Merge tag 'ext4_for_linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / arch / x86 / kernel / tsc.c
CommitLineData
c767a54b
JP
1#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
bfc0f594 3#include <linux/kernel.h>
0ef95533
AK
4#include <linux/sched.h>
5#include <linux/init.h>
6#include <linux/module.h>
7#include <linux/timer.h>
bfc0f594 8#include <linux/acpi_pmtmr.h>
2dbe06fa 9#include <linux/cpufreq.h>
8fbbc4b4
AK
10#include <linux/delay.h>
11#include <linux/clocksource.h>
12#include <linux/percpu.h>
08604bd9 13#include <linux/timex.h>
10b033d4 14#include <linux/static_key.h>
bfc0f594
AK
15
16#include <asm/hpet.h>
8fbbc4b4
AK
17#include <asm/timer.h>
18#include <asm/vgtod.h>
19#include <asm/time.h>
20#include <asm/delay.h>
88b094fb 21#include <asm/hypervisor.h>
08047c4f 22#include <asm/nmi.h>
2d826404 23#include <asm/x86_init.h>
0ef95533 24
f24ade3a 25unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
0ef95533 26EXPORT_SYMBOL(cpu_khz);
f24ade3a
IM
27
28unsigned int __read_mostly tsc_khz;
0ef95533
AK
29EXPORT_SYMBOL(tsc_khz);
30
31/*
32 * TSC can be unstable due to cpufreq or due to unsynced TSCs
33 */
f24ade3a 34static int __read_mostly tsc_unstable;
0ef95533
AK
35
36/* native_sched_clock() is called before tsc_init(), so
37 we must start with the TSC soft disabled to prevent
38 erroneous rdtsc usage on !cpu_has_tsc processors */
f24ade3a 39static int __read_mostly tsc_disabled = -1;
0ef95533 40
10b033d4
PZ
41static struct static_key __use_tsc = STATIC_KEY_INIT;
42
28a00184 43int tsc_clocksource_reliable;
57c67da2 44
20d1c86a
PZ
45/*
46 * Use a ring-buffer like data structure, where a writer advances the head by
47 * writing a new data entry and a reader advances the tail when it observes a
48 * new entry.
49 *
50 * Writers are made to wait on readers until there's space to write a new
51 * entry.
52 *
53 * This means that we can always use an {offset, mul} pair to compute a ns
54 * value that is 'roughly' in the right direction, even if we're writing a new
55 * {offset, mul} pair during the clock read.
56 *
57 * The down-side is that we can no longer guarantee strict monotonicity anymore
58 * (assuming the TSC was that to begin with), because while we compute the
59 * intersection point of the two clock slopes and make sure the time is
60 * continuous at the point of switching; we can no longer guarantee a reader is
61 * strictly before or after the switch point.
62 *
63 * It does mean a reader no longer needs to disable IRQs in order to avoid
64 * CPU-Freq updates messing with his times, and similarly an NMI reader will
65 * no longer run the risk of hitting half-written state.
66 */
67
68struct cyc2ns {
69 struct cyc2ns_data data[2]; /* 0 + 2*24 = 48 */
70 struct cyc2ns_data *head; /* 48 + 8 = 56 */
71 struct cyc2ns_data *tail; /* 56 + 8 = 64 */
72}; /* exactly fits one cacheline */
73
74static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
75
76struct cyc2ns_data *cyc2ns_read_begin(void)
77{
78 struct cyc2ns_data *head;
79
80 preempt_disable();
81
82 head = this_cpu_read(cyc2ns.head);
83 /*
84 * Ensure we observe the entry when we observe the pointer to it.
85 * matches the wmb from cyc2ns_write_end().
86 */
87 smp_read_barrier_depends();
88 head->__count++;
89 barrier();
90
91 return head;
92}
93
94void cyc2ns_read_end(struct cyc2ns_data *head)
95{
96 barrier();
97 /*
98 * If we're the outer most nested read; update the tail pointer
99 * when we're done. This notifies possible pending writers
100 * that we've observed the head pointer and that the other
101 * entry is now free.
102 */
103 if (!--head->__count) {
104 /*
105 * x86-TSO does not reorder writes with older reads;
106 * therefore once this write becomes visible to another
107 * cpu, we must be finished reading the cyc2ns_data.
108 *
109 * matches with cyc2ns_write_begin().
110 */
111 this_cpu_write(cyc2ns.tail, head);
112 }
113 preempt_enable();
114}
115
116/*
117 * Begin writing a new @data entry for @cpu.
118 *
119 * Assumes some sort of write side lock; currently 'provided' by the assumption
120 * that cpufreq will call its notifiers sequentially.
121 */
122static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
123{
124 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
125 struct cyc2ns_data *data = c2n->data;
126
127 if (data == c2n->head)
128 data++;
129
130 /* XXX send an IPI to @cpu in order to guarantee a read? */
131
132 /*
133 * When we observe the tail write from cyc2ns_read_end(),
134 * the cpu must be done with that entry and its safe
135 * to start writing to it.
136 */
137 while (c2n->tail == data)
138 cpu_relax();
139
140 return data;
141}
142
143static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
144{
145 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
146
147 /*
148 * Ensure the @data writes are visible before we publish the
149 * entry. Matches the data-depencency in cyc2ns_read_begin().
