timer.c: Fix S/390 comments
[linux-2.6-block.git] / arch / x86 / kernel / tsc.c
CommitLineData
bfc0f594 1#include <linux/kernel.h>
0ef95533
AK
2#include <linux/sched.h>
3#include <linux/init.h>
4#include <linux/module.h>
5#include <linux/timer.h>
bfc0f594 6#include <linux/acpi_pmtmr.h>
2dbe06fa 7#include <linux/cpufreq.h>
8fbbc4b4
AK
8#include <linux/dmi.h>
9#include <linux/delay.h>
10#include <linux/clocksource.h>
11#include <linux/percpu.h>
08604bd9 12#include <linux/timex.h>
bfc0f594
AK
13
14#include <asm/hpet.h>
8fbbc4b4
AK
15#include <asm/timer.h>
16#include <asm/vgtod.h>
17#include <asm/time.h>
18#include <asm/delay.h>
88b094fb 19#include <asm/hypervisor.h>
0ef95533 20
f24ade3a 21unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
0ef95533 22EXPORT_SYMBOL(cpu_khz);
f24ade3a
IM
23
24unsigned int __read_mostly tsc_khz;
0ef95533
AK
25EXPORT_SYMBOL(tsc_khz);
26
27/*
28 * TSC can be unstable due to cpufreq or due to unsynced TSCs
29 */
f24ade3a 30static int __read_mostly tsc_unstable;
0ef95533
AK
31
32/* native_sched_clock() is called before tsc_init(), so
33 we must start with the TSC soft disabled to prevent
34 erroneous rdtsc usage on !cpu_has_tsc processors */
f24ade3a 35static int __read_mostly tsc_disabled = -1;
0ef95533 36
395628ef 37static int tsc_clocksource_reliable;
0ef95533
AK
38/*
39 * Scheduler clock - returns current time in nanosec units.
40 */
41u64 native_sched_clock(void)
42{
43 u64 this_offset;
44
45 /*
46 * Fall back to jiffies if there's no TSC available:
47 * ( But note that we still use it if the TSC is marked
48 * unstable. We do this because unlike Time Of Day,
49 * the scheduler clock tolerates small errors and it's
50 * very important for it to be as fast as the platform
51 * can achive it. )
52 */
53 if (unlikely(tsc_disabled)) {
54 /* No locking but a rare wrong value is not a big deal: */
55 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
56 }
57
58 /* read the Time Stamp Counter: */
59 rdtscll(this_offset);
60
61 /* return the value in ns */
7cbaef9c 62 return __cycles_2_ns(this_offset);
0ef95533
AK
63}
64
65/* We need to define a real function for sched_clock, to override the
66 weak default version */
67#ifdef CONFIG_PARAVIRT
68unsigned long long sched_clock(void)
69{
70 return paravirt_sched_clock();
71}
72#else
73unsigned long long
74sched_clock(void) __attribute__((alias("native_sched_clock")));
75#endif
76
77int check_tsc_unstable(void)
78{
79 return tsc_unstable;
80}
81EXPORT_SYMBOL_GPL(check_tsc_unstable);
82
83#ifdef CONFIG_X86_TSC
84int __init notsc_setup(char *str)
85{
86 printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
87 "cannot disable TSC completely.\n");
88 tsc_disabled = 1;
89 return 1;
90}
91#else
92/*
93 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
94 * in cpu/common.c
95 */
96int __init notsc_setup(char *str)
97{
98 setup_clear_cpu_cap(X86_FEATURE_TSC);
99 return 1;
100}
101#endif
102
103__setup("notsc", notsc_setup);
bfc0f594 104
395628ef
AK
105static int __init tsc_setup(char *str)
106{
107 if (!strcmp(str, "reliable"))
108 tsc_clocksource_reliable = 1;
109 return 1;
110}
111
112__setup("tsc=", tsc_setup);
113
bfc0f594
AK
114#define MAX_RETRIES 5
115#define SMI_TRESHOLD 50000
116
117/*
118 * Read TSC and the reference counters. Take care of SMI disturbance
119 */
827014be 120static u64 tsc_read_refs(u64 *p, int hpet)
