Fix potential fast PIT TSC calibration startup glitch
[linux-2.6-block.git] / arch / x86 / kernel / tsc.c
CommitLineData
bfc0f594 1#include <linux/kernel.h>
0ef95533
AK
2#include <linux/sched.h>
3#include <linux/init.h>
4#include <linux/module.h>
5#include <linux/timer.h>
bfc0f594 6#include <linux/acpi_pmtmr.h>
2dbe06fa 7#include <linux/cpufreq.h>
8fbbc4b4
AK
8#include <linux/dmi.h>
9#include <linux/delay.h>
10#include <linux/clocksource.h>
11#include <linux/percpu.h>
bfc0f594
AK
12
13#include <asm/hpet.h>
8fbbc4b4
AK
14#include <asm/timer.h>
15#include <asm/vgtod.h>
16#include <asm/time.h>
17#include <asm/delay.h>
88b094fb 18#include <asm/hypervisor.h>
0ef95533
AK
19
20unsigned int cpu_khz; /* TSC clocks / usec, not used here */
21EXPORT_SYMBOL(cpu_khz);
22unsigned int tsc_khz;
23EXPORT_SYMBOL(tsc_khz);
24
25/*
26 * TSC can be unstable due to cpufreq or due to unsynced TSCs
27 */
8fbbc4b4 28static int tsc_unstable;
0ef95533
AK
29
30/* native_sched_clock() is called before tsc_init(), so
31 we must start with the TSC soft disabled to prevent
32 erroneous rdtsc usage on !cpu_has_tsc processors */
8fbbc4b4 33static int tsc_disabled = -1;
0ef95533 34
395628ef 35static int tsc_clocksource_reliable;
0ef95533
AK
36/*
37 * Scheduler clock - returns current time in nanosec units.
38 */
39u64 native_sched_clock(void)
40{
41 u64 this_offset;
42
43 /*
44 * Fall back to jiffies if there's no TSC available:
45 * ( But note that we still use it if the TSC is marked
46 * unstable. We do this because unlike Time Of Day,
47 * the scheduler clock tolerates small errors and it's
48 * very important for it to be as fast as the platform
49 * can achive it. )
50 */
51 if (unlikely(tsc_disabled)) {
52 /* No locking but a rare wrong value is not a big deal: */
53 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
54 }
55
56 /* read the Time Stamp Counter: */
57 rdtscll(this_offset);
58
59 /* return the value in ns */
7cbaef9c 60 return __cycles_2_ns(this_offset);
0ef95533
AK
61}
62
63/* We need to define a real function for sched_clock, to override the
64 weak default version */
65#ifdef CONFIG_PARAVIRT
66unsigned long long sched_clock(void)
67{
68 return paravirt_sched_clock();
69}
70#else
71unsigned long long
72sched_clock(void) __attribute__((alias("native_sched_clock")));
73#endif
74
75int check_tsc_unstable(void)
76{
77 return tsc_unstable;
78}
79EXPORT_SYMBOL_GPL(check_tsc_unstable);
80
81#ifdef CONFIG_X86_TSC
82int __init notsc_setup(char *str)
83{
84 printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
85 "cannot disable TSC completely.\n");
86 tsc_disabled = 1;
87 return 1;
88}
89#else
90/*
91 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
92 * in cpu/common.c
93 */
94int __init notsc_setup(char *str)
95{
96 setup_clear_cpu_cap(X86_FEATURE_TSC);
97 return 1;
98}
99#endif
100
101__setup("notsc", notsc_setup);
bfc0f594 102
395628ef
AK
103static int __init tsc_setup(char *str)
104{
105 if (!strcmp(str, "reliable"))
106 tsc_clocksource_reliable = 1;
107 return 1;
108}
109
110__setup("tsc=", tsc_setup);
111
bfc0f594
AK
112#define MAX_RETRIES 5
