x86: TSC: use one set of reference variables
[linux-2.6-block.git] / arch / x86 / kernel / tsc.c
CommitLineData
bfc0f594 1#include <linux/kernel.h>
0ef95533
AK
2#include <linux/sched.h>
3#include <linux/init.h>
4#include <linux/module.h>
5#include <linux/timer.h>
bfc0f594 6#include <linux/acpi_pmtmr.h>
2dbe06fa 7#include <linux/cpufreq.h>
8fbbc4b4
AK
8#include <linux/dmi.h>
9#include <linux/delay.h>
10#include <linux/clocksource.h>
11#include <linux/percpu.h>
bfc0f594
AK
12
13#include <asm/hpet.h>
8fbbc4b4
AK
14#include <asm/timer.h>
15#include <asm/vgtod.h>
16#include <asm/time.h>
17#include <asm/delay.h>
0ef95533
AK
18
19unsigned int cpu_khz; /* TSC clocks / usec, not used here */
20EXPORT_SYMBOL(cpu_khz);
21unsigned int tsc_khz;
22EXPORT_SYMBOL(tsc_khz);
23
24/*
25 * TSC can be unstable due to cpufreq or due to unsynced TSCs
26 */
8fbbc4b4 27static int tsc_unstable;
0ef95533
AK
28
29/* native_sched_clock() is called before tsc_init(), so
30 we must start with the TSC soft disabled to prevent
31 erroneous rdtsc usage on !cpu_has_tsc processors */
8fbbc4b4 32static int tsc_disabled = -1;
0ef95533
AK
33
34/*
35 * Scheduler clock - returns current time in nanosec units.
36 */
37u64 native_sched_clock(void)
38{
39 u64 this_offset;
40
41 /*
42 * Fall back to jiffies if there's no TSC available:
43 * ( But note that we still use it if the TSC is marked
44 * unstable. We do this because unlike Time Of Day,
45 * the scheduler clock tolerates small errors and it's
46 * very important for it to be as fast as the platform
47 * can achive it. )
48 */
49 if (unlikely(tsc_disabled)) {
50 /* No locking but a rare wrong value is not a big deal: */
51 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
52 }
53
54 /* read the Time Stamp Counter: */
55 rdtscll(this_offset);
56
57 /* return the value in ns */
58 return cycles_2_ns(this_offset);
59}
60
61/* We need to define a real function for sched_clock, to override the
62 weak default version */
63#ifdef CONFIG_PARAVIRT
64unsigned long long sched_clock(void)
65{
66 return paravirt_sched_clock();
67}
68#else
69unsigned long long
70sched_clock(void) __attribute__((alias("native_sched_clock")));
71#endif
72
73int check_tsc_unstable(void)
74{
75 return tsc_unstable;
76}
77EXPORT_SYMBOL_GPL(check_tsc_unstable);
78
79#ifdef CONFIG_X86_TSC
80int __init notsc_setup(char *str)
81{
82 printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
83 "cannot disable TSC completely.\n");
84 tsc_disabled = 1;
85 return 1;
86}
87#else
88/*
89 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
90 * in cpu/common.c
91 */
92int __init notsc_setup(char *str)
93{
94 setup_clear_cpu_cap(X86_FEATURE_TSC);
95 return 1;
96}
97#endif
98
99__setup("notsc", notsc_setup);
bfc0f594
AK
100
101#define MAX_RETRIES 5
102#define SMI_TRESHOLD 50000
103
104/*
105 * Read TSC and the reference counters. Take care of SMI disturbance
106 */
827014be 107static u64 tsc_read_refs(u64 *p, int hpet)
bfc0f594
AK
108{
109 u64 t1, t2;
110 int i;
111
112 for (i = 0; i < MAX_RETRIES; i++) {
113 t1 = get_cycles();
114 if (hpet)
827014be 115 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
bfc0f594 116 else
827014be 117 *p = acpi_pm_read_early();
bfc0f594
AK
118 t2 = get_cycles();
119 if ((t2 - t1) < SMI_TRESHOLD)
120 return t2;
121 }
122 return ULLONG_MAX;
123}
124
d683ef7a
TG
125/*
126 * Calculate the TSC frequency from HPET reference
127 */
128static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
129{
130 u64 tmp;
131
132 if (hpet2 < hpet1)
133 hpet2 += 0x100000000ULL;
