score: delete __cpuinit usage from all score files
[linux-2.6-block.git] / arch / x86 / kernel / tsc.c
CommitLineData
c767a54b
JP
1#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
bfc0f594 3#include <linux/kernel.h>
0ef95533
AK
4#include <linux/sched.h>
5#include <linux/init.h>
6#include <linux/module.h>
7#include <linux/timer.h>
bfc0f594 8#include <linux/acpi_pmtmr.h>
2dbe06fa 9#include <linux/cpufreq.h>
8fbbc4b4
AK
10#include <linux/delay.h>
11#include <linux/clocksource.h>
12#include <linux/percpu.h>
08604bd9 13#include <linux/timex.h>
bfc0f594
AK
14
15#include <asm/hpet.h>
8fbbc4b4
AK
16#include <asm/timer.h>
17#include <asm/vgtod.h>
18#include <asm/time.h>
19#include <asm/delay.h>
88b094fb 20#include <asm/hypervisor.h>
08047c4f 21#include <asm/nmi.h>
2d826404 22#include <asm/x86_init.h>
0ef95533 23
f24ade3a 24unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
0ef95533 25EXPORT_SYMBOL(cpu_khz);
f24ade3a
IM
26
27unsigned int __read_mostly tsc_khz;
0ef95533
AK
28EXPORT_SYMBOL(tsc_khz);
29
30/*
31 * TSC can be unstable due to cpufreq or due to unsynced TSCs
32 */
f24ade3a 33static int __read_mostly tsc_unstable;
0ef95533
AK
34
35/* native_sched_clock() is called before tsc_init(), so
36 we must start with the TSC soft disabled to prevent
37 erroneous rdtsc usage on !cpu_has_tsc processors */
f24ade3a 38static int __read_mostly tsc_disabled = -1;
0ef95533 39
28a00184 40int tsc_clocksource_reliable;
0ef95533
AK
41/*
42 * Scheduler clock - returns current time in nanosec units.
43 */
44u64 native_sched_clock(void)
45{
46 u64 this_offset;
47
48 /*
49 * Fall back to jiffies if there's no TSC available:
50 * ( But note that we still use it if the TSC is marked
51 * unstable. We do this because unlike Time Of Day,
52 * the scheduler clock tolerates small errors and it's
53 * very important for it to be as fast as the platform
3ad2f3fb 54 * can achieve it. )
0ef95533
AK
55 */
56 if (unlikely(tsc_disabled)) {
57 /* No locking but a rare wrong value is not a big deal: */
58 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
59 }
60
61 /* read the Time Stamp Counter: */
62 rdtscll(this_offset);
63
64 /* return the value in ns */
7cbaef9c 65 return __cycles_2_ns(this_offset);
0ef95533
AK
66}
67
68/* We need to define a real function for sched_clock, to override the
69 weak default version */
70#ifdef CONFIG_PARAVIRT
71unsigned long long sched_clock(void)
72{
73 return paravirt_sched_clock();
74}
75#else
76unsigned long long
77sched_clock(void) __attribute__((alias("native_sched_clock")));
78#endif
79
ce37f400
DV
80unsigned long long native_read_tsc(void)
81{
82 return __native_read_tsc();
83}
84EXPORT_SYMBOL(native_read_tsc);
85
0ef95533
AK
86int check_tsc_unstable(void)
87{
88 return tsc_unstable;
89}
90EXPORT_SYMBOL_GPL(check_tsc_unstable);
91
92#ifdef CONFIG_X86_TSC
93int __init notsc_setup(char *str)
94{
c767a54b 95 pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
0ef95533
AK
96 tsc_disabled = 1;
97 return 1;
98}
99#else
100/*
101 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
102 * in cpu/common.c
103 */
104int __init notsc_setup(char *str)
105{
106 setup_clear_cpu_cap(X86_FEATURE_TSC);
107 return 1;
108}
109#endif
110
111__setup("notsc", notsc_setup);
bfc0f594 112
e82b8e4e
VP
113static int no_sched_irq_time;
114
395628ef
AK
115static int __init tsc_setup(char *str)
116{
117 if (!strcmp(str, "reliable"))
118 tsc_clocksource_reliable = 1;
e82b8e4e
VP
119 if (!strncmp(str, "noirqtime", 9))
120 no_sched_irq_time = 1;
395628ef
AK
121 return 1;
122}
123
124__setup("tsc=", tsc_setup);
125
bfc0f594
AK
126#define MAX_RETRIES 5
127#define SMI_TRESHOLD 50000
128
129/*
130 * Read TSC and the reference counters. Take care of SMI disturbance
131 */
827014be 132static u64 tsc_read_refs(u64 *p, int hpet)
bfc0f594
AK
133{
134 u64 t1, t2;
135 int i;
136
137 for (i = 0; i < MAX_RETRIES; i++) {