bfc0f594
AK
121{
122 u64 t1, t2;
123 int i;
124
125 for (i = 0; i < MAX_RETRIES; i++) {
126 t1 = get_cycles();
127 if (hpet)
827014be 128 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
bfc0f594 129 else
827014be 130 *p = acpi_pm_read_early();
bfc0f594
AK
131 t2 = get_cycles();
132 if ((t2 - t1) < SMI_TRESHOLD)
133 return t2;
134 }
135 return ULLONG_MAX;
136}
137
d683ef7a
TG
138/*
139 * Calculate the TSC frequency from HPET reference
bfc0f594 140 */
d683ef7a 141static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
bfc0f594 142{
d683ef7a 143 u64 tmp;
bfc0f594 144
d683ef7a
TG
145 if (hpet2 < hpet1)
146 hpet2 += 0x100000000ULL;
147 hpet2 -= hpet1;
148 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
149 do_div(tmp, 1000000);
150 do_div(deltatsc, tmp);
151
152 return (unsigned long) deltatsc;
153}
154
155/*
156 * Calculate the TSC frequency from PMTimer reference
157 */
158static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
159{
160 u64 tmp;
bfc0f594 161
d683ef7a
TG
162 if (!pm1 && !pm2)
163 return ULONG_MAX;
164
165 if (pm2 < pm1)
166 pm2 += (u64)ACPI_PM_OVRRUN;
167 pm2 -= pm1;
168 tmp = pm2 * 1000000000LL;
169 do_div(tmp, PMTMR_TICKS_PER_SEC);
170 do_div(deltatsc, tmp);
171
172 return (unsigned long) deltatsc;
173}
174
a977c400 175#define CAL_MS 10
cce3e057 176#define CAL_LATCH (CLOCK_TICK_RATE / (1000 / CAL_MS))
a977c400
TG
177#define CAL_PIT_LOOPS 1000
178
179#define CAL2_MS 50
180#define CAL2_LATCH (CLOCK_TICK_RATE / (1000 / CAL2_MS))
181#define CAL2_PIT_LOOPS 5000
182
cce3e057 183
ec0c15af
LT
184/*
185 * Try to calibrate the TSC against the Programmable
186 * Interrupt Timer and return the frequency of the TSC
187 * in kHz.
188 *
189 * Return ULONG_MAX on failure to calibrate.
190 */
a977c400 191static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
ec0c15af
LT
192{
193 u64 tsc, t1, t2, delta;
194 unsigned long tscmin, tscmax;
195 int pitcnt;
196
197 /* Set the Gate high, disable speaker */
198 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
199
200 /*
201 * Setup CTC channel 2* for mode 0, (interrupt on terminal
202 * count mode), binary count. Set the latch register to 50ms
203 * (LSB then MSB) to begin countdown.
204 */
205 outb(0xb0, 0x43);
a977c400
TG
206 outb(latch & 0xff, 0x42);
207 outb(latch >> 8, 0x42);
ec0c15af
LT
208
209 tsc = t1 = t2 = get_cycles();
210
211 pitcnt = 0;
212 tscmax = 0;
213 tscmin = ULONG_MAX;
214 while ((inb(0x61) & 0x20) == 0) {
215 t2 = get_cycles();
216 delta = t2 - tsc;
217 tsc = t2;
218 if ((unsigned long) delta < tscmin)
219 tscmin = (unsigned int) delta;
220 if ((unsigned long) delta > tscmax)
221 tscmax = (unsigned int) delta;
222 pitcnt++;
223 }
224
225 /*
226 * Sanity checks:
227 *
a977c400 228 * If we were not able to read the PIT more than loopmin
ec0c15af
LT
229 * times, then we have been hit by a massive SMI
230 *
231 * If the maximum is 10 times larger than the minimum,
232 * then we got hit by an SMI as well.
233 */
a977c400 234 if (pitcnt < loopmin || tscmax > 10 * tscmin)
ec0c15af
LT
235 return ULONG_MAX;
236
237 /* Calculate the PIT value */
238 delta = t2 - t1;
a977c400 239 do_div(delta, ms);
ec0c15af
LT
240 return delta;
241}
242
6ac40ed0
LT
243/*
244 * This reads the current MSB of the PIT counter, and
245 * checks if we are running on sufficiently fast and
246 * non-virtualized hardware.
