clocksource: Replace vread with generic arch data
[linux-2.6-block.git] / arch / x86 / kernel / tsc.c
CommitLineData
bfc0f594 1#include <linux/kernel.h>
0ef95533
AK
2#include <linux/sched.h>
3#include <linux/init.h>
4#include <linux/module.h>
5#include <linux/timer.h>
bfc0f594 6#include <linux/acpi_pmtmr.h>
2dbe06fa 7#include <linux/cpufreq.h>
8fbbc4b4
AK
8#include <linux/dmi.h>
9#include <linux/delay.h>
10#include <linux/clocksource.h>
11#include <linux/percpu.h>
08604bd9 12#include <linux/timex.h>
bfc0f594
AK
13
14#include <asm/hpet.h>
8fbbc4b4
AK
15#include <asm/timer.h>
16#include <asm/vgtod.h>
17#include <asm/time.h>
18#include <asm/delay.h>
88b094fb 19#include <asm/hypervisor.h>
08047c4f 20#include <asm/nmi.h>
2d826404 21#include <asm/x86_init.h>
0ef95533 22
f24ade3a 23unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
0ef95533 24EXPORT_SYMBOL(cpu_khz);
f24ade3a
IM
25
26unsigned int __read_mostly tsc_khz;
0ef95533
AK
27EXPORT_SYMBOL(tsc_khz);
28
29/*
30 * TSC can be unstable due to cpufreq or due to unsynced TSCs
31 */
f24ade3a 32static int __read_mostly tsc_unstable;
0ef95533
AK
33
34/* native_sched_clock() is called before tsc_init(), so
35 we must start with the TSC soft disabled to prevent
36 erroneous rdtsc usage on !cpu_has_tsc processors */
f24ade3a 37static int __read_mostly tsc_disabled = -1;
0ef95533 38
395628ef 39static int tsc_clocksource_reliable;
0ef95533
AK
40/*
41 * Scheduler clock - returns current time in nanosec units.
42 */
43u64 native_sched_clock(void)
44{
45 u64 this_offset;
46
47 /*
48 * Fall back to jiffies if there's no TSC available:
49 * ( But note that we still use it if the TSC is marked
50 * unstable. We do this because unlike Time Of Day,
51 * the scheduler clock tolerates small errors and it's
52 * very important for it to be as fast as the platform
3ad2f3fb 53 * can achieve it. )
0ef95533
AK
54 */
55 if (unlikely(tsc_disabled)) {
56 /* No locking but a rare wrong value is not a big deal: */
57 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
58 }
59
60 /* read the Time Stamp Counter: */
61 rdtscll(this_offset);
62
63 /* return the value in ns */
7cbaef9c 64 return __cycles_2_ns(this_offset);
0ef95533
AK
65}
66
67/* We need to define a real function for sched_clock, to override the
68 weak default version */
69#ifdef CONFIG_PARAVIRT
70unsigned long long sched_clock(void)
71{
72 return paravirt_sched_clock();
73}
74#else
75unsigned long long
76sched_clock(void) __attribute__((alias("native_sched_clock")));
77#endif
78
79int check_tsc_unstable(void)
80{
81 return tsc_unstable;
82}
83EXPORT_SYMBOL_GPL(check_tsc_unstable);
84
85#ifdef CONFIG_X86_TSC
86int __init notsc_setup(char *str)
87{
88 printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
89 "cannot disable TSC completely.\n");
90 tsc_disabled = 1;
91 return 1;
92}
93#else
94/*
95 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
96 * in cpu/common.c