138 t1 = get_cycles();
139 if (hpet)
827014be 140 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
bfc0f594 141 else
827014be 142 *p = acpi_pm_read_early();
bfc0f594
AK
143 t2 = get_cycles();
144 if ((t2 - t1) < SMI_TRESHOLD)
145 return t2;
146 }
147 return ULLONG_MAX;
148}
149
d683ef7a
TG
150/*
151 * Calculate the TSC frequency from HPET reference
bfc0f594 152 */
d683ef7a 153static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
bfc0f594 154{
d683ef7a 155 u64 tmp;
bfc0f594 156
d683ef7a
TG
157 if (hpet2 < hpet1)
158 hpet2 += 0x100000000ULL;
159 hpet2 -= hpet1;
160 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
161 do_div(tmp, 1000000);
162 do_div(deltatsc, tmp);
163
164 return (unsigned long) deltatsc;
165}
166
167/*
168 * Calculate the TSC frequency from PMTimer reference
169 */
170static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
171{
172 u64 tmp;
bfc0f594 173
d683ef7a
TG
174 if (!pm1 && !pm2)
175 return ULONG_MAX;
176
177 if (pm2 < pm1)
178 pm2 += (u64)ACPI_PM_OVRRUN;
179 pm2 -= pm1;
180 tmp = pm2 * 1000000000LL;
181 do_div(tmp, PMTMR_TICKS_PER_SEC);
182 do_div(deltatsc, tmp);
183
184 return (unsigned long) deltatsc;
185}
186
a977c400 187#define CAL_MS 10
b7743970 188#define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
a977c400
TG
189#define CAL_PIT_LOOPS 1000
190
191#define CAL2_MS 50
b7743970 192#define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
a977c400
TG
193#define CAL2_PIT_LOOPS 5000
194
cce3e057 195
ec0c15af
LT
196/*
197 * Try to calibrate the TSC against the Programmable
198 * Interrupt Timer and return the frequency of the TSC
199 * in kHz.
200 *
201 * Return ULONG_MAX on failure to calibrate.
202 */
a977c400 203static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
ec0c15af
LT
204{
205 u64 tsc, t1, t2, delta;
206 unsigned long tscmin, tscmax;
207 int pitcnt;
208
209 /* Set the Gate high, disable speaker */
210 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
211
212 /*
213 * Setup CTC channel 2* for mode 0, (interrupt on terminal
214 * count mode), binary count. Set the latch register to 50ms
215 * (LSB then MSB) to begin countdown.
216 */
217 outb(0xb0, 0x43);
a977c400
TG
218 outb(latch & 0xff, 0x42);
219 outb(latch >> 8, 0x42);
ec0c15af
LT
220
221 tsc = t1 = t2 = get_cycles();
222
223 pitcnt = 0;
224 tscmax = 0;
225 tscmin = ULONG_MAX;
226 while ((inb(0x61) & 0x20) == 0) {
227 t2 = get_cycles();
228 delta = t2 - tsc;
229 tsc = t2;
230 if ((unsigned long) delta < tscmin)
231 tscmin = (unsigned int) delta;
232 if ((unsigned long) delta > tscmax)
233 tscmax = (unsigned int) delta;
234 pitcnt++;
235 }
236
237 /*
238 * Sanity checks:
239 *
a977c400 240 * If we were not able to read the PIT more than loopmin
ec0c15af
LT
241 * times, then we have been hit by a massive SMI
242 *
243 * If the maximum is 10 times larger than the minimum,
244 * then we got hit by an SMI as well.
245 */
a977c400 246 if (pitcnt < loopmin || tscmax > 10 * tscmin)
ec0c15af
LT
247 return ULONG_MAX;
248
249 /* Calculate the PIT value */
250 delta = t2 - t1;
a977c400 251 do_div(delta, ms);
ec0c15af
LT
252 return delta;
253}
254
6ac40ed0
LT
255/*
256 * This reads the current MSB of the PIT counter, and
257 * checks if we are running on sufficiently fast and
258 * non-virtualized hardware.
259 *
260 * Our expectations are:
261 *
262 * - the PIT is running at roughly 1.19MHz
263 *
264 * - each IO is going to take about 1us on real hardware,
265 * but we allow it to be much faster (by a factor of 10) or
266 * _slightly_ slower (ie we allow up to a 2us read+counter
267 * update - anything else implies a unacceptably slow CPU
268 * or PIT for the fast calibration to work.
269 *
270 * - with 256 PIT ticks to read the value, we have 214us to
271 * see the same MSB (and overhead like doing a single TSC
272 * read per MSB value etc).
