x86: TSC: define the PIT latch value separate
[linux-2.6-block.git] / arch / x86 / kernel / tsc.c
CommitLineData
bfc0f594 1#include <linux/kernel.h>
0ef95533
AK
2#include <linux/sched.h>
3#include <linux/init.h>
4#include <linux/module.h>
5#include <linux/timer.h>
bfc0f594 6#include <linux/acpi_pmtmr.h>
2dbe06fa 7#include <linux/cpufreq.h>
8fbbc4b4
AK
8#include <linux/dmi.h>
9#include <linux/delay.h>
10#include <linux/clocksource.h>
11#include <linux/percpu.h>
bfc0f594
AK
12
13#include <asm/hpet.h>
8fbbc4b4
AK
14#include <asm/timer.h>
15#include <asm/vgtod.h>
16#include <asm/time.h>
17#include <asm/delay.h>
0ef95533
AK
18
19unsigned int cpu_khz; /* TSC clocks / usec, not used here */
20EXPORT_SYMBOL(cpu_khz);
21unsigned int tsc_khz;
22EXPORT_SYMBOL(tsc_khz);
23
24/*
25 * TSC can be unstable due to cpufreq or due to unsynced TSCs
26 */
8fbbc4b4 27static int tsc_unstable;
0ef95533
AK
28
29/* native_sched_clock() is called before tsc_init(), so
30 we must start with the TSC soft disabled to prevent
31 erroneous rdtsc usage on !cpu_has_tsc processors */
8fbbc4b4 32static int tsc_disabled = -1;
0ef95533
AK
33
34/*
35 * Scheduler clock - returns current time in nanosec units.
36 */
37u64 native_sched_clock(void)
38{
39 u64 this_offset;
40
41 /*
42 * Fall back to jiffies if there's no TSC available:
43 * ( But note that we still use it if the TSC is marked
44 * unstable. We do this because unlike Time Of Day,
45 * the scheduler clock tolerates small errors and it's
46 * very important for it to be as fast as the platform
47 * can achive it. )
48 */
49 if (unlikely(tsc_disabled)) {
50 /* No locking but a rare wrong value is not a big deal: */
51 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
52 }
53
54 /* read the Time Stamp Counter: */
55 rdtscll(this_offset);
56
57 /* return the value in ns */
58 return cycles_2_ns(this_offset);
59}
60
61/* We need to define a real function for sched_clock, to override the
62 weak default version */
63#ifdef CONFIG_PARAVIRT
64unsigned long long sched_clock(void)
65{
66 return paravirt_sched_clock();
67}
68#else
69unsigned long long
70sched_clock(void) __attribute__((alias("native_sched_clock")));
71#endif
72
73int check_tsc_unstable(void)
74{
75 return tsc_unstable;
76}
77EXPORT_SYMBOL_GPL(check_tsc_unstable);
78
79#ifdef CONFIG_X86_TSC
80int __init notsc_setup(char *str)
81{
82 printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
83 "cannot disable TSC completely.\n");
84 tsc_disabled = 1;
85 return 1;
86}
87#else
88/*
89 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
90 * in cpu/common.c
91 */
92int __init notsc_setup(char *str)
93{
94 setup_clear_cpu_cap(X86_FEATURE_TSC);
95 return 1;
96}
97#endif
98
99__setup("notsc", notsc_setup);
bfc0f594
AK
100
101#define MAX_RETRIES 5
102#define SMI_TRESHOLD 50000
103
104/*
105 * Read TSC and the reference counters. Take care of SMI disturbance
106 */
d554d9a4 107static u64 tsc_read_refs(u64 *pm, u64 *hpet)
bfc0f594
AK
108{
109 u64 t1, t2;
110 int i;
111
112 for (i = 0; i < MAX_RETRIES; i++) {
113 t1 = get_cycles();
114 if (hpet)
115 *hpet = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
116 else
117 *pm = acpi_pm_read_early();
118 t2 = get_cycles();
119 if ((t2 - t1) < SMI_TRESHOLD)
120 return t2;
121 }
122 return ULLONG_MAX;
123}
124
cce3e057
TG
125#define CAL_MS 50
126#define CAL_LATCH (CLOCK_TICK_RATE / (1000 / CAL_MS))
127#define CAL_PIT_LOOPS 5000
128
ec0c15af
LT
129/*
130 * Try to calibrate the TSC against the Programmable
131 * Interrupt Timer and return the frequency of the TSC
132 * in kHz.
133 *
134 * Return ULONG_MAX on failure to calibrate.
135 */
136static unsigned long pit_calibrate_tsc(void)
137{
138 u64 tsc, t1, t2, delta;
139 unsigned long tscmin, tscmax;
140 int pitcnt;
141
142 /* Set the Gate high, disable speaker */
143 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
144
145 /*
146 * Setup CTC channel 2* for mode 0, (interrupt on terminal
147 * count mode), binary count. Set the latch register to 50ms
148 * (LSB then MSB) to begin countdown.
149 */
150 outb(0xb0, 0x43);
cce3e057
TG
151 outb(CAL_LATCH & 0xff, 0x42);
152 outb(CAL_LATCH >> 8, 0x42);
ec0c15af
LT
153
154 tsc = t1 = t2 = get_cycles();
155
156 pitcnt = 0;
157 tscmax = 0;
158 tscmin = ULONG_MAX;
159 while ((inb(0x61) & 0x20) == 0) {
160 t2 = get_cycles();
161 delta = t2 - tsc;
162 tsc = t2;
163 if ((unsigned long) delta < tscmin)
164 tscmin = (unsigned int) delta;
165 if ((unsigned long) delta > tscmax)
166 tscmax = (unsigned int) delta;
167 pitcnt++;
168 }
169
170 /*
171 * Sanity checks:
172 *
cce3e057 173 * If we were not able to read the PIT more than PIT_MIN_LOOPS
ec0c15af
LT
174 * times, then we have been hit by a massive SMI
175 *
176 * If the maximum is 10 times larger than the minimum,
177 * then we got hit by an SMI as well.
178 */
cce3e057 179 if (pitcnt < CAL_PIT_LOOPS || tscmax > 10 * tscmin)
ec0c15af
LT
180 return ULONG_MAX;
181
182 /* Calculate the PIT value */
183 delta = t2 - t1;
cce3e057 184 do_div(delta, CAL_MS);
ec0c15af
LT
185 return delta;
186}
187
188
bfc0f594 189/**
e93ef949 190 * native_calibrate_tsc - calibrate the tsc on boot
bfc0f594 191 */
e93ef949 192unsigned long native_calibrate_tsc(void)
bfc0f594 193{
ec0c15af 194 u64 tsc1, tsc2, delta, pm1, pm2, hpet1, hpet2;
fbb16e24 195 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
ec0c15af
LT
196 unsigned long flags;
197 int hpet = is_hpet_enabled(), i;
bfc0f594 198
fbb16e24
TG
199 /*
200 * Run 5 calibration loops to get the lowest frequency value
201 * (the best estimate). We use two different calibration modes
202 * here:
203 *
204 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
205 * load a timeout of 50ms. We read the time right after we
206 * started the timer and wait until the PIT count down reaches
207 * zero. In each wait loop iteration we read the TSC and check
208 * the delta to the previous read. We keep track of the min
209 * and max values of that delta. The delta is mostly defined
210 * by the IO time of the PIT access, so we can detect when a
211 * SMI/SMM disturbance happend between the two reads. If the
212 * maximum time is significantly larger than the minimum time,
213 * then we discard the result and have another try.
214 *
215 * 2) Reference counter. If available we use the HPET or the
216 * PMTIMER as a reference to check the sanity of that value.
217 * We use separate TSC readouts and check inside of the
218 * reference read for a SMI/SMM disturbance. We dicard
219 * disturbed values here as well. We do that around the PIT
220 * calibration delay loop as we have to wait for a certain
221 * amount of time anyway.
222 */
223 for (i = 0; i < 5; i++) {
ec0c15af 224 unsigned long tsc_pit_khz;
fbb16e24
TG
225
226 /*
227 * Read the start value and the reference count of
ec0c15af
LT
228 * hpet/pmtimer when available. Then do the PIT
229 * calibration, which will take at least 50ms, and
230 * read the end value.
fbb16e24 231 */
ec0c15af 232 local_irq_save(flags);
fbb16e24 233 tsc1 = tsc_read_refs(&pm1, hpet ? &hpet1 : NULL);
ec0c15af 234 tsc_pit_khz = pit_calibrate_tsc();
fbb16e24 235 tsc2 = tsc_read_refs(&pm2, hpet ? &hpet2 : NULL);
fbb16e24
TG
236 local_irq_restore(flags);
237
ec0c15af
LT
238 /* Pick the lowest PIT TSC calibration so far */
239 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
fbb16e24
TG
240
241 /* hpet or pmtimer available ? */
242 if (!hpet && !pm1 && !pm2)
243 continue;
244
245 /* Check, whether the sampling was disturbed by an SMI */
246 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
247 continue;
248
249 tsc2 = (tsc2 - tsc1) * 1000000LL;
250
251 if (hpet) {
252 if (hpet2 < hpet1)
253 hpet2 += 0x100000000ULL;
254 hpet2 -= hpet1;
255 tsc1 = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
256 do_div(tsc1, 1000000);
257 } else {
258 if (pm2 < pm1)
259 pm2 += (u64)ACPI_PM_OVRRUN;
260 pm2 -= pm1;
261 tsc1 = pm2 * 1000000000LL;
262 do_div(tsc1, PMTMR_TICKS_PER_SEC);
263 }
264
265 do_div(tsc2, tsc1);
266 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
267 }
bfc0f594
AK
268
269 /*
fbb16e24 270 * Now check the results.
bfc0f594 271 */
fbb16e24
TG
272 if (tsc_pit_min == ULONG_MAX) {
273 /* PIT gave no useful value */
274 printk(KERN_WARNING "TSC: PIT calibration failed due to "
275 "SMI disturbance.\n");
276
277 /* We don't have an alternative source, disable TSC */
278 if (!hpet && !pm1 && !pm2) {
279 printk("TSC: No reference (HPET/PMTIMER) available\n");
280 return 0;
281 }
282
283 /* The alternative source failed as well, disable TSC */
284 if (tsc_ref_min == ULONG_MAX) {
285 printk(KERN_WARNING "TSC: HPET/PMTIMER calibration "
286 "failed due to SMI disturbance.\n");
287 return 0;
288 }
289
290 /* Use the alternative source */
291 printk(KERN_INFO "TSC: using %s reference calibration\n",
292 hpet ? "HPET" : "PMTIMER");
293
294 return tsc_ref_min;
295 }
bfc0f594 296
fbb16e24 297 /* We don't have an alternative source, use the PIT calibration value */
bfc0f594 298 if (!hpet && !pm1 && !pm2) {
fbb16e24
TG
299 printk(KERN_INFO "TSC: Using PIT calibration value\n");
300 return tsc_pit_min;
bfc0f594
AK
301 }
302
fbb16e24
TG
303 /* The alternative source failed, use the PIT calibration value */
304 if (tsc_ref_min == ULONG_MAX) {
305 printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed due "
306 "to SMI disturbance. Using PIT calibration\n");
307 return tsc_pit_min;
bfc0f594
AK
308 }
309
fbb16e24
TG
310 /* Check the reference deviation */
311 delta = ((u64) tsc_pit_min) * 100;
312 do_div(delta, tsc_ref_min);
313
314 /*
315 * If both calibration results are inside a 5% window, the we
316 * use the lower frequency of those as it is probably the
317 * closest estimate.
318 */
319 if (delta >= 95 && delta <= 105) {
320 printk(KERN_INFO "TSC: PIT calibration confirmed by %s.\n",
321 hpet ? "HPET" : "PMTIMER");
322 printk(KERN_INFO "TSC: using %s calibration value\n",
323 tsc_pit_min <= tsc_ref_min ? "PIT" :
324 hpet ? "HPET" : "PMTIMER");
325 return tsc_pit_min <= tsc_ref_min ? tsc_pit_min : tsc_ref_min;
bfc0f594
AK
326 }
327
fbb16e24
TG
328 printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n",
329 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
bfc0f594 330
fbb16e24
TG
331 /*
332 * The calibration values differ too much. In doubt, we use
333 * the PIT value as we know that there are PMTIMERs around
334 * running at double speed.
335 */
336 printk(KERN_INFO "TSC: Using PIT calibration value\n");
337 return tsc_pit_min;
bfc0f594
AK
338}
339
bfc0f594
AK
340#ifdef CONFIG_X86_32
341/* Only called from the Powernow K7 cpu freq driver */
342int recalibrate_cpu_khz(void)
343{
344#ifndef CONFIG_SMP
345 unsigned long cpu_khz_old = cpu_khz;
346
347 if (cpu_has_tsc) {
e93ef949
AK
348 tsc_khz = calibrate_tsc();
349 cpu_khz = tsc_khz;
bfc0f594
AK
350 cpu_data(0).loops_per_jiffy =
351 cpufreq_scale(cpu_data(0).loops_per_jiffy,
352 cpu_khz_old, cpu_khz);
353 return 0;
354 } else
355 return -ENODEV;
356#else
357 return -ENODEV;
358#endif
359}
360
361EXPORT_SYMBOL(recalibrate_cpu_khz);
362
363#endif /* CONFIG_X86_32 */
2dbe06fa
AK
364
365/* Accelerators for sched_clock()
366 * convert from cycles(64bits) => nanoseconds (64bits)
367 * basic equation:
368 * ns = cycles / (freq / ns_per_sec)
369 * ns = cycles * (ns_per_sec / freq)
370 * ns = cycles * (10^9 / (cpu_khz * 10^3))
371 * ns = cycles * (10^6 / cpu_khz)
372 *
373 * Then we use scaling math (suggested by george@mvista.com) to get:
374 * ns = cycles * (10^6 * SC / cpu_khz) / SC
375 * ns = cycles * cyc2ns_scale / SC
376 *
377 * And since SC is a constant power of two, we can convert the div
378 * into a shift.
379 *
380 * We can use khz divisor instead of mhz to keep a better precision, since
381 * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
382 * (mathieu.desnoyers@polymtl.ca)
383 *
384 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
385 */
386
387DEFINE_PER_CPU(unsigned long, cyc2ns);
388
8fbbc4b4 389static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
2dbe06fa
AK
390{
391 unsigned long long tsc_now, ns_now;
392 unsigned long flags, *scale;
393
394 local_irq_save(flags);
395 sched_clock_idle_sleep_event();
396
397 scale = &per_cpu(cyc2ns, cpu);
398
399 rdtscll(tsc_now);
400 ns_now = __cycles_2_ns(tsc_now);
401
402 if (cpu_khz)
403 *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
404
405 sched_clock_idle_wakeup_event(0);
406 local_irq_restore(flags);
407}
408
409#ifdef CONFIG_CPU_FREQ
410
411/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
412 * changes.
413 *
414 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
415 * not that important because current Opteron setups do not support
416 * scaling on SMP anyroads.
417 *
418 * Should fix up last_tsc too. Currently gettimeofday in the
419 * first tick after the change will be slightly wrong.
420 */
421
422static unsigned int ref_freq;
423static unsigned long loops_per_jiffy_ref;
424static unsigned long tsc_khz_ref;
425
426static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
427 void *data)
428{
429 struct cpufreq_freqs *freq = data;
430 unsigned long *lpj, dummy;
431
432 if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
433 return 0;
434
435 lpj = &dummy;
436 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
437#ifdef CONFIG_SMP
438 lpj = &cpu_data(freq->cpu).loops_per_jiffy;
439#else
440 lpj = &boot_cpu_data.loops_per_jiffy;
441#endif
442
443 if (!ref_freq) {
444 ref_freq = freq->old;
445 loops_per_jiffy_ref = *lpj;
446 tsc_khz_ref = tsc_khz;
447 }
448 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
449 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
450 (val == CPUFREQ_RESUMECHANGE)) {
451 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
452
453 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
454 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
455 mark_tsc_unstable("cpufreq changes");
456 }
457
52a8968c 458 set_cyc2ns_scale(tsc_khz, freq->cpu);
2dbe06fa
AK
459
460 return 0;
461}
462
463static struct notifier_block time_cpufreq_notifier_block = {
464 .notifier_call = time_cpufreq_notifier
465};
466
467static int __init cpufreq_tsc(void)
468{
060700b5
LT
469 if (!cpu_has_tsc)
470 return 0;
471 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
472 return 0;
2dbe06fa
AK
473 cpufreq_register_notifier(&time_cpufreq_notifier_block,
474 CPUFREQ_TRANSITION_NOTIFIER);
475 return 0;
476}
477
478core_initcall(cpufreq_tsc);
479
480#endif /* CONFIG_CPU_FREQ */
8fbbc4b4
AK
481
482/* clocksource code */
483
484static struct clocksource clocksource_tsc;
485
486/*
487 * We compare the TSC to the cycle_last value in the clocksource
488 * structure to avoid a nasty time-warp. This can be observed in a
489 * very small window right after one CPU updated cycle_last under
490 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
491 * is smaller than the cycle_last reference value due to a TSC which
492 * is slighty behind. This delta is nowhere else observable, but in
493 * that case it results in a forward time jump in the range of hours
494 * due to the unsigned delta calculation of the time keeping core
495 * code, which is necessary to support wrapping clocksources like pm
496 * timer.
497 */
498static cycle_t read_tsc(void)
499{
500 cycle_t ret = (cycle_t)get_cycles();
501
502 return ret >= clocksource_tsc.cycle_last ?
503 ret : clocksource_tsc.cycle_last;
504}
505
431ceb83 506#ifdef CONFIG_X86_64
8fbbc4b4
AK
507static cycle_t __vsyscall_fn vread_tsc(void)
508{
509 cycle_t ret = (cycle_t)vget_cycles();
510
511 return ret >= __vsyscall_gtod_data.clock.cycle_last ?
512 ret : __vsyscall_gtod_data.clock.cycle_last;
513}
431ceb83 514#endif
8fbbc4b4
AK
515
516static struct clocksource clocksource_tsc = {
517 .name = "tsc",
518 .rating = 300,
519 .read = read_tsc,
520 .mask = CLOCKSOURCE_MASK(64),
521 .shift = 22,
522 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
523 CLOCK_SOURCE_MUST_VERIFY,
524#ifdef CONFIG_X86_64
525 .vread = vread_tsc,
526#endif
527};
528
529void mark_tsc_unstable(char *reason)
530{
531 if (!tsc_unstable) {
532 tsc_unstable = 1;
533 printk("Marking TSC unstable due to %s\n", reason);
534 /* Change only the rating, when not registered */
535 if (clocksource_tsc.mult)
536 clocksource_change_rating(&clocksource_tsc, 0);
537 else
538 clocksource_tsc.rating = 0;
539 }
540}
541
542EXPORT_SYMBOL_GPL(mark_tsc_unstable);
543
544static int __init dmi_mark_tsc_unstable(const struct dmi_system_id *d)
545{
546 printk(KERN_NOTICE "%s detected: marking TSC unstable.\n",
547 d->ident);
548 tsc_unstable = 1;
549 return 0;
550}
551
552/* List of systems that have known TSC problems */
553static struct dmi_system_id __initdata bad_tsc_dmi_table[] = {
554 {
555 .callback = dmi_mark_tsc_unstable,
556 .ident = "IBM Thinkpad 380XD",
557 .matches = {
558 DMI_MATCH(DMI_BOARD_VENDOR, "IBM"),
559 DMI_MATCH(DMI_BOARD_NAME, "2635FA0"),
560 },
561 },
562 {}
563};
564
565/*
566 * Geode_LX - the OLPC CPU has a possibly a very reliable TSC
567 */
568#ifdef CONFIG_MGEODE_LX
569/* RTSC counts during suspend */
570#define RTSC_SUSP 0x100
571
572static void __init check_geode_tsc_reliable(void)
573{
574 unsigned long res_low, res_high;
575
576 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
577 if (res_low & RTSC_SUSP)
578 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
579}
580#else
581static inline void check_geode_tsc_reliable(void) { }
582#endif
583
584/*
585 * Make an educated guess if the TSC is trustworthy and synchronized
586 * over all CPUs.
587 */
588__cpuinit int unsynchronized_tsc(void)
589{
590 if (!cpu_has_tsc || tsc_unstable)
591 return 1;
592
593#ifdef CONFIG_SMP
594 if (apic_is_clustered_box())
595 return 1;
596#endif
597
598 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
599 return 0;
600 /*
601 * Intel systems are normally all synchronized.
602 * Exceptions must mark TSC as unstable:
603 */
604 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
605 /* assume multi socket systems are not synchronized: */
606 if (num_possible_cpus() > 1)
607 tsc_unstable = 1;
608 }
609
610 return tsc_unstable;
611}
612
613static void __init init_tsc_clocksource(void)
614{
615 clocksource_tsc.mult = clocksource_khz2mult(tsc_khz,
616 clocksource_tsc.shift);
617 /* lower the rating if we already know its unstable: */
618 if (check_tsc_unstable()) {
619 clocksource_tsc.rating = 0;
620 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
621 }
622 clocksource_register(&clocksource_tsc);
623}
624
625void __init tsc_init(void)
626{
627 u64 lpj;
628 int cpu;
629
630 if (!cpu_has_tsc)
631 return;
632
e93ef949
AK
633 tsc_khz = calibrate_tsc();
634 cpu_khz = tsc_khz;
8fbbc4b4 635
e93ef949 636 if (!tsc_khz) {
8fbbc4b4
AK
637 mark_tsc_unstable("could not calculate TSC khz");
638 return;
639 }
640
641#ifdef CONFIG_X86_64
642 if (cpu_has(&boot_cpu_data, X86_FEATURE_CONSTANT_TSC) &&
643 (boot_cpu_data.x86_vendor == X86_VENDOR_AMD))
644 cpu_khz = calibrate_cpu();
645#endif
646
647 lpj = ((u64)tsc_khz * 1000);
648 do_div(lpj, HZ);
649 lpj_fine = lpj;
650
651 printk("Detected %lu.%03lu MHz processor.\n",
652 (unsigned long)cpu_khz / 1000,
653 (unsigned long)cpu_khz % 1000);
654
655 /*
656 * Secondary CPUs do not run through tsc_init(), so set up
657 * all the scale factors for all CPUs, assuming the same
658 * speed as the bootup CPU. (cpufreq notifiers will fix this
659 * up if their speed diverges)
660 */
661 for_each_possible_cpu(cpu)
662 set_cyc2ns_scale(cpu_khz, cpu);
663
664 if (tsc_disabled > 0)
665 return;
666
667 /* now allow native_sched_clock() to use rdtsc */
668 tsc_disabled = 0;
669
670 use_tsc_delay();
671 /* Check and install the TSC clocksource */
672 dmi_check_system(bad_tsc_dmi_table);
673
674 if (unsynchronized_tsc())
675 mark_tsc_unstable("TSCs unsynchronized");
676
677 check_geode_tsc_reliable();
678 init_tsc_clocksource();
679}
680