150 */
151 smp_wmb();
152
153 ACCESS_ONCE(c2n->head) = data;
154}
155
156/*
157 * Accelerators for sched_clock()
57c67da2
PZ
158 * convert from cycles(64bits) => nanoseconds (64bits)
159 * basic equation:
160 * ns = cycles / (freq / ns_per_sec)
161 * ns = cycles * (ns_per_sec / freq)
162 * ns = cycles * (10^9 / (cpu_khz * 10^3))
163 * ns = cycles * (10^6 / cpu_khz)
164 *
165 * Then we use scaling math (suggested by george@mvista.com) to get:
166 * ns = cycles * (10^6 * SC / cpu_khz) / SC
167 * ns = cycles * cyc2ns_scale / SC
168 *
169 * And since SC is a constant power of two, we can convert the div
170 * into a shift.
171 *
172 * We can use khz divisor instead of mhz to keep a better precision, since
173 * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
174 * (mathieu.desnoyers@polymtl.ca)
175 *
176 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
177 */
178
57c67da2
PZ
179#define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
180
20d1c86a
PZ
181static void cyc2ns_data_init(struct cyc2ns_data *data)
182{
5e3c1afd 183 data->cyc2ns_mul = 0;
20d1c86a
PZ
184 data->cyc2ns_shift = CYC2NS_SCALE_FACTOR;
185 data->cyc2ns_offset = 0;
186 data->__count = 0;
187}
188
189static void cyc2ns_init(int cpu)
190{
191 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
192
193 cyc2ns_data_init(&c2n->data[0]);
194 cyc2ns_data_init(&c2n->data[1]);
195
196 c2n->head = c2n->data;
197 c2n->tail = c2n->data;
198}
199
57c67da2
PZ
200static inline unsigned long long cycles_2_ns(unsigned long long cyc)
201{
20d1c86a
PZ
202 struct cyc2ns_data *data, *tail;
203 unsigned long long ns;
204
205 /*
206 * See cyc2ns_read_*() for details; replicated in order to avoid
207 * an extra few instructions that came with the abstraction.
208 * Notable, it allows us to only do the __count and tail update
209 * dance when its actually needed.
210 */
211
569d6557 212 preempt_disable_notrace();
20d1c86a
PZ
213 data = this_cpu_read(cyc2ns.head);
214 tail = this_cpu_read(cyc2ns.tail);
215
216 if (likely(data == tail)) {
217 ns = data->cyc2ns_offset;
218 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
219 } else {
220 data->__count++;
221
222 barrier();
223
224 ns = data->cyc2ns_offset;
225 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
226
227 barrier();
228
229 if (!--data->__count)
230 this_cpu_write(cyc2ns.tail, data);
231 }
569d6557 232 preempt_enable_notrace();
20d1c86a 233
57c67da2
PZ
234 return ns;
235}
236
20d1c86a
PZ
237/* XXX surely we already have this someplace in the kernel?! */
238#define DIV_ROUND(n, d) (((n) + ((d) / 2)) / (d))
239
57c67da2
PZ
240static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
241{
20d1c86a
PZ
242 unsigned long long tsc_now, ns_now;
243 struct cyc2ns_data *data;
244 unsigned long flags;
57c67da2
PZ
245
246 local_irq_save(flags);
247 sched_clock_idle_sleep_event();
248
20d1c86a
PZ
249 if (!cpu_khz)
250 goto done;
251
252 data = cyc2ns_write_begin(cpu);
57c67da2
PZ
253
254 rdtscll(tsc_now);
255 ns_now = cycles_2_ns(tsc_now);
256
20d1c86a
PZ
257 /*
258 * Compute a new multiplier as per the above comment and ensure our
259 * time function is continuous; see the comment near struct
260 * cyc2ns_data.
261 */
262 data->cyc2ns_mul = DIV_ROUND(NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR, cpu_khz);
263 data->cyc2ns_shift = CYC2NS_SCALE_FACTOR;
264 data->cyc2ns_offset = ns_now -
265 mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
266
267 cyc2ns_write_end(cpu, data);
57c67da2 268
20d1c86a 269done:
57c67da2
PZ
270 sched_clock_idle_wakeup_event(0);
271 local_irq_restore(flags);
272}
0ef95533
AK
273/*
274 * Scheduler clock - returns current time in nanosec units.