273 *
274 * - We're doing 2 reads per loop (LSB, MSB), and we expect
275 * them each to take about a microsecond on real hardware.
276 * So we expect a count value of around 100. But we'll be
277 * generous, and accept anything over 50.
278 *
279 * - if the PIT is stuck, and we see *many* more reads, we
280 * return early (and the next caller of pit_expect_msb()
281 * then consider it a failure when they don't see the
282 * next expected value).
283 *
284 * These expectations mean that we know that we have seen the
285 * transition from one expected value to another with a fairly
286 * high accuracy, and we didn't miss any events. We can thus
287 * use the TSC value at the transitions to calculate a pretty
288 * good value for the TSC frequencty.
289 */
b6e61eef
LT
290static inline int pit_verify_msb(unsigned char val)
291{
292 /* Ignore LSB */
293 inb(0x42);
294 return inb(0x42) == val;
295}
296
9e8912e0 297static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
6ac40ed0 298{
9e8912e0 299 int count;
68f30fbe 300 u64 tsc = 0, prev_tsc = 0;
bfc0f594 301
6ac40ed0 302 for (count = 0; count < 50000; count++) {
b6e61eef 303 if (!pit_verify_msb(val))
6ac40ed0 304 break;
68f30fbe 305 prev_tsc = tsc;
9e8912e0 306 tsc = get_cycles();
6ac40ed0 307 }
68f30fbe 308 *deltap = get_cycles() - prev_tsc;
9e8912e0
LT
309 *tscp = tsc;
310
311 /*
312 * We require _some_ success, but the quality control
313 * will be based on the error terms on the TSC values.
314 */
315 return count > 5;
6ac40ed0
LT
316}
317
318/*
9e8912e0
LT
319 * How many MSB values do we want to see? We aim for
320 * a maximum error rate of 500ppm (in practice the
321 * real error is much smaller), but refuse to spend
68f30fbe 322 * more than 50ms on it.
6ac40ed0 323 */
68f30fbe 324#define MAX_QUICK_PIT_MS 50
9e8912e0 325#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
bfc0f594 326
6ac40ed0
LT
327static unsigned long quick_pit_calibrate(void)
328{
9e8912e0
LT
329 int i;
330 u64 tsc, delta;
331 unsigned long d1, d2;
332
6ac40ed0 333 /* Set the Gate high, disable speaker */
bfc0f594
AK
334 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
335
6ac40ed0
LT
336 /*
337 * Counter 2, mode 0 (one-shot), binary count
338 *
339 * NOTE! Mode 2 decrements by two (and then the
340 * output is flipped each time, giving the same
341 * final output frequency as a decrement-by-one),
342 * so mode 0 is much better when looking at the
343 * individual counts.
344 */
bfc0f594 345 outb(0xb0, 0x43);
bfc0f594 346
6ac40ed0
LT
347 /* Start at 0xffff */
348 outb(0xff, 0x42);
349 outb(0xff, 0x42);
350
a6a80e1d
LT
351 /*
352 * The PIT starts counting at the next edge, so we
353 * need to delay for a microsecond. The easiest way
354 * to do that is to just read back the 16-bit counter
355 * once from the PIT.
356 */
b6e61eef 357 pit_verify_msb(0);
a6a80e1d 358
9e8912e0
LT
359 if (pit_expect_msb(0xff, &tsc, &d1)) {
360 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
361 if (!pit_expect_msb(0xff-i, &delta, &d2))
362 break;
363
364 /*
365 * Iterate until the error is less than 500 ppm
366 */
367 delta -= tsc;
b6e61eef
LT
368 if (d1+d2 >= delta >> 11)
369 continue;
370
371 /*
372 * Check the PIT one more time to verify that
373 * all TSC reads were stable wrt the PIT.
374 *
375 * This also guarantees serialization of the
376 * last cycle read ('d2') in pit_expect_msb.
377 */
378 if (!pit_verify_msb(0xfe - i))
379 break;
380 goto success;
6ac40ed0 381 }
6ac40ed0 382 }
c767a54b 383 pr_err("Fast TSC calibration failed\n");
6ac40ed0 384 return 0;
9e8912e0
LT
385
386success:
387 /*
388 * Ok, if we get here, then we've seen the
389 * MSB of the PIT decrement 'i' times, and the
390 * error has shrunk to less than 500 ppm.
391 *
392 * As a result, we can depend on there not being
393 * any odd delays anywhere, and the TSC reads are
68f30fbe 394 * reliable (within the error).