134 hpet2 -= hpet1;
135 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
136 do_div(tmp, 1000000);
137 do_div(deltatsc, tmp);
138
139 return (unsigned long) deltatsc;
140}
141
142/*
143 * Calculate the TSC frequency from PMTimer reference
144 */
145static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
146{
147 u64 tmp;
148
149 if (!pm1 && !pm2)
150 return ULONG_MAX;
151
152 if (pm2 < pm1)
153 pm2 += (u64)ACPI_PM_OVRRUN;
154 pm2 -= pm1;
155 tmp = pm2 * 1000000000LL;
156 do_div(tmp, PMTMR_TICKS_PER_SEC);
157 do_div(deltatsc, tmp);
158
159 return (unsigned long) deltatsc;
160}
161
cce3e057
TG
162#define CAL_MS 50
163#define CAL_LATCH (CLOCK_TICK_RATE / (1000 / CAL_MS))
164#define CAL_PIT_LOOPS 5000
165
ec0c15af
LT
166/*
167 * Try to calibrate the TSC against the Programmable
168 * Interrupt Timer and return the frequency of the TSC
169 * in kHz.
170 *
171 * Return ULONG_MAX on failure to calibrate.
172 */
173static unsigned long pit_calibrate_tsc(void)
174{
175 u64 tsc, t1, t2, delta;
176 unsigned long tscmin, tscmax;
177 int pitcnt;
178
179 /* Set the Gate high, disable speaker */
180 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
181
182 /*
183 * Setup CTC channel 2* for mode 0, (interrupt on terminal
184 * count mode), binary count. Set the latch register to 50ms
185 * (LSB then MSB) to begin countdown.
186 */
187 outb(0xb0, 0x43);
cce3e057
TG
188 outb(CAL_LATCH & 0xff, 0x42);
189 outb(CAL_LATCH >> 8, 0x42);
ec0c15af
LT
190
191 tsc = t1 = t2 = get_cycles();
192
193 pitcnt = 0;
194 tscmax = 0;
195 tscmin = ULONG_MAX;
196 while ((inb(0x61) & 0x20) == 0) {
197 t2 = get_cycles();
198 delta = t2 - tsc;
199 tsc = t2;
200 if ((unsigned long) delta < tscmin)
201 tscmin = (unsigned int) delta;
202 if ((unsigned long) delta > tscmax)
203 tscmax = (unsigned int) delta;
204 pitcnt++;
205 }
206
207 /*
208 * Sanity checks:
209 *
cce3e057 210 * If we were not able to read the PIT more than PIT_MIN_LOOPS
ec0c15af
LT
211 * times, then we have been hit by a massive SMI
212 *
213 * If the maximum is 10 times larger than the minimum,
214 * then we got hit by an SMI as well.
215 */
cce3e057 216 if (pitcnt < CAL_PIT_LOOPS || tscmax > 10 * tscmin)
ec0c15af
LT
217 return ULONG_MAX;
218
219 /* Calculate the PIT value */
220 delta = t2 - t1;
cce3e057 221 do_div(delta, CAL_MS);
ec0c15af
LT
222 return delta;
223}
224
225
bfc0f594 226/**
e93ef949 227 * native_calibrate_tsc - calibrate the tsc on boot
bfc0f594 228 */
e93ef949 229unsigned long native_calibrate_tsc(void)
bfc0f594 230{
827014be 231 u64 tsc1, tsc2, delta, ref1, ref2;
fbb16e24 232 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
ec0c15af
LT
233 unsigned long flags;
234 int hpet = is_hpet_enabled(), i;
bfc0f594 235
fbb16e24
TG
236 /*
237 * Run 5 calibration loops to get the lowest frequency value
238 * (the best estimate). We use two different calibration modes
239 * here:
240 *
241 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
242 * load a timeout of 50ms. We read the time right after we
243 * started the timer and wait until the PIT count down reaches
244 * zero. In each wait loop iteration we read the TSC and check
245 * the delta to the previous read. We keep track of the min
246 * and max values of that delta. The delta is mostly defined
247 * by the IO time of the PIT access, so we can detect when a
248 * SMI/SMM disturbance happend between the two reads. If the
249 * maximum time is significantly larger than the minimum time,
250 * then we discard the result and have another try.