113#define SMI_TRESHOLD 50000
114
115/*
116 * Read TSC and the reference counters. Take care of SMI disturbance
117 */
827014be 118static u64 tsc_read_refs(u64 *p, int hpet)
bfc0f594
AK
119{
120 u64 t1, t2;
121 int i;
122
123 for (i = 0; i < MAX_RETRIES; i++) {
124 t1 = get_cycles();
125 if (hpet)
827014be 126 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
bfc0f594 127 else
827014be 128 *p = acpi_pm_read_early();
bfc0f594
AK
129 t2 = get_cycles();
130 if ((t2 - t1) < SMI_TRESHOLD)
131 return t2;
132 }
133 return ULLONG_MAX;
134}
135
d683ef7a
TG
136/*
137 * Calculate the TSC frequency from HPET reference
bfc0f594 138 */
d683ef7a 139static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
bfc0f594 140{
d683ef7a 141 u64 tmp;
bfc0f594 142
d683ef7a
TG
143 if (hpet2 < hpet1)
144 hpet2 += 0x100000000ULL;
145 hpet2 -= hpet1;
146 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
147 do_div(tmp, 1000000);
148 do_div(deltatsc, tmp);
149
150 return (unsigned long) deltatsc;
151}
152
153/*
154 * Calculate the TSC frequency from PMTimer reference
155 */
156static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
157{
158 u64 tmp;
bfc0f594 159
d683ef7a
TG
160 if (!pm1 && !pm2)
161 return ULONG_MAX;
162
163 if (pm2 < pm1)
164 pm2 += (u64)ACPI_PM_OVRRUN;
165 pm2 -= pm1;
166 tmp = pm2 * 1000000000LL;
167 do_div(tmp, PMTMR_TICKS_PER_SEC);
168 do_div(deltatsc, tmp);
169
170 return (unsigned long) deltatsc;
171}
172
a977c400 173#define CAL_MS 10
cce3e057 174#define CAL_LATCH (CLOCK_TICK_RATE / (1000 / CAL_MS))
a977c400
TG
175#define CAL_PIT_LOOPS 1000
176
177#define CAL2_MS 50
178#define CAL2_LATCH (CLOCK_TICK_RATE / (1000 / CAL2_MS))
179#define CAL2_PIT_LOOPS 5000
180
cce3e057 181
ec0c15af
LT
182/*
183 * Try to calibrate the TSC against the Programmable
184 * Interrupt Timer and return the frequency of the TSC
185 * in kHz.
186 *
187 * Return ULONG_MAX on failure to calibrate.
188 */
a977c400 189static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
ec0c15af
LT
190{
191 u64 tsc, t1, t2, delta;
192 unsigned long tscmin, tscmax;
193 int pitcnt;
194
195 /* Set the Gate high, disable speaker */
196 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
197
198 /*
199 * Setup CTC channel 2* for mode 0, (interrupt on terminal
200 * count mode), binary count. Set the latch register to 50ms
201 * (LSB then MSB) to begin countdown.
202 */
203 outb(0xb0, 0x43);
a977c400
TG
204 outb(latch & 0xff, 0x42);
205 outb(latch >> 8, 0x42);
ec0c15af
LT
206
207 tsc = t1 = t2 = get_cycles();
208
209 pitcnt = 0;
210 tscmax = 0;
211 tscmin = ULONG_MAX;
212 while ((inb(0x61) & 0x20) == 0) {
213 t2 = get_cycles();
214 delta = t2 - tsc;
215 tsc = t2;
216 if ((unsigned long) delta < tscmin)
217 tscmin = (unsigned int) delta;
218 if ((unsigned long) delta > tscmax)
219 tscmax = (unsigned int) delta;
220 pitcnt++;
221 }
222
223 /*
224 * Sanity checks:
225 *
a977c400 226 * If we were not able to read the PIT more than loopmin
ec0c15af
LT
227 * times, then we have been hit by a massive SMI
228 *
229 * If the maximum is 10 times larger than the minimum,
230 * then we got hit by an SMI as well.
