static_key.h>
bfc0f594
AK
16
17#include <asm/hpet.h>
8fbbc4b4
AK
18#include <asm/timer.h>
19#include <asm/vgtod.h>
20#include <asm/time.h>
21#include <asm/delay.h>
88b094fb 22#include <asm/hypervisor.h>
08047c4f 23#include <asm/nmi.h>
2d826404 24#include <asm/x86_init.h>
03da3ff1 25#include <asm/geode.h>
6731b0d6 26#include <asm/apic.h>
655e52d2 27#include <asm/intel-family.h>
30c7e5b1 28#include <asm/i8259.h>
0ef95533 29
f24ade3a 30unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
0ef95533 31EXPORT_SYMBOL(cpu_khz);
f24ade3a
IM
32
33unsigned int __read_mostly tsc_khz;
0ef95533
AK
34EXPORT_SYMBOL(tsc_khz);
35
cf7a63ef
PT
36#define KHZ 1000
37
0ef95533
AK
38/*
39 * TSC can be unstable due to cpufreq or due to unsynced TSCs
40 */
f24ade3a 41static int __read_mostly tsc_unstable;
0ef95533 42
3bbfafb7 43static DEFINE_STATIC_KEY_FALSE(__use_tsc);
10b033d4 44
28a00184 45int tsc_clocksource_reliable;
57c67da2 46
f9677e0f
CH
47static u32 art_to_tsc_numerator;
48static u32 art_to_tsc_denominator;
49static u64 art_to_tsc_offset;
50struct clocksource *art_related_clocksource;
51
20d1c86a 52struct cyc2ns {
59eaef78
PZ
53 struct cyc2ns_data data[2]; /* 0 + 2*16 = 32 */
54 seqcount_t seq; /* 32 + 4 = 36 */
20d1c86a 55
59eaef78 56}; /* fits one cacheline */
20d1c86a 57
59eaef78 58static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
20d1c86a 59
59eaef78 60void cyc2ns_read_begin(struct cyc2ns_data *data)
20d1c86a 61{
59eaef78 62 int seq, idx;
20d1c86a 63
59eaef78 64 preempt_disable_notrace();
20d1c86a 65
59eaef78
PZ
66 do {
67 seq = this_cpu_read(cyc2ns.seq.sequence);
68 idx = seq & 1;
20d1c86a 69
59eaef78
PZ
70 data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
71 data->cyc2ns_mul = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
72 data->cyc2ns_shift = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
20d1c86a 73
59eaef78 74 } while (unlikely(seq != this_cpu_read(cyc2ns.seq.sequence)));
20d1c86a
PZ
75}
76
59eaef78 77void cyc2ns_read_end(void)
20d1c86a 78{
59eaef78 79 preempt_enable_notrace();
20d1c86a
PZ
80}
81
82/*
83 * Accelerators for sched_clock()
57c67da2
PZ
84 * convert from cycles(64bits) => nanoseconds (64bits)
85 * basic equation:
86 * ns = cycles / (freq / ns_per_sec)
87 * ns = cycles * (ns_per_sec / freq)
88 * ns = cycles * (10^9 / (cpu_khz * 10^3))
89 * ns = cycles * (10^6 / cpu_khz)
90 *
91 * Then we use scaling math (suggested by george@mvista.com) to get:
92 * ns = cycles * (10^6 * SC / cpu_khz) / SC
93 * ns = cycles * cyc2ns_scale / SC
94 *
95 * And since SC is a constant power of two, we can convert the div
b20112ed
AH
96 * into a shift. The larger SC is, the more accurate the conversion, but
97 * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
98 * (64-bit result) can be used.
57c67da2 99 *
b20112ed 100 * We can use khz divisor instead of mhz to keep a better precision.
57c67da2
PZ
101 * (mathieu.desnoyers@polymtl.ca)
102 *
103 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
104 */
105
20d1c86a
PZ
106static void cyc2ns_data_init(struct cyc2ns_data *data)
107{
5e3c1afd 108 data->cyc2ns_mul = 0;
b20112ed 109 data->cyc2ns_shift = 0;
20d1c86a 110 data->cyc2ns_offset = 0;
20d1c86a
PZ
111}
112
120fc3fb 113static void __init cyc2ns_init(int cpu)
20d1c86a
PZ
114{
115 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
116
117 cyc2ns_data_init(&c2n->data[0]);
118 cyc2ns_data_init(&c2n->data[1]);
119
59eaef78 120 seqcount_init(&c2n->seq);
20d1c86a
PZ
121}
122
57c67da2
PZ
123static inline unsigned long long cycles_2_ns(unsigned long long cyc)
124{
59eaef78 125 struct cyc2ns_data data;
20d1c86a
PZ
126 unsigned long long ns;
127
59eaef78 128 cyc2ns_read_begin(&data);
20d1c86a 129
59eaef78
PZ
130 ns = data.cyc2ns_offset;
131 ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
20d1c86a 132
59eaef78 133 cyc2ns_read_end();
20d1c86a 134
57c67da2
PZ
135 return ns;
136}
137
5c3c2ea6 138static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
57c67da2 139{
615cd033 140 unsigned long long ns_now;
59eaef78
PZ
141 struct cyc2ns_data data;
142 struct cyc2ns *c2n;
20d1c86a 143 unsigned long flags;
57c67da2
PZ
144
145 local_irq_save(flags);
146 sched_clock_idle_sleep_event();
147
aa297292 148 if (!khz)
20d1c86a
PZ
149 goto done;
150
57c67da2
PZ
151 ns_now = cycles_2_ns(tsc_now);
152
20d1c86a
PZ
153 /*
154 * Compute a new multiplier as per the above comment and ensure our
155 * time function is continuous; see the comment near struct
156 * cyc2ns_data.
157 */
59eaef78 158 clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
b20112ed
AH
159 NSEC_PER_MSEC, 0);
160
b9511cd7
AH
161 /*
162 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
163 * not expected to be greater than 31 due to the original published
164 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
165 * value) - refer perf_event_mmap_page documentation in perf_event.h.
166 */
59eaef78
PZ
167 if (data.cyc2ns_shift == 32) {
168 data.cyc2ns_shift = 31;
169 data.cyc2ns_mul >>= 1;
b9511cd7
AH
170 }
171
59eaef78
PZ
172 data.cyc2ns_offset = ns_now -
173 mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);
174
175 c2n = per_cpu_ptr(&cyc2ns, cpu);
20d1c86a 176
59eaef78
PZ
177 raw_write_seqcount_latch(&c2n->seq);
178 c2n->data[0] = data;
179 raw_write_seqcount_latch(&c2n->seq);
180 c2n->data[1] = data;
57c67da2 181
20d1c86a 182done:
ac1e843f 183 sched_clock_idle_wakeup_event();
57c67da2
PZ
184 local_irq_restore(flags);
185}
615cd033 186
0ef95533
AK
187/*
188 * Scheduler clock - returns current time in nanosec units.