251 *
252 * 2) Reference counter. If available we use the HPET or the
253 * PMTIMER as a reference to check the sanity of that value.
254 * We use separate TSC readouts and check inside of the
255 * reference read for a SMI/SMM disturbance. We dicard
256 * disturbed values here as well. We do that around the PIT
257 * calibration delay loop as we have to wait for a certain
258 * amount of time anyway.
259 */
260 for (i = 0; i < 5; i++) {
ec0c15af 261 unsigned long tsc_pit_khz;
fbb16e24
TG
262
263 /*
264 * Read the start value and the reference count of
ec0c15af
LT
265 * hpet/pmtimer when available. Then do the PIT
266 * calibration, which will take at least 50ms, and
267 * read the end value.
fbb16e24 268 */
ec0c15af 269 local_irq_save(flags);
827014be 270 tsc1 = tsc_read_refs(&ref1, hpet);
ec0c15af 271 tsc_pit_khz = pit_calibrate_tsc();
827014be 272 tsc2 = tsc_read_refs(&ref2, hpet);
fbb16e24
TG
273 local_irq_restore(flags);
274
ec0c15af
LT
275 /* Pick the lowest PIT TSC calibration so far */
276 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
fbb16e24
TG
277
278 /* hpet or pmtimer available ? */
827014be 279 if (!hpet && !ref1 && !ref2)
fbb16e24
TG
280 continue;
281
282 /* Check, whether the sampling was disturbed by an SMI */
283 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
284 continue;
285
286 tsc2 = (tsc2 - tsc1) * 1000000LL;
d683ef7a 287 if (hpet)
827014be 288 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
d683ef7a 289 else
827014be 290 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
fbb16e24 291
fbb16e24
TG
292 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
293 }
bfc0f594
AK
294
295 /*
fbb16e24 296 * Now check the results.
bfc0f594 297 */
fbb16e24
TG
298 if (tsc_pit_min == ULONG_MAX) {
299 /* PIT gave no useful value */
300 printk(KERN_WARNING "TSC: PIT calibration failed due to "
301 "SMI disturbance.\n");
302
303 /* We don't have an alternative source, disable TSC */
827014be 304 if (!hpet && !ref1 && !ref2) {
fbb16e24
TG
305 printk("TSC: No reference (HPET/PMTIMER) available\n");
306 return 0;
307 }
308
309 /* The alternative source failed as well, disable TSC */
310 if (tsc_ref_min == ULONG_MAX) {
311 printk(KERN_WARNING "TSC: HPET/PMTIMER calibration "
312 "failed due to SMI disturbance.\n");
313 return 0;
314 }
315
316 /* Use the alternative source */
317 printk(KERN_INFO "TSC: using %s reference calibration\n",
318 hpet ? "HPET" : "PMTIMER");
319
320 return tsc_ref_min;
321 }
bfc0f594 322
fbb16e24 323 /* We don't have an alternative source, use the PIT calibration value */
827014be 324 if (!hpet && !ref1 && !ref2) {
fbb16e24
TG
325 printk(KERN_INFO "TSC: Using PIT calibration value\n");
326 return tsc_pit_min;
bfc0f594
AK
327 }
328
fbb16e24
TG
329 /* The alternative source failed, use the PIT calibration value */
330 if (tsc_ref_min == ULONG_MAX) {
331 printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed due "
332 "to SMI disturbance. Using PIT calibration\n");
333 return tsc_pit_min;
bfc0f594
AK
334 }
335
fbb16e24
TG
336 /* Check the reference deviation */
337 delta = ((u64) tsc_pit_min) * 100;
338 do_div(delta, tsc_ref_min);
339
340 /*
341 * If both calibration results are inside a 5% window, the we
342 * use the lower frequency of those as it is probably the
343 * closest estimate.