247 *
248 * Our expectations are:
249 *
250 * - the PIT is running at roughly 1.19MHz
251 *
252 * - each IO is going to take about 1us on real hardware,
253 * but we allow it to be much faster (by a factor of 10) or
254 * _slightly_ slower (ie we allow up to a 2us read+counter
255 * update - anything else implies a unacceptably slow CPU
256 * or PIT for the fast calibration to work.
257 *
258 * - with 256 PIT ticks to read the value, we have 214us to
259 * see the same MSB (and overhead like doing a single TSC
260 * read per MSB value etc).
261 *
262 * - We're doing 2 reads per loop (LSB, MSB), and we expect
263 * them each to take about a microsecond on real hardware.
264 * So we expect a count value of around 100. But we'll be
265 * generous, and accept anything over 50.
266 *
267 * - if the PIT is stuck, and we see *many* more reads, we
268 * return early (and the next caller of pit_expect_msb()
269 * then consider it a failure when they don't see the
270 * next expected value).
271 *
272 * These expectations mean that we know that we have seen the
273 * transition from one expected value to another with a fairly
274 * high accuracy, and we didn't miss any events. We can thus
275 * use the TSC value at the transitions to calculate a pretty
276 * good value for the TSC frequencty.
277 */
b6e61eef
LT
278static inline int pit_verify_msb(unsigned char val)
279{
280 /* Ignore LSB */
281 inb(0x42);
282 return inb(0x42) == val;
283}
284
9e8912e0 285static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
6ac40ed0 286{
9e8912e0
LT
287 int count;
288 u64 tsc = 0;
bfc0f594 289
6ac40ed0 290 for (count = 0; count < 50000; count++) {
b6e61eef 291 if (!pit_verify_msb(val))
6ac40ed0 292 break;
9e8912e0 293 tsc = get_cycles();
6ac40ed0 294 }
9e8912e0
LT
295 *deltap = get_cycles() - tsc;
296 *tscp = tsc;
297
298 /*
299 * We require _some_ success, but the quality control
300 * will be based on the error terms on the TSC values.
301 */
302 return count > 5;
6ac40ed0
LT
303}
304
305/*
9e8912e0
LT
306 * How many MSB values do we want to see? We aim for
307 * a maximum error rate of 500ppm (in practice the
308 * real error is much smaller), but refuse to spend
309 * more than 25ms on it.
6ac40ed0 310 */
9e8912e0
LT
311#define MAX_QUICK_PIT_MS 25
312#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
bfc0f594 313
6ac40ed0
LT
314static unsigned long quick_pit_calibrate(void)
315{
9e8912e0
LT
316 int i;
317 u64 tsc, delta;
318 unsigned long d1, d2;
319
6ac40ed0 320 /* Set the Gate high, disable speaker */
bfc0f594
AK
321 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
322
6ac40ed0
LT
323 /*
324 * Counter 2, mode 0 (one-shot), binary count
325 *
326 * NOTE! Mode 2 decrements by two (and then the
327 * output is flipped each time, giving the same
328 * final output frequency as a decrement-by-one),
329 * so mode 0 is much better when looking at the
330 * individual counts.
331 */
bfc0f594 332 outb(0xb0, 0x43);
bfc0f594 333
6ac40ed0
LT
334 /* Start at 0xffff */
335 outb(0xff, 0x42);
336 outb(0xff, 0x42);
337
a6a80e1d
LT
338 /*
339 * The PIT starts counting at the next edge, so we
340 * need to delay for a microsecond. The easiest way
341 * to do that is to just read back the 16-bit counter
342 * once from the PIT.
343 */
b6e61eef 344 pit_verify_msb(0);
a6a80e1d 345
9e8912e0
LT
346 if (pit_expect_msb(0xff, &tsc, &d1)) {
347 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
348 if (!pit_expect_msb(0xff-i, &delta, &d2))
349 break;
350
351 /*
352 * Iterate until the error is less than 500 ppm
353 */
354 delta -= tsc;
b6e61eef
LT
355 if (d1+d2 >= delta >> 11)
356 continue;
357
358 /*
359 * Check the PIT one more time to verify that
360 * all TSC reads were stable wrt the PIT.