9e8912e0
LT
395 *
396 * kHz = ticks / time-in-seconds / 1000;
397 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
398 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
399 */
9e8912e0
LT
400 delta *= PIT_TICK_RATE;
401 do_div(delta, i*256*1000);
c767a54b 402 pr_info("Fast TSC calibration using PIT\n");
9e8912e0 403 return delta;
6ac40ed0 404}
ec0c15af 405
bfc0f594 406/**
e93ef949 407 * native_calibrate_tsc - calibrate the tsc on boot
bfc0f594 408 */
e93ef949 409unsigned long native_calibrate_tsc(void)
bfc0f594 410{
827014be 411 u64 tsc1, tsc2, delta, ref1, ref2;
fbb16e24 412 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
2d826404 413 unsigned long flags, latch, ms, fast_calibrate;
a977c400 414 int hpet = is_hpet_enabled(), i, loopmin;
bfc0f594 415
6ac40ed0
LT
416 local_irq_save(flags);
417 fast_calibrate = quick_pit_calibrate();
bfc0f594 418 local_irq_restore(flags);
6ac40ed0
LT
419 if (fast_calibrate)
420 return fast_calibrate;
bfc0f594 421
fbb16e24
TG
422 /*
423 * Run 5 calibration loops to get the lowest frequency value
424 * (the best estimate). We use two different calibration modes
425 * here:
426 *
427 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
428 * load a timeout of 50ms. We read the time right after we
429 * started the timer and wait until the PIT count down reaches
430 * zero. In each wait loop iteration we read the TSC and check
431 * the delta to the previous read. We keep track of the min
432 * and max values of that delta. The delta is mostly defined
433 * by the IO time of the PIT access, so we can detect when a
0d2eb44f 434 * SMI/SMM disturbance happened between the two reads. If the
fbb16e24
TG
435 * maximum time is significantly larger than the minimum time,
436 * then we discard the result and have another try.
437 *
438 * 2) Reference counter. If available we use the HPET or the
439 * PMTIMER as a reference to check the sanity of that value.
440 * We use separate TSC readouts and check inside of the
441 * reference read for a SMI/SMM disturbance. We dicard
442 * disturbed values here as well. We do that around the PIT
443 * calibration delay loop as we have to wait for a certain
444 * amount of time anyway.
445 */
a977c400
TG
446
447 /* Preset PIT loop values */
448 latch = CAL_LATCH;
449 ms = CAL_MS;
450 loopmin = CAL_PIT_LOOPS;
451
452 for (i = 0; i < 3; i++) {
ec0c15af 453 unsigned long tsc_pit_khz;
fbb16e24
TG
454
455 /*
456 * Read the start value and the reference count of
ec0c15af
LT
457 * hpet/pmtimer when available. Then do the PIT
458 * calibration, which will take at least 50ms, and
459 * read the end value.
fbb16e24 460 */
ec0c15af 461 local_irq_save(flags);
827014be 462 tsc1 = tsc_read_refs(&ref1, hpet);
a977c400 463 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
827014be 464 tsc2 = tsc_read_refs(&ref2, hpet);
fbb16e24
TG
465 local_irq_restore(flags);
466
ec0c15af
LT
467 /* Pick the lowest PIT TSC calibration so far */
468 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
fbb16e24
TG
469
470 /* hpet or pmtimer available ? */
62627bec 471 if (ref1 == ref2)
fbb16e24
TG
472 continue;
473
474 /* Check, whether the sampling was disturbed by an SMI */
475 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
476 continue;
477
478 tsc2 = (tsc2 - tsc1) * 1000000LL;
d683ef7a 479 if (hpet)
827014be 480 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
d683ef7a 481 else
827014be 482 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
fbb16e24 483
fbb16e24 484 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
a977c400
TG
485
486 /* Check the reference deviation */
487 delta = ((u64) tsc_pit_min) * 100;
488 do_div(delta, tsc_ref_min);
489
490 /*
491 * If both calibration results are inside a 10% window
492 * then we can be sure, that the calibration
493 * succeeded. We break out of the loop right away. We
494 * use the reference value, as it is more precise.
495 */
496 if (delta >= 90 && delta <= 110) {
c767a54b
JP
497 pr_info("PIT calibration matches %s. %d loops\n",
498 hpet ? "HPET" : "PMTIMER", i + 1);
a977c400 499 return tsc_ref_min;
fbb16e24
TG
500 }
501
a977c400
TG
502 /*
503 * Check whether PIT failed more than once. This
504 * happens in virtualized environments. We need to
505 * give the virtual PC a slightly longer timeframe for
506 * the HPET/PMTIMER to make the result precise.