275 */
276u64 native_sched_clock(void)
277{
20d1c86a 278 u64 tsc_now;
0ef95533
AK
279
280 /*
281 * Fall back to jiffies if there's no TSC available:
282 * ( But note that we still use it if the TSC is marked
283 * unstable. We do this because unlike Time Of Day,
284 * the scheduler clock tolerates small errors and it's
285 * very important for it to be as fast as the platform
3ad2f3fb 286 * can achieve it. )
0ef95533 287 */
10b033d4 288 if (!static_key_false(&__use_tsc)) {
0ef95533
AK
289 /* No locking but a rare wrong value is not a big deal: */
290 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
291 }
292
293 /* read the Time Stamp Counter: */
20d1c86a 294 rdtscll(tsc_now);
0ef95533
AK
295
296 /* return the value in ns */
20d1c86a 297 return cycles_2_ns(tsc_now);
0ef95533
AK
298}
299
300/* We need to define a real function for sched_clock, to override the
301 weak default version */
302#ifdef CONFIG_PARAVIRT
303unsigned long long sched_clock(void)
304{
305 return paravirt_sched_clock();
306}
307#else
308unsigned long long
309sched_clock(void) __attribute__((alias("native_sched_clock")));
310#endif
311
ce37f400
DV
312unsigned long long native_read_tsc(void)
313{
314 return __native_read_tsc();
315}
316EXPORT_SYMBOL(native_read_tsc);
317
0ef95533
AK
318int check_tsc_unstable(void)
319{
320 return tsc_unstable;
321}
322EXPORT_SYMBOL_GPL(check_tsc_unstable);
323
c73deb6a
AH
324int check_tsc_disabled(void)
325{
326 return tsc_disabled;
327}
328EXPORT_SYMBOL_GPL(check_tsc_disabled);
329
0ef95533
AK
330#ifdef CONFIG_X86_TSC
331int __init notsc_setup(char *str)
332{
c767a54b 333 pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
0ef95533
AK
334 tsc_disabled = 1;
335 return 1;
336}
337#else
338/*
339 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
340 * in cpu/common.c
341 */
342int __init notsc_setup(char *str)
343{
344 setup_clear_cpu_cap(X86_FEATURE_TSC);
345 return 1;
346}
347#endif
348
349__setup("notsc", notsc_setup);
bfc0f594 350
e82b8e4e
VP
351static int no_sched_irq_time;
352
395628ef
AK
353static int __init tsc_setup(char *str)
354{
355 if (!strcmp(str, "reliable"))
356 tsc_clocksource_reliable = 1;
e82b8e4e
VP
357 if (!strncmp(str, "noirqtime", 9))
358 no_sched_irq_time = 1;
395628ef
AK
359 return 1;
360}
361
362__setup("tsc=", tsc_setup);
363
bfc0f594
AK
364#define MAX_RETRIES 5
365#define SMI_TRESHOLD 50000
366
367/*
368 * Read TSC and the reference counters. Take care of SMI disturbance
369 */
827014be 370static u64 tsc_read_refs(u64 *p, int hpet)
bfc0f594
AK
371{
372 u64 t1, t2;
373 int i;
374
375 for (i = 0; i < MAX_RETRIES; i++) {
376 t1 = get_cycles();
377 if (hpet)
827014be 378 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
bfc0f594 379 else
827014be 380 *p = acpi_pm_read_early();
bfc0f594
AK
381 t2 = get_cycles();
382 if ((t2 - t1) < SMI_TRESHOLD)
383 return t2;
384 }
385 return ULLONG_MAX;
386}
387
d683ef7a
TG
388/*
389 * Calculate the TSC frequency from HPET reference
bfc0f594 390 */
d683ef7a 391static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
bfc0f594 392{
d683ef7a 393 u64 tmp;
bfc0f594 394
d683ef7a
TG
395 if (hpet2 < hpet1)
396 hpet2 += 0x100000000ULL;
397 hpet2 -= hpet1;
398 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
399 do_div(tmp, 1000000);
400 do_div(deltatsc, tmp);
401
402 return (unsigned long) deltatsc;
403}
404
405/*
406 * Calculate the TSC frequency from PMTimer reference
407 */
408static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
409{
410 u64 tmp;
bfc0f594 411
d683ef7a
TG
412 if (!pm1 && !pm2)
413 return ULONG_MAX;
414
415 if (pm2 < pm1)
416 pm2 += (u64)ACPI_PM_OVRRUN;
417 pm2 -= pm1;
418 tmp = pm2 * 1000000000LL;
419 do_div(tmp, PMTMR_TICKS_PER_SEC);
420 do_div(deltatsc, tmp);
421
422 return (unsigned long) deltatsc;
423}
424
a977c400 425#define CAL_MS 10
b7743970 426#define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
a977c400
TG
427#define CAL_PIT_LOOPS 1000
428
429#define CAL2_MS 50
b7743970 430#define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
a977c400
TG
431#define CAL2_PIT_LOOPS 5000
432
cce3e057 433
ec0c15af
LT
434/*
435 * Try to calibrate the TSC against the Programmable
436 * Interrupt Timer and return the frequency of the TSC
437 * in kHz.
438 *
439 * Return ULONG_MAX on failure to calibrate.
440 */
a977c400 441static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
ec0c15af
LT
442{
443 u64 tsc, t1, t2, delta;
444 unsigned long tscmin, tscmax;
445 int pitcnt;
446
447 /* Set the Gate high, disable speaker */
448 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
449
450 /*
451 * Setup CTC channel 2* for mode 0, (interrupt on terminal
452 * count mode), binary count. Set the latch register to 50ms
453 * (LSB then MSB) to begin countdown.
454 */
455 outb(0xb0, 0x43);
a977c400
TG
456 outb(latch & 0xff, 0x42);
457 outb(latch >> 8, 0x42);
ec0c15af
LT
458
459 tsc = t1 = t2 = get_cycles();
460
461 pitcnt = 0;
462 tscmax = 0;
463 tscmin = ULONG_MAX;
464 while ((inb(0x61) & 0x20) == 0) {
465 t2 = get_cycles();
466 delta = t2 - tsc;
467 tsc = t2;
468 if ((unsigned long) delta < tscmin)
469 tscmin = (unsigned int) delta;
470 if ((unsigned long) delta > tscmax)
471 tscmax = (unsigned int) delta;
472 pitcnt++;
473 }
474
475 /*
476 * Sanity checks:
477 *
a977c400 478 * If we were not able to read the PIT more than loopmin
ec0c15af
LT
479 * times, then we have been hit by a massive SMI
480 *
481 * If the maximum is 10 times larger than the minimum,
482 * then we got hit by an SMI as well.
483 */
a977c400 484 if (pitcnt < loopmin || tscmax > 10 * tscmin)
ec0c15af
LT
485 return ULONG_MAX;
486
487 /* Calculate the PIT value */
488 delta = t2 - t1;
a977c400 489 do_div(delta, ms);
ec0c15af
LT
490 return delta;
491}
492
6ac40ed0
LT
493/*
494 * This reads the current MSB of the PIT counter, and
495 * checks if we are running on sufficiently fast and
496 * non-virtualized hardware.