231 */
a977c400 232 if (pitcnt < loopmin || tscmax > 10 * tscmin)
ec0c15af
LT
233 return ULONG_MAX;
234
235 /* Calculate the PIT value */
236 delta = t2 - t1;
a977c400 237 do_div(delta, ms);
ec0c15af
LT
238 return delta;
239}
240
6ac40ed0
LT
241/*
242 * This reads the current MSB of the PIT counter, and
243 * checks if we are running on sufficiently fast and
244 * non-virtualized hardware.
245 *
246 * Our expectations are:
247 *
248 * - the PIT is running at roughly 1.19MHz
249 *
250 * - each IO is going to take about 1us on real hardware,
251 * but we allow it to be much faster (by a factor of 10) or
252 * _slightly_ slower (ie we allow up to a 2us read+counter
253 * update - anything else implies a unacceptably slow CPU
254 * or PIT for the fast calibration to work.
255 *
256 * - with 256 PIT ticks to read the value, we have 214us to
257 * see the same MSB (and overhead like doing a single TSC
258 * read per MSB value etc).
259 *
260 * - We're doing 2 reads per loop (LSB, MSB), and we expect
261 * them each to take about a microsecond on real hardware.
262 * So we expect a count value of around 100. But we'll be
263 * generous, and accept anything over 50.
264 *
265 * - if the PIT is stuck, and we see *many* more reads, we
266 * return early (and the next caller of pit_expect_msb()
267 * then consider it a failure when they don't see the
268 * next expected value).
269 *
270 * These expectations mean that we know that we have seen the
271 * transition from one expected value to another with a fairly
272 * high accuracy, and we didn't miss any events. We can thus
273 * use the TSC value at the transitions to calculate a pretty
274 * good value for the TSC frequencty.
275 */
276static inline int pit_expect_msb(unsigned char val)
277{
278 int count = 0;
bfc0f594 279
6ac40ed0
LT
280 for (count = 0; count < 50000; count++) {
281 /* Ignore LSB */
282 inb(0x42);
283 if (inb(0x42) != val)
284 break;
285 }
286 return count > 50;
287}
288
289/*
290 * How many MSB values do we want to see? We aim for a
291 * 15ms calibration, which assuming a 2us counter read
292 * error should give us roughly 150 ppm precision for
293 * the calibration.
294 */
295#define QUICK_PIT_MS 15
296#define QUICK_PIT_ITERATIONS (QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
bfc0f594 297
6ac40ed0
LT
298static unsigned long quick_pit_calibrate(void)
299{
300 /* Set the Gate high, disable speaker */
bfc0f594
AK
301 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
302
6ac40ed0
LT
303 /*
304 * Counter 2, mode 0 (one-shot), binary count
305 *
306 * NOTE! Mode 2 decrements by two (and then the
307 * output is flipped each time, giving the same
308 * final output frequency as a decrement-by-one),
309 * so mode 0 is much better when looking at the
310 * individual counts.
311 */
bfc0f594 312 outb(0xb0, 0x43);
bfc0f594 313
6ac40ed0
LT
314 /* Start at 0xffff */
315 outb(0xff, 0x42);
316 outb(0xff, 0x42);
317
a6a80e1d
LT
318 /*
319 * The PIT starts counting at the next edge, so we
320 * need to delay for a microsecond. The easiest way
321 * to do that is to just read back the 16-bit counter
322 * once from the PIT.