507 */
508 if (i == 1 && tsc_pit_min == ULONG_MAX) {
509 latch = CAL2_LATCH;
510 ms = CAL2_MS;
511 loopmin = CAL2_PIT_LOOPS;
512 }
fbb16e24 513 }
bfc0f594
AK
514
515 /*
fbb16e24 516 * Now check the results.
bfc0f594 517 */
fbb16e24
TG
518 if (tsc_pit_min == ULONG_MAX) {
519 /* PIT gave no useful value */
c767a54b 520 pr_warn("Unable to calibrate against PIT\n");
fbb16e24
TG
521
522 /* We don't have an alternative source, disable TSC */
827014be 523 if (!hpet && !ref1 && !ref2) {
c767a54b 524 pr_notice("No reference (HPET/PMTIMER) available\n");
fbb16e24
TG
525 return 0;
526 }
527
528 /* The alternative source failed as well, disable TSC */
529 if (tsc_ref_min == ULONG_MAX) {
c767a54b 530 pr_warn("HPET/PMTIMER calibration failed\n");
fbb16e24
TG
531 return 0;
532 }
533
534 /* Use the alternative source */
c767a54b
JP
535 pr_info("using %s reference calibration\n",
536 hpet ? "HPET" : "PMTIMER");
fbb16e24
TG
537
538 return tsc_ref_min;
539 }
bfc0f594 540
fbb16e24 541 /* We don't have an alternative source, use the PIT calibration value */
827014be 542 if (!hpet && !ref1 && !ref2) {
c767a54b 543 pr_info("Using PIT calibration value\n");
fbb16e24 544 return tsc_pit_min;
bfc0f594
AK
545 }
546
fbb16e24
TG
547 /* The alternative source failed, use the PIT calibration value */
548 if (tsc_ref_min == ULONG_MAX) {
c767a54b 549 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
fbb16e24 550 return tsc_pit_min;
bfc0f594
AK
551 }
552
fbb16e24
TG
553 /*
554 * The calibration values differ too much. In doubt, we use
555 * the PIT value as we know that there are PMTIMERs around
a977c400 556 * running at double speed. At least we let the user know:
fbb16e24 557 */
c767a54b
JP
558 pr_warn("PIT calibration deviates from %s: %lu %lu\n",
559 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
560 pr_info("Using PIT calibration value\n");
fbb16e24 561 return tsc_pit_min;
bfc0f594
AK
562}
563
bfc0f594
AK
564int recalibrate_cpu_khz(void)
565{
566#ifndef CONFIG_SMP
567 unsigned long cpu_khz_old = cpu_khz;
568
569 if (cpu_has_tsc) {
2d826404 570 tsc_khz = x86_platform.calibrate_tsc();
e93ef949 571 cpu_khz = tsc_khz;
bfc0f594
AK
572 cpu_data(0).loops_per_jiffy =
573 cpufreq_scale(cpu_data(0).loops_per_jiffy,
574 cpu_khz_old, cpu_khz);
575 return 0;
576 } else
577 return -ENODEV;
578#else
579 return -ENODEV;
580#endif
581}
582
583EXPORT_SYMBOL(recalibrate_cpu_khz);
584
2dbe06fa
AK
585
586/* Accelerators for sched_clock()
587 * convert from cycles(64bits) => nanoseconds (64bits)
588 * basic equation:
589 * ns = cycles / (freq / ns_per_sec)
590 * ns = cycles * (ns_per_sec / freq)
591 * ns = cycles * (10^9 / (cpu_khz * 10^3))
592 * ns = cycles * (10^6 / cpu_khz)
593 *
594 * Then we use scaling math (suggested by george@mvista.com) to get:
595 * ns = cycles * (10^6 * SC / cpu_khz) / SC
596 * ns = cycles * cyc2ns_scale / SC
597 *
598 * And since SC is a constant power of two, we can convert the div
599 * into a shift.
600 *
601 * We can use khz divisor instead of mhz to keep a better precision, since
602 * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
603 * (mathieu.desnoyers@polymtl.ca)
604 *
605 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
606 */
607
608DEFINE_PER_CPU(unsigned long, cyc2ns);
84599f8a 609DEFINE_PER_CPU(unsigned long long, cyc2ns_offset);
2dbe06fa 610
8fbbc4b4 611static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
2dbe06fa 612{
84599f8a 613 unsigned long long tsc_now, ns_now, *offset;
2dbe06fa
AK
614 unsigned long flags, *scale;
615
616 local_irq_save(flags);
617 sched_clock_idle_sleep_event();
618
619 scale = &per_cpu(cyc2ns, cpu);
84599f8a 620 offset = &per_cpu(cyc2ns_offset, cpu);
2dbe06fa
AK
621
622 rdtscll(tsc_now);
623 ns_now = __cycles_2_ns(tsc_now);
624
84599f8a 625 if (cpu_khz) {
2353b47b
BF
626 *scale = ((NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR) +
627 cpu_khz / 2) / cpu_khz;
9993bc63
SQ
628 *offset = ns_now - mult_frac(tsc_now, *scale,
629 (1UL << CYC2NS_SCALE_FACTOR));
84599f8a 630 }
2dbe06fa
AK
631
632 sched_clock_idle_wakeup_event(0);
633 local_irq_restore(flags);
634}
635
cd7240c0
SS
636static unsigned long long cyc2ns_suspend;
637
b74f05d6 638void tsc_save_sched_clock_state(void)
cd7240c0
SS
639{
640 if (!sched_clock_stable)
641 return;
642
643 cyc2ns_suspend = sched_clock();
644}
645
646/*
647 * Even on processors with invariant TSC, TSC gets reset in some the
648 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
649 * arbitrary value (still sync'd across cpu's) during resume from such sleep
650 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
651 * that sched_clock() continues from the point where it was left off during
652 * suspend.