97 */
98int __init notsc_setup(char *str)
99{
100 setup_clear_cpu_cap(X86_FEATURE_TSC);
101 return 1;
102}
103#endif
104
105__setup("notsc", notsc_setup);
bfc0f594 106
e82b8e4e
VP
107static int no_sched_irq_time;
108
395628ef
AK
109static int __init tsc_setup(char *str)
110{
111 if (!strcmp(str, "reliable"))
112 tsc_clocksource_reliable = 1;
e82b8e4e
VP
113 if (!strncmp(str, "noirqtime", 9))
114 no_sched_irq_time = 1;
395628ef
AK
115 return 1;
116}
117
118__setup("tsc=", tsc_setup);
119
bfc0f594
AK
120#define MAX_RETRIES 5
121#define SMI_TRESHOLD 50000
122
123/*
124 * Read TSC and the reference counters. Take care of SMI disturbance
125 */
827014be 126static u64 tsc_read_refs(u64 *p, int hpet)
bfc0f594
AK
127{
128 u64 t1, t2;
129 int i;
130
131 for (i = 0; i < MAX_RETRIES; i++) {
132 t1 = get_cycles();
133 if (hpet)
827014be 134 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
bfc0f594 135 else
827014be 136 *p = acpi_pm_read_early();
bfc0f594
AK
137 t2 = get_cycles();
138 if ((t2 - t1) < SMI_TRESHOLD)
139 return t2;
140 }
141 return ULLONG_MAX;
142}
143
d683ef7a
TG
144/*
145 * Calculate the TSC frequency from HPET reference
bfc0f594 146 */
d683ef7a 147static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
bfc0f594 148{
d683ef7a 149 u64 tmp;
bfc0f594 150
d683ef7a
TG
151 if (hpet2 < hpet1)
152 hpet2 += 0x100000000ULL;
153 hpet2 -= hpet1;
154 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
155 do_div(tmp, 1000000);
156 do_div(deltatsc, tmp);
157
158 return (unsigned long) deltatsc;
159}
160
161/*
162 * Calculate the TSC frequency from PMTimer reference
163 */
164static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
165{
166 u64 tmp;
bfc0f594 167
d683ef7a
TG
168 if (!pm1 && !pm2)
169 return ULONG_MAX;
170
171 if (pm2 < pm1)
172 pm2 += (u64)ACPI_PM_OVRRUN;
173 pm2 -= pm1;
174 tmp = pm2 * 1000000000LL;
175 do_div(tmp, PMTMR_TICKS_PER_SEC);
176 do_div(deltatsc, tmp);
177
178 return (unsigned long) deltatsc;
179}
180
a977c400 181#define CAL_MS 10
cce3e057 182#define CAL_LATCH (CLOCK_TICK_RATE / (1000 / CAL_MS))
a977c400
TG
183#define CAL_PIT_LOOPS 1000
184
185#define CAL2_MS 50
186#define CAL2_LATCH (CLOCK_TICK_RATE / (1000 / CAL2_MS))
187#define CAL2_PIT_LOOPS 5000
188
cce3e057 189
ec0c15af
LT
190/*
191 * Try to calibrate the TSC against the Programmable
192 * Interrupt Timer and return the frequency of the TSC
193 * in kHz.
194 *
195 * Return ULONG_MAX on failure to calibrate.
196 */
a977c400 197static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
ec0c15af
LT
198{
199 u64 tsc, t1, t2, delta;
200 unsigned long tscmin, tscmax;
201 int pitcnt;
202
203 /* Set the Gate high, disable speaker */
204 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
205
206 /*
207 * Setup CTC channel 2* for mode 0, (interrupt on terminal
208 * count mode), binary count. Set the latch register to 50ms
209 * (LSB then MSB) to begin countdown.