323 */
324 inb(0x42);
325 inb(0x42);
326
6ac40ed0
LT
327 if (pit_expect_msb(0xff)) {
328 int i;
329 u64 t1, t2, delta;
330 unsigned char expect = 0xfe;
331
332 t1 = get_cycles();
333 for (i = 0; i < QUICK_PIT_ITERATIONS; i++, expect--) {
334 if (!pit_expect_msb(expect))
335 goto failed;
336 }
337 t2 = get_cycles();
338
4156e9a8
IM
339 /*
340 * Make sure we can rely on the second TSC timestamp:
341 */
5df45515 342 if (!pit_expect_msb(expect))
4156e9a8
IM
343 goto failed;
344
6ac40ed0
LT
345 /*
346 * Ok, if we get here, then we've seen the
347 * MSB of the PIT decrement QUICK_PIT_ITERATIONS
348 * times, and each MSB had many hits, so we never
349 * had any sudden jumps.
350 *
351 * As a result, we can depend on there not being
352 * any odd delays anywhere, and the TSC reads are
353 * reliable.
354 *
355 * kHz = ticks / time-in-seconds / 1000;
356 * kHz = (t2 - t1) / (QPI * 256 / PIT_TICK_RATE) / 1000
357 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (QPI * 256 * 1000)
358 */
359 delta = (t2 - t1)*PIT_TICK_RATE;
360 do_div(delta, QUICK_PIT_ITERATIONS*256*1000);
361 printk("Fast TSC calibration using PIT\n");
362 return delta;
363 }
364failed:
365 return 0;
366}
ec0c15af 367
bfc0f594 368/**
e93ef949 369 * native_calibrate_tsc - calibrate the tsc on boot
bfc0f594 370 */
e93ef949 371unsigned long native_calibrate_tsc(void)
bfc0f594 372{
827014be 373 u64 tsc1, tsc2, delta, ref1, ref2;
fbb16e24 374 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
88b094fb 375 unsigned long flags, latch, ms, fast_calibrate, tsc_khz;
a977c400 376 int hpet = is_hpet_enabled(), i, loopmin;
bfc0f594 377
88b094fb
AK
378 tsc_khz = get_hypervisor_tsc_freq();
379 if (tsc_khz) {
380 printk(KERN_INFO "TSC: Frequency read from the hypervisor\n");
381 return tsc_khz;
382 }
383
6ac40ed0
LT
384 local_irq_save(flags);
385 fast_calibrate = quick_pit_calibrate();
bfc0f594 386 local_irq_restore(flags);
6ac40ed0
LT
387 if (fast_calibrate)
388 return fast_calibrate;
bfc0f594 389
fbb16e24
TG
390 /*
391 * Run 5 calibration loops to get the lowest frequency value
392 * (the best estimate). We use two different calibration modes
393 * here:
394 *
395 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
396 * load a timeout of 50ms. We read the time right after we
397 * started the timer and wait until the PIT count down reaches
398 * zero. In each wait loop iteration we read the TSC and check
399 * the delta to the previous read. We keep track of the min
400 * and max values of that delta. The delta is mostly defined
401 * by the IO time of the PIT access, so we can detect when a
402 * SMI/SMM disturbance happend between the two reads. If the
403 * maximum time is significantly larger than the minimum time,
404 * then we discard the result and have another try.
405 *
406 * 2) Reference counter. If available we use the HPET or the
407 * PMTIMER as a reference to check the sanity of that value.
408 * We use separate TSC readouts and check inside of the
409 * reference read for a SMI/SMM disturbance. We dicard
410 * disturbed values here as well. We do that around the PIT
411 * calibration delay loop as we have to wait for a certain
412 * amount of time anyway.
413 */
a977c400
TG
414
415 /* Preset PIT loop values */
416 latch = CAL_LATCH;
417 ms = CAL_MS;
418 loopmin = CAL_PIT_LOOPS;
419
420 for (i = 0; i < 3; i++) {
ec0c15af 421 unsigned long tsc_pit_khz;
fbb16e24
TG
422
423 /*
424 * Read the start value and the reference count of
ec0c15af
LT
425 * hpet/pmtimer when available. Then do the PIT
426 * calibration, which will take at least 50ms, and
427 * read the end value.