361 *
362 * This also guarantees serialization of the
363 * last cycle read ('d2') in pit_expect_msb.
364 */
365 if (!pit_verify_msb(0xfe - i))
366 break;
367 goto success;
6ac40ed0 368 }
6ac40ed0 369 }
9e8912e0 370 printk("Fast TSC calibration failed\n");
6ac40ed0 371 return 0;
9e8912e0
LT
372
373success:
374 /*
375 * Ok, if we get here, then we've seen the
376 * MSB of the PIT decrement 'i' times, and the
377 * error has shrunk to less than 500 ppm.
378 *
379 * As a result, we can depend on there not being
380 * any odd delays anywhere, and the TSC reads are
381 * reliable (within the error). We also adjust the
382 * delta to the middle of the error bars, just
383 * because it looks nicer.
384 *
385 * kHz = ticks / time-in-seconds / 1000;
386 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
387 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
388 */
389 delta += (long)(d2 - d1)/2;
390 delta *= PIT_TICK_RATE;
391 do_div(delta, i*256*1000);
392 printk("Fast TSC calibration using PIT\n");
393 return delta;
6ac40ed0 394}
ec0c15af 395
bfc0f594 396/**
e93ef949 397 * native_calibrate_tsc - calibrate the tsc on boot
bfc0f594 398 */
e93ef949 399unsigned long native_calibrate_tsc(void)
bfc0f594 400{
827014be 401 u64 tsc1, tsc2, delta, ref1, ref2;
fbb16e24 402 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
2c1b284e 403 unsigned long flags, latch, ms, fast_calibrate, hv_tsc_khz;
a977c400 404 int hpet = is_hpet_enabled(), i, loopmin;
bfc0f594 405
2c1b284e
JSR
406 hv_tsc_khz = get_hypervisor_tsc_freq();
407 if (hv_tsc_khz) {
88b094fb 408 printk(KERN_INFO "TSC: Frequency read from the hypervisor\n");
2c1b284e 409 return hv_tsc_khz;
88b094fb
AK
410 }
411
6ac40ed0
LT
412 local_irq_save(flags);
413 fast_calibrate = quick_pit_calibrate();
bfc0f594 414 local_irq_restore(flags);
6ac40ed0
LT
415 if (fast_calibrate)
416 return fast_calibrate;
bfc0f594 417
fbb16e24
TG
418 /*
419 * Run 5 calibration loops to get the lowest frequency value
420 * (the best estimate). We use two different calibration modes
421 * here:
422 *
423 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
424 * load a timeout of 50ms. We read the time right after we
425 * started the timer and wait until the PIT count down reaches
426 * zero. In each wait loop iteration we read the TSC and check
427 * the delta to the previous read. We keep track of the min
428 * and max values of that delta. The delta is mostly defined
429 * by the IO time of the PIT access, so we can detect when a
430 * SMI/SMM disturbance happend between the two reads. If the
431 * maximum time is significantly larger than the minimum time,
432 * then we discard the result and have another try.
433 *
434 * 2) Reference counter. If available we use the HPET or the
435 * PMTIMER as a reference to check the sanity of that value.
436 * We use separate TSC readouts and check inside of the
437 * reference read for a SMI/SMM disturbance. We dicard
438 * disturbed values here as well. We do that around the PIT
439 * calibration delay loop as we have to wait for a certain
440 * amount of time anyway.
441 */
a977c400
TG
442
443 /* Preset PIT loop values */
444 latch = CAL_LATCH;
445 ms = CAL_MS;
446 loopmin = CAL_PIT_LOOPS;
447
448 for (i = 0; i < 3; i++) {
ec0c15af 449 unsigned long tsc_pit_khz;
fbb16e24
TG
450
451 /*
452 * Read the start value and the reference count of
ec0c15af
LT
453 * hpet/pmtimer when available. Then do the PIT
454 * calibration, which will take at least 50ms, and
455 * read the end value.