189 */
190u64 native_sched_clock(void)
191{
3bbfafb7
PZ
192 if (static_branch_likely(&__use_tsc)) {
193 u64 tsc_now = rdtsc();
194
195 /* return the value in ns */
196 return cycles_2_ns(tsc_now);
197 }
0ef95533
AK
198
199 /*
200 * Fall back to jiffies if there's no TSC available:
201 * ( But note that we still use it if the TSC is marked
202 * unstable. We do this because unlike Time Of Day,
203 * the scheduler clock tolerates small errors and it's
204 * very important for it to be as fast as the platform
3ad2f3fb 205 * can achieve it. )
0ef95533 206 */
0ef95533 207
3bbfafb7
PZ
208 /* No locking but a rare wrong value is not a big deal: */
209 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
0ef95533
AK
210}
211
a94cab23
AK
212/*
213 * Generate a sched_clock if you already have a TSC value.
214 */
215u64 native_sched_clock_from_tsc(u64 tsc)
216{
217 return cycles_2_ns(tsc);
218}
219
0ef95533
AK
220/* We need to define a real function for sched_clock, to override the
221 weak default version */
222#ifdef CONFIG_PARAVIRT
223unsigned long long sched_clock(void)
224{
225 return paravirt_sched_clock();
226}
f94c8d11 227
698eff63 228bool using_native_sched_clock(void)
f94c8d11
PZ
229{
230 return pv_time_ops.sched_clock == native_sched_clock;
231}
0ef95533
AK
232#else
233unsigned long long
234sched_clock(void) __attribute__((alias("native_sched_clock")));
f94c8d11 235
698eff63 236bool using_native_sched_clock(void) { return true; }
0ef95533
AK
237#endif
238
239int check_tsc_unstable(void)
240{
241 return tsc_unstable;
242}
243EXPORT_SYMBOL_GPL(check_tsc_unstable);
244
245#ifdef CONFIG_X86_TSC
246int __init notsc_setup(char *str)
247{
fe9af81e 248 mark_tsc_unstable("boot parameter notsc");
0ef95533
AK
249 return 1;
250}
251#else
252/*
253 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
254 * in cpu/common.c
255 */
256int __init notsc_setup(char *str)
257{
258 setup_clear_cpu_cap(X86_FEATURE_TSC);
259 return 1;
260}
261#endif
262
263__setup("notsc", notsc_setup);
bfc0f594 264
e82b8e4e
VP
265static int no_sched_irq_time;
266
395628ef
AK
267static int __init tsc_setup(char *str)
268{
269 if (!strcmp(str, "reliable"))
270 tsc_clocksource_reliable = 1;
e82b8e4e
VP
271 if (!strncmp(str, "noirqtime", 9))
272 no_sched_irq_time = 1;
8309f86c
PZ
273 if (!strcmp(str, "unstable"))
274 mark_tsc_unstable("boot parameter");
395628ef
AK
275 return 1;
276}
277
278__setup("tsc=", tsc_setup);
279
bfc0f594
AK
280#define MAX_RETRIES 5
281#define SMI_TRESHOLD 50000
282
283/*
284 * Read TSC and the reference counters. Take care of SMI disturbance
285 */
827014be 286static u64 tsc_read_refs(u64 *p, int hpet)
bfc0f594
AK
287{
288 u64 t1, t2;
289 int i;
290
291 for (i = 0; i < MAX_RETRIES; i++) {
292 t1 = get_cycles();
293 if (hpet)
827014be 294 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
bfc0f594 295 else
827014be 296 *p = acpi_pm_read_early();
bfc0f594
AK
297 t2 = get_cycles();
298 if ((t2 - t1) < SMI_TRESHOLD)
299 return t2;
300 }
301 return ULLONG_MAX;
302}
303
d683ef7a
TG
304/*
305 * Calculate the TSC frequency from HPET reference
bfc0f594 306 */
d683ef7a 307static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
bfc0f594 308{
d683ef7a 309 u64 tmp;
bfc0f594 310
d683ef7a
TG
311 if (hpet2 < hpet1)
312 hpet2 += 0x100000000ULL;
313 hpet2 -= hpet1;
314 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
315 do_div(tmp, 1000000);
d3878e16 316 deltatsc = div64_u64(deltatsc, tmp);
d683ef7a
TG
317
318 return (unsigned long) deltatsc;
319}
320
321/*
322 * Calculate the TSC frequency from PMTimer reference
323 */
324static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
325{
326 u64 tmp;
bfc0f594 327
d683ef7a
TG
328 if (!pm1 && !pm2)
329 return ULONG_MAX;
330
331 if (pm2 < pm1)
332 pm2 += (u64)ACPI_PM_OVRRUN;
333 pm2 -= pm1;
334 tmp = pm2 * 1000000000LL;
335 do_div(tmp, PMTMR_TICKS_PER_SEC);
336 do_div(deltatsc, tmp);
337
338 return (unsigned long) deltatsc;
339}
340
a977c400 341#define CAL_MS 10
b7743970 342#define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
a977c400
TG
343#define CAL_PIT_LOOPS 1000
344
345#define CAL2_MS 50
b7743970 346#define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
a977c400
TG
347#define CAL2_PIT_LOOPS 5000
348
cce3e057 349
ec0c15af
LT
350/*
351 * Try to calibrate the TSC against the Programmable
352 * Interrupt Timer and return the frequency of the TSC
353 * in kHz.
354 *
355 * Return ULONG_MAX on failure to calibrate.
356 */
a977c400 357static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
ec0c15af
LT
358{
359 u64 tsc, t1, t2, delta;
360 unsigned long tscmin, tscmax;
361 int pitcnt;
362
30c7e5b1
PZ
363 if (!has_legacy_pic()) {
364 /*
365 * Relies on tsc_early_delay_calibrate() to have given us semi
366 * usable udelay(), wait for the same 50ms we would have with
367 * the PIT loop below.
368 */
369 udelay(10 * USEC_PER_MSEC);
370 udelay(10 * USEC_PER_MSEC);
371 udelay(10 * USEC_PER_MSEC);
372 udelay(10 * USEC_PER_MSEC);
373 udelay(10 * USEC_PER_MSEC);
374 return ULONG_MAX;
375 }
376
ec0c15af
LT
377 /* Set the Gate high, disable speaker */
378 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
379
380 /*
381 * Setup CTC channel 2* for mode 0, (interrupt on terminal
382 * count mode), binary count. Set the latch register to 50ms
383 * (LSB then MSB) to begin countdown.