fbb16e24 428 */
ec0c15af 429 local_irq_save(flags);
827014be 430 tsc1 = tsc_read_refs(&ref1, hpet);
a977c400 431 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
827014be 432 tsc2 = tsc_read_refs(&ref2, hpet);
fbb16e24
TG
433 local_irq_restore(flags);
434
ec0c15af
LT
435 /* Pick the lowest PIT TSC calibration so far */
436 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
fbb16e24
TG
437
438 /* hpet or pmtimer available ? */
827014be 439 if (!hpet && !ref1 && !ref2)
fbb16e24
TG
440 continue;
441
442 /* Check, whether the sampling was disturbed by an SMI */
443 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
444 continue;
445
446 tsc2 = (tsc2 - tsc1) * 1000000LL;
d683ef7a 447 if (hpet)
827014be 448 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
d683ef7a 449 else
827014be 450 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
fbb16e24 451
fbb16e24 452 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
a977c400
TG
453
454 /* Check the reference deviation */
455 delta = ((u64) tsc_pit_min) * 100;
456 do_div(delta, tsc_ref_min);
457
458 /*
459 * If both calibration results are inside a 10% window
460 * then we can be sure, that the calibration
461 * succeeded. We break out of the loop right away. We
462 * use the reference value, as it is more precise.
463 */
464 if (delta >= 90 && delta <= 110) {
465 printk(KERN_INFO
466 "TSC: PIT calibration matches %s. %d loops\n",
467 hpet ? "HPET" : "PMTIMER", i + 1);
468 return tsc_ref_min;
fbb16e24
TG
469 }
470
a977c400
TG
471 /*
472 * Check whether PIT failed more than once. This
473 * happens in virtualized environments. We need to
474 * give the virtual PC a slightly longer timeframe for
475 * the HPET/PMTIMER to make the result precise.
476 */
477 if (i == 1 && tsc_pit_min == ULONG_MAX) {
478 latch = CAL2_LATCH;
479 ms = CAL2_MS;
480 loopmin = CAL2_PIT_LOOPS;
481 }
fbb16e24 482 }
bfc0f594
AK
483
484 /*
fbb16e24 485 * Now check the results.
bfc0f594 486 */
fbb16e24
TG
487 if (tsc_pit_min == ULONG_MAX) {
488 /* PIT gave no useful value */
de014d61 489 printk(KERN_WARNING "TSC: Unable to calibrate against PIT\n");
fbb16e24
TG
490
491 /* We don't have an alternative source, disable TSC */
827014be 492 if (!hpet && !ref1 && !ref2) {
fbb16e24
TG
493 printk("TSC: No reference (HPET/PMTIMER) available\n");
494 return 0;
495 }
496
497 /* The alternative source failed as well, disable TSC */
498 if (tsc_ref_min == ULONG_MAX) {
499 printk(KERN_WARNING "TSC: HPET/PMTIMER calibration "
a977c400 500 "failed.\n");
fbb16e24
TG
501 return 0;
502 }
503
504 /* Use the alternative source */
505 printk(KERN_INFO "TSC: using %s reference calibration\n",
506 hpet ? "HPET" : "PMTIMER");
507
508 return tsc_ref_min;
509 }
bfc0f594 510
fbb16e24 511 /* We don't have an alternative source, use the PIT calibration value */
827014be 512 if (!hpet && !ref1 && !ref2) {
fbb16e24
TG
513 printk(KERN_INFO "TSC: Using PIT calibration value\n");
514 return tsc_pit_min;
bfc0f594
AK
515 }
516
fbb16e24
TG
517 /* The alternative source failed, use the PIT calibration value */