210 */
211 outb(0xb0, 0x43);
a977c400
TG
212 outb(latch & 0xff, 0x42);
213 outb(latch >> 8, 0x42);
ec0c15af
LT
214
215 tsc = t1 = t2 = get_cycles();
216
217 pitcnt = 0;
218 tscmax = 0;
219 tscmin = ULONG_MAX;
220 while ((inb(0x61) & 0x20) == 0) {
221 t2 = get_cycles();
222 delta = t2 - tsc;
223 tsc = t2;
224 if ((unsigned long) delta < tscmin)
225 tscmin = (unsigned int) delta;
226 if ((unsigned long) delta > tscmax)
227 tscmax = (unsigned int) delta;
228 pitcnt++;
229 }
230
231 /*
232 * Sanity checks:
233 *
a977c400 234 * If we were not able to read the PIT more than loopmin
ec0c15af
LT
235 * times, then we have been hit by a massive SMI
236 *
237 * If the maximum is 10 times larger than the minimum,
238 * then we got hit by an SMI as well.
239 */
a977c400 240 if (pitcnt < loopmin || tscmax > 10 * tscmin)
ec0c15af
LT
241 return ULONG_MAX;
242
243 /* Calculate the PIT value */
244 delta = t2 - t1;
a977c400 245 do_div(delta, ms);
ec0c15af
LT
246 return delta;
247}
248
6ac40ed0
LT
249/*
250 * This reads the current MSB of the PIT counter, and
251 * checks if we are running on sufficiently fast and
252 * non-virtualized hardware.
253 *
254 * Our expectations are:
255 *
256 * - the PIT is running at roughly 1.19MHz
257 *
258 * - each IO is going to take about 1us on real hardware,
259 * but we allow it to be much faster (by a factor of 10) or
260 * _slightly_ slower (ie we allow up to a 2us read+counter
261 * update - anything else implies a unacceptably slow CPU
262 * or PIT for the fast calibration to work.
263 *
264 * - with 256 PIT ticks to read the value, we have 214us to
265 * see the same MSB (and overhead like doing a single TSC
266 * read per MSB value etc).
267 *
268 * - We're doing 2 reads per loop (LSB, MSB), and we expect
269 * them each to take about a microsecond on real hardware.
270 * So we expect a count value of around 100. But we'll be
271 * generous, and accept anything over 50.
272 *
273 * - if the PIT is stuck, and we see *many* more reads, we
274 * return early (and the next caller of pit_expect_msb()
275 * then consider it a failure when they don't see the
276 * next expected value).
277 *
278 * These expectations mean that we know that we have seen the
279 * transition from one expected value to another with a fairly
280 * high accuracy, and we didn't miss any events. We can thus
281 * use the TSC value at the transitions to calculate a pretty
282 * good value for the TSC frequencty.
283 */
b6e61eef
LT
284static inline int pit_verify_msb(unsigned char val)
285{
286 /* Ignore LSB */
287 inb(0x42);
288 return inb(0x42) == val;
289}
290
9e8912e0 291static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
6ac40ed0 292{
9e8912e0
LT
293 int count;
294 u64 tsc = 0;
bfc0f594 295
6ac40ed0 296 for (count = 0; count < 50000; count++) {
b6e61eef 297 if (!pit_verify_msb(val))
6ac40ed0 298 break;
9e8912e0 299 tsc = get_cycles();
6ac40ed0 300 }
9e8912e0
LT
301 *deltap = get_cycles() - tsc;
302 *tscp = tsc;
303
304 /*
305 * We require _some_ success, but the quality control
306 * will be based on the error terms on the TSC values.
307 */
308 return count > 5;
6ac40ed0
LT
309}
310
311/*
9e8912e0
LT
312 * How many MSB values do we want to see? We aim for
313 * a maximum error rate of 500ppm (in practice the
314 * real error is much smaller), but refuse to spend
315 * more than 25ms on it.
6ac40ed0 316 */
9e8912e0
LT
317#define MAX_QUICK_PIT_MS 25
318#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
bfc0f594 319
6ac40ed0
LT
320static unsigned long quick_pit_calibrate(void)
321{
9e8912e0
LT
322 int i;
323 u64 tsc, delta;
324 unsigned long d1, d2;
325
6ac40ed0 326 /* Set the Gate high, disable speaker */
bfc0f594
AK
327 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
328
6ac40ed0
LT
329 /*
330 * Counter 2, mode 0 (one-shot), binary count
331 *
332 * NOTE! Mode 2 decrements by two (and then the
333 * output is flipped each time, giving the same
334 * final output frequency as a decrement-by-one),
335 * so mode 0 is much better when looking at the
336 * individual counts.