344 */
345 if (delta >= 95 && delta <= 105) {
346 printk(KERN_INFO "TSC: PIT calibration confirmed by %s.\n",
347 hpet ? "HPET" : "PMTIMER");
348 printk(KERN_INFO "TSC: using %s calibration value\n",
349 tsc_pit_min <= tsc_ref_min ? "PIT" :
350 hpet ? "HPET" : "PMTIMER");
351 return tsc_pit_min <= tsc_ref_min ? tsc_pit_min : tsc_ref_min;
bfc0f594
AK
352 }
353
fbb16e24
TG
354 printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n",
355 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
bfc0f594 356
fbb16e24
TG
357 /*
358 * The calibration values differ too much. In doubt, we use
359 * the PIT value as we know that there are PMTIMERs around
360 * running at double speed.
361 */
362 printk(KERN_INFO "TSC: Using PIT calibration value\n");
363 return tsc_pit_min;
bfc0f594
AK
364}
365
bfc0f594
AK
366#ifdef CONFIG_X86_32
367/* Only called from the Powernow K7 cpu freq driver */
368int recalibrate_cpu_khz(void)
369{
370#ifndef CONFIG_SMP
371 unsigned long cpu_khz_old = cpu_khz;
372
373 if (cpu_has_tsc) {
e93ef949
AK
374 tsc_khz = calibrate_tsc();
375 cpu_khz = tsc_khz;
bfc0f594
AK
376 cpu_data(0).loops_per_jiffy =
377 cpufreq_scale(cpu_data(0).loops_per_jiffy,
378 cpu_khz_old, cpu_khz);
379 return 0;
380 } else
381 return -ENODEV;
382#else
383 return -ENODEV;
384#endif
385}
386
387EXPORT_SYMBOL(recalibrate_cpu_khz);
388
389#endif /* CONFIG_X86_32 */
2dbe06fa
AK
390
391/* Accelerators for sched_clock()
392 * convert from cycles(64bits) => nanoseconds (64bits)
393 * basic equation:
394 * ns = cycles / (freq / ns_per_sec)
395 * ns = cycles * (ns_per_sec / freq)
396 * ns = cycles * (10^9 / (cpu_khz * 10^3))
397 * ns = cycles * (10^6 / cpu_khz)
398 *
399 * Then we use scaling math (suggested by george@mvista.com) to get:
400 * ns = cycles * (10^6 * SC / cpu_khz) / SC
401 * ns = cycles * cyc2ns_scale / SC
402 *
403 * And since SC is a constant power of two, we can convert the div
404 * into a shift.
405 *
406 * We can use khz divisor instead of mhz to keep a better precision, since
407 * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
408 * (mathieu.desnoyers@polymtl.ca)
409 *
410 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
411 */
412
413DEFINE_PER_CPU(unsigned long, cyc2ns);
414
8fbbc4b4 415static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
2dbe06fa
AK
416{
417 unsigned long long tsc_now, ns_now;
418 unsigned long flags, *scale;
419
420 local_irq_save(flags);
421 sched_clock_idle_sleep_event();
422
423 scale = &per_cpu(cyc2ns, cpu);
424
425 rdtscll(tsc_now);
426 ns_now = __cycles_2_ns(tsc_now);
427
428 if (cpu_khz)
429 *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
430
431 sched_clock_idle_wakeup_event(0);
432 local_irq_restore(flags);
433}
434
435#ifdef CONFIG_CPU_FREQ
436
437/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
438 * changes.
439 *
440 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
441 * not that important because current Opteron setups do not support
442 * scaling on SMP anyroads.
443 *
444 * Should fix up last_tsc too. Currently gettimeofday in the
445 * first tick after the change will be slightly wrong.
446 */
447
448static unsigned int ref_freq;
449static unsigned long loops_per_jiffy_ref;
450static unsigned long tsc_khz_ref;
451
452static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
453 void *data)
454{
455 struct cpufreq_freqs *freq = data;
456 unsigned long *lpj, dummy;
457
458 if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
459 return 0;
460
461 lpj = &dummy;
462 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
463#ifdef CONFIG_SMP
464 lpj = &cpu_data(freq->cpu).loops_per_jiffy;
465#else
466 lpj = &boot_cpu_data.loops_per_jiffy;
467#endif
468
469 if (!ref_freq) {
470 ref_freq = freq->old;
471 loops_per_jiffy_ref = *lpj;
472 tsc_khz_ref = tsc_khz;
473 }
474 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
475 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
476 (val == CPUFREQ_RESUMECHANGE)) {
477 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
478
479 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
480 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
481 mark_tsc_unstable("cpufreq changes");
482 }
483
52a8968c 484 set_cyc2ns_scale(tsc_khz, freq->cpu);
2dbe06fa
AK
485
486 return 0;
487}
488
489static struct notifier_block time_cpufreq_notifier_block = {
490 .notifier_call = time_cpufreq_notifier
491};
492
493static int __init cpufreq_tsc(void)
494{
060700b5
LT
495 if (!cpu_has_tsc)
496 return 0;
497 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
498 return 0;
2dbe06fa
AK
499 cpufreq_register_notifier(&time_cpufreq_notifier_block,
500 CPUFREQ_TRANSITION_NOTIFIER);
501 return 0;
502}
503
504core_initcall(cpufreq_tsc);
505
506#endif /* CONFIG_CPU_FREQ */
8fbbc4b4
AK
507
508/* clocksource code */
509
510static struct clocksource clocksource_tsc;
511
512/*
513 * We compare the TSC to the cycle_last value in the clocksource
514 * structure to avoid a nasty time-warp. This can be observed in a
515 * very small window right after one CPU updated cycle_last under
516 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
517 * is smaller than the cycle_last reference value due to a TSC which
518 * is slighty behind. This delta is nowhere else observable, but in
519 * that case it results in a forward time jump in the range of hours
520 * due to the unsigned delta calculation of the time keeping core
521 * code, which is necessary to support wrapping clocksources like pm
522 * timer.
523 */
524static cycle_t read_tsc(void)
525{
526 cycle_t ret = (cycle_t)get_cycles();
527
528 return ret >= clocksource_tsc.cycle_last ?
529 ret : clocksource_tsc.cycle_last;
530}
531
431ceb83 532#ifdef CONFIG_X86_64
8fbbc4b4
AK
533static cycle_t __vsyscall_fn vread_tsc(void)
534{
535 cycle_t ret = (cycle_t)vget_cycles();
536
537 return ret >= __vsyscall_gtod_data.clock.cycle_last ?
538 ret : __vsyscall_gtod_data.clock.cycle_last;
539}
431ceb83 540#endif
8fbbc4b4
AK
541
542static struct clocksource clocksource_tsc = {
543 .name = "tsc",
544 .rating = 300,
545 .read = read_tsc,
546 .mask = CLOCKSOURCE_MASK(64),
547 .shift = 22,
548 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
549 CLOCK_SOURCE_MUST_VERIFY,
550#ifdef CONFIG_X86_64
551 .vread = vread_tsc,
552#endif
553};
554
555void mark_tsc_unstable(char *reason)
556{
557 if (!tsc_unstable) {
558 tsc_unstable = 1;
559 printk("Marking TSC unstable due to %s\n", reason);
560 /* Change only the rating, when not registered */
561 if (clocksource_tsc.mult)
562 clocksource_change_rating(&clocksource_tsc, 0);
563 else
564 clocksource_tsc.rating = 0;
565 }
566}
567
568EXPORT_SYMBOL_GPL(mark_tsc_unstable);
569
570static int __init dmi_mark_tsc_unstable(const struct dmi_system_id *d)
571{
572 printk(KERN_NOTICE "%s detected: marking TSC unstable.\n",
573 d->ident);
574 tsc_unstable = 1;
575 return 0;
576}
577
578/* List of systems that have known TSC problems */
579static struct dmi_system_id __initdata bad_tsc_dmi_table[] = {
580 {
581 .callback = dmi_mark_tsc_unstable,
582 .ident = "IBM Thinkpad 380XD",
583 .matches = {
584 DMI_MATCH(DMI_BOARD_VENDOR, "IBM"),
585 DMI_MATCH(DMI_BOARD_NAME, "2635FA0"),
586 },
587 },
588 {}
589};
590
591/*
592 * Geode_LX - the OLPC CPU has a possibly a very reliable TSC
593 */
594#ifdef CONFIG_MGEODE_LX
595/* RTSC counts during suspend */
596#define RTSC_SUSP 0x100
597
598static void __init check_geode_tsc_reliable(void)
599{
600 unsigned long res_low, res_high;
601
602 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
603 if (res_low & RTSC_SUSP)
604 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
605}
606#else
607static inline void check_geode_tsc_reliable(void) { }
608#endif
609
610/*
611 * Make an educated guess if the TSC is trustworthy and synchronized
612 * over all CPUs.