653 */
b74f05d6 654void tsc_restore_sched_clock_state(void)
cd7240c0
SS
655{
656 unsigned long long offset;
657 unsigned long flags;
658 int cpu;
659
660 if (!sched_clock_stable)
661 return;
662
663 local_irq_save(flags);
664
0a3aee0d 665 __this_cpu_write(cyc2ns_offset, 0);
cd7240c0
SS
666 offset = cyc2ns_suspend - sched_clock();
667
668 for_each_possible_cpu(cpu)
669 per_cpu(cyc2ns_offset, cpu) = offset;
670
671 local_irq_restore(flags);
672}
673
2dbe06fa
AK
674#ifdef CONFIG_CPU_FREQ
675
676/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
677 * changes.
678 *
679 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
680 * not that important because current Opteron setups do not support
681 * scaling on SMP anyroads.
682 *
683 * Should fix up last_tsc too. Currently gettimeofday in the
684 * first tick after the change will be slightly wrong.
685 */
686
687static unsigned int ref_freq;
688static unsigned long loops_per_jiffy_ref;
689static unsigned long tsc_khz_ref;
690
691static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
692 void *data)
693{
694 struct cpufreq_freqs *freq = data;
931db6a3 695 unsigned long *lpj;
2dbe06fa
AK
696
697 if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
698 return 0;
699
931db6a3 700 lpj = &boot_cpu_data.loops_per_jiffy;
2dbe06fa 701#ifdef CONFIG_SMP
931db6a3 702 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
2dbe06fa 703 lpj = &cpu_data(freq->cpu).loops_per_jiffy;
2dbe06fa
AK
704#endif
705
706 if (!ref_freq) {
707 ref_freq = freq->old;
708 loops_per_jiffy_ref = *lpj;
709 tsc_khz_ref = tsc_khz;
710 }
711 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
712 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
713 (val == CPUFREQ_RESUMECHANGE)) {
878f4f53 714 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
2dbe06fa
AK
715
716 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
717 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
718 mark_tsc_unstable("cpufreq changes");
719 }
720
52a8968c 721 set_cyc2ns_scale(tsc_khz, freq->cpu);
2dbe06fa
AK
722
723 return 0;
724}
725
726static struct notifier_block time_cpufreq_notifier_block = {
727 .notifier_call = time_cpufreq_notifier
728};
729
730static int __init cpufreq_tsc(void)
731{
060700b5
LT
732 if (!cpu_has_tsc)
733 return 0;
734 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
735 return 0;
2dbe06fa
AK
736 cpufreq_register_notifier(&time_cpufreq_notifier_block,
737 CPUFREQ_TRANSITION_NOTIFIER);
738 return 0;
739}
740
741core_initcall(cpufreq_tsc);
742
743#endif /* CONFIG_CPU_FREQ */
8fbbc4b4
AK
744
745/* clocksource code */
746
747static struct clocksource clocksource_tsc;
748
749/*
750 * We compare the TSC to the cycle_last value in the clocksource
751 * structure to avoid a nasty time-warp. This can be observed in a
752 * very small window right after one CPU updated cycle_last under
753 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
754 * is smaller than the cycle_last reference value due to a TSC which
755 * is slighty behind. This delta is nowhere else observable, but in
756 * that case it results in a forward time jump in the range of hours
757 * due to the unsigned delta calculation of the time keeping core
758 * code, which is necessary to support wrapping clocksources like pm
759 * timer.
760 */
8e19608e 761static cycle_t read_tsc(struct clocksource *cs)
8fbbc4b4
AK
762{
763 cycle_t ret = (cycle_t)get_cycles();
764
765 return ret >= clocksource_tsc.cycle_last ?