337 */
bfc0f594 338 outb(0xb0, 0x43);
bfc0f594 339
6ac40ed0
LT
340 /* Start at 0xffff */
341 outb(0xff, 0x42);
342 outb(0xff, 0x42);
343
a6a80e1d
LT
344 /*
345 * The PIT starts counting at the next edge, so we
346 * need to delay for a microsecond. The easiest way
347 * to do that is to just read back the 16-bit counter
348 * once from the PIT.
349 */
b6e61eef 350 pit_verify_msb(0);
a6a80e1d 351
9e8912e0
LT
352 if (pit_expect_msb(0xff, &tsc, &d1)) {
353 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
354 if (!pit_expect_msb(0xff-i, &delta, &d2))
355 break;
356
357 /*
358 * Iterate until the error is less than 500 ppm
359 */
360 delta -= tsc;
b6e61eef
LT
361 if (d1+d2 >= delta >> 11)
362 continue;
363
364 /*
365 * Check the PIT one more time to verify that
366 * all TSC reads were stable wrt the PIT.
367 *
368 * This also guarantees serialization of the
369 * last cycle read ('d2') in pit_expect_msb.
370 */
371 if (!pit_verify_msb(0xfe - i))
372 break;
373 goto success;
6ac40ed0 374 }
6ac40ed0 375 }
9e8912e0 376 printk("Fast TSC calibration failed\n");
6ac40ed0 377 return 0;
9e8912e0
LT
378
379success:
380 /*
381 * Ok, if we get here, then we've seen the
382 * MSB of the PIT decrement 'i' times, and the
383 * error has shrunk to less than 500 ppm.
384 *
385 * As a result, we can depend on there not being
386 * any odd delays anywhere, and the TSC reads are
387 * reliable (within the error). We also adjust the
388 * delta to the middle of the error bars, just
389 * because it looks nicer.
390 *
391 * kHz = ticks / time-in-seconds / 1000;
392 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
393 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
394 */
395 delta += (long)(d2 - d1)/2;
396 delta *= PIT_TICK_RATE;
397 do_div(delta, i*256*1000);
398 printk("Fast TSC calibration using PIT\n");
399 return delta;
6ac40ed0 400}
ec0c15af 401
bfc0f594 402/**
e93ef949 403 * native_calibrate_tsc - calibrate the tsc on boot
bfc0f594 404 */
e93ef949 405unsigned long native_calibrate_tsc(void)
bfc0f594 406{
827014be 407 u64 tsc1, tsc2, delta, ref1, ref2;
fbb16e24 408 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
2d826404 409 unsigned long flags, latch, ms, fast_calibrate;
a977c400 410 int hpet = is_hpet_enabled(), i, loopmin;
bfc0f594 411
6ac40ed0
LT
412 local_irq_save(flags);
413 fast_calibrate = quick_pit_calibrate();
bfc0f594 414 local_irq_restore(flags);
6ac40ed0
LT
415 if (fast_calibrate)
416 return fast_calibrate;
bfc0f594 417
fbb16e24
TG
418 /*
419 * Run 5 calibration loops to get the lowest frequency value
420 * (the best estimate). We use two different calibration modes
421 * here:
422 *
423 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
424 * load a timeout of 50ms. We read the time right after we
425 * started the timer and wait until the PIT count down reaches
426 * zero. In each wait loop iteration we read the TSC and check
427 * the delta to the previous read. We keep track of the min
428 * and max values of that delta. The delta is mostly defined
429 * by the IO time of the PIT access, so we can detect when a
0d2eb44f 430 * SMI/SMM disturbance happened between the two reads. If the
fbb16e24
TG
431 * maximum time is significantly larger than the minimum time,
432 * then we discard the result and have another try.