fbb16e24 456 */
ec0c15af 457 local_irq_save(flags);
827014be 458 tsc1 = tsc_read_refs(&ref1, hpet);
a977c400 459 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
827014be 460 tsc2 = tsc_read_refs(&ref2, hpet);
fbb16e24
TG
461 local_irq_restore(flags);
462
ec0c15af
LT
463 /* Pick the lowest PIT TSC calibration so far */
464 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
fbb16e24
TG
465
466 /* hpet or pmtimer available ? */
827014be 467 if (!hpet && !ref1 && !ref2)
fbb16e24
TG
468 continue;
469
470 /* Check, whether the sampling was disturbed by an SMI */
471 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
472 continue;
473
474 tsc2 = (tsc2 - tsc1) * 1000000LL;
d683ef7a 475 if (hpet)
827014be 476 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
d683ef7a 477 else
827014be 478 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
fbb16e24 479
fbb16e24 480 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
a977c400
TG
481
482 /* Check the reference deviation */
483 delta = ((u64) tsc_pit_min) * 100;
484 do_div(delta, tsc_ref_min);
485
486 /*
487 * If both calibration results are inside a 10% window
488 * then we can be sure, that the calibration
489 * succeeded. We break out of the loop right away. We
490 * use the reference value, as it is more precise.
491 */
492 if (delta >= 90 && delta <= 110) {
493 printk(KERN_INFO
494 "TSC: PIT calibration matches %s. %d loops\n",
495 hpet ? "HPET" : "PMTIMER", i + 1);
496 return tsc_ref_min;
fbb16e24
TG
497 }
498
a977c400
TG
499 /*
500 * Check whether PIT failed more than once. This
501 * happens in virtualized environments. We need to
502 * give the virtual PC a slightly longer timeframe for
503 * the HPET/PMTIMER to make the result precise.
504 */
505 if (i == 1 && tsc_pit_min == ULONG_MAX) {
506 latch = CAL2_LATCH;
507 ms = CAL2_MS;
508 loopmin = CAL2_PIT_LOOPS;
509 }
fbb16e24 510 }
bfc0f594
AK
511
512 /*
fbb16e24 513 * Now check the results.
bfc0f594 514 */
fbb16e24
TG
515 if (tsc_pit_min == ULONG_MAX) {
516 /* PIT gave no useful value */
de014d61 517 printk(KERN_WARNING "TSC: Unable to calibrate against PIT\n");
fbb16e24
TG
518
519 /* We don't have an alternative source, disable TSC */
827014be 520 if (!hpet && !ref1 && !ref2) {
fbb16e24
TG
521 printk("TSC: No reference (HPET/PMTIMER) available\n");
522 return 0;
523 }
524
525 /* The alternative source failed as well, disable TSC */
526 if (tsc_ref_min == ULONG_MAX) {
527 printk(KERN_WARNING "TSC: HPET/PMTIMER calibration "
a977c400 528 "failed.\n");
fbb16e24
TG
529 return 0;
530 }
531
532 /* Use the alternative source */
533 printk(KERN_INFO "TSC: using %s reference calibration\n",
534 hpet ? "HPET" : "PMTIMER");
535
536 return tsc_ref_min;
537 }
bfc0f594 538
fbb16e24 539 /* We don't have an alternative source, use the PIT calibration value */
827014be 540 if (!hpet && !ref1 && !ref2) {
fbb16e24
TG
541 printk(KERN_INFO "TSC: Using PIT calibration value\n");
542 return tsc_pit_min;
bfc0f594
AK
543 }
544
fbb16e24
TG
545 /* The alternative source failed, use the PIT calibration value */
546 if (tsc_ref_min == ULONG_MAX) {
a977c400
TG