497 *
498 * Our expectations are:
499 *
500 * - the PIT is running at roughly 1.19MHz
501 *
502 * - each IO is going to take about 1us on real hardware,
503 * but we allow it to be much faster (by a factor of 10) or
504 * _slightly_ slower (ie we allow up to a 2us read+counter
505 * update - anything else implies a unacceptably slow CPU
506 * or PIT for the fast calibration to work.
507 *
508 * - with 256 PIT ticks to read the value, we have 214us to
509 * see the same MSB (and overhead like doing a single TSC
510 * read per MSB value etc).
511 *
512 * - We're doing 2 reads per loop (LSB, MSB), and we expect
513 * them each to take about a microsecond on real hardware.
514 * So we expect a count value of around 100. But we'll be
515 * generous, and accept anything over 50.
516 *
517 * - if the PIT is stuck, and we see *many* more reads, we
518 * return early (and the next caller of pit_expect_msb()
519 * then consider it a failure when they don't see the
520 * next expected value).
521 *
522 * These expectations mean that we know that we have seen the
523 * transition from one expected value to another with a fairly
524 * high accuracy, and we didn't miss any events. We can thus
525 * use the TSC value at the transitions to calculate a pretty
526 * good value for the TSC frequencty.
527 */
b6e61eef
LT
528static inline int pit_verify_msb(unsigned char val)
529{
530 /* Ignore LSB */
531 inb(0x42);
532 return inb(0x42) == val;
533}
534
9e8912e0 535static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
6ac40ed0 536{
9e8912e0 537 int count;
68f30fbe 538 u64 tsc = 0, prev_tsc = 0;
bfc0f594 539
6ac40ed0 540 for (count = 0; count < 50000; count++) {
b6e61eef 541 if (!pit_verify_msb(val))
6ac40ed0 542 break;
68f30fbe 543 prev_tsc = tsc;
9e8912e0 544 tsc = get_cycles();
6ac40ed0 545 }
68f30fbe 546 *deltap = get_cycles() - prev_tsc;
9e8912e0
LT
547 *tscp = tsc;
548
549 /*
550 * We require _some_ success, but the quality control
551 * will be based on the error terms on the TSC values.
552 */
553 return count > 5;
6ac40ed0
LT
554}
555
556/*
9e8912e0
LT
557 * How many MSB values do we want to see? We aim for
558 * a maximum error rate of 500ppm (in practice the
559 * real error is much smaller), but refuse to spend
68f30fbe 560 * more than 50ms on it.
6ac40ed0 561 */
68f30fbe 562#define MAX_QUICK_PIT_MS 50
9e8912e0 563#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
bfc0f594 564
6ac40ed0
LT
565static unsigned long quick_pit_calibrate(void)
566{
9e8912e0
LT
567 int i;
568 u64 tsc, delta;
569 unsigned long d1, d2;
570
6ac40ed0 571 /* Set the Gate high, disable speaker */
bfc0f594
AK
572 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
573
6ac40ed0
LT
574 /*
575 * Counter 2, mode 0 (one-shot), binary count
576 *
577 * NOTE! Mode 2 decrements by two (and then the
578 * output is flipped each time, giving the same
579 * final output frequency as a decrement-by-one),
580 * so mode 0 is much better when looking at the
581 * individual counts.
582 */
bfc0f594 583 outb(0xb0, 0x43);
bfc0f594 584
6ac40ed0
LT
585 /* Start at 0xffff */
586 outb(0xff, 0x42);
587 outb(0xff, 0x42);
588
a6a80e1d
LT
589 /*
590 * The PIT starts counting at the next edge, so we
591 * need to delay for a microsecond. The easiest way
592 * to do that is to just read back the 16-bit counter
593 * once from the PIT.
594 */
b6e61eef 595 pit_verify_msb(0);
a6a80e1d 596
9e8912e0
LT
597 if (pit_expect_msb(0xff, &tsc, &d1)) {
598 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
599 if (!pit_expect_msb(0xff-i, &delta, &d2))
600 break;
601
602 /*
603 * Iterate until the error is less than 500 ppm
604 */
605 delta -= tsc;
b6e61eef
LT
606 if (d1+d2 >= delta >> 11)
607 continue;
608
609 /*
610 * Check the PIT one more time to verify that
611 * all TSC reads were stable wrt the PIT.
612 *
613 * This also guarantees serialization of the
614 * last cycle read ('d2') in pit_expect_msb.
615 */
616 if (!pit_verify_msb(0xfe - i))
617 break;
618 goto success;
6ac40ed0 619 }
6ac40ed0 620 }
c767a54b 621 pr_err("Fast TSC calibration failed\n");
6ac40ed0 622 return 0;
9e8912e0
LT
623
624success:
625 /*
626 * Ok, if we get here, then we've seen the
627 * MSB of the PIT decrement 'i' times, and the
628 * error has shrunk to less than 500 ppm.
629 *
630 * As a result, we can depend on there not being
631 * any odd delays anywhere, and the TSC reads are
68f30fbe 632 * reliable (within the error).