433 *
434 * 2) Reference counter. If available we use the HPET or the
435 * PMTIMER as a reference to check the sanity of that value.
436 * We use separate TSC readouts and check inside of the
437 * reference read for a SMI/SMM disturbance. We dicard
438 * disturbed values here as well. We do that around the PIT
439 * calibration delay loop as we have to wait for a certain
440 * amount of time anyway.
441 */
a977c400
TG
442
443 /* Preset PIT loop values */
444 latch = CAL_LATCH;
445 ms = CAL_MS;
446 loopmin = CAL_PIT_LOOPS;
447
448 for (i = 0; i < 3; i++) {
ec0c15af 449 unsigned long tsc_pit_khz;
fbb16e24
TG
450
451 /*
452 * Read the start value and the reference count of
ec0c15af
LT
453 * hpet/pmtimer when available. Then do the PIT
454 * calibration, which will take at least 50ms, and
455 * read the end value.
fbb16e24 456 */
ec0c15af 457 local_irq_save(flags);
827014be 458 tsc1 = tsc_read_refs(&ref1, hpet);
a977c400 459 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
827014be 460 tsc2 = tsc_read_refs(&ref2, hpet);
fbb16e24
TG
461 local_irq_restore(flags);
462
ec0c15af
LT
463 /* Pick the lowest PIT TSC calibration so far */
464 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
fbb16e24
TG
465
466 /* hpet or pmtimer available ? */
62627bec 467 if (ref1 == ref2)
fbb16e24
TG
468 continue;
469
470 /* Check, whether the sampling was disturbed by an SMI */
471 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
472 continue;
473
474 tsc2 = (tsc2 - tsc1) * 1000000LL;
d683ef7a 475 if (hpet)
827014be 476 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
d683ef7a 477 else
827014be 478 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
fbb16e24 479
fbb16e24 480 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
a977c400
TG
481
482 /* Check the reference deviation */
483 delta = ((u64) tsc_pit_min) * 100;
484 do_div(delta, tsc_ref_min);
485
486 /*
487 * If both calibration results are inside a 10% window
488 * then we can be sure, that the calibration
489 * succeeded. We break out of the loop right away. We
490 * use the reference value, as it is more precise.
491 */
492 if (delta >= 90 && delta <= 110) {
493 printk(KERN_INFO
494 "TSC: PIT calibration matches %s. %d loops\n",
495 hpet ? "HPET" : "PMTIMER", i + 1);
496 return tsc_ref_min;
fbb16e24
TG
497 }
498
a977c400
TG
499 /*
500 * Check whether PIT failed more than once. This
501 * happens in virtualized environments. We need to
502 * give the virtual PC a slightly longer timeframe for
503 * the HPET/PMTIMER to make the result precise.
504 */
505 if (i == 1 && tsc_pit_min == ULONG_MAX) {
506 latch = CAL2_LATCH;
507 ms = CAL2_MS;
508 loopmin = CAL2_PIT_LOOPS;
509 }
fbb16e24 510 }
bfc0f594
AK
511
512 /*
fbb16e24 513 * Now check the results.