547 printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed. "
548 "Using PIT calibration\n");
fbb16e24 549 return tsc_pit_min;
bfc0f594
AK
550 }
551
fbb16e24
TG
552 /*
553 * The calibration values differ too much. In doubt, we use
554 * the PIT value as we know that there are PMTIMERs around
a977c400 555 * running at double speed. At least we let the user know:
fbb16e24 556 */
a977c400
TG
557 printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n",
558 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
fbb16e24
TG
559 printk(KERN_INFO "TSC: Using PIT calibration value\n");
560 return tsc_pit_min;
bfc0f594
AK
561}
562
bfc0f594
AK
563int recalibrate_cpu_khz(void)
564{
565#ifndef CONFIG_SMP
566 unsigned long cpu_khz_old = cpu_khz;
567
568 if (cpu_has_tsc) {
e93ef949
AK
569 tsc_khz = calibrate_tsc();
570 cpu_khz = tsc_khz;
bfc0f594
AK
571 cpu_data(0).loops_per_jiffy =
572 cpufreq_scale(cpu_data(0).loops_per_jiffy,
573 cpu_khz_old, cpu_khz);
574 return 0;
575 } else
576 return -ENODEV;
577#else
578 return -ENODEV;
579#endif
580}
581
582EXPORT_SYMBOL(recalibrate_cpu_khz);
583
2dbe06fa
AK
584
585/* Accelerators for sched_clock()
586 * convert from cycles(64bits) => nanoseconds (64bits)
587 * basic equation:
588 * ns = cycles / (freq / ns_per_sec)
589 * ns = cycles * (ns_per_sec / freq)
590 * ns = cycles * (10^9 / (cpu_khz * 10^3))
591 * ns = cycles * (10^6 / cpu_khz)
592 *
593 * Then we use scaling math (suggested by george@mvista.com) to get:
594 * ns = cycles * (10^6 * SC / cpu_khz) / SC
595 * ns = cycles * cyc2ns_scale / SC
596 *
597 * And since SC is a constant power of two, we can convert the div
598 * into a shift.
599 *
600 * We can use khz divisor instead of mhz to keep a better precision, since
601 * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
602 * (mathieu.desnoyers@polymtl.ca)
603 *
604 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
605 */
606
607DEFINE_PER_CPU(unsigned long, cyc2ns);
84599f8a 608DEFINE_PER_CPU(unsigned long long, cyc2ns_offset);
2dbe06fa 609
8fbbc4b4 610static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
2dbe06fa 611{
84599f8a 612 unsigned long long tsc_now, ns_now, *offset;
2dbe06fa
AK
613 unsigned long flags, *scale;
614
615 local_irq_save(flags);
616 sched_clock_idle_sleep_event();
617
618 scale = &per_cpu(cyc2ns, cpu);
84599f8a 619 offset = &per_cpu(cyc2ns_offset, cpu);
2dbe06fa
AK
620
621 rdtscll(tsc_now);
622 ns_now = __cycles_2_ns(tsc_now);
623
84599f8a 624 if (cpu_khz) {
2dbe06fa 625 *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
84599f8a
PZ
626 *offset = ns_now - (tsc_now * *scale >> CYC2NS_SCALE_FACTOR);
627 }
2dbe06fa
AK
628
629 sched_clock_idle_wakeup_event(0);
630 local_irq_restore(flags);
631}
632
633#ifdef CONFIG_CPU_FREQ
634
635/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
636 * changes.
637 *
638 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
639 * not that important because current Opteron setups do not support
640 * scaling on SMP anyroads.
641 *
642 * Should fix up last_tsc too. Currently gettimeofday in the
643 * first tick after the change will be slightly wrong.