9e8912e0
LT
633 *
634 * kHz = ticks / time-in-seconds / 1000;
635 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
636 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
637 */
9e8912e0
LT
638 delta *= PIT_TICK_RATE;
639 do_div(delta, i*256*1000);
c767a54b 640 pr_info("Fast TSC calibration using PIT\n");
9e8912e0 641 return delta;
6ac40ed0 642}
ec0c15af 643
bfc0f594 644/**
e93ef949 645 * native_calibrate_tsc - calibrate the tsc on boot
bfc0f594 646 */
e93ef949 647unsigned long native_calibrate_tsc(void)
bfc0f594 648{
827014be 649 u64 tsc1, tsc2, delta, ref1, ref2;
fbb16e24 650 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
2d826404 651 unsigned long flags, latch, ms, fast_calibrate;
a977c400 652 int hpet = is_hpet_enabled(), i, loopmin;
bfc0f594 653
7da7c156
BG
654 /* Calibrate TSC using MSR for Intel Atom SoCs */
655 local_irq_save(flags);
656 i = try_msr_calibrate_tsc(&fast_calibrate);
657 local_irq_restore(flags);
658 if (i >= 0) {
659 if (i == 0)
660 pr_warn("Fast TSC calibration using MSR failed\n");
661 return fast_calibrate;
662 }
663
6ac40ed0
LT
664 local_irq_save(flags);
665 fast_calibrate = quick_pit_calibrate();
bfc0f594 666 local_irq_restore(flags);
6ac40ed0
LT
667 if (fast_calibrate)
668 return fast_calibrate;
bfc0f594 669
fbb16e24
TG
670 /*
671 * Run 5 calibration loops to get the lowest frequency value
672 * (the best estimate). We use two different calibration modes
673 * here:
674 *
675 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
676 * load a timeout of 50ms. We read the time right after we
677 * started the timer and wait until the PIT count down reaches
678 * zero. In each wait loop iteration we read the TSC and check
679 * the delta to the previous read. We keep track of the min
680 * and max values of that delta. The delta is mostly defined
681 * by the IO time of the PIT access, so we can detect when a
0d2eb44f 682 * SMI/SMM disturbance happened between the two reads. If the
fbb16e24
TG
683 * maximum time is significantly larger than the minimum time,
684 * then we discard the result and have another try.
685 *
686 * 2) Reference counter. If available we use the HPET or the
687 * PMTIMER as a reference to check the sanity of that value.
688 * We use separate TSC readouts and check inside of the
689 * reference read for a SMI/SMM disturbance. We dicard
690 * disturbed values here as well. We do that around the PIT
691 * calibration delay loop as we have to wait for a certain
692 * amount of time anyway.
693 */
a977c400
TG
694
695 /* Preset PIT loop values */
696 latch = CAL_LATCH;
697 ms = CAL_MS;
698 loopmin = CAL_PIT_LOOPS;
699
700 for (i = 0; i < 3; i++) {
ec0c15af 701 unsigned long tsc_pit_khz;
fbb16e24
TG
702
703 /*
704 * Read the start value and the reference count of
ec0c15af
LT
705 * hpet/pmtimer when available. Then do the PIT
706 * calibration, which will take at least 50ms, and
707 * read the end value.
fbb16e24 708 */
ec0c15af 709 local_irq_save(flags);
827014be 710 tsc1 = tsc_read_refs(&ref1, hpet);
a977c400 711 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
827014be 712 tsc2 = tsc_read_refs(&ref2, hpet);
fbb16e24
TG
713 local_irq_restore(flags);
714
ec0c15af
LT
715 /* Pick the lowest PIT TSC calibration so far */
716 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
fbb16e24
TG
717
718 /* hpet or pmtimer available ? */
62627bec 719 if (ref1 == ref2)
fbb16e24
TG
720 continue;
721
722 /* Check, whether the sampling was disturbed by an SMI */
723 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
724 continue;
725
726 tsc2 = (tsc2 - tsc1) * 1000000LL;
d683ef7a 727 if (hpet)
827014be 728 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
d683ef7a 729 else
827014be 730 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
fbb16e24 731
fbb16e24 732 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
a977c400
TG
733
734 /* Check the reference deviation */
735 delta = ((u64) tsc_pit_min) * 100;
736 do_div(delta, tsc_ref_min);
737
738 /*
739 * If both calibration results are inside a 10% window
740 * then we can be sure, that the calibration
741 * succeeded. We break out of the loop right away. We
742 * use the reference value, as it is more precise.
743 */
744 if (delta >= 90 && delta <= 110) {
c767a54b
JP
745 pr_info("PIT calibration matches %s. %d loops\n",
746 hpet ? "HPET" : "PMTIMER", i + 1);
a977c400 747 return tsc_ref_min;
fbb16e24
TG
748 }
749
a977c400
TG
750 /*
751 * Check whether PIT failed more than once. This
752 * happens in virtualized environments. We need to
753 * give the virtual PC a slightly longer timeframe for
754 * the HPET/PMTIMER to make the result precise.
755 */
756 if (i == 1 && tsc_pit_min == ULONG_MAX) {
757 latch = CAL2_LATCH;
758 ms = CAL2_MS;
759 loopmin = CAL2_PIT_LOOPS;
760 }
fbb16e24 761 }
bfc0f594
AK
762
763 /*
fbb16e24 764 * Now check the results.