518 if (tsc_ref_min == ULONG_MAX) {
a977c400
TG
519 printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed. "
520 "Using PIT calibration\n");
fbb16e24 521 return tsc_pit_min;
bfc0f594
AK
522 }
523
fbb16e24
TG
524 /*
525 * The calibration values differ too much. In doubt, we use
526 * the PIT value as we know that there are PMTIMERs around
a977c400 527 * running at double speed. At least we let the user know:
fbb16e24 528 */
a977c400
TG
529 printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n",
530 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
fbb16e24
TG
531 printk(KERN_INFO "TSC: Using PIT calibration value\n");
532 return tsc_pit_min;
bfc0f594
AK
533}
534
bfc0f594
AK
535#ifdef CONFIG_X86_32
536/* Only called from the Powernow K7 cpu freq driver */
537int recalibrate_cpu_khz(void)
538{
539#ifndef CONFIG_SMP
540 unsigned long cpu_khz_old = cpu_khz;
541
542 if (cpu_has_tsc) {
e93ef949
AK
543 tsc_khz = calibrate_tsc();
544 cpu_khz = tsc_khz;
bfc0f594
AK
545 cpu_data(0).loops_per_jiffy =
546 cpufreq_scale(cpu_data(0).loops_per_jiffy,
547 cpu_khz_old, cpu_khz);
548 return 0;
549 } else
550 return -ENODEV;
551#else
552 return -ENODEV;
553#endif
554}
555
556EXPORT_SYMBOL(recalibrate_cpu_khz);
557
558#endif /* CONFIG_X86_32 */
2dbe06fa
AK
559
560/* Accelerators for sched_clock()
561 * convert from cycles(64bits) => nanoseconds (64bits)
562 * basic equation:
563 * ns = cycles / (freq / ns_per_sec)
564 * ns = cycles * (ns_per_sec / freq)
565 * ns = cycles * (10^9 / (cpu_khz * 10^3))
566 * ns = cycles * (10^6 / cpu_khz)
567 *
568 * Then we use scaling math (suggested by george@mvista.com) to get:
569 * ns = cycles * (10^6 * SC / cpu_khz) / SC
570 * ns = cycles * cyc2ns_scale / SC
571 *
572 * And since SC is a constant power of two, we can convert the div
573 * into a shift.
574 *
575 * We can use khz divisor instead of mhz to keep a better precision, since
576 * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
577 * (mathieu.desnoyers@polymtl.ca)
578 *
579 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
580 */
581
582DEFINE_PER_CPU(unsigned long, cyc2ns);
583
8fbbc4b4 584static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
2dbe06fa
AK
585{
586 unsigned long long tsc_now, ns_now;
587 unsigned long flags, *scale;
588
589 local_irq_save(flags);
590 sched_clock_idle_sleep_event();
591
592 scale = &per_cpu(cyc2ns, cpu);
593
594 rdtscll(tsc_now);
595 ns_now = __cycles_2_ns(tsc_now);
596
597 if (cpu_khz)
598 *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
599
600 sched_clock_idle_wakeup_event(0);
601 local_irq_restore(flags);
602}
603
604#ifdef CONFIG_CPU_FREQ
605
606/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
607 * changes.
608 *
609 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
610 * not that important because current Opteron setups do not support
611 * scaling on SMP anyroads.
612 *
613 * Should fix up last_tsc too. Currently gettimeofday in the
614 * first tick after the change will be slightly wrong.