384 */
385 outb(0xb0, 0x43);
a977c400
TG
386 outb(latch & 0xff, 0x42);
387 outb(latch >> 8, 0x42);
ec0c15af
LT
388
389 tsc = t1 = t2 = get_cycles();
390
391 pitcnt = 0;
392 tscmax = 0;
393 tscmin = ULONG_MAX;
394 while ((inb(0x61) & 0x20) == 0) {
395 t2 = get_cycles();
396 delta = t2 - tsc;
397 tsc = t2;
398 if ((unsigned long) delta < tscmin)
399 tscmin = (unsigned int) delta;
400 if ((unsigned long) delta > tscmax)
401 tscmax = (unsigned int) delta;
402 pitcnt++;
403 }
404
405 /*
406 * Sanity checks:
407 *
a977c400 408 * If we were not able to read the PIT more than loopmin
ec0c15af
LT
409 * times, then we have been hit by a massive SMI
410 *
411 * If the maximum is 10 times larger than the minimum,
412 * then we got hit by an SMI as well.
413 */
a977c400 414 if (pitcnt < loopmin || tscmax > 10 * tscmin)
ec0c15af
LT
415 return ULONG_MAX;
416
417 /* Calculate the PIT value */
418 delta = t2 - t1;
a977c400 419 do_div(delta, ms);
ec0c15af
LT
420 return delta;
421}
422
6ac40ed0
LT
423/*
424 * This reads the current MSB of the PIT counter, and
425 * checks if we are running on sufficiently fast and
426 * non-virtualized hardware.
427 *
428 * Our expectations are:
429 *
430 * - the PIT is running at roughly 1.19MHz
431 *
432 * - each IO is going to take about 1us on real hardware,
433 * but we allow it to be much faster (by a factor of 10) or
434 * _slightly_ slower (ie we allow up to a 2us read+counter
435 * update - anything else implies a unacceptably slow CPU
436 * or PIT for the fast calibration to work.
437 *
438 * - with 256 PIT ticks to read the value, we have 214us to
439 * see the same MSB (and overhead like doing a single TSC
440 * read per MSB value etc).
441 *
442 * - We're doing 2 reads per loop (LSB, MSB), and we expect
443 * them each to take about a microsecond on real hardware.
444 * So we expect a count value of around 100. But we'll be
445 * generous, and accept anything over 50.
446 *
447 * - if the PIT is stuck, and we see *many* more reads, we
448 * return early (and the next caller of pit_expect_msb()
449 * then consider it a failure when they don't see the
450 * next expected value).
451 *
452 * These expectations mean that we know that we have seen the
453 * transition from one expected value to another with a fairly
454 * high accuracy, and we didn't miss any events. We can thus
455 * use the TSC value at the transitions to calculate a pretty
456 * good value for the TSC frequencty.
457 */
b6e61eef
LT
458static inline int pit_verify_msb(unsigned char val)
459{
460 /* Ignore LSB */
461 inb(0x42);
462 return inb(0x42) == val;
463}
464
9e8912e0 465static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
6ac40ed0 466{
9e8912e0 467 int count;
68f30fbe 468 u64 tsc = 0, prev_tsc = 0;
bfc0f594 469
6ac40ed0 470 for (count = 0; count < 50000; count++) {
b6e61eef 471 if (!pit_verify_msb(val))
6ac40ed0 472 break;
68f30fbe 473 prev_tsc = tsc;
9e8912e0 474 tsc = get_cycles();
6ac40ed0 475 }
68f30fbe 476 *deltap = get_cycles() - prev_tsc;
9e8912e0
LT
477 *tscp = tsc;
478
479 /*
480 * We require _some_ success, but the quality control
481 * will be based on the error terms on the TSC values.
482 */
483 return count > 5;
6ac40ed0
LT
484}
485
486/*
9e8912e0
LT
487 * How many MSB values do we want to see? We aim for
488 * a maximum error rate of 500ppm (in practice the
489 * real error is much smaller), but refuse to spend
68f30fbe 490 * more than 50ms on it.
6ac40ed0 491 */
68f30fbe 492#define MAX_QUICK_PIT_MS 50
9e8912e0 493#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
bfc0f594 494
6ac40ed0
LT
495static unsigned long quick_pit_calibrate(void)
496{
9e8912e0
LT
497 int i;
498 u64 tsc, delta;
499 unsigned long d1, d2;
500
30c7e5b1
PZ
501 if (!has_legacy_pic())
502 return 0;
503
6ac40ed0 504 /* Set the Gate high, disable speaker */
bfc0f594
AK
505 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
506
6ac40ed0
LT
507 /*
508 * Counter 2, mode 0 (one-shot), binary count
509 *
510 * NOTE! Mode 2 decrements by two (and then the
511 * output is flipped each time, giving the same
512 * final output frequency as a decrement-by-one),
513 * so mode 0 is much better when looking at the
514 * individual counts.
515 */
bfc0f594 516 outb(0xb0, 0x43);
bfc0f594 517
6ac40ed0
LT
518 /* Start at 0xffff */
519 outb(0xff, 0x42);
520 outb(0xff, 0x42);
521
a6a80e1d
LT
522 /*
523 * The PIT starts counting at the next edge, so we
524 * need to delay for a microsecond. The easiest way
525 * to do that is to just read back the 16-bit counter
526 * once from the PIT.
527 */
b6e61eef 528 pit_verify_msb(0);
a6a80e1d 529
9e8912e0
LT
530 if (pit_expect_msb(0xff, &tsc, &d1)) {
531 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
532 if (!pit_expect_msb(0xff-i, &delta, &d2))
533 break;
534
5aac644a
AH
535 delta -= tsc;
536
537 /*
538 * Extrapolate the error and fail fast if the error will
539 * never be below 500 ppm.
540 */
541 if (i == 1 &&
542 d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
543 return 0;
544
9e8912e0
LT
545 /*
546 * Iterate until the error is less than 500 ppm
547 */
b6e61eef
LT
548 if (d1+d2 >= delta >> 11)
549 continue;
550
551 /*
552 * Check the PIT one more time to verify that
553 * all TSC reads were stable wrt the PIT.
554 *
555 * This also guarantees serialization of the
556 * last cycle read ('d2') in pit_expect_msb.
557 */
558 if (!pit_verify_msb(0xfe - i))
559 break;
560 goto success;
6ac40ed0 561 }
6ac40ed0 562 }
52045217 563 pr_info("Fast TSC calibration failed\n");
6ac40ed0 564 return 0;
9e8912e0
LT
565
566success:
567 /*
568 * Ok, if we get here, then we've seen the
569 * MSB of the PIT decrement 'i' times, and the
570 * error has shrunk to less than 500 ppm.
571 *
572 * As a result, we can depend on there not being
573 * any odd delays anywhere, and the TSC reads are
68f30fbe 574 * reliable (within the error).