bfc0f594 765 */
fbb16e24
TG
766 if (tsc_pit_min == ULONG_MAX) {
767 /* PIT gave no useful value */
c767a54b 768 pr_warn("Unable to calibrate against PIT\n");
fbb16e24
TG
769
770 /* We don't have an alternative source, disable TSC */
827014be 771 if (!hpet && !ref1 && !ref2) {
c767a54b 772 pr_notice("No reference (HPET/PMTIMER) available\n");
fbb16e24
TG
773 return 0;
774 }
775
776 /* The alternative source failed as well, disable TSC */
777 if (tsc_ref_min == ULONG_MAX) {
c767a54b 778 pr_warn("HPET/PMTIMER calibration failed\n");
fbb16e24
TG
779 return 0;
780 }
781
782 /* Use the alternative source */
c767a54b
JP
783 pr_info("using %s reference calibration\n",
784 hpet ? "HPET" : "PMTIMER");
fbb16e24
TG
785
786 return tsc_ref_min;
787 }
bfc0f594 788
fbb16e24 789 /* We don't have an alternative source, use the PIT calibration value */
827014be 790 if (!hpet && !ref1 && !ref2) {
c767a54b 791 pr_info("Using PIT calibration value\n");
fbb16e24 792 return tsc_pit_min;
bfc0f594
AK
793 }
794
fbb16e24
TG
795 /* The alternative source failed, use the PIT calibration value */
796 if (tsc_ref_min == ULONG_MAX) {
c767a54b 797 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
fbb16e24 798 return tsc_pit_min;
bfc0f594
AK
799 }
800
fbb16e24
TG
801 /*
802 * The calibration values differ too much. In doubt, we use
803 * the PIT value as we know that there are PMTIMERs around
a977c400 804 * running at double speed. At least we let the user know:
fbb16e24 805 */
c767a54b
JP
806 pr_warn("PIT calibration deviates from %s: %lu %lu\n",
807 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
808 pr_info("Using PIT calibration value\n");
fbb16e24 809 return tsc_pit_min;
bfc0f594
AK
810}
811
bfc0f594
AK
812int recalibrate_cpu_khz(void)
813{
814#ifndef CONFIG_SMP
815 unsigned long cpu_khz_old = cpu_khz;
816
817 if (cpu_has_tsc) {
2d826404 818 tsc_khz = x86_platform.calibrate_tsc();
e93ef949 819 cpu_khz = tsc_khz;
bfc0f594
AK
820 cpu_data(0).loops_per_jiffy =
821 cpufreq_scale(cpu_data(0).loops_per_jiffy,
822 cpu_khz_old, cpu_khz);
823 return 0;
824 } else
825 return -ENODEV;
826#else
827 return -ENODEV;
828#endif
829}
830
831EXPORT_SYMBOL(recalibrate_cpu_khz);
832
2dbe06fa 833
cd7240c0
SS
834static unsigned long long cyc2ns_suspend;
835
b74f05d6 836void tsc_save_sched_clock_state(void)
cd7240c0 837{
35af99e6 838 if (!sched_clock_stable())
cd7240c0
SS
839 return;
840
841 cyc2ns_suspend = sched_clock();
842}
843
844/*
845 * Even on processors with invariant TSC, TSC gets reset in some the
846 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
847 * arbitrary value (still sync'd across cpu's) during resume from such sleep
848 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
849 * that sched_clock() continues from the point where it was left off during
850 * suspend.
851 */
b74f05d6 852void tsc_restore_sched_clock_state(void)
cd7240c0
SS
853{
854 unsigned long long offset;
855 unsigned long flags;
856 int cpu;
857
35af99e6 858 if (!sched_clock_stable())
cd7240c0
SS
859 return;
860
861 local_irq_save(flags);
862
20d1c86a
PZ
863 /*
864 * We're comming out of suspend, there's no concurrency yet; don't
865 * bother being nice about the RCU stuff, just write to both
866 * data fields.
867 */
868
869 this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
870 this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
871
cd7240c0
SS
872 offset = cyc2ns_suspend - sched_clock();
873
20d1c86a
PZ
874 for_each_possible_cpu(cpu) {
875 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
876 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
877 }
cd7240c0
SS
878
879 local_irq_restore(flags);
880}
881
2dbe06fa
AK
882#ifdef CONFIG_CPU_FREQ
883
884/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
885 * changes.
886 *
887 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
888 * not that important because current Opteron setups do not support
889 * scaling on SMP anyroads.
890 *
891 * Should fix up last_tsc too. Currently gettimeofday in the
892 * first tick after the change will be slightly wrong.
893 */
894
895static unsigned int ref_freq;
896static unsigned long loops_per_jiffy_ref;
897static unsigned long tsc_khz_ref;
898
899static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
900 void *data)
901{
902 struct cpufreq_freqs *freq = data;
931db6a3 903 unsigned long *lpj;
2dbe06fa
AK
904
905 if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
906 return 0;
907
931db6a3 908 lpj = &boot_cpu_data.loops_per_jiffy;
2dbe06fa 909#ifdef CONFIG_SMP
931db6a3 910 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
2dbe06fa 911 lpj = &cpu_data(freq->cpu).loops_per_jiffy;
2dbe06fa
AK
912#endif
913
914 if (!ref_freq) {
915 ref_freq = freq->old;
916 loops_per_jiffy_ref = *lpj;
917 tsc_khz_ref = tsc_khz;
918 }
919 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
920 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
921 (val == CPUFREQ_RESUMECHANGE)) {
878f4f53 922 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
2dbe06fa
AK
923
924 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
925 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
926 mark_tsc_unstable("cpufreq changes");
927 }
928
52a8968c 929 set_cyc2ns_scale(tsc_khz, freq->cpu);
2dbe06fa
AK
930
931 return 0;
932}
933
934static struct notifier_block time_cpufreq_notifier_block = {
935 .notifier_call = time_cpufreq_notifier
936};
937
938static int __init cpufreq_tsc(void)
939{
060700b5
LT
940 if (!cpu_has_tsc)
941 return 0;
942 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
943 return 0;
2dbe06fa
AK
944 cpufreq_register_notifier(&time_cpufreq_notifier_block,
945 CPUFREQ_TRANSITION_NOTIFIER);
946 return 0;
947}
948
949core_initcall(cpufreq_tsc);
950
951#endif /* CONFIG_CPU_FREQ */
8fbbc4b4
AK
952
953/* clocksource code */
954
955static struct clocksource clocksource_tsc;
956
957/*
958 * We compare the TSC to the cycle_last value in the clocksource
959 * structure to avoid a nasty time-warp. This can be observed in a
960 * very small window right after one CPU updated cycle_last under
961 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
962 * is smaller than the cycle_last reference value due to a TSC which
963 * is slighty behind. This delta is nowhere else observable, but in
964 * that case it results in a forward time jump in the range of hours
965 * due to the unsigned delta calculation of the time keeping core
966 * code, which is necessary to support wrapping clocksources like pm
967 * timer.