615 */
616
617static unsigned int ref_freq;
618static unsigned long loops_per_jiffy_ref;
619static unsigned long tsc_khz_ref;
620
621static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
622 void *data)
623{
624 struct cpufreq_freqs *freq = data;
625 unsigned long *lpj, dummy;
626
627 if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
628 return 0;
629
630 lpj = &dummy;
631 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
632#ifdef CONFIG_SMP
633 lpj = &cpu_data(freq->cpu).loops_per_jiffy;
634#else
635 lpj = &boot_cpu_data.loops_per_jiffy;
636#endif
637
638 if (!ref_freq) {
639 ref_freq = freq->old;
640 loops_per_jiffy_ref = *lpj;
641 tsc_khz_ref = tsc_khz;
642 }
643 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
644 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
645 (val == CPUFREQ_RESUMECHANGE)) {
646 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
647
648 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
649 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
650 mark_tsc_unstable("cpufreq changes");
651 }
652
52a8968c 653 set_cyc2ns_scale(tsc_khz, freq->cpu);
2dbe06fa
AK
654
655 return 0;
656}
657
658static struct notifier_block time_cpufreq_notifier_block = {
659 .notifier_call = time_cpufreq_notifier
660};
661
662static int __init cpufreq_tsc(void)
663{
060700b5
LT
664 if (!cpu_has_tsc)
665 return 0;
666 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
667 return 0;
2dbe06fa
AK
668 cpufreq_register_notifier(&time_cpufreq_notifier_block,
669 CPUFREQ_TRANSITION_NOTIFIER);
670 return 0;
671}
672
673core_initcall(cpufreq_tsc);
674
675#endif /* CONFIG_CPU_FREQ */
8fbbc4b4
AK
676
677/* clocksource code */
678
679static struct clocksource clocksource_tsc;
680
681/*
682 * We compare the TSC to the cycle_last value in the clocksource
683 * structure to avoid a nasty time-warp. This can be observed in a
684 * very small window right after one CPU updated cycle_last under
685 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
686 * is smaller than the cycle_last reference value due to a TSC which
687 * is slighty behind. This delta is nowhere else observable, but in
688 * that case it results in a forward time jump in the range of hours
689 * due to the unsigned delta calculation of the time keeping core
690 * code, which is necessary to support wrapping clocksources like pm
691 * timer.
692 */
693static cycle_t read_tsc(void)
694{
695 cycle_t ret = (cycle_t)get_cycles();
696
697 return ret >= clocksource_tsc.cycle_last ?
698 ret : clocksource_tsc.cycle_last;
699}
700
431ceb83 701#ifdef CONFIG_X86_64
8fbbc4b4
AK
702static cycle_t __vsyscall_fn vread_tsc(void)
703{
704 cycle_t ret = (cycle_t)vget_cycles();
705
706 return ret >= __vsyscall_gtod_data.clock.cycle_last ?
707 ret : __vsyscall_gtod_data.clock.cycle_last;
708}
431ceb83 709#endif
8fbbc4b4
AK
710
711static struct clocksource clocksource_tsc = {
712 .name = "tsc",
713 .rating = 300,
714 .read = read_tsc,
715 .mask = CLOCKSOURCE_MASK(64),
716 .shift = 22,
717 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
718 CLOCK_SOURCE_MUST_VERIFY,
719#ifdef CONFIG_X86_64
720 .vread = vread_tsc,
721#endif
722};
723
724void mark_tsc_unstable(char *reason)
725{
726 if (!tsc_unstable) {
727 tsc_unstable = 1;
728 printk("Marking TSC unstable due to %s\n", reason);
729 /* Change only the rating, when not registered */
730 if (clocksource_tsc.mult)
731 clocksource_change_rating(&clocksource_tsc, 0);
732 else
733 clocksource_tsc.rating = 0;
734 }
735}
736
737EXPORT_SYMBOL_GPL(mark_tsc_unstable);
738
739static int __init dmi_mark_tsc_unstable(const struct dmi_system_id *d)
740{
741 printk(KERN_NOTICE "%s detected: marking TSC unstable.\n",
742 d->ident);
743 tsc_unstable = 1;
744 return 0;
745}
746
747/* List of systems that have known TSC problems */
748static struct dmi_system_id __initdata bad_tsc_dmi_table[] = {
749 {
750 .callback = dmi_mark_tsc_unstable,
751 .ident = "IBM Thinkpad 380XD",
752 .matches = {
753 DMI_MATCH(DMI_BOARD_VENDOR, "IBM"),
754 DMI_MATCH(DMI_BOARD_NAME, "2635FA0"),
755 },
756 },
757 {}
758};
759
395628ef
AK
760static void __init check_system_tsc_reliable(void)
761{
8fbbc4b4 762#ifdef CONFIG_MGEODE_LX
395628ef 763 /* RTSC counts during suspend */
8fbbc4b4 764#define RTSC_SUSP 0x100
8fbbc4b4
AK
765 unsigned long res_low, res_high;
766
767 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
395628ef 768 /* Geode_LX - the OLPC CPU has a possibly a very reliable TSC */
8fbbc4b4 769 if (res_low & RTSC_SUSP)
395628ef 770 tsc_clocksource_reliable = 1;
8fbbc4b4 771#endif
395628ef
AK
772 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
773 tsc_clocksource_reliable = 1;
774}
8fbbc4b4
AK
775
776/*
777 * Make an educated guess if the TSC is trustworthy and synchronized
778 * over all CPUs.