644 */
645
646static unsigned int ref_freq;
647static unsigned long loops_per_jiffy_ref;
648static unsigned long tsc_khz_ref;
649
650static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
651 void *data)
652{
653 struct cpufreq_freqs *freq = data;
931db6a3 654 unsigned long *lpj;
2dbe06fa
AK
655
656 if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
657 return 0;
658
931db6a3 659 lpj = &boot_cpu_data.loops_per_jiffy;
2dbe06fa 660#ifdef CONFIG_SMP
931db6a3 661 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
2dbe06fa 662 lpj = &cpu_data(freq->cpu).loops_per_jiffy;
2dbe06fa
AK
663#endif
664
665 if (!ref_freq) {
666 ref_freq = freq->old;
667 loops_per_jiffy_ref = *lpj;
668 tsc_khz_ref = tsc_khz;
669 }
670 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
671 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
672 (val == CPUFREQ_RESUMECHANGE)) {
673 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
674
675 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
676 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
677 mark_tsc_unstable("cpufreq changes");
678 }
679
52a8968c 680 set_cyc2ns_scale(tsc_khz, freq->cpu);
2dbe06fa
AK
681
682 return 0;
683}
684
685static struct notifier_block time_cpufreq_notifier_block = {
686 .notifier_call = time_cpufreq_notifier
687};
688
689static int __init cpufreq_tsc(void)
690{
060700b5
LT
691 if (!cpu_has_tsc)
692 return 0;
693 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
694 return 0;
2dbe06fa
AK
695 cpufreq_register_notifier(&time_cpufreq_notifier_block,
696 CPUFREQ_TRANSITION_NOTIFIER);
697 return 0;
698}
699
700core_initcall(cpufreq_tsc);
701
702#endif /* CONFIG_CPU_FREQ */
8fbbc4b4
AK
703
704/* clocksource code */
705
706static struct clocksource clocksource_tsc;
707
708/*
709 * We compare the TSC to the cycle_last value in the clocksource
710 * structure to avoid a nasty time-warp. This can be observed in a
711 * very small window right after one CPU updated cycle_last under
712 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
713 * is smaller than the cycle_last reference value due to a TSC which
714 * is slighty behind. This delta is nowhere else observable, but in
715 * that case it results in a forward time jump in the range of hours
716 * due to the unsigned delta calculation of the time keeping core
717 * code, which is necessary to support wrapping clocksources like pm
718 * timer.
719 */
8e19608e 720static cycle_t read_tsc(struct clocksource *cs)
8fbbc4b4
AK
721{
722 cycle_t ret = (cycle_t)get_cycles();
723
724 return ret >= clocksource_tsc.cycle_last ?
725 ret : clocksource_tsc.cycle_last;
726}
727
431ceb83 728#ifdef CONFIG_X86_64
8fbbc4b4
AK
729static cycle_t __vsyscall_fn vread_tsc(void)
730{
7d96fd41
PT
731 cycle_t ret;
732
733 /*
734 * Surround the RDTSC by barriers, to make sure it's not
735 * speculated to outside the seqlock critical section and
736 * does not cause time warps:
737 */
738 rdtsc_barrier();
739 ret = (cycle_t)vget_cycles();
740 rdtsc_barrier();
8fbbc4b4
AK
741
742 return ret >= __vsyscall_gtod_data.clock.cycle_last ?
743 ret : __vsyscall_gtod_data.clock.cycle_last;
744}
431ceb83 745#endif
8fbbc4b4 746
1be39679
MS
747static void resume_tsc(void)
748{
749 clocksource_tsc.cycle_last = 0;
750}
751
8fbbc4b4
AK
752static struct clocksource clocksource_tsc = {
753 .name = "tsc",
754 .rating = 300,
755 .read = read_tsc,
1be39679 756 .resume = resume_tsc,
8fbbc4b4
AK
757 .mask = CLOCKSOURCE_MASK(64),
758 .shift = 22,
759 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
760 CLOCK_SOURCE_MUST_VERIFY,
761#ifdef CONFIG_X86_64
762 .vread = vread_tsc,
763#endif
764};
765
766void mark_tsc_unstable(char *reason)
767{
768 if (!tsc_unstable) {
769 tsc_unstable = 1;
770 printk("Marking TSC unstable due to %s\n", reason);
771 /* Change only the rating, when not registered */
772 if (clocksource_tsc.mult)
773 clocksource_change_rating(&clocksource_tsc, 0);
774 else
775 clocksource_tsc.rating = 0;
776 }
777}
778
779EXPORT_SYMBOL_GPL(mark_tsc_unstable);
780
781static int __init dmi_mark_tsc_unstable(const struct dmi_system_id *d)
782{
783 printk(KERN_NOTICE "%s detected: marking TSC unstable.\n",
784 d->ident);
785 tsc_unstable = 1;
786 return 0;
787}
788
789/* List of systems that have known TSC problems */
790static struct dmi_system_id __initdata bad_tsc_dmi_table[] = {
791 {
792 .callback = dmi_mark_tsc_unstable,
793 .ident = "IBM Thinkpad 380XD",
794 .matches = {
795 DMI_MATCH(DMI_BOARD_VENDOR, "IBM"),
796 DMI_MATCH(DMI_BOARD_NAME, "2635FA0"),
797 },
798 },
799 {}
800};
801
395628ef
AK
802static void __init check_system_tsc_reliable(void)
803{
8fbbc4b4 804#ifdef CONFIG_MGEODE_LX
395628ef 805 /* RTSC counts during suspend */
8fbbc4b4 806#define RTSC_SUSP 0x100
8fbbc4b4
AK
807 unsigned long res_low, res_high;
808
809 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
395628ef 810 /* Geode_LX - the OLPC CPU has a possibly a very reliable TSC */
8fbbc4b4 811 if (res_low & RTSC_SUSP)
395628ef 812 tsc_clocksource_reliable = 1;
8fbbc4b4 813#endif
395628ef
AK
814 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
815 tsc_clocksource_reliable = 1;
816}
8fbbc4b4
AK
817
818/*
819 * Make an educated guess if the TSC is trustworthy and synchronized
820 * over all CPUs.