968 */
8e19608e 969static cycle_t read_tsc(struct clocksource *cs)
8fbbc4b4
AK
970{
971 cycle_t ret = (cycle_t)get_cycles();
972
973 return ret >= clocksource_tsc.cycle_last ?
974 ret : clocksource_tsc.cycle_last;
975}
976
17622339 977static void resume_tsc(struct clocksource *cs)
1be39679 978{
82f9c080
FT
979 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
980 clocksource_tsc.cycle_last = 0;
1be39679
MS
981}
982
8fbbc4b4
AK
983static struct clocksource clocksource_tsc = {
984 .name = "tsc",
985 .rating = 300,
986 .read = read_tsc,
1be39679 987 .resume = resume_tsc,
8fbbc4b4 988 .mask = CLOCKSOURCE_MASK(64),
8fbbc4b4
AK
989 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
990 CLOCK_SOURCE_MUST_VERIFY,
991#ifdef CONFIG_X86_64
98d0ac38 992 .archdata = { .vclock_mode = VCLOCK_TSC },
8fbbc4b4
AK
993#endif
994};
995
996void mark_tsc_unstable(char *reason)
997{
998 if (!tsc_unstable) {
999 tsc_unstable = 1;
35af99e6 1000 clear_sched_clock_stable();
e82b8e4e 1001 disable_sched_clock_irqtime();
c767a54b 1002 pr_info("Marking TSC unstable due to %s\n", reason);
8fbbc4b4
AK
1003 /* Change only the rating, when not registered */
1004 if (clocksource_tsc.mult)
7285dd7f
TG
1005 clocksource_mark_unstable(&clocksource_tsc);
1006 else {
1007 clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
8fbbc4b4 1008 clocksource_tsc.rating = 0;
7285dd7f 1009 }
8fbbc4b4
AK
1010 }
1011}
1012
1013EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1014
395628ef
AK
1015static void __init check_system_tsc_reliable(void)
1016{
8fbbc4b4 1017#ifdef CONFIG_MGEODE_LX
395628ef 1018 /* RTSC counts during suspend */
8fbbc4b4 1019#define RTSC_SUSP 0x100
8fbbc4b4
AK
1020 unsigned long res_low, res_high;
1021
1022 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
00097c4f 1023 /* Geode_LX - the OLPC CPU has a very reliable TSC */
8fbbc4b4 1024 if (res_low & RTSC_SUSP)
395628ef 1025 tsc_clocksource_reliable = 1;
8fbbc4b4 1026#endif
395628ef
AK
1027 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1028 tsc_clocksource_reliable = 1;
1029}
8fbbc4b4
AK
1030
1031/*
1032 * Make an educated guess if the TSC is trustworthy and synchronized
1033 * over all CPUs.
1034 */
148f9bb8 1035int unsynchronized_tsc(void)
8fbbc4b4
AK
1036{
1037 if (!cpu_has_tsc || tsc_unstable)
1038 return 1;
1039
3e5095d1 1040#ifdef CONFIG_SMP
8fbbc4b4
AK
1041 if (apic_is_clustered_box())
1042 return 1;
1043#endif
1044
1045 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1046 return 0;
d3b8f889 1047
1048 if (tsc_clocksource_reliable)
1049 return 0;
8fbbc4b4
AK
1050 /*
1051 * Intel systems are normally all synchronized.
1052 * Exceptions must mark TSC as unstable:
1053 */
1054 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1055 /* assume multi socket systems are not synchronized: */
1056 if (num_possible_cpus() > 1)
d3b8f889 1057 return 1;
8fbbc4b4
AK
1058 }
1059
d3b8f889 1060 return 0;
8fbbc4b4
AK
1061}
1062
08ec0c58
JS
1063
1064static void tsc_refine_calibration_work(struct work_struct *work);
1065static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1066/**
1067 * tsc_refine_calibration_work - Further refine tsc freq calibration
1068 * @work - ignored.
1069 *
1070 * This functions uses delayed work over a period of a
1071 * second to further refine the TSC freq value. Since this is
1072 * timer based, instead of loop based, we don't block the boot
1073 * process while this longer calibration is done.
1074 *
0d2eb44f 1075 * If there are any calibration anomalies (too many SMIs, etc),
08ec0c58
JS
1076 * or the refined calibration is off by 1% of the fast early
1077 * calibration, we throw out the new calibration and use the
1078 * early calibration.
1079 */
1080static void tsc_refine_calibration_work(struct work_struct *work)
1081{
1082 static u64 tsc_start = -1, ref_start;
1083 static int hpet;
1084 u64 tsc_stop, ref_stop, delta;
1085 unsigned long freq;
1086
1087 /* Don't bother refining TSC on unstable systems */
1088 if (check_tsc_unstable())
1089 goto out;
1090
1091 /*
1092 * Since the work is started early in boot, we may be
1093 * delayed the first time we expire. So set the workqueue
1094 * again once we know timers are working.
1095 */
1096 if (tsc_start == -1) {
1097 /*
1098 * Only set hpet once, to avoid mixing hardware
1099 * if the hpet becomes enabled later.
1100 */
1101 hpet = is_hpet_enabled();
1102 schedule_delayed_work(&tsc_irqwork, HZ);
1103 tsc_start = tsc_read_refs(&ref_start, hpet);
1104 return;
1105 }
1106
1107 tsc_stop = tsc_read_refs(&ref_stop, hpet);
1108
1109 /* hpet or pmtimer available ? */
62627bec 1110 if (ref_start == ref_stop)
08ec0c58
JS
1111 goto out;
1112
1113 /* Check, whether the sampling was disturbed by an SMI */
1114 if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1115 goto out;
1116
1117 delta = tsc_stop - tsc_start;
1118 delta *= 1000000LL;
1119 if (hpet)
1120 freq = calc_hpet_ref(delta, ref_start, ref_stop);
1121 else
1122 freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1123
1124 /* Make sure we're within 1% */
1125 if (abs(tsc_khz - freq) > tsc_khz/100)
1126 goto out;
1127
1128 tsc_khz = freq;
c767a54b
JP
1129 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1130 (unsigned long)tsc_khz / 1000,
1131 (unsigned long)tsc_khz % 1000);
08ec0c58
JS
1132
1133out:
1134 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1135}
1136
1137
1138static int __init init_tsc_clocksource(void)
8fbbc4b4 1139{
29fe359c 1140 if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
a8760eca
TG
1141 return 0;
1142
395628ef
AK
1143 if (tsc_clocksource_reliable)
1144 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
8fbbc4b4
AK
1145 /* lower the rating if we already know its unstable: */
1146 if (check_tsc_unstable()) {
1147 clocksource_tsc.rating = 0;
1148 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
1149 }
57779dc2 1150
82f9c080
FT
1151 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1152 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1153
57779dc2
AK
1154 /*
1155 * Trust the results of the earlier calibration on systems
1156 * exporting a reliable TSC.
1157 */
1158 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
1159 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1160 return 0;
1161 }
1162
08ec0c58
JS
1163 schedule_delayed_work(&tsc_irqwork, 0);
1164 return 0;
8fbbc4b4 1165}
08ec0c58
JS
1166/*
1167 * We use device_initcall here, to ensure we run after the hpet
1168 * is fully initialized, which may occur at fs_initcall time.
1169 */
1170device_initcall(init_tsc_clocksource);
8fbbc4b4
AK
1171
1172void __init tsc_init(void)
1173{
1174 u64 lpj;
1175 int cpu;
1176
845b3944
TG
1177 x86_init.timers.tsc_pre_init();
1178
8fbbc4b4
AK
1179 if (!cpu_has_tsc)
1180 return;
1181
2d826404 1182 tsc_khz = x86_platform.calibrate_tsc();
e93ef949 1183 cpu_khz = tsc_khz;
8fbbc4b4 1184
e93ef949 1185 if (!tsc_khz) {
8fbbc4b4
AK
1186 mark_tsc_unstable("could not calculate TSC khz");
1187 return;
1188 }
1189
c767a54b
JP
1190 pr_info("Detected %lu.%03lu MHz processor\n",
1191 (unsigned long)cpu_khz / 1000,
1192 (unsigned long)cpu_khz % 1000);
8fbbc4b4
AK
1193
1194 /*
1195 * Secondary CPUs do not run through tsc_init(), so set up
1196 * all the scale factors for all CPUs, assuming the same
1197 * speed as the bootup CPU. (cpufreq notifiers will fix this
1198 * up if their speed diverges)
1199 */
20d1c86a
PZ
1200 for_each_possible_cpu(cpu) {
1201 cyc2ns_init(cpu);
8fbbc4b4 1202 set_cyc2ns_scale(cpu_khz, cpu);
20d1c86a 1203 }
8fbbc4b4
AK
1204
1205 if (tsc_disabled > 0)
1206 return;
1207
1208 /* now allow native_sched_clock() to use rdtsc */
10b033d4 1209
8fbbc4b4 1210 tsc_disabled = 0;
10b033d4 1211 static_key_slow_inc(&__use_tsc);
8fbbc4b4 1212
e82b8e4e
VP
1213 if (!no_sched_irq_time)
1214 enable_sched_clock_irqtime();
1215
70de9a97
AK
1216 lpj = ((u64)tsc_khz * 1000);
1217 do_div(lpj, HZ);
1218 lpj_fine = lpj;
1219
8fbbc4b4 1220 use_tsc_delay();
8fbbc4b4
AK
1221
1222 if (unsynchronized_tsc())
1223 mark_tsc_unstable("TSCs unsynchronized");
1224
395628ef 1225 check_system_tsc_reliable();
8fbbc4b4
AK
1226}
1227
b565201c
JS
1228#ifdef CONFIG_SMP
1229/*
1230 * If we have a constant TSC and are using the TSC for the delay loop,
1231 * we can skip clock calibration if another cpu in the same socket has already
1232 * been calibrated. This assumes that CONSTANT_TSC applies to all
1233 * cpus in the socket - this should be a safe assumption.
1234 */
148f9bb8 1235unsigned long calibrate_delay_is_known(void)
b565201c
JS
1236{
1237 int i, cpu = smp_processor_id();
1238
1239 if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
1240 return 0;
1241
1242 for_each_online_cpu(i)
1243 if (cpu_data(i).phys_proc_id == cpu_data(cpu).phys_proc_id)
1244 return cpu_data(i).loops_per_jiffy;
1245 return 0;
1246}
1247#endif