9e8912e0
LT
575 *
576 * kHz = ticks / time-in-seconds / 1000;
577 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
578 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
579 */
9e8912e0
LT
580 delta *= PIT_TICK_RATE;
581 do_div(delta, i*256*1000);
c767a54b 582 pr_info("Fast TSC calibration using PIT\n");
9e8912e0 583 return delta;
6ac40ed0 584}
ec0c15af 585
bfc0f594 586/**
aa297292
LB
587 * native_calibrate_tsc
588 * Determine TSC frequency via CPUID, else return 0.
bfc0f594 589 */
e93ef949 590unsigned long native_calibrate_tsc(void)
aa297292
LB
591{
592 unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
593 unsigned int crystal_khz;
594
595 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
596 return 0;
597
598 if (boot_cpu_data.cpuid_level < 0x15)
599 return 0;
600
601 eax_denominator = ebx_numerator = ecx_hz = edx = 0;
602
603 /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
604 cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
605
606 if (ebx_numerator == 0 || eax_denominator == 0)
607 return 0;
608
609 crystal_khz = ecx_hz / 1000;
610
611 if (crystal_khz == 0) {
612 switch (boot_cpu_data.x86_model) {
655e52d2
PB
613 case INTEL_FAM6_SKYLAKE_MOBILE:
614 case INTEL_FAM6_SKYLAKE_DESKTOP:
6baf3d61
PB
615 case INTEL_FAM6_KABYLAKE_MOBILE:
616 case INTEL_FAM6_KABYLAKE_DESKTOP:
ff4c8663
LB
617 crystal_khz = 24000; /* 24.0 MHz */
618 break;
695085b4 619 case INTEL_FAM6_ATOM_DENVERTON:
6baf3d61
PB
620 crystal_khz = 25000; /* 25.0 MHz */
621 break;
655e52d2 622 case INTEL_FAM6_ATOM_GOLDMONT:
ff4c8663
LB
623 crystal_khz = 19200; /* 19.2 MHz */
624 break;
aa297292
LB
625 }
626 }
627
da4ae6c4
LB
628 if (crystal_khz == 0)
629 return 0;
4ca4df0b
BG
630 /*
631 * TSC frequency determined by CPUID is a "hardware reported"
632 * frequency and is the most accurate one so far we have. This
633 * is considered a known frequency.
634 */
635 setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
636
4635fdc6
BG
637 /*
638 * For Atom SoCs TSC is the only reliable clocksource.
639 * Mark TSC reliable so no watchdog on it.
640 */
641 if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
642 setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
643
aa297292
LB
644 return crystal_khz * ebx_numerator / eax_denominator;
645}
646
647static unsigned long cpu_khz_from_cpuid(void)
648{
649 unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
650
651 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
652 return 0;
653
654 if (boot_cpu_data.cpuid_level < 0x16)
655 return 0;
656
657 eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
658
659 cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
660
661 return eax_base_mhz * 1000;
662}
663
664/**
665 * native_calibrate_cpu - calibrate the cpu on boot
666 */
667unsigned long native_calibrate_cpu(void)
bfc0f594 668{
827014be 669 u64 tsc1, tsc2, delta, ref1, ref2;
fbb16e24 670 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
2d826404 671 unsigned long flags, latch, ms, fast_calibrate;
a977c400 672 int hpet = is_hpet_enabled(), i, loopmin;
bfc0f594 673
aa297292
LB
674 fast_calibrate = cpu_khz_from_cpuid();
675 if (fast_calibrate)
676 return fast_calibrate;
677
02c0cd2d 678 fast_calibrate = cpu_khz_from_msr();
5f0e0309 679 if (fast_calibrate)
7da7c156 680 return fast_calibrate;
7da7c156 681
6ac40ed0
LT
682 local_irq_save(flags);
683 fast_calibrate = quick_pit_calibrate();
bfc0f594 684 local_irq_restore(flags);
6ac40ed0
LT
685 if (fast_calibrate)
686 return fast_calibrate;
bfc0f594 687
fbb16e24
TG
688 /*
689 * Run 5 calibration loops to get the lowest frequency value
690 * (the best estimate). We use two different calibration modes
691 * here:
692 *
693 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
694 * load a timeout of 50ms. We read the time right after we
695 * started the timer and wait until the PIT count down reaches
696 * zero. In each wait loop iteration we read the TSC and check
697 * the delta to the previous read. We keep track of the min
698 * and max values of that delta. The delta is mostly defined
699 * by the IO time of the PIT access, so we can detect when a
0d2eb44f 700 * SMI/SMM disturbance happened between the two reads. If the
fbb16e24
TG
701 * maximum time is significantly larger than the minimum time,
702 * then we discard the result and have another try.
703 *
704 * 2) Reference counter. If available we use the HPET or the
705 * PMTIMER as a reference to check the sanity of that value.
706 * We use separate TSC readouts and check inside of the
707 * reference read for a SMI/SMM disturbance. We dicard
708 * disturbed values here as well. We do that around the PIT
709 * calibration delay loop as we have to wait for a certain
710 * amount of time anyway.
711 */
a977c400
TG
712
713 /* Preset PIT loop values */
714 latch = CAL_LATCH;
715 ms = CAL_MS;
716 loopmin = CAL_PIT_LOOPS;
717
718 for (i = 0; i < 3; i++) {
ec0c15af 719 unsigned long tsc_pit_khz;
fbb16e24
TG
720
721 /*
722 * Read the start value and the reference count of
ec0c15af
LT
723 * hpet/pmtimer when available. Then do the PIT
724 * calibration, which will take at least 50ms, and
725 * read the end value.
fbb16e24 726 */
ec0c15af 727 local_irq_save(flags);
827014be 728 tsc1 = tsc_read_refs(&ref1, hpet);
a977c400 729 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
827014be 730 tsc2 = tsc_read_refs(&ref2, hpet);
fbb16e24
TG
731 local_irq_restore(flags);
732
ec0c15af
LT
733 /* Pick the lowest PIT TSC calibration so far */
734 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
fbb16e24
TG
735
736 /* hpet or pmtimer available ? */
62627bec 737 if (ref1 == ref2)
fbb16e24
TG
738 continue;
739
740 /* Check, whether the sampling was disturbed by an SMI */
741 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
742 continue;
743
744 tsc2 = (tsc2 - tsc1) * 1000000LL;
d683ef7a 745 if (hpet)
827014be 746 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
d683ef7a 747 else
827014be 748 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
fbb16e24 749
fbb16e24 750 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
a977c400
TG
751
752 /* Check the reference deviation */
753 delta = ((u64) tsc_pit_min) * 100;
754 do_div(delta, tsc_ref_min);
755
756 /*
757 * If both calibration results are inside a 10% window
758 * then we can be sure, that the calibration
759 * succeeded. We break out of the loop right away. We
760 * use the reference value, as it is more precise.