bfc0f594 514 */
fbb16e24
TG
515 if (tsc_pit_min == ULONG_MAX) {
516 /* PIT gave no useful value */
de014d61 517 printk(KERN_WARNING "TSC: Unable to calibrate against PIT\n");
fbb16e24
TG
518
519 /* We don't have an alternative source, disable TSC */
827014be 520 if (!hpet && !ref1 && !ref2) {
fbb16e24
TG
521 printk("TSC: No reference (HPET/PMTIMER) available\n");
522 return 0;
523 }
524
525 /* The alternative source failed as well, disable TSC */
526 if (tsc_ref_min == ULONG_MAX) {
527 printk(KERN_WARNING "TSC: HPET/PMTIMER calibration "
a977c400 528 "failed.\n");
fbb16e24
TG
529 return 0;
530 }
531
532 /* Use the alternative source */
533 printk(KERN_INFO "TSC: using %s reference calibration\n",
534 hpet ? "HPET" : "PMTIMER");
535
536 return tsc_ref_min;
537 }
bfc0f594 538
fbb16e24 539 /* We don't have an alternative source, use the PIT calibration value */
827014be 540 if (!hpet && !ref1 && !ref2) {
fbb16e24
TG
541 printk(KERN_INFO "TSC: Using PIT calibration value\n");
542 return tsc_pit_min;
bfc0f594
AK
543 }
544
fbb16e24
TG
545 /* The alternative source failed, use the PIT calibration value */
546 if (tsc_ref_min == ULONG_MAX) {
a977c400
TG
547 printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed. "
548 "Using PIT calibration\n");
fbb16e24 549 return tsc_pit_min;
bfc0f594
AK
550 }
551
fbb16e24
TG
552 /*
553 * The calibration values differ too much. In doubt, we use
554 * the PIT value as we know that there are PMTIMERs around
a977c400 555 * running at double speed. At least we let the user know:
fbb16e24 556 */
a977c400
TG
557 printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n",
558 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
fbb16e24
TG
559 printk(KERN_INFO "TSC: Using PIT calibration value\n");
560 return tsc_pit_min;
bfc0f594
AK
561}
562
bfc0f594
AK
563int recalibrate_cpu_khz(void)
564{
565#ifndef CONFIG_SMP
566 unsigned long cpu_khz_old = cpu_khz;
567
568 if (cpu_has_tsc) {
2d826404 569 tsc_khz = x86_platform.calibrate_tsc();
e93ef949 570 cpu_khz = tsc_khz;
bfc0f594
AK
571 cpu_data(0).loops_per_jiffy =
572 cpufreq_scale(cpu_data(0).loops_per_jiffy,
573 cpu_khz_old, cpu_khz);
574 return 0;
575 } else
576 return -ENODEV;
577#else
578 return -ENODEV;
579#endif
580}
581
582EXPORT_SYMBOL(recalibrate_cpu_khz);
583
2dbe06fa
AK
584
585/* Accelerators for sched_clock()
586 * convert from cycles(64bits) => nanoseconds (64bits)
587 * basic equation:
588 * ns = cycles / (freq / ns_per_sec)
589 * ns = cycles * (ns_per_sec / freq)
590 * ns = cycles * (10^9 / (cpu_khz * 10^3))
591 * ns = cycles * (10^6 / cpu_khz)
592 *
593 * Then we use scaling math (suggested by george@mvista.com) to get:
594 * ns = cycles * (10^6 * SC / cpu_khz) / SC
595 * ns = cycles * cyc2ns_scale / SC
596 *
597 * And since SC is a constant power of two, we can convert the div
598 * into a shift.