766 ret : clocksource_tsc.cycle_last;
767}
768
17622339 769static void resume_tsc(struct clocksource *cs)
1be39679 770{
82f9c080
FT
771 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
772 clocksource_tsc.cycle_last = 0;
1be39679
MS
773}
774
8fbbc4b4
AK
775static struct clocksource clocksource_tsc = {
776 .name = "tsc",
777 .rating = 300,
778 .read = read_tsc,
1be39679 779 .resume = resume_tsc,
8fbbc4b4 780 .mask = CLOCKSOURCE_MASK(64),
8fbbc4b4
AK
781 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
782 CLOCK_SOURCE_MUST_VERIFY,
783#ifdef CONFIG_X86_64
98d0ac38 784 .archdata = { .vclock_mode = VCLOCK_TSC },
8fbbc4b4
AK
785#endif
786};
787
788void mark_tsc_unstable(char *reason)
789{
790 if (!tsc_unstable) {
791 tsc_unstable = 1;
6c56ccec 792 sched_clock_stable = 0;
e82b8e4e 793 disable_sched_clock_irqtime();
c767a54b 794 pr_info("Marking TSC unstable due to %s\n", reason);
8fbbc4b4
AK
795 /* Change only the rating, when not registered */
796 if (clocksource_tsc.mult)
7285dd7f
TG
797 clocksource_mark_unstable(&clocksource_tsc);
798 else {
799 clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
8fbbc4b4 800 clocksource_tsc.rating = 0;
7285dd7f 801 }
8fbbc4b4
AK
802 }
803}
804
805EXPORT_SYMBOL_GPL(mark_tsc_unstable);
806
395628ef
AK
807static void __init check_system_tsc_reliable(void)
808{
8fbbc4b4 809#ifdef CONFIG_MGEODE_LX
395628ef 810 /* RTSC counts during suspend */
8fbbc4b4 811#define RTSC_SUSP 0x100
8fbbc4b4
AK
812 unsigned long res_low, res_high;
813
814 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
00097c4f 815 /* Geode_LX - the OLPC CPU has a very reliable TSC */
8fbbc4b4 816 if (res_low & RTSC_SUSP)
395628ef 817 tsc_clocksource_reliable = 1;
8fbbc4b4 818#endif
395628ef
AK
819 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
820 tsc_clocksource_reliable = 1;
821}
8fbbc4b4
AK
822
823/*
824 * Make an educated guess if the TSC is trustworthy and synchronized
825 * over all CPUs.
826 */
827__cpuinit int unsynchronized_tsc(void)
828{
829 if (!cpu_has_tsc || tsc_unstable)
830 return 1;
831
3e5095d1 832#ifdef CONFIG_SMP
8fbbc4b4
AK
833 if (apic_is_clustered_box())
834 return 1;
835#endif
836
837 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
838 return 0;
d3b8f889 839
840 if (tsc_clocksource_reliable)
841 return 0;
8fbbc4b4
AK
842 /*
843 * Intel systems are normally all synchronized.
844 * Exceptions must mark TSC as unstable:
845 */
846 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
847 /* assume multi socket systems are not synchronized: */
848 if (num_possible_cpus() > 1)
d3b8f889 849 return 1;
8fbbc4b4
AK
850 }
851
d3b8f889 852 return 0;
8fbbc4b4
AK
853}
854
08ec0c58
JS
855
856static void tsc_refine_calibration_work(struct work_struct *work);
857static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
858/**
859 * tsc_refine_calibration_work - Further refine tsc freq calibration
860 * @work - ignored.
861 *
862 * This functions uses delayed work over a period of a
863 * second to further refine the TSC freq value. Since this is
864 * timer based, instead of loop based, we don't block the boot
865 * process while this longer calibration is done.
866 *
0d2eb44f 867 * If there are any calibration anomalies (too many SMIs, etc),
08ec0c58
JS
868 * or the refined calibration is off by 1% of the fast early
869 * calibration, we throw out the new calibration and use the
870 * early calibration.
871 */
872static void tsc_refine_calibration_work(struct work_struct *work)
873{
874 static u64 tsc_start = -1, ref_start;
875 static int hpet;
876 u64 tsc_stop, ref_stop, delta;
877 unsigned long freq;
878
879 /* Don't bother refining TSC on unstable systems */
880 if (check_tsc_unstable())
881 goto out;
882
883 /*
884 * Since the work is started early in boot, we may be
885 * delayed the first time we expire. So set the workqueue
886 * again once we know timers are working.
887 */
888 if (tsc_start == -1) {
889 /*
890 * Only set hpet once, to avoid mixing hardware
891 * if the hpet becomes enabled later.