761 */
762 if (delta >= 90 && delta <= 110) {
c767a54b
JP
763 pr_info("PIT calibration matches %s. %d loops\n",
764 hpet ? "HPET" : "PMTIMER", i + 1);
a977c400 765 return tsc_ref_min;
fbb16e24
TG
766 }
767
a977c400
TG
768 /*
769 * Check whether PIT failed more than once. This
770 * happens in virtualized environments. We need to
771 * give the virtual PC a slightly longer timeframe for
772 * the HPET/PMTIMER to make the result precise.
773 */
774 if (i == 1 && tsc_pit_min == ULONG_MAX) {
775 latch = CAL2_LATCH;
776 ms = CAL2_MS;
777 loopmin = CAL2_PIT_LOOPS;
778 }
fbb16e24 779 }
bfc0f594
AK
780
781 /*
fbb16e24 782 * Now check the results.
bfc0f594 783 */
fbb16e24
TG
784 if (tsc_pit_min == ULONG_MAX) {
785 /* PIT gave no useful value */
c767a54b 786 pr_warn("Unable to calibrate against PIT\n");
fbb16e24
TG
787
788 /* We don't have an alternative source, disable TSC */
827014be 789 if (!hpet && !ref1 && !ref2) {
c767a54b 790 pr_notice("No reference (HPET/PMTIMER) available\n");
fbb16e24
TG
791 return 0;
792 }
793
794 /* The alternative source failed as well, disable TSC */
795 if (tsc_ref_min == ULONG_MAX) {
c767a54b 796 pr_warn("HPET/PMTIMER calibration failed\n");
fbb16e24
TG
797 return 0;
798 }
799
800 /* Use the alternative source */
c767a54b
JP
801 pr_info("using %s reference calibration\n",
802 hpet ? "HPET" : "PMTIMER");
fbb16e24
TG
803
804 return tsc_ref_min;
805 }
bfc0f594 806
fbb16e24 807 /* We don't have an alternative source, use the PIT calibration value */
827014be 808 if (!hpet && !ref1 && !ref2) {
c767a54b 809 pr_info("Using PIT calibration value\n");
fbb16e24 810 return tsc_pit_min;
bfc0f594
AK
811 }
812
fbb16e24
TG
813 /* The alternative source failed, use the PIT calibration value */
814 if (tsc_ref_min == ULONG_MAX) {
c767a54b 815 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
fbb16e24 816 return tsc_pit_min;
bfc0f594
AK
817 }
818
fbb16e24
TG
819 /*
820 * The calibration values differ too much. In doubt, we use
821 * the PIT value as we know that there are PMTIMERs around
a977c400 822 * running at double speed. At least we let the user know:
fbb16e24 823 */
c767a54b
JP
824 pr_warn("PIT calibration deviates from %s: %lu %lu\n",
825 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
826 pr_info("Using PIT calibration value\n");
fbb16e24 827 return tsc_pit_min;
bfc0f594
AK
828}
829
af576850 830void recalibrate_cpu_khz(void)
bfc0f594
AK
831{
832#ifndef CONFIG_SMP
833 unsigned long cpu_khz_old = cpu_khz;
834
eff4677e 835 if (!boot_cpu_has(X86_FEATURE_TSC))
af576850 836 return;
eff4677e 837
aa297292 838 cpu_khz = x86_platform.calibrate_cpu();
eff4677e 839 tsc_khz = x86_platform.calibrate_tsc();
aa297292
LB
840 if (tsc_khz == 0)
841 tsc_khz = cpu_khz;
ff4c8663
LB
842 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
843 cpu_khz = tsc_khz;
eff4677e
BP
844 cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
845 cpu_khz_old, cpu_khz);
bfc0f594
AK
846#endif
847}
848
849EXPORT_SYMBOL(recalibrate_cpu_khz);
850
2dbe06fa 851
cd7240c0
SS
852static unsigned long long cyc2ns_suspend;
853
b74f05d6 854void tsc_save_sched_clock_state(void)
cd7240c0 855{
35af99e6 856 if (!sched_clock_stable())
cd7240c0
SS
857 return;
858
859 cyc2ns_suspend = sched_clock();
860}
861
862/*
863 * Even on processors with invariant TSC, TSC gets reset in some the
864 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
865 * arbitrary value (still sync'd across cpu's) during resume from such sleep
866 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
867 * that sched_clock() continues from the point where it was left off during
868 * suspend.
869 */
b74f05d6 870void tsc_restore_sched_clock_state(void)
cd7240c0
SS
871{
872 unsigned long long offset;
873 unsigned long flags;
874 int cpu;
875
35af99e6 876 if (!sched_clock_stable())
cd7240c0
SS
877 return;
878
879 local_irq_save(flags);
880
20d1c86a 881 /*
6a6256f9 882 * We're coming out of suspend, there's no concurrency yet; don't
20d1c86a
PZ
883 * bother being nice about the RCU stuff, just write to both
884 * data fields.
885 */
886
887 this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
888 this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
889
cd7240c0
SS
890 offset = cyc2ns_suspend - sched_clock();
891
20d1c86a
PZ
892 for_each_possible_cpu(cpu) {
893 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
894 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
895 }
cd7240c0
SS
896
897 local_irq_restore(flags);
898}
899
2dbe06fa 900#ifdef CONFIG_CPU_FREQ
2dbe06fa
AK
901/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
902 * changes.
903 *
904 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
905 * not that important because current Opteron setups do not support
906 * scaling on SMP anyroads.
907 *
908 * Should fix up last_tsc too. Currently gettimeofday in the
909 * first tick after the change will be slightly wrong.
910 */
911
912static unsigned int ref_freq;
913static unsigned long loops_per_jiffy_ref;
914static unsigned long tsc_khz_ref;
915
916static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
917 void *data)
918{
919 struct cpufreq_freqs *freq = data;
931db6a3 920 unsigned long *lpj;
2dbe06fa 921
931db6a3 922 lpj = &boot_cpu_data.loops_per_jiffy;
2dbe06fa 923#ifdef CONFIG_SMP
931db6a3 924 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
2dbe06fa 925 lpj = &cpu_data(freq->cpu).loops_per_jiffy;
2dbe06fa
AK
926#endif
927
928 if (!ref_freq) {
929 ref_freq = freq->old;
930 loops_per_jiffy_ref = *lpj;
931 tsc_khz_ref = tsc_khz;
932 }
933 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
0b443ead 934 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
878f4f53 935 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
2dbe06fa
AK
936
937 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
938 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
939 mark_tsc_unstable("cpufreq changes");
2dbe06fa 940
5c3c2ea6 941 set_cyc2ns_scale(tsc_khz, freq->cpu, rdtsc());
3896c329 942 }
2dbe06fa
AK
943
944 return 0;
945}
946
947static struct notifier_block time_cpufreq_notifier_block = {
948 .notifier_call = time_cpufreq_notifier
949};
950
a841cca7 951static int __init cpufreq_register_tsc_scaling(void)
2dbe06fa 952{
59e21e3d 953 if (!boot_cpu_has(X86_FEATURE_TSC))
060700b5
LT
954 return 0;
955 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
956 return 0;
2dbe06fa
AK
957 cpufreq_register_notifier(&time_cpufreq_notifier_block,
958 CPUFREQ_TRANSITION_NOTIFIER);
959 return 0;
960}
961
a841cca7 962core_initcall(cpufreq_register_tsc_scaling);
2dbe06fa
AK
963
964#endif /* CONFIG_CPU_FREQ */
8fbbc4b4 965
f9677e0f
CH
966#define ART_CPUID_LEAF (0x15)
967#define ART_MIN_DENOMINATOR (1)
968
969
970/*
971 * If ART is present detect the numerator:denominator to convert to TSC
972 */
120fc3fb 973static void __init detect_art(void)
f9677e0f
CH
974{
975 unsigned int unused[2];
976
977 if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
978 return;
979
6c66350d 980 /*
981 * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required,
982 * and the TSC counter resets must not occur asynchronously.
983 */
f9677e0f
CH
984 if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
985 !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
6c66350d 986 !boot_cpu_has(X86_FEATURE_TSC_ADJUST) ||
987 tsc_async_resets)
f9677e0f
CH
988 return;
989
7b3d2f6e
TG
990 cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
991 &art_to_tsc_numerator, unused, unused+1);
992
993 if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
f9677e0f
CH
994 return;
995
7b3d2f6e
TG
996 rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
997
f9677e0f
CH
998 /* Make this sticky over multiple CPU init calls */
999 setup_force_cpu_cap(X86_FEATURE_ART);
1000}
1001
1002
8fbbc4b4
AK
1003/* clocksource code */
1004
6a369583
TG
1005static void tsc_resume(struct clocksource *cs)
1006{
1007 tsc_verify_tsc_adjust(true);
1008}
1009
8fbbc4b4 1010/*
09ec5442 1011 * We used to compare the TSC to the cycle_last value in the clocksource
8fbbc4b4
AK
1012 * structure to avoid a nasty time-warp. This can be observed in a
1013 * very small window right after one CPU updated cycle_last under
1014 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1015 * is smaller than the cycle_last reference value due to a TSC which
1016 * is slighty behind. This delta is nowhere else observable, but in
1017 * that case it results in a forward time jump in the range of hours
1018 * due to the unsigned delta calculation of the time keeping core
1019 * code, which is necessary to support wrapping clocksources like pm
1020 * timer.
09ec5442
TG
1021 *
1022 * This sanity check is now done in the core timekeeping code.
1023 * checking the result of read_tsc() - cycle_last for being negative.
1024 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
8fbbc4b4 1025 */
a5a1d1c2 1026static u64 read_tsc(struct clocksource *cs)
8fbbc4b4 1027{
a5a1d1c2 1028 return (u64)rdtsc_ordered();
1be39679
MS
1029}
1030
12907fbb
TG
1031static void tsc_cs_mark_unstable(struct clocksource *cs)
1032{
1033 if (tsc_unstable)
1034 return;
f94c8d11 1035
12907fbb 1036 tsc_unstable = 1;
f94c8d11
PZ
1037 if (using_native_sched_clock())
1038 clear_sched_clock_stable();
12907fbb
TG
1039 disable_sched_clock_irqtime();
1040 pr_info("Marking TSC unstable due to clocksource watchdog\n");
1041}
1042
b421b22b
PZ
1043static void tsc_cs_tick_stable(struct clocksource *cs)
1044{
1045 if (tsc_unstable)
1046 return;
1047
1048 if (using_native_sched_clock())
1049 sched_clock_tick_stable();
1050}
1051
09ec5442
TG
1052/*
1053 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1054 */
aa83c457
PZ
1055static struct clocksource clocksource_tsc_early = {
1056 .name = "tsc-early",
1057 .rating = 299,
1058 .read = read_tsc,
1059 .mask = CLOCKSOURCE_MASK(64),
1060 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
1061 CLOCK_SOURCE_MUST_VERIFY,
1062 .archdata = { .vclock_mode = VCLOCK_TSC },
1063 .resume = tsc_resume,
1064 .mark_unstable = tsc_cs_mark_unstable,
1065 .tick_stable = tsc_cs_tick_stable,
e3b4f790 1066 .list = LIST_HEAD_INIT(clocksource_tsc_early.list),
aa83c457
PZ
1067};
1068
1069/*
1070 * Must mark VALID_FOR_HRES early such that when we unregister tsc_early
1071 * this one will immediately take over. We will only register if TSC has
1072 * been found good.
1073 */
8fbbc4b4
AK
1074static struct clocksource clocksource_tsc = {
1075 .name = "tsc",
1076 .rating = 300,
1077 .read = read_tsc,
1078 .mask = CLOCKSOURCE_MASK(64),
8fbbc4b4 1079 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
aa83c457 1080 CLOCK_SOURCE_VALID_FOR_HRES |
8fbbc4b4 1081 CLOCK_SOURCE_MUST_VERIFY,
98d0ac38 1082 .archdata = { .vclock_mode = VCLOCK_TSC },
6a369583 1083 .resume = tsc_resume,
12907fbb 1084 .mark_unstable = tsc_cs_mark_unstable,
b421b22b 1085 .tick_stable = tsc_cs_tick_stable,
e3b4f790 1086 .list = LIST_HEAD_INIT(clocksource_tsc.list),
8fbbc4b4
AK
1087};
1088
1089void mark_tsc_unstable(char *reason)
1090{
f94c8d11
PZ
1091 if (tsc_unstable)
1092 return;
1093
1094 tsc_unstable = 1;
1095 if (using_native_sched_clock())
35af99e6 1096 clear_sched_clock_stable();
f94c8d11
PZ
1097 disable_sched_clock_irqtime();
1098 pr_info("Marking TSC unstable due to %s\n", reason);
e3b4f790
PZ
1099
1100 clocksource_mark_unstable(&clocksource_tsc_early);
1101 clocksource_mark_unstable(&clocksource_tsc);
8fbbc4b4
AK
1102}
1103
1104EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1105
395628ef
AK
1106static void __init check_system_tsc_reliable(void)
1107{
03da3ff1
DW
1108#if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1109 if (is_geode_lx()) {
1110 /* RTSC counts during suspend */
8fbbc4b4 1111#define RTSC_SUSP 0x100
03da3ff1 1112 unsigned long res_low, res_high;
8fbbc4b4 1113
03da3ff1
DW
1114 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1115 /* Geode_LX - the OLPC CPU has a very reliable TSC */
1116 if (res_low & RTSC_SUSP)
1117 tsc_clocksource_reliable = 1;
1118 }
8fbbc4b4 1119#endif
395628ef
AK
1120 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1121 tsc_clocksource_reliable = 1;
1122}
8fbbc4b4
AK
1123
1124/*
1125 * Make an educated guess if the TSC is trustworthy and synchronized
1126 * over all CPUs.
1127 */
148f9bb8 1128int unsynchronized_tsc(void)
8fbbc4b4 1129{
59e21e3d 1130 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
8fbbc4b4
AK
1131 return 1;
1132
3e5095d1 1133#ifdef CONFIG_SMP
8fbbc4b4
AK
1134 if (apic_is_clustered_box())
1135 return 1;
1136#endif
1137
1138 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1139 return 0;
d3b8f889 1140
1141 if (tsc_clocksource_reliable)
1142 return 0;
8fbbc4b4
AK
1143 /*
1144 * Intel systems are normally all synchronized.
1145 * Exceptions must mark TSC as unstable:
1146 */
1147 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1148 /* assume multi socket systems are not synchronized: */
1149 if (num_possible_cpus() > 1)
d3b8f889 1150 return 1;
8fbbc4b4
AK
1151 }
1152
d3b8f889 1153 return 0;
8fbbc4b4
AK
1154}
1155
f9677e0f
CH
1156/*
1157 * Convert ART to TSC given numerator/denominator found in detect_art()
1158 */
a5a1d1c2 1159struct system_counterval_t convert_art_to_tsc(u64 art)
f9677e0f
CH
1160{
1161 u64 tmp, res, rem;
1162
1163 rem = do_div(art, art_to_tsc_denominator);
1164
1165 res = art * art_to_tsc_numerator;
1166 tmp = rem * art_to_tsc_numerator;
1167
1168 do_div(tmp, art_to_tsc_denominator);
1169 res += tmp + art_to_tsc_offset;
1170
1171 return (struct system_counterval_t) {.cs = art_related_clocksource,
1172 .cycles = res};
1173}
1174EXPORT_SYMBOL(convert_art_to_tsc);
08ec0c58 1175
fc804f65
RJ
1176/**
1177 * convert_art_ns_to_tsc() - Convert ART in nanoseconds to TSC.
1178 * @art_ns: ART (Always Running Timer) in unit of nanoseconds
1179 *
1180 * PTM requires all timestamps to be in units of nanoseconds. When user
1181 * software requests a cross-timestamp, this function converts system timestamp
1182 * to TSC.
1183 *
1184 * This is valid when CPU feature flag X86_FEATURE_TSC_KNOWN_FREQ is set
1185 * indicating the tsc_khz is derived from CPUID[15H]. Drivers should check
1186 * that this flag is set before conversion to TSC is attempted.
1187 *
1188 * Return:
1189 * struct system_counterval_t - system counter value with the pointer to the
1190 * corresponding clocksource
1191 * @cycles: System counter value
1192 * @cs: Clocksource corresponding to system counter value. Used
1193 * by timekeeping code to verify comparibility of two cycle
1194 * values.
1195 */
1196
1197struct system_counterval_t convert_art_ns_to_tsc(u64 art_ns)
1198{
1199 u64 tmp, res, rem;
1200
1201 rem = do_div(art_ns, USEC_PER_SEC);
1202
1203 res = art_ns * tsc_khz;
1204 tmp = rem * tsc_khz;
1205
1206 do_div(tmp, USEC_PER_SEC);
1207 res += tmp;
1208
1209 return (struct system_counterval_t) { .cs = art_related_clocksource,
1210 .cycles = res};
1211}
1212EXPORT_SYMBOL(convert_art_ns_to_tsc);
1213
1214
08ec0c58
JS
1215static void tsc_refine_calibration_work(struct work_struct *work);
1216static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1217/**
1218 * tsc_refine_calibration_work - Further refine tsc freq calibration
1219 * @work - ignored.
1220 *
1221 * This functions uses delayed work over a period of a
1222 * second to further refine the TSC freq value. Since this is
1223 * timer based, instead of loop based, we don't block the boot
1224 * process while this longer calibration is done.
1225 *
0d2eb44f 1226 * If there are any calibration anomalies (too many SMIs, etc),
08ec0c58
JS
1227 * or the refined calibration is off by 1% of the fast early
1228 * calibration, we throw out the new calibration and use the
1229 * early calibration.
1230 */
1231static void tsc_refine_calibration_work(struct work_struct *work)
1232{
1233 static u64 tsc_start = -1, ref_start;
1234 static int hpet;
1235 u64 tsc_stop, ref_stop, delta;
1236 unsigned long freq;
aa7b630e 1237 int cpu;
08ec0c58
JS
1238
1239 /* Don't bother refining TSC on unstable systems */
aa83c457 1240 if (tsc_unstable)
e9088add 1241 goto unreg;
08ec0c58
JS
1242
1243 /*
1244 * Since the work is started early in boot, we may be
1245 * delayed the first time we expire. So set the workqueue
1246 * again once we know timers are working.
1247 */
1248 if (tsc_start == -1) {
1249 /*
1250 * Only set hpet once, to avoid mixing hardware
1251 * if the hpet becomes enabled later.
1252 */
1253 hpet = is_hpet_enabled();
1254 schedule_delayed_work(&tsc_irqwork, HZ);
1255 tsc_start = tsc_read_refs(&ref_start, hpet);
1256 return;
1257 }
1258
1259 tsc_stop = tsc_read_refs(&ref_stop, hpet);
1260
1261 /* hpet or pmtimer available ? */
62627bec 1262 if (ref_start == ref_stop)
08ec0c58
JS
1263 goto out;
1264
1265 /* Check, whether the sampling was disturbed by an SMI */
1266 if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1267 goto out;
1268
1269 delta = tsc_stop - tsc_start;
1270 delta *= 1000000LL;
1271 if (hpet)
1272 freq = calc_hpet_ref(delta, ref_start, ref_stop);
1273 else
1274 freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1275
1276 /* Make sure we're within 1% */
1277 if (abs(tsc_khz - freq) > tsc_khz/100)
1278 goto out;
1279
1280 tsc_khz = freq;
c767a54b
JP
1281 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1282 (unsigned long)tsc_khz / 1000,
1283 (unsigned long)tsc_khz % 1000);
08ec0c58 1284
6731b0d6
NS
1285 /* Inform the TSC deadline clockevent devices about the recalibration */
1286 lapic_update_tsc_freq();
1287
aa7b630e
PZ
1288 /* Update the sched_clock() rate to match the clocksource one */
1289 for_each_possible_cpu(cpu)
5c3c2ea6 1290 set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
aa7b630e 1291
08ec0c58 1292out:
aa83c457 1293 if (tsc_unstable)
e9088add 1294 goto unreg;
aa83c457 1295
f9677e0f
CH
1296 if (boot_cpu_has(X86_FEATURE_ART))
1297 art_related_clocksource = &clocksource_tsc;
08ec0c58 1298 clocksource_register_khz(&clocksource_tsc, tsc_khz);
e9088add 1299unreg:
aa83c457 1300 clocksource_unregister(&clocksource_tsc_early);
08ec0c58
JS
1301}
1302
1303
1304static int __init init_tsc_clocksource(void)
8fbbc4b4 1305{
fe9af81e 1306 if (!boot_cpu_has(X86_FEATURE_TSC) || !tsc_khz)
a8760eca
TG
1307 return 0;
1308
e9088add
PZ
1309 if (tsc_unstable)
1310 goto unreg;
aa83c457 1311
395628ef
AK
1312 if (tsc_clocksource_reliable)
1313 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
57779dc2 1314
82f9c080
FT
1315 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1316 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1317
57779dc2 1318 /*
47c95a46
BG
1319 * When TSC frequency is known (retrieved via MSR or CPUID), we skip
1320 * the refined calibration and directly register it as a clocksource.