599 *
600 * We can use khz divisor instead of mhz to keep a better precision, since
601 * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
602 * (mathieu.desnoyers@polymtl.ca)
603 *
604 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
605 */
606
607DEFINE_PER_CPU(unsigned long, cyc2ns);
84599f8a 608DEFINE_PER_CPU(unsigned long long, cyc2ns_offset);
2dbe06fa 609
8fbbc4b4 610static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
2dbe06fa 611{
84599f8a 612 unsigned long long tsc_now, ns_now, *offset;
2dbe06fa
AK
613 unsigned long flags, *scale;
614
615 local_irq_save(flags);
616 sched_clock_idle_sleep_event();
617
618 scale = &per_cpu(cyc2ns, cpu);
84599f8a 619 offset = &per_cpu(cyc2ns_offset, cpu);
2dbe06fa
AK
620
621 rdtscll(tsc_now);
622 ns_now = __cycles_2_ns(tsc_now);
623
84599f8a 624 if (cpu_khz) {
2dbe06fa 625 *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
84599f8a
PZ
626 *offset = ns_now - (tsc_now * *scale >> CYC2NS_SCALE_FACTOR);
627 }
2dbe06fa
AK
628
629 sched_clock_idle_wakeup_event(0);
630 local_irq_restore(flags);
631}
632
cd7240c0
SS
633static unsigned long long cyc2ns_suspend;
634
635void save_sched_clock_state(void)
636{
637 if (!sched_clock_stable)
638 return;
639
640 cyc2ns_suspend = sched_clock();
641}
642
643/*
644 * Even on processors with invariant TSC, TSC gets reset in some the
645 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
646 * arbitrary value (still sync'd across cpu's) during resume from such sleep
647 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
648 * that sched_clock() continues from the point where it was left off during
649 * suspend.
650 */
651void restore_sched_clock_state(void)
652{
653 unsigned long long offset;
654 unsigned long flags;
655 int cpu;
656
657 if (!sched_clock_stable)
658 return;
659
660 local_irq_save(flags);
661
0a3aee0d 662 __this_cpu_write(cyc2ns_offset, 0);
cd7240c0
SS
663 offset = cyc2ns_suspend - sched_clock();
664
665 for_each_possible_cpu(cpu)
666 per_cpu(cyc2ns_offset, cpu) = offset;
667
668 local_irq_restore(flags);
669}
670
2dbe06fa
AK
671#ifdef CONFIG_CPU_FREQ
672
673/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
674 * changes.
675 *
676 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
677 * not that important because current Opteron setups do not support
678 * scaling on SMP anyroads.
679 *
680 * Should fix up last_tsc too. Currently gettimeofday in the
681 * first tick after the change will be slightly wrong.
682 */
683
684static unsigned int ref_freq;
685static unsigned long loops_per_jiffy_ref;
686static unsigned long tsc_khz_ref;
687
688static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
689 void *data)
690{
691 struct cpufreq_freqs *freq = data;
931db6a3 692 unsigned long *lpj;
2dbe06fa
AK
693
694 if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
695 return 0;
696
931db6a3 697 lpj = &boot_cpu_data.loops_per_jiffy;
2dbe06fa 698#ifdef CONFIG_SMP
931db6a3 699 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
2dbe06fa 700 lpj = &cpu_data(freq->cpu).loops_per_jiffy;
2dbe06fa
AK
701#endif
702
703 if (!ref_freq) {
704 ref_freq = freq->old;
705 loops_per_jiffy_ref = *lpj;
706 tsc_khz_ref = tsc_khz;
707 }
708 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
709 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
710 (val == CPUFREQ_RESUMECHANGE)) {
878f4f53 711 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
2dbe06fa
AK
712
713 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
714 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
715 mark_tsc_unstable("cpufreq changes");
716 }
717
52a8968c 718 set_cyc2ns_scale(tsc_khz, freq->cpu);
2dbe06fa
AK
719
720 return 0;
721}
722
723static struct notifier_block time_cpufreq_notifier_block = {
724 .notifier_call = time_cpufreq_notifier
725};
726
727static int __init cpufreq_tsc(void)
728{
060700b5
LT
729 if (!cpu_has_tsc)
730 return 0;
731 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
732 return 0;
2dbe06fa
AK
733 cpufreq_register_notifier(&time_cpufreq_notifier_block,
734 CPUFREQ_TRANSITION_NOTIFIER);
735 return 0;
736}
737
738core_initcall(cpufreq_tsc);
739
740#endif /* CONFIG_CPU_FREQ */
8fbbc4b4
AK
741
742/* clocksource code */
743
744static struct clocksource clocksource_tsc;
745
746/*
747 * We compare the TSC to the cycle_last value in the clocksource
748 * structure to avoid a nