x86/tsc: Fix erroneous TSC rate on Skylake Xeon
[linux-2.6-block.git] / arch / x86 / kernel / tsc.c
CommitLineData
c767a54b
JP
1#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
bfc0f594 3#include <linux/kernel.h>
0ef95533 4#include <linux/sched.h>
e6017571 5#include <linux/sched/clock.h>
0ef95533 6#include <linux/init.h>
186f4360 7#include <linux/export.h>
0ef95533 8#include <linux/timer.h>
bfc0f594 9#include <linux/acpi_pmtmr.h>
2dbe06fa 10#include <linux/cpufreq.h>
8fbbc4b4
AK
11#include <linux/delay.h>
12#include <linux/clocksource.h>
13#include <linux/percpu.h>
08604bd9 14#include <linux/timex.h>
10b033d4 15#include <linux/static_key.h>
bfc0f594
AK
16
17#include <asm/hpet.h>
8fbbc4b4
AK
18#include <asm/timer.h>
19#include <asm/vgtod.h>
20#include <asm/time.h>
21#include <asm/delay.h>
88b094fb 22#include <asm/hypervisor.h>
08047c4f 23#include <asm/nmi.h>
2d826404 24#include <asm/x86_init.h>
03da3ff1 25#include <asm/geode.h>
6731b0d6 26#include <asm/apic.h>
655e52d2 27#include <asm/intel-family.h>
0ef95533 28
f24ade3a 29unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
0ef95533 30EXPORT_SYMBOL(cpu_khz);
f24ade3a
IM
31
32unsigned int __read_mostly tsc_khz;
0ef95533
AK
33EXPORT_SYMBOL(tsc_khz);
34
35/*
36 * TSC can be unstable due to cpufreq or due to unsynced TSCs
37 */
f24ade3a 38static int __read_mostly tsc_unstable;
0ef95533
AK
39
40/* native_sched_clock() is called before tsc_init(), so
41 we must start with the TSC soft disabled to prevent
59e21e3d 42 erroneous rdtsc usage on !boot_cpu_has(X86_FEATURE_TSC) processors */
f24ade3a 43static int __read_mostly tsc_disabled = -1;
0ef95533 44
3bbfafb7 45static DEFINE_STATIC_KEY_FALSE(__use_tsc);
10b033d4 46
28a00184 47int tsc_clocksource_reliable;
57c67da2 48
f9677e0f
CH
49static u32 art_to_tsc_numerator;
50static u32 art_to_tsc_denominator;
51static u64 art_to_tsc_offset;
52struct clocksource *art_related_clocksource;
53
20d1c86a 54struct cyc2ns {
59eaef78
PZ
55 struct cyc2ns_data data[2]; /* 0 + 2*16 = 32 */
56 seqcount_t seq; /* 32 + 4 = 36 */
20d1c86a 57
59eaef78 58}; /* fits one cacheline */
20d1c86a 59
59eaef78 60static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
20d1c86a 61
59eaef78 62void cyc2ns_read_begin(struct cyc2ns_data *data)
20d1c86a 63{
59eaef78 64 int seq, idx;
20d1c86a 65
59eaef78 66 preempt_disable_notrace();
20d1c86a 67
59eaef78
PZ
68 do {
69 seq = this_cpu_read(cyc2ns.seq.sequence);
70 idx = seq & 1;
20d1c86a 71
59eaef78
PZ
72 data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
73 data->cyc2ns_mul = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
74 data->cyc2ns_shift = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
20d1c86a 75
59eaef78 76 } while (unlikely(seq != this_cpu_read(cyc2ns.seq.sequence)));
20d1c86a
PZ
77}
78
59eaef78 79void cyc2ns_read_end(void)
20d1c86a 80{
59eaef78 81 preempt_enable_notrace();
20d1c86a
PZ
82}
83
84/*
85 * Accelerators for sched_clock()
57c67da2
PZ
86 * convert from cycles(64bits) => nanoseconds (64bits)
87 * basic equation:
88 * ns = cycles / (freq / ns_per_sec)
89 * ns = cycles * (ns_per_sec / freq)
90 * ns = cycles * (10^9 / (cpu_khz * 10^3))
91 * ns = cycles * (10^6 / cpu_khz)
92 *
93 * Then we use scaling math (suggested by george@mvista.com) to get:
94 * ns = cycles * (10^6 * SC / cpu_khz) / SC
95 * ns = cycles * cyc2ns_scale / SC
96 *
97 * And since SC is a constant power of two, we can convert the div
b20112ed
AH
98 * into a shift. The larger SC is, the more accurate the conversion, but
99 * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
100 * (64-bit result) can be used.
57c67da2 101 *
b20112ed 102 * We can use khz divisor instead of mhz to keep a better precision.
57c67da2
PZ
103 * (mathieu.desnoyers@polymtl.ca)
104 *
105 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
106 */
107
20d1c86a
PZ
108static void cyc2ns_data_init(struct cyc2ns_data *data)
109{
5e3c1afd 110 data->cyc2ns_mul = 0;
b20112ed 111 data->cyc2ns_shift = 0;
20d1c86a 112 data->cyc2ns_offset = 0;
20d1c86a
PZ
113}
114
120fc3fb 115static void __init cyc2ns_init(int cpu)
20d1c86a
PZ
116{
117 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
118
119 cyc2ns_data_init(&c2n->data[0]);
120 cyc2ns_data_init(&c2n->data[1]);
121
59eaef78 122 seqcount_init(&c2n->seq);
20d1c86a
PZ
123}
124
57c67da2
PZ
125static inline unsigned long long cycles_2_ns(unsigned long long cyc)
126{
59eaef78 127 struct cyc2ns_data data;
20d1c86a
PZ
128 unsigned long long ns;
129
59eaef78 130 cyc2ns_read_begin(&data);
20d1c86a 131
59eaef78
PZ
132 ns = data.cyc2ns_offset;
133 ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
20d1c86a 134
59eaef78 135 cyc2ns_read_end();
20d1c86a 136
57c67da2
PZ
137 return ns;
138}
139
5c3c2ea6 140static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
57c67da2 141{
615cd033 142 unsigned long long ns_now;
59eaef78
PZ
143 struct cyc2ns_data data;
144 struct cyc2ns *c2n;
20d1c86a 145 unsigned long flags;
57c67da2
PZ
146
147 local_irq_save(flags);
148 sched_clock_idle_sleep_event();
149
aa297292 150 if (!khz)
20d1c86a
PZ
151 goto done;
152
57c67da2
PZ
153 ns_now = cycles_2_ns(tsc_now);
154
20d1c86a
PZ
155 /*
156 * Compute a new multiplier as per the above comment and ensure our
157 * time function is continuous; see the comment near struct
158 * cyc2ns_data.
159 */
59eaef78 160 clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
b20112ed
AH
161 NSEC_PER_MSEC, 0);
162
b9511cd7
AH
163 /*
164 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
165 * not expected to be greater than 31 due to the original published
166 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
167 * value) - refer perf_event_mmap_page documentation in perf_event.h.
168 */
59eaef78
PZ
169 if (data.cyc2ns_shift == 32) {
170 data.cyc2ns_shift = 31;
171 data.cyc2ns_mul >>= 1;
b9511cd7
AH
172 }
173
59eaef78
PZ
174 data.cyc2ns_offset = ns_now -
175 mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);
176
177 c2n = per_cpu_ptr(&cyc2ns, cpu);
20d1c86a 178
59eaef78
PZ
179 raw_write_seqcount_latch(&c2n->seq);
180 c2n->data[0] = data;
181 raw_write_seqcount_latch(&c2n->seq);
182 c2n->data[1] = data;
57c67da2 183
20d1c86a 184done:
ac1e843f 185 sched_clock_idle_wakeup_event();
57c67da2
PZ
186 local_irq_restore(flags);
187}
615cd033 188
0ef95533
AK
189/*
190 * Scheduler clock - returns current time in nanosec units.
191 */
192u64 native_sched_clock(void)
193{
3bbfafb7
PZ
194 if (static_branch_likely(&__use_tsc)) {
195 u64 tsc_now = rdtsc();
196
197 /* return the value in ns */
198 return cycles_2_ns(tsc_now);
199 }
0ef95533
AK
200
201 /*
202 * Fall back to jiffies if there's no TSC available:
203 * ( But note that we still use it if the TSC is marked
204 * unstable. We do this because unlike Time Of Day,
205 * the scheduler clock tolerates small errors and it's
206 * very important for it to be as fast as the platform
3ad2f3fb 207 * can achieve it. )
0ef95533 208 */
0ef95533 209
3bbfafb7
PZ
210 /* No locking but a rare wrong value is not a big deal: */
211 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
0ef95533
AK
212}
213
a94cab23
AK
214/*
215 * Generate a sched_clock if you already have a TSC value.
216 */
217u64 native_sched_clock_from_tsc(u64 tsc)
218{
219 return cycles_2_ns(tsc);
220}
221
0ef95533
AK
222/* We need to define a real function for sched_clock, to override the
223 weak default version */
224#ifdef CONFIG_PARAVIRT
225unsigned long long sched_clock(void)
226{
227 return paravirt_sched_clock();
228}
f94c8d11 229
698eff63 230bool using_native_sched_clock(void)
f94c8d11
PZ
231{
232 return pv_time_ops.sched_clock == native_sched_clock;
233}
0ef95533
AK
234#else
235unsigned long long
236sched_clock(void) __attribute__((alias("native_sched_clock")));
f94c8d11 237
698eff63 238bool using_native_sched_clock(void) { return true; }
0ef95533
AK
239#endif
240
241int check_tsc_unstable(void)
242{
243 return tsc_unstable;
244}
245EXPORT_SYMBOL_GPL(check_tsc_unstable);
246
247#ifdef CONFIG_X86_TSC
248int __init notsc_setup(char *str)
249{
c767a54b 250 pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
0ef95533
AK
251 tsc_disabled = 1;
252 return 1;
253}
254#else
255/*
256 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
257 * in cpu/common.c
258 */
259int __init notsc_setup(char *str)
260{
261 setup_clear_cpu_cap(X86_FEATURE_TSC);
262 return 1;
263}
264#endif
265
266__setup("notsc", notsc_setup);
bfc0f594 267
e82b8e4e
VP
268static int no_sched_irq_time;
269
395628ef
AK
270static int __init tsc_setup(char *str)
271{
272 if (!strcmp(str, "reliable"))
273 tsc_clocksource_reliable = 1;
e82b8e4e
VP
274 if (!strncmp(str, "noirqtime", 9))
275 no_sched_irq_time = 1;
8309f86c
PZ
276 if (!strcmp(str, "unstable"))
277 mark_tsc_unstable("boot parameter");
395628ef
AK
278 return 1;
279}
280
281__setup("tsc=", tsc_setup);
282
bfc0f594
AK
283#define MAX_RETRIES 5
284#define SMI_TRESHOLD 50000
285
286/*
287 * Read TSC and the reference counters. Take care of SMI disturbance
288 */
827014be 289static u64 tsc_read_refs(u64 *p, int hpet)
bfc0f594
AK
290{
291 u64 t1, t2;
292 int i;
293
294 for (i = 0; i < MAX_RETRIES; i++) {
295 t1 = get_cycles();
296 if (hpet)
827014be 297 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
bfc0f594 298 else
827014be 299 *p = acpi_pm_read_early();
bfc0f594
AK
300 t2 = get_cycles();
301 if ((t2 - t1) < SMI_TRESHOLD)
302 return t2;
303 }
304 return ULLONG_MAX;
305}
306
d683ef7a
TG
307/*
308 * Calculate the TSC frequency from HPET reference
bfc0f594 309 */
d683ef7a 310static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
bfc0f594 311{
d683ef7a 312 u64 tmp;
bfc0f594 313
d683ef7a
TG
314 if (hpet2 < hpet1)
315 hpet2 += 0x100000000ULL;
316 hpet2 -= hpet1;
317 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
318 do_div(tmp, 1000000);
319 do_div(deltatsc, tmp);
320
321 return (unsigned long) deltatsc;
322}
323
324/*
325 * Calculate the TSC frequency from PMTimer reference
326 */
327static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
328{
329 u64 tmp;
bfc0f594 330
d683ef7a
TG
331 if (!pm1 && !pm2)
332 return ULONG_MAX;
333
334 if (pm2 < pm1)
335 pm2 += (u64)ACPI_PM_OVRRUN;
336 pm2 -= pm1;
337 tmp = pm2 * 1000000000LL;
338 do_div(tmp, PMTMR_TICKS_PER_SEC);
339 do_div(deltatsc, tmp);
340
341 return (unsigned long) deltatsc;
342}
343
a977c400 344#define CAL_MS 10
b7743970 345#define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
a977c400
TG
346#define CAL_PIT_LOOPS 1000
347
348#define CAL2_MS 50
b7743970 349#define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
a977c400
TG
350#define CAL2_PIT_LOOPS 5000
351
cce3e057 352
ec0c15af
LT
353/*
354 * Try to calibrate the TSC against the Programmable
355 * Interrupt Timer and return the frequency of the TSC
356 * in kHz.
357 *
358 * Return ULONG_MAX on failure to calibrate.
359 */
a977c400 360static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
ec0c15af
LT
361{
362 u64 tsc, t1, t2, delta;
363 unsigned long tscmin, tscmax;
364 int pitcnt;
365
366 /* Set the Gate high, disable speaker */
367 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
368
369 /*
370 * Setup CTC channel 2* for mode 0, (interrupt on terminal
371 * count mode), binary count. Set the latch register to 50ms
372 * (LSB then MSB) to begin countdown.
373 */
374 outb(0xb0, 0x43);
a977c400
TG
375 outb(latch & 0xff, 0x42);
376 outb(latch >> 8, 0x42);
ec0c15af
LT
377
378 tsc = t1 = t2 = get_cycles();
379
380 pitcnt = 0;
381 tscmax = 0;
382 tscmin = ULONG_MAX;
383 while ((inb(0x61) & 0x20) == 0) {
384 t2 = get_cycles();
385 delta = t2 - tsc;
386 tsc = t2;
387 if ((unsigned long) delta < tscmin)
388 tscmin = (unsigned int) delta;
389 if ((unsigned long) delta > tscmax)
390 tscmax = (unsigned int) delta;
391 pitcnt++;
392 }
393
394 /*
395 * Sanity checks:
396 *
a977c400 397 * If we were not able to read the PIT more than loopmin
ec0c15af
LT
398 * times, then we have been hit by a massive SMI
399 *
400 * If the maximum is 10 times larger than the minimum,
401 * then we got hit by an SMI as well.
402 */
a977c400 403 if (pitcnt < loopmin || tscmax > 10 * tscmin)
ec0c15af
LT
404 return ULONG_MAX;
405
406 /* Calculate the PIT value */
407 delta = t2 - t1;
a977c400 408 do_div(delta, ms);
ec0c15af
LT
409 return delta;
410}
411
6ac40ed0
LT
412/*
413 * This reads the current MSB of the PIT counter, and
414 * checks if we are running on sufficiently fast and
415 * non-virtualized hardware.
416 *
417 * Our expectations are:
418 *
419 * - the PIT is running at roughly 1.19MHz
420 *
421 * - each IO is going to take about 1us on real hardware,
422 * but we allow it to be much faster (by a factor of 10) or
423 * _slightly_ slower (ie we allow up to a 2us read+counter
424 * update - anything else implies a unacceptably slow CPU
425 * or PIT for the fast calibration to work.
426 *
427 * - with 256 PIT ticks to read the value, we have 214us to
428 * see the same MSB (and overhead like doing a single TSC
429 * read per MSB value etc).
430 *
431 * - We're doing 2 reads per loop (LSB, MSB), and we expect
432 * them each to take about a microsecond on real hardware.
433 * So we expect a count value of around 100. But we'll be
434 * generous, and accept anything over 50.
435 *
436 * - if the PIT is stuck, and we see *many* more reads, we
437 * return early (and the next caller of pit_expect_msb()
438 * then consider it a failure when they don't see the
439 * next expected value).
440 *
441 * These expectations mean that we know that we have seen the
442 * transition from one expected value to another with a fairly
443 * high accuracy, and we didn't miss any events. We can thus
444 * use the TSC value at the transitions to calculate a pretty
445 * good value for the TSC frequencty.
446 */
b6e61eef
LT
447static inline int pit_verify_msb(unsigned char val)
448{
449 /* Ignore LSB */
450 inb(0x42);
451 return inb(0x42) == val;
452}
453
9e8912e0 454static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
6ac40ed0 455{
9e8912e0 456 int count;
68f30fbe 457 u64 tsc = 0, prev_tsc = 0;
bfc0f594 458
6ac40ed0 459 for (count = 0; count < 50000; count++) {
b6e61eef 460 if (!pit_verify_msb(val))
6ac40ed0 461 break;
68f30fbe 462 prev_tsc = tsc;
9e8912e0 463 tsc = get_cycles();
6ac40ed0 464 }
68f30fbe 465 *deltap = get_cycles() - prev_tsc;
9e8912e0
LT
466 *tscp = tsc;
467
468 /*
469 * We require _some_ success, but the quality control
470 * will be based on the error terms on the TSC values.
471 */
472 return count > 5;
6ac40ed0
LT
473}
474
475/*
9e8912e0
LT
476 * How many MSB values do we want to see? We aim for
477 * a maximum error rate of 500ppm (in practice the
478 * real error is much smaller), but refuse to spend
68f30fbe 479 * more than 50ms on it.
6ac40ed0 480 */
68f30fbe 481#define MAX_QUICK_PIT_MS 50
9e8912e0 482#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
bfc0f594 483
6ac40ed0
LT
484static unsigned long quick_pit_calibrate(void)
485{
9e8912e0
LT
486 int i;
487 u64 tsc, delta;
488 unsigned long d1, d2;
489
6ac40ed0 490 /* Set the Gate high, disable speaker */
bfc0f594
AK
491 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
492
6ac40ed0
LT
493 /*
494 * Counter 2, mode 0 (one-shot), binary count
495 *
496 * NOTE! Mode 2 decrements by two (and then the
497 * output is flipped each time, giving the same
498 * final output frequency as a decrement-by-one),
499 * so mode 0 is much better when looking at the
500 * individual counts.
501 */
bfc0f594 502 outb(0xb0, 0x43);
bfc0f594 503
6ac40ed0
LT
504 /* Start at 0xffff */
505 outb(0xff, 0x42);
506 outb(0xff, 0x42);
507
a6a80e1d
LT
508 /*
509 * The PIT starts counting at the next edge, so we
510 * need to delay for a microsecond. The easiest way
511 * to do that is to just read back the 16-bit counter
512 * once from the PIT.
513 */
b6e61eef 514 pit_verify_msb(0);
a6a80e1d 515
9e8912e0
LT
516 if (pit_expect_msb(0xff, &tsc, &d1)) {
517 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
518 if (!pit_expect_msb(0xff-i, &delta, &d2))
519 break;
520
5aac644a
AH
521 delta -= tsc;
522
523 /*
524 * Extrapolate the error and fail fast if the error will
525 * never be below 500 ppm.
526 */
527 if (i == 1 &&
528 d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
529 return 0;
530
9e8912e0
LT
531 /*
532 * Iterate until the error is less than 500 ppm
533 */
b6e61eef
LT
534 if (d1+d2 >= delta >> 11)
535 continue;
536
537 /*
538 * Check the PIT one more time to verify that
539 * all TSC reads were stable wrt the PIT.
540 *
541 * This also guarantees serialization of the
542 * last cycle read ('d2') in pit_expect_msb.
543 */
544 if (!pit_verify_msb(0xfe - i))
545 break;
546 goto success;
6ac40ed0 547 }
6ac40ed0 548 }
52045217 549 pr_info("Fast TSC calibration failed\n");
6ac40ed0 550 return 0;
9e8912e0
LT
551
552success:
553 /*
554 * Ok, if we get here, then we've seen the
555 * MSB of the PIT decrement 'i' times, and the
556 * error has shrunk to less than 500 ppm.
557 *
558 * As a result, we can depend on there not being
559 * any odd delays anywhere, and the TSC reads are
68f30fbe 560 * reliable (within the error).
9e8912e0
LT
561 *
562 * kHz = ticks / time-in-seconds / 1000;
563 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
564 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
565 */
9e8912e0
LT
566 delta *= PIT_TICK_RATE;
567 do_div(delta, i*256*1000);
c767a54b 568 pr_info("Fast TSC calibration using PIT\n");
9e8912e0 569 return delta;
6ac40ed0 570}
ec0c15af 571
bfc0f594 572/**
aa297292
LB
573 * native_calibrate_tsc
574 * Determine TSC frequency via CPUID, else return 0.
bfc0f594 575 */
e93ef949 576unsigned long native_calibrate_tsc(void)
aa297292
LB
577{
578 unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
579 unsigned int crystal_khz;
580
581 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
582 return 0;
583
584 if (boot_cpu_data.cpuid_level < 0x15)
585 return 0;
586
587 eax_denominator = ebx_numerator = ecx_hz = edx = 0;
588
589 /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
590 cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
591
592 if (ebx_numerator == 0 || eax_denominator == 0)
593 return 0;
594
595 crystal_khz = ecx_hz / 1000;
596
597 if (crystal_khz == 0) {
598 switch (boot_cpu_data.x86_model) {
655e52d2
PB
599 case INTEL_FAM6_SKYLAKE_MOBILE:
600 case INTEL_FAM6_SKYLAKE_DESKTOP:
6baf3d61
PB
601 case INTEL_FAM6_KABYLAKE_MOBILE:
602 case INTEL_FAM6_KABYLAKE_DESKTOP:
ff4c8663
LB
603 crystal_khz = 24000; /* 24.0 MHz */
604 break;
695085b4 605 case INTEL_FAM6_ATOM_DENVERTON:
6baf3d61
PB
606 crystal_khz = 25000; /* 25.0 MHz */
607 break;
655e52d2 608 case INTEL_FAM6_ATOM_GOLDMONT:
ff4c8663
LB
609 crystal_khz = 19200; /* 19.2 MHz */
610 break;
aa297292
LB
611 }
612 }
613
da4ae6c4
LB
614 if (crystal_khz == 0)
615 return 0;
4ca4df0b
BG
616 /*
617 * TSC frequency determined by CPUID is a "hardware reported"
618 * frequency and is the most accurate one so far we have. This
619 * is considered a known frequency.
620 */
621 setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
622
4635fdc6
BG
623 /*
624 * For Atom SoCs TSC is the only reliable clocksource.
625 * Mark TSC reliable so no watchdog on it.
626 */
627 if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
628 setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
629
aa297292
LB
630 return crystal_khz * ebx_numerator / eax_denominator;
631}
632
633static unsigned long cpu_khz_from_cpuid(void)
634{
635 unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
636
637 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
638 return 0;
639
640 if (boot_cpu_data.cpuid_level < 0x16)
641 return 0;
642
643 eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
644
645 cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
646
647 return eax_base_mhz * 1000;
648}
649
650/**
651 * native_calibrate_cpu - calibrate the cpu on boot
652 */
653unsigned long native_calibrate_cpu(void)
bfc0f594 654{
827014be 655 u64 tsc1, tsc2, delta, ref1, ref2;
fbb16e24 656 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
2d826404 657 unsigned long flags, latch, ms, fast_calibrate;
a977c400 658 int hpet = is_hpet_enabled(), i, loopmin;
bfc0f594 659
aa297292
LB
660 fast_calibrate = cpu_khz_from_cpuid();
661 if (fast_calibrate)
662 return fast_calibrate;
663
02c0cd2d 664 fast_calibrate = cpu_khz_from_msr();
5f0e0309 665 if (fast_calibrate)
7da7c156 666 return fast_calibrate;
7da7c156 667
6ac40ed0
LT
668 local_irq_save(flags);
669 fast_calibrate = quick_pit_calibrate();
bfc0f594 670 local_irq_restore(flags);
6ac40ed0
LT
671 if (fast_calibrate)
672 return fast_calibrate;
bfc0f594 673
fbb16e24
TG
674 /*
675 * Run 5 calibration loops to get the lowest frequency value
676 * (the best estimate). We use two different calibration modes
677 * here:
678 *
679 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
680 * load a timeout of 50ms. We read the time right after we
681 * started the timer and wait until the PIT count down reaches
682 * zero. In each wait loop iteration we read the TSC and check
683 * the delta to the previous read. We keep track of the min
684 * and max values of that delta. The delta is mostly defined
685 * by the IO time of the PIT access, so we can detect when a
0d2eb44f 686 * SMI/SMM disturbance happened between the two reads. If the
fbb16e24
TG
687 * maximum time is significantly larger than the minimum time,
688 * then we discard the result and have another try.
689 *
690 * 2) Reference counter. If available we use the HPET or the
691 * PMTIMER as a reference to check the sanity of that value.
692 * We use separate TSC readouts and check inside of the
693 * reference read for a SMI/SMM disturbance. We dicard
694 * disturbed values here as well. We do that around the PIT
695 * calibration delay loop as we have to wait for a certain
696 * amount of time anyway.
697 */
a977c400
TG
698
699 /* Preset PIT loop values */
700 latch = CAL_LATCH;
701 ms = CAL_MS;
702 loopmin = CAL_PIT_LOOPS;
703
704 for (i = 0; i < 3; i++) {
ec0c15af 705 unsigned long tsc_pit_khz;
fbb16e24
TG
706
707 /*
708 * Read the start value and the reference count of
ec0c15af
LT
709 * hpet/pmtimer when available. Then do the PIT
710 * calibration, which will take at least 50ms, and
711 * read the end value.
fbb16e24 712 */
ec0c15af 713 local_irq_save(flags);
827014be 714 tsc1 = tsc_read_refs(&ref1, hpet);
a977c400 715 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
827014be 716 tsc2 = tsc_read_refs(&ref2, hpet);
fbb16e24
TG
717 local_irq_restore(flags);
718
ec0c15af
LT
719 /* Pick the lowest PIT TSC calibration so far */
720 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
fbb16e24
TG
721
722 /* hpet or pmtimer available ? */
62627bec 723 if (ref1 == ref2)
fbb16e24
TG
724 continue;
725
726 /* Check, whether the sampling was disturbed by an SMI */
727 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
728 continue;
729
730 tsc2 = (tsc2 - tsc1) * 1000000LL;
d683ef7a 731 if (hpet)
827014be 732 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
d683ef7a 733 else
827014be 734 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
fbb16e24 735
fbb16e24 736 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
a977c400
TG
737
738 /* Check the reference deviation */
739 delta = ((u64) tsc_pit_min) * 100;
740 do_div(delta, tsc_ref_min);
741
742 /*
743 * If both calibration results are inside a 10% window
744 * then we can be sure, that the calibration
745 * succeeded. We break out of the loop right away. We
746 * use the reference value, as it is more precise.
747 */
748 if (delta >= 90 && delta <= 110) {
c767a54b
JP
749 pr_info("PIT calibration matches %s. %d loops\n",
750 hpet ? "HPET" : "PMTIMER", i + 1);
a977c400 751 return tsc_ref_min;
fbb16e24
TG
752 }
753
a977c400
TG
754 /*
755 * Check whether PIT failed more than once. This
756 * happens in virtualized environments. We need to
757 * give the virtual PC a slightly longer timeframe for
758 * the HPET/PMTIMER to make the result precise.
759 */
760 if (i == 1 && tsc_pit_min == ULONG_MAX) {
761 latch = CAL2_LATCH;
762 ms = CAL2_MS;
763 loopmin = CAL2_PIT_LOOPS;
764 }
fbb16e24 765 }
bfc0f594
AK
766
767 /*
fbb16e24 768 * Now check the results.
bfc0f594 769 */
fbb16e24
TG
770 if (tsc_pit_min == ULONG_MAX) {
771 /* PIT gave no useful value */
c767a54b 772 pr_warn("Unable to calibrate against PIT\n");
fbb16e24
TG
773
774 /* We don't have an alternative source, disable TSC */
827014be 775 if (!hpet && !ref1 && !ref2) {
c767a54b 776 pr_notice("No reference (HPET/PMTIMER) available\n");
fbb16e24
TG
777 return 0;
778 }
779
780 /* The alternative source failed as well, disable TSC */
781 if (tsc_ref_min == ULONG_MAX) {
c767a54b 782 pr_warn("HPET/PMTIMER calibration failed\n");
fbb16e24
TG
783 return 0;
784 }
785
786 /* Use the alternative source */
c767a54b
JP
787 pr_info("using %s reference calibration\n",
788 hpet ? "HPET" : "PMTIMER");
fbb16e24
TG
789
790 return tsc_ref_min;
791 }
bfc0f594 792
fbb16e24 793 /* We don't have an alternative source, use the PIT calibration value */
827014be 794 if (!hpet && !ref1 && !ref2) {
c767a54b 795 pr_info("Using PIT calibration value\n");
fbb16e24 796 return tsc_pit_min;
bfc0f594
AK
797 }
798
fbb16e24
TG
799 /* The alternative source failed, use the PIT calibration value */
800 if (tsc_ref_min == ULONG_MAX) {
c767a54b 801 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
fbb16e24 802 return tsc_pit_min;
bfc0f594
AK
803 }
804
fbb16e24
TG
805 /*
806 * The calibration values differ too much. In doubt, we use
807 * the PIT value as we know that there are PMTIMERs around
a977c400 808 * running at double speed. At least we let the user know:
fbb16e24 809 */
c767a54b
JP
810 pr_warn("PIT calibration deviates from %s: %lu %lu\n",
811 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
812 pr_info("Using PIT calibration value\n");
fbb16e24 813 return tsc_pit_min;
bfc0f594
AK
814}
815
af576850 816void recalibrate_cpu_khz(void)
bfc0f594
AK
817{
818#ifndef CONFIG_SMP
819 unsigned long cpu_khz_old = cpu_khz;
820
eff4677e 821 if (!boot_cpu_has(X86_FEATURE_TSC))
af576850 822 return;
eff4677e 823
aa297292 824 cpu_khz = x86_platform.calibrate_cpu();
eff4677e 825 tsc_khz = x86_platform.calibrate_tsc();
aa297292
LB
826 if (tsc_khz == 0)
827 tsc_khz = cpu_khz;
ff4c8663
LB
828 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
829 cpu_khz = tsc_khz;
eff4677e
BP
830 cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
831 cpu_khz_old, cpu_khz);
bfc0f594
AK
832#endif
833}
834
835EXPORT_SYMBOL(recalibrate_cpu_khz);
836
2dbe06fa 837
cd7240c0
SS
838static unsigned long long cyc2ns_suspend;
839
b74f05d6 840void tsc_save_sched_clock_state(void)
cd7240c0 841{
35af99e6 842 if (!sched_clock_stable())
cd7240c0
SS
843 return;
844
845 cyc2ns_suspend = sched_clock();
846}
847
848/*
849 * Even on processors with invariant TSC, TSC gets reset in some the
850 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
851 * arbitrary value (still sync'd across cpu's) during resume from such sleep
852 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
853 * that sched_clock() continues from the point where it was left off during
854 * suspend.
855 */
b74f05d6 856void tsc_restore_sched_clock_state(void)
cd7240c0
SS
857{
858 unsigned long long offset;
859 unsigned long flags;
860 int cpu;
861
35af99e6 862 if (!sched_clock_stable())
cd7240c0
SS
863 return;
864
865 local_irq_save(flags);
866
20d1c86a 867 /*
6a6256f9 868 * We're coming out of suspend, there's no concurrency yet; don't
20d1c86a
PZ
869 * bother being nice about the RCU stuff, just write to both
870 * data fields.
871 */
872
873 this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
874 this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
875
cd7240c0
SS
876 offset = cyc2ns_suspend - sched_clock();
877
20d1c86a
PZ
878 for_each_possible_cpu(cpu) {
879 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
880 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
881 }
cd7240c0
SS
882
883 local_irq_restore(flags);
884}
885
2dbe06fa 886#ifdef CONFIG_CPU_FREQ
2dbe06fa
AK
887/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
888 * changes.
889 *
890 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
891 * not that important because current Opteron setups do not support
892 * scaling on SMP anyroads.
893 *
894 * Should fix up last_tsc too. Currently gettimeofday in the
895 * first tick after the change will be slightly wrong.
896 */
897
898static unsigned int ref_freq;
899static unsigned long loops_per_jiffy_ref;
900static unsigned long tsc_khz_ref;
901
902static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
903 void *data)
904{
905 struct cpufreq_freqs *freq = data;
931db6a3 906 unsigned long *lpj;
2dbe06fa 907
931db6a3 908 lpj = &boot_cpu_data.loops_per_jiffy;
2dbe06fa 909#ifdef CONFIG_SMP
931db6a3 910 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
2dbe06fa 911 lpj = &cpu_data(freq->cpu).loops_per_jiffy;
2dbe06fa
AK
912#endif
913
914 if (!ref_freq) {
915 ref_freq = freq->old;
916 loops_per_jiffy_ref = *lpj;
917 tsc_khz_ref = tsc_khz;
918 }
919 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
0b443ead 920 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
878f4f53 921 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
2dbe06fa
AK
922
923 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
924 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
925 mark_tsc_unstable("cpufreq changes");
2dbe06fa 926
5c3c2ea6 927 set_cyc2ns_scale(tsc_khz, freq->cpu, rdtsc());
3896c329 928 }
2dbe06fa
AK
929
930 return 0;
931}
932
933static struct notifier_block time_cpufreq_notifier_block = {
934 .notifier_call = time_cpufreq_notifier
935};
936
a841cca7 937static int __init cpufreq_register_tsc_scaling(void)
2dbe06fa 938{
59e21e3d 939 if (!boot_cpu_has(X86_FEATURE_TSC))
060700b5
LT
940 return 0;
941 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
942 return 0;
2dbe06fa
AK
943 cpufreq_register_notifier(&time_cpufreq_notifier_block,
944 CPUFREQ_TRANSITION_NOTIFIER);
945 return 0;
946}
947
a841cca7 948core_initcall(cpufreq_register_tsc_scaling);
2dbe06fa
AK
949
950#endif /* CONFIG_CPU_FREQ */
8fbbc4b4 951
f9677e0f
CH
952#define ART_CPUID_LEAF (0x15)
953#define ART_MIN_DENOMINATOR (1)
954
955
956/*
957 * If ART is present detect the numerator:denominator to convert to TSC
958 */
120fc3fb 959static void __init detect_art(void)
f9677e0f
CH
960{
961 unsigned int unused[2];
962
963 if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
964 return;
965
6c66350d 966 /*
967 * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required,
968 * and the TSC counter resets must not occur asynchronously.
969 */
f9677e0f
CH
970 if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
971 !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
6c66350d 972 !boot_cpu_has(X86_FEATURE_TSC_ADJUST) ||
973 tsc_async_resets)
f9677e0f
CH
974 return;
975
7b3d2f6e
TG
976 cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
977 &art_to_tsc_numerator, unused, unused+1);
978
979 if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
f9677e0f
CH
980 return;
981
7b3d2f6e
TG
982 rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
983
f9677e0f
CH
984 /* Make this sticky over multiple CPU init calls */
985 setup_force_cpu_cap(X86_FEATURE_ART);
986}
987
988
8fbbc4b4
AK
989/* clocksource code */
990
991static struct clocksource clocksource_tsc;
992
6a369583
TG
993static void tsc_resume(struct clocksource *cs)
994{
995 tsc_verify_tsc_adjust(true);
996}
997
8fbbc4b4 998/*
09ec5442 999 * We used to compare the TSC to the cycle_last value in the clocksource
8fbbc4b4
AK
1000 * structure to avoid a nasty time-warp. This can be observed in a
1001 * very small window right after one CPU updated cycle_last under
1002 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1003 * is smaller than the cycle_last reference value due to a TSC which
1004 * is slighty behind. This delta is nowhere else observable, but in
1005 * that case it results in a forward time jump in the range of hours
1006 * due to the unsigned delta calculation of the time keeping core
1007 * code, which is necessary to support wrapping clocksources like pm
1008 * timer.
09ec5442
TG
1009 *
1010 * This sanity check is now done in the core timekeeping code.
1011 * checking the result of read_tsc() - cycle_last for being negative.
1012 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
8fbbc4b4 1013 */
a5a1d1c2 1014static u64 read_tsc(struct clocksource *cs)
8fbbc4b4 1015{
a5a1d1c2 1016 return (u64)rdtsc_ordered();
1be39679
MS
1017}
1018
12907fbb
TG
1019static void tsc_cs_mark_unstable(struct clocksource *cs)
1020{
1021 if (tsc_unstable)
1022 return;
f94c8d11 1023
12907fbb 1024 tsc_unstable = 1;
f94c8d11
PZ
1025 if (using_native_sched_clock())
1026 clear_sched_clock_stable();
12907fbb
TG
1027 disable_sched_clock_irqtime();
1028 pr_info("Marking TSC unstable due to clocksource watchdog\n");
1029}
1030
b421b22b
PZ
1031static void tsc_cs_tick_stable(struct clocksource *cs)
1032{
1033 if (tsc_unstable)
1034 return;
1035
1036 if (using_native_sched_clock())
1037 sched_clock_tick_stable();
1038}
1039
09ec5442
TG
1040/*
1041 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1042 */
8fbbc4b4
AK
1043static struct clocksource clocksource_tsc = {
1044 .name = "tsc",
1045 .rating = 300,
1046 .read = read_tsc,
1047 .mask = CLOCKSOURCE_MASK(64),
8fbbc4b4
AK
1048 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
1049 CLOCK_SOURCE_MUST_VERIFY,
98d0ac38 1050 .archdata = { .vclock_mode = VCLOCK_TSC },
6a369583 1051 .resume = tsc_resume,
12907fbb 1052 .mark_unstable = tsc_cs_mark_unstable,
b421b22b 1053 .tick_stable = tsc_cs_tick_stable,
8fbbc4b4
AK
1054};
1055
1056void mark_tsc_unstable(char *reason)
1057{
f94c8d11
PZ
1058 if (tsc_unstable)
1059 return;
1060
1061 tsc_unstable = 1;
1062 if (using_native_sched_clock())
35af99e6 1063 clear_sched_clock_stable();
f94c8d11
PZ
1064 disable_sched_clock_irqtime();
1065 pr_info("Marking TSC unstable due to %s\n", reason);
1066 /* Change only the rating, when not registered */
1067 if (clocksource_tsc.mult) {
1068 clocksource_mark_unstable(&clocksource_tsc);
1069 } else {
1070 clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
1071 clocksource_tsc.rating = 0;
8fbbc4b4
AK
1072 }
1073}
1074
1075EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1076
395628ef
AK
1077static void __init check_system_tsc_reliable(void)
1078{
03da3ff1
DW
1079#if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1080 if (is_geode_lx()) {
1081 /* RTSC counts during suspend */
8fbbc4b4 1082#define RTSC_SUSP 0x100
03da3ff1 1083 unsigned long res_low, res_high;
8fbbc4b4 1084
03da3ff1
DW
1085 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1086 /* Geode_LX - the OLPC CPU has a very reliable TSC */
1087 if (res_low & RTSC_SUSP)
1088 tsc_clocksource_reliable = 1;
1089 }
8fbbc4b4 1090#endif
395628ef
AK
1091 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1092 tsc_clocksource_reliable = 1;
1093}
8fbbc4b4
AK
1094
1095/*
1096 * Make an educated guess if the TSC is trustworthy and synchronized
1097 * over all CPUs.
1098 */
148f9bb8 1099int unsynchronized_tsc(void)
8fbbc4b4 1100{
59e21e3d 1101 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
8fbbc4b4
AK
1102 return 1;
1103
3e5095d1 1104#ifdef CONFIG_SMP
8fbbc4b4
AK
1105 if (apic_is_clustered_box())
1106 return 1;
1107#endif
1108
1109 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1110 return 0;
d3b8f889 1111
1112 if (tsc_clocksource_reliable)
1113 return 0;
8fbbc4b4
AK
1114 /*
1115 * Intel systems are normally all synchronized.
1116 * Exceptions must mark TSC as unstable:
1117 */
1118 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1119 /* assume multi socket systems are not synchronized: */
1120 if (num_possible_cpus() > 1)
d3b8f889 1121 return 1;
8fbbc4b4
AK
1122 }
1123
d3b8f889 1124 return 0;
8fbbc4b4
AK
1125}
1126
f9677e0f
CH
1127/*
1128 * Convert ART to TSC given numerator/denominator found in detect_art()
1129 */
a5a1d1c2 1130struct system_counterval_t convert_art_to_tsc(u64 art)
f9677e0f
CH
1131{
1132 u64 tmp, res, rem;
1133
1134 rem = do_div(art, art_to_tsc_denominator);
1135
1136 res = art * art_to_tsc_numerator;
1137 tmp = rem * art_to_tsc_numerator;
1138
1139 do_div(tmp, art_to_tsc_denominator);
1140 res += tmp + art_to_tsc_offset;
1141
1142 return (struct system_counterval_t) {.cs = art_related_clocksource,
1143 .cycles = res};
1144}
1145EXPORT_SYMBOL(convert_art_to_tsc);
08ec0c58
JS
1146
1147static void tsc_refine_calibration_work(struct work_struct *work);
1148static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1149/**
1150 * tsc_refine_calibration_work - Further refine tsc freq calibration
1151 * @work - ignored.
1152 *
1153 * This functions uses delayed work over a period of a
1154 * second to further refine the TSC freq value. Since this is
1155 * timer based, instead of loop based, we don't block the boot
1156 * process while this longer calibration is done.
1157 *
0d2eb44f 1158 * If there are any calibration anomalies (too many SMIs, etc),
08ec0c58
JS
1159 * or the refined calibration is off by 1% of the fast early
1160 * calibration, we throw out the new calibration and use the
1161 * early calibration.
1162 */
1163static void tsc_refine_calibration_work(struct work_struct *work)
1164{
1165 static u64 tsc_start = -1, ref_start;
1166 static int hpet;
1167 u64 tsc_stop, ref_stop, delta;
1168 unsigned long freq;
aa7b630e 1169 int cpu;
08ec0c58
JS
1170
1171 /* Don't bother refining TSC on unstable systems */
1172 if (check_tsc_unstable())
1173 goto out;
1174
1175 /*
1176 * Since the work is started early in boot, we may be
1177 * delayed the first time we expire. So set the workqueue
1178 * again once we know timers are working.
1179 */
1180 if (tsc_start == -1) {
1181 /*
1182 * Only set hpet once, to avoid mixing hardware
1183 * if the hpet becomes enabled later.
1184 */
1185 hpet = is_hpet_enabled();
1186 schedule_delayed_work(&tsc_irqwork, HZ);
1187 tsc_start = tsc_read_refs(&ref_start, hpet);
1188 return;
1189 }
1190
1191 tsc_stop = tsc_read_refs(&ref_stop, hpet);
1192
1193 /* hpet or pmtimer available ? */
62627bec 1194 if (ref_start == ref_stop)
08ec0c58
JS
1195 goto out;
1196
1197 /* Check, whether the sampling was disturbed by an SMI */
1198 if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1199 goto out;
1200
1201 delta = tsc_stop - tsc_start;
1202 delta *= 1000000LL;
1203 if (hpet)
1204 freq = calc_hpet_ref(delta, ref_start, ref_stop);
1205 else
1206 freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1207
1208 /* Make sure we're within 1% */
1209 if (abs(tsc_khz - freq) > tsc_khz/100)
1210 goto out;
1211
1212 tsc_khz = freq;
c767a54b
JP
1213 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1214 (unsigned long)tsc_khz / 1000,
1215 (unsigned long)tsc_khz % 1000);
08ec0c58 1216
6731b0d6
NS
1217 /* Inform the TSC deadline clockevent devices about the recalibration */
1218 lapic_update_tsc_freq();
1219
aa7b630e
PZ
1220 /* Update the sched_clock() rate to match the clocksource one */
1221 for_each_possible_cpu(cpu)
5c3c2ea6 1222 set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
aa7b630e 1223
08ec0c58 1224out:
f9677e0f
CH
1225 if (boot_cpu_has(X86_FEATURE_ART))
1226 art_related_clocksource = &clocksource_tsc;
08ec0c58
JS
1227 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1228}
1229
1230
1231static int __init init_tsc_clocksource(void)
8fbbc4b4 1232{
59e21e3d 1233 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_disabled > 0 || !tsc_khz)
a8760eca
TG
1234 return 0;
1235
395628ef
AK
1236 if (tsc_clocksource_reliable)
1237 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
8fbbc4b4
AK
1238 /* lower the rating if we already know its unstable: */
1239 if (check_tsc_unstable()) {
1240 clocksource_tsc.rating = 0;
1241 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
1242 }
57779dc2 1243
82f9c080
FT
1244 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1245 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1246
57779dc2 1247 /*
47c95a46
BG
1248 * When TSC frequency is known (retrieved via MSR or CPUID), we skip
1249 * the refined calibration and directly register it as a clocksource.
57779dc2 1250 */
984feceb 1251 if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
44fee88c
PZ
1252 if (boot_cpu_has(X86_FEATURE_ART))
1253 art_related_clocksource = &clocksource_tsc;
57779dc2
AK
1254 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1255 return 0;
1256 }
1257
08ec0c58
JS
1258 schedule_delayed_work(&tsc_irqwork, 0);
1259 return 0;
8fbbc4b4 1260}
08ec0c58
JS
1261/*
1262 * We use device_initcall here, to ensure we run after the hpet
1263 * is fully initialized, which may occur at fs_initcall time.
1264 */
1265device_initcall(init_tsc_clocksource);
8fbbc4b4 1266
eb496063
DL
1267void __init tsc_early_delay_calibrate(void)
1268{
1269 unsigned long lpj;
1270
1271 if (!boot_cpu_has(X86_FEATURE_TSC))
1272 return;
1273
1274 cpu_khz = x86_platform.calibrate_cpu();
1275 tsc_khz = x86_platform.calibrate_tsc();
1276
1277 tsc_khz = tsc_khz ? : cpu_khz;
1278 if (!tsc_khz)
1279 return;
1280
1281 lpj = tsc_khz * 1000;
1282 do_div(lpj, HZ);
1283 loops_per_jiffy = lpj;
1284}
1285
8fbbc4b4
AK
1286void __init tsc_init(void)
1287{
615cd033 1288 u64 lpj, cyc;
8fbbc4b4
AK
1289 int cpu;
1290
59e21e3d 1291 if (!boot_cpu_has(X86_FEATURE_TSC)) {
b47dcbdc 1292 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
8fbbc4b4 1293 return;
b47dcbdc 1294 }
8fbbc4b4 1295
aa297292 1296 cpu_khz = x86_platform.calibrate_cpu();
2d826404 1297 tsc_khz = x86_platform.calibrate_tsc();
ff4c8663
LB
1298
1299 /*
1300 * Trust non-zero tsc_khz as authorative,
1301 * and use it to sanity check cpu_khz,
1302 * which will be off if system timer is off.
1303 */
aa297292
LB
1304 if (tsc_khz == 0)
1305 tsc_khz = cpu_khz;
ff4c8663
LB
1306 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1307 cpu_khz = tsc_khz;
8fbbc4b4 1308
e93ef949 1309 if (!tsc_khz) {
8fbbc4b4 1310 mark_tsc_unstable("could not calculate TSC khz");
b47dcbdc 1311 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
8fbbc4b4
AK
1312 return;
1313 }
1314
c767a54b
JP
1315 pr_info("Detected %lu.%03lu MHz processor\n",
1316 (unsigned long)cpu_khz / 1000,
1317 (unsigned long)cpu_khz % 1000);
8fbbc4b4 1318
f2e04214
TG
1319 /* Sanitize TSC ADJUST before cyc2ns gets initialized */
1320 tsc_store_and_check_tsc_adjust(true);
1321
8fbbc4b4
AK
1322 /*
1323 * Secondary CPUs do not run through tsc_init(), so set up
1324 * all the scale factors for all CPUs, assuming the same
1325 * speed as the bootup CPU. (cpufreq notifiers will fix this
1326 * up if their speed diverges)
1327 */
615cd033 1328 cyc = rdtsc();
20d1c86a
PZ
1329 for_each_possible_cpu(cpu) {
1330 cyc2ns_init(cpu);
5c3c2ea6 1331 set_cyc2ns_scale(tsc_khz, cpu, cyc);
20d1c86a 1332 }
8fbbc4b4
AK
1333
1334 if (tsc_disabled > 0)
1335 return;
1336
1337 /* now allow native_sched_clock() to use rdtsc */
10b033d4 1338
8fbbc4b4 1339 tsc_disabled = 0;
3bbfafb7 1340 static_branch_enable(&__use_tsc);
8fbbc4b4 1341
e82b8e4e
VP
1342 if (!no_sched_irq_time)
1343 enable_sched_clock_irqtime();
1344
70de9a97
AK
1345 lpj = ((u64)tsc_khz * 1000);
1346 do_div(lpj, HZ);
1347 lpj_fine = lpj;
1348
8fbbc4b4 1349 use_tsc_delay();
8fbbc4b4 1350
a1272dd5
ZD
1351 check_system_tsc_reliable();
1352
8fbbc4b4
AK
1353 if (unsynchronized_tsc())
1354 mark_tsc_unstable("TSCs unsynchronized");
1355
f9677e0f 1356 detect_art();
8fbbc4b4
AK
1357}
1358
b565201c
JS
1359#ifdef CONFIG_SMP
1360/*
1361 * If we have a constant TSC and are using the TSC for the delay loop,
1362 * we can skip clock calibration if another cpu in the same socket has already
1363 * been calibrated. This assumes that CONSTANT_TSC applies to all
1364 * cpus in the socket - this should be a safe assumption.
1365 */
148f9bb8 1366unsigned long calibrate_delay_is_known(void)
b565201c 1367{
c25323c0 1368 int sibling, cpu = smp_processor_id();
76ce7cfe
PT
1369 int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
1370 const struct cpumask *mask = topology_core_cpumask(cpu);
b565201c 1371
76ce7cfe 1372 if (tsc_disabled || !constant_tsc || !mask)
f508a5ba
TG
1373 return 0;
1374
1375 sibling = cpumask_any_but(mask, cpu);
c25323c0
TG
1376 if (sibling < nr_cpu_ids)
1377 return cpu_data(sibling).loops_per_jiffy;
b565201c
JS
1378 return 0;
1379}
1380#endif