613 */
614__cpuinit int unsynchronized_tsc(void)
615{
616 if (!cpu_has_tsc || tsc_unstable)
617 return 1;
618
619#ifdef CONFIG_SMP
620 if (apic_is_clustered_box())
621 return 1;
622#endif
623
624 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
625 return 0;
626 /*
627 * Intel systems are normally all synchronized.
628 * Exceptions must mark TSC as unstable:
629 */
630 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
631 /* assume multi socket systems are not synchronized: */
632 if (num_possible_cpus() > 1)
633 tsc_unstable = 1;
634 }
635
636 return tsc_unstable;
637}
638
639static void __init init_tsc_clocksource(void)
640{
641 clocksource_tsc.mult = clocksource_khz2mult(tsc_khz,
642 clocksource_tsc.shift);
643 /* lower the rating if we already know its unstable: */
644 if (check_tsc_unstable()) {
645 clocksource_tsc.rating = 0;
646 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
647 }
648 clocksource_register(&clocksource_tsc);
649}
650
651void __init tsc_init(void)
652{
653 u64 lpj;
654 int cpu;
655
656 if (!cpu_has_tsc)
657 return;
658
e93ef949
AK
659 tsc_khz = calibrate_tsc();
660 cpu_khz = tsc_khz;
8fbbc4b4 661
e93ef949 662 if (!tsc_khz) {
8fbbc4b4
AK
663 mark_tsc_unstable("could not calculate TSC khz");
664 return;
665 }
666
667#ifdef CONFIG_X86_64
668 if (cpu_has(&boot_cpu_data, X86_FEATURE_CONSTANT_TSC) &&
669 (boot_cpu_data.x86_vendor == X86_VENDOR_AMD))
670 cpu_khz = calibrate_cpu();
671#endif
672
673 lpj = ((u64)tsc_khz * 1000);
674 do_div(lpj, HZ);
675 lpj_fine = lpj;
676
677 printk("Detected %lu.%03lu MHz processor.\n",
678 (unsigned long)cpu_khz / 1000,
679 (unsigned long)cpu_khz % 1000);
680
681 /*
682 * Secondary CPUs do not run through tsc_init(), so set up
683 * all the scale factors for all CPUs, assuming the same
684 * speed as the bootup CPU. (cpufreq notifiers will fix this
685 * up if their speed diverges)
686 */
687 for_each_possible_cpu(cpu)
688 set_cyc2ns_scale(cpu_khz, cpu);
689
690 if (tsc_disabled > 0)
691 return;
692
693 /* now allow native_sched_clock() to use rdtsc */
694 tsc_disabled = 0;
695
696 use_tsc_delay();
697 /* Check and install the TSC clocksource */
698 dmi_check_system(bad_tsc_dmi_table);
699
700 if (unsynchronized_tsc())
701 mark_tsc_unstable("TSCs unsynchronized");
702
703 check_geode_tsc_reliable();
704 init_tsc_clocksource();
705}
706