779 */
780__cpuinit int unsynchronized_tsc(void)
781{
782 if (!cpu_has_tsc || tsc_unstable)
783 return 1;
784
017d9d20 785#ifdef CONFIG_X86_SMP
8fbbc4b4
AK
786 if (apic_is_clustered_box())
787 return 1;
788#endif
789
790 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
791 return 0;
792 /*
793 * Intel systems are normally all synchronized.
794 * Exceptions must mark TSC as unstable:
795 */
796 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
797 /* assume multi socket systems are not synchronized: */
798 if (num_possible_cpus() > 1)
799 tsc_unstable = 1;
800 }
801
802 return tsc_unstable;
803}
804
805static void __init init_tsc_clocksource(void)
806{
807 clocksource_tsc.mult = clocksource_khz2mult(tsc_khz,
808 clocksource_tsc.shift);
395628ef
AK
809 if (tsc_clocksource_reliable)
810 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
8fbbc4b4
AK
811 /* lower the rating if we already know its unstable: */
812 if (check_tsc_unstable()) {
813 clocksource_tsc.rating = 0;
814 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
815 }
816 clocksource_register(&clocksource_tsc);
817}
818
819void __init tsc_init(void)
820{
821 u64 lpj;
822 int cpu;
823
824 if (!cpu_has_tsc)
825 return;
826
e93ef949
AK
827 tsc_khz = calibrate_tsc();
828 cpu_khz = tsc_khz;
8fbbc4b4 829
e93ef949 830 if (!tsc_khz) {
8fbbc4b4
AK
831 mark_tsc_unstable("could not calculate TSC khz");
832 return;
833 }
834
835#ifdef CONFIG_X86_64
836 if (cpu_has(&boot_cpu_data, X86_FEATURE_CONSTANT_TSC) &&
837 (boot_cpu_data.x86_vendor == X86_VENDOR_AMD))
838 cpu_khz = calibrate_cpu();
839#endif
840
8fbbc4b4
AK
841 printk("Detected %lu.%03lu MHz processor.\n",
842 (unsigned long)cpu_khz / 1000,
843 (unsigned long)cpu_khz % 1000);
844
845 /*
846 * Secondary CPUs do not run through tsc_init(), so set up
847 * all the scale factors for all CPUs, assuming the same
848 * speed as the bootup CPU. (cpufreq notifiers will fix this
849 * up if their speed diverges)
850 */
851 for_each_possible_cpu(cpu)
852 set_cyc2ns_scale(cpu_khz, cpu);
853
854 if (tsc_disabled > 0)
855 return;
856
857 /* now allow native_sched_clock() to use rdtsc */
858 tsc_disabled = 0;
859
70de9a97
AK
860 lpj = ((u64)tsc_khz * 1000);
861 do_div(lpj, HZ);
862 lpj_fine = lpj;
863
8fbbc4b4
AK
864 use_tsc_delay();
865 /* Check and install the TSC clocksource */
866 dmi_check_system(bad_tsc_dmi_table);
867
868 if (unsynchronized_tsc())
869 mark_tsc_unstable("TSCs unsynchronized");
870
395628ef 871 check_system_tsc_reliable();
8fbbc4b4
AK
872 init_tsc_clocksource();
873}
874