57779dc2 1321 */
984feceb 1322 if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
44fee88c
PZ
1323 if (boot_cpu_has(X86_FEATURE_ART))
1324 art_related_clocksource = &clocksource_tsc;
57779dc2 1325 clocksource_register_khz(&clocksource_tsc, tsc_khz);
e9088add 1326unreg:
aa83c457 1327 clocksource_unregister(&clocksource_tsc_early);
57779dc2
AK
1328 return 0;
1329 }
1330
08ec0c58
JS
1331 schedule_delayed_work(&tsc_irqwork, 0);
1332 return 0;
8fbbc4b4 1333}
08ec0c58
JS
1334/*
1335 * We use device_initcall here, to ensure we run after the hpet
1336 * is fully initialized, which may occur at fs_initcall time.
1337 */
1338device_initcall(init_tsc_clocksource);
8fbbc4b4 1339
cf7a63ef 1340static bool __init determine_cpu_tsc_frequencies(void)
8fbbc4b4 1341{
cf7a63ef
PT
1342 /* Make sure that cpu and tsc are not already calibrated */
1343 WARN_ON(cpu_khz || tsc_khz);
8fbbc4b4 1344
aa297292 1345 cpu_khz = x86_platform.calibrate_cpu();
2d826404 1346 tsc_khz = x86_platform.calibrate_tsc();
ff4c8663
LB
1347
1348 /*
1349 * Trust non-zero tsc_khz as authorative,
1350 * and use it to sanity check cpu_khz,
1351 * which will be off if system timer is off.
1352 */
aa297292
LB
1353 if (tsc_khz == 0)
1354 tsc_khz = cpu_khz;
ff4c8663
LB
1355 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1356 cpu_khz = tsc_khz;
8fbbc4b4 1357
cf7a63ef
PT
1358 if (tsc_khz == 0)
1359 return false;
8fbbc4b4 1360
c767a54b 1361 pr_info("Detected %lu.%03lu MHz processor\n",
cf7a63ef
PT
1362 (unsigned long)cpu_khz / KHZ,
1363 (unsigned long)cpu_khz % KHZ);
8fbbc4b4 1364
4b5b2127
LB
1365 if (cpu_khz != tsc_khz) {
1366 pr_info("Detected %lu.%03lu MHz TSC",
cf7a63ef
PT
1367 (unsigned long)tsc_khz / KHZ,
1368 (unsigned long)tsc_khz % KHZ);
1369 }
1370 return true;
1371}
1372
1373static unsigned long __init get_loops_per_jiffy(void)
1374{
1375 unsigned long lpj = tsc_khz * KHZ;
1376
1377 do_div(lpj, HZ);
1378 return lpj;
1379}
1380
1381void __init tsc_early_init(void)
1382{
1383 if (!boot_cpu_has(X86_FEATURE_TSC))
1384 return;
1385 if (!determine_cpu_tsc_frequencies())
1386 return;
1387 loops_per_jiffy = get_loops_per_jiffy();
1388}
1389
1390void __init tsc_init(void)
1391{
1392 if (!boot_cpu_has(X86_FEATURE_TSC)) {
1393 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1394 return;
1395 }
1396
1397 if (!tsc_khz) {
1398 /* We failed to determine frequencies earlier, try again */
1399 if (!determine_cpu_tsc_frequencies()) {
1400 mark_tsc_unstable("could not calculate TSC khz");
1401 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1402 return;
1403 }
4b5b2127
LB
1404 }
1405
f2e04214
TG
1406 /* Sanitize TSC ADJUST before cyc2ns gets initialized */
1407 tsc_store_and_check_tsc_adjust(true);
1408
8fbbc4b4
AK
1409 /*
1410 * Secondary CPUs do not run through tsc_init(), so set up
1411 * all the scale factors for all CPUs, assuming the same
1412 * speed as the bootup CPU. (cpufreq notifiers will fix this
1413 * up if their speed diverges)
1414 */
615cd033 1415 cyc = rdtsc();
20d1c86a
PZ
1416 for_each_possible_cpu(cpu) {
1417 cyc2ns_init(cpu);
5c3c2ea6 1418 set_cyc2ns_scale(tsc_khz, cpu, cyc);
20d1c86a 1419 }
8fbbc4b4 1420
3bbfafb7 1421 static_branch_enable(&__use_tsc);
8fbbc4b4 1422
e82b8e4e
VP
1423 if (!no_sched_irq_time)
1424 enable_sched_clock_irqtime();
1425
cf7a63ef 1426 lpj_fine = get_loops_per_jiffy();
8fbbc4b4 1427 use_tsc_delay();
8fbbc4b4 1428
a1272dd5
ZD
1429 check_system_tsc_reliable();
1430
aa83c457 1431 if (unsynchronized_tsc()) {
8fbbc4b4 1432 mark_tsc_unstable("TSCs unsynchronized");
aa83c457
PZ
1433 return;
1434 }
8fbbc4b4 1435
aa83c457 1436 clocksource_register_khz(&clocksource_tsc_early, tsc_khz);
f9677e0f 1437 detect_art();
8fbbc4b4
AK
1438}
1439
b565201c
JS
1440#ifdef CONFIG_SMP
1441/*
1442 * If we have a constant TSC and are using the TSC for the delay loop,
1443 * we can skip clock calibration if another cpu in the same socket has already
1444 * been calibrated. This assumes that CONSTANT_TSC applies to all
1445 * cpus in the socket - this should be a safe assumption.
1446 */
148f9bb8 1447unsigned long calibrate_delay_is_known(void)
b565201c 1448{
c25323c0 1449 int sibling, cpu = smp_processor_id();
76ce7cfe
PT
1450 int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
1451 const struct cpumask *mask = topology_core_cpumask(cpu);
b565201c 1452
fe9af81e 1453 if (!constant_tsc || !mask)
f508a5ba
TG
1454 return 0;
1455
1456 sibling = cpumask_any_but(mask, cpu);
c25323c0
TG
1457 if (sibling < nr_cpu_ids)
1458 return cpu_data(sibling).loops_per_jiffy;
b565201c
JS
1459 return 0;
1460}
1461#endif