821 */
822__cpuinit int unsynchronized_tsc(void)
823{
824 if (!cpu_has_tsc || tsc_unstable)
825 return 1;
826
3e5095d1 827#ifdef CONFIG_SMP
8fbbc4b4
AK
828 if (apic_is_clustered_box())
829 return 1;
830#endif
831
832 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
833 return 0;
834 /*
835 * Intel systems are normally all synchronized.
836 * Exceptions must mark TSC as unstable:
837 */
838 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
839 /* assume multi socket systems are not synchronized: */
840 if (num_possible_cpus() > 1)
841 tsc_unstable = 1;
842 }
843
844 return tsc_unstable;
845}
846
847static void __init init_tsc_clocksource(void)
848{
849 clocksource_tsc.mult = clocksource_khz2mult(tsc_khz,
850 clocksource_tsc.shift);
395628ef
AK
851 if (tsc_clocksource_reliable)
852 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
8fbbc4b4
AK
853 /* lower the rating if we already know its unstable: */
854 if (check_tsc_unstable()) {
855 clocksource_tsc.rating = 0;
856 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
857 }
858 clocksource_register(&clocksource_tsc);
859}
860
861void __init tsc_init(void)
862{
863 u64 lpj;
864 int cpu;
865
866 if (!cpu_has_tsc)
867 return;
868
e93ef949
AK
869 tsc_khz = calibrate_tsc();
870 cpu_khz = tsc_khz;
8fbbc4b4 871
e93ef949 872 if (!tsc_khz) {
8fbbc4b4
AK
873 mark_tsc_unstable("could not calculate TSC khz");
874 return;
875 }
876
877#ifdef CONFIG_X86_64
878 if (cpu_has(&boot_cpu_data, X86_FEATURE_CONSTANT_TSC) &&
879 (boot_cpu_data.x86_vendor == X86_VENDOR_AMD))
880 cpu_khz = calibrate_cpu();
881#endif
882
8fbbc4b4
AK
883 printk("Detected %lu.%03lu MHz processor.\n",
884 (unsigned long)cpu_khz / 1000,
885 (unsigned long)cpu_khz % 1000);
886
887 /*
888 * Secondary CPUs do not run through tsc_init(), so set up
889 * all the scale factors for all CPUs, assuming the same
890 * speed as the bootup CPU. (cpufreq notifiers will fix this
891 * up if their speed diverges)
892 */
893 for_each_possible_cpu(cpu)
894 set_cyc2ns_scale(cpu_khz, cpu);
895
896 if (tsc_disabled > 0)
897 return;
898
899 /* now allow native_sched_clock() to use rdtsc */
900 tsc_disabled = 0;
901
70de9a97
AK
902 lpj = ((u64)tsc_khz * 1000);
903 do_div(lpj, HZ);
904 lpj_fine = lpj;
905
8fbbc4b4
AK
906 use_tsc_delay();
907 /* Check and install the TSC clocksource */
908 dmi_check_system(bad_tsc_dmi_table);
909
910 if (unsynchronized_tsc())
911 mark_tsc_unstable("TSCs unsynchronized");
912
395628ef 913 check_system_tsc_reliable();
8fbbc4b4
AK
914 init_tsc_clocksource();
915}
916