892 */
893 hpet = is_hpet_enabled();
894 schedule_delayed_work(&tsc_irqwork, HZ);
895 tsc_start = tsc_read_refs(&ref_start, hpet);
896 return;
897 }
898
899 tsc_stop = tsc_read_refs(&ref_stop, hpet);
900
901 /* hpet or pmtimer available ? */
62627bec 902 if (ref_start == ref_stop)
08ec0c58
JS
903 goto out;
904
905 /* Check, whether the sampling was disturbed by an SMI */
906 if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
907 goto out;
908
909 delta = tsc_stop - tsc_start;
910 delta *= 1000000LL;
911 if (hpet)
912 freq = calc_hpet_ref(delta, ref_start, ref_stop);
913 else
914 freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
915
916 /* Make sure we're within 1% */
917 if (abs(tsc_khz - freq) > tsc_khz/100)
918 goto out;
919
920 tsc_khz = freq;
c767a54b
JP
921 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
922 (unsigned long)tsc_khz / 1000,
923 (unsigned long)tsc_khz % 1000);
08ec0c58
JS
924
925out:
926 clocksource_register_khz(&clocksource_tsc, tsc_khz);
927}
928
929
930static int __init init_tsc_clocksource(void)
8fbbc4b4 931{
29fe359c 932 if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
a8760eca
TG
933 return 0;
934
395628ef
AK
935 if (tsc_clocksource_reliable)
936 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
8fbbc4b4
AK
937 /* lower the rating if we already know its unstable: */
938 if (check_tsc_unstable()) {
939 clocksource_tsc.rating = 0;
940 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
941 }
57779dc2 942
82f9c080
FT
943 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
944 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
945
57779dc2
AK
946 /*
947 * Trust the results of the earlier calibration on systems
948 * exporting a reliable TSC.
949 */
950 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
951 clocksource_register_khz(&clocksource_tsc, tsc_khz);
952 return 0;
953 }
954
08ec0c58
JS
955 schedule_delayed_work(&tsc_irqwork, 0);
956 return 0;
8fbbc4b4 957}
08ec0c58
JS
958/*
959 * We use device_initcall here, to ensure we run after the hpet
960 * is fully initialized, which may occur at fs_initcall time.
961 */
962device_initcall(init_tsc_clocksource);
8fbbc4b4
AK
963
964void __init tsc_init(void)
965{
966 u64 lpj;
967 int cpu;
968
845b3944
TG
969 x86_init.timers.tsc_pre_init();
970
8fbbc4b4
AK
971 if (!cpu_has_tsc)
972 return;
973
2d826404 974 tsc_khz = x86_platform.calibrate_tsc();
e93ef949 975 cpu_khz = tsc_khz;
8fbbc4b4 976
e93ef949 977 if (!tsc_khz) {
8fbbc4b4
AK
978 mark_tsc_unstable("could not calculate TSC khz");
979 return;
980 }
981
c767a54b
JP
982 pr_info("Detected %lu.%03lu MHz processor\n",
983 (unsigned long)cpu_khz / 1000,
984 (unsigned long)cpu_khz % 1000);
8fbbc4b4
AK
985
986 /*
987 * Secondary CPUs do not run through tsc_init(), so set up
988 * all the scale factors for all CPUs, assuming the same
989 * speed as the bootup CPU. (cpufreq notifiers will fix this
990 * up if their speed diverges)
991 */
992 for_each_possible_cpu(cpu)
993 set_cyc2ns_scale(cpu_khz, cpu);
994
995 if (tsc_disabled > 0)
996 return;
997
998 /* now allow native_sched_clock() to use rdtsc */
999 tsc_disabled = 0;
1000
e82b8e4e
VP
1001 if (!no_sched_irq_time)
1002 enable_sched_clock_irqtime();
1003
70de9a97
AK
1004 lpj = ((u64)tsc_khz * 1000);
1005 do_div(lpj, HZ);
1006 lpj_fine = lpj;
1007
8fbbc4b4 1008 use_tsc_delay();
8fbbc4b4
AK
1009
1010 if (unsynchronized_tsc())
1011 mark_tsc_unstable("TSCs unsynchronized");
1012
395628ef 1013 check_system_tsc_reliable();
8fbbc4b4
AK
1014}
1015
b565201c
JS
1016#ifdef CONFIG_SMP
1017/*
1018 * If we have a constant TSC and are using the TSC for the delay loop,
1019 * we can skip clock calibration if another cpu in the same socket has already
1020 * been calibrated. This assumes that CONSTANT_TSC applies to all
1021 * cpus in the socket - this should be a safe assumption.
1022 */
1023unsigned long __cpuinit calibrate_delay_is_known(void)
1024{
1025 int i, cpu = smp_processor_id();
1026
1027 if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
1028 return 0;
1029
1030 for_each_online_cpu(i)
1031 if (cpu_data(i).phys_proc_id == cpu_data(cpu).phys_proc_id)
1032 return cpu_data(i).loops_per_jiffy;
1033 return 0;
1034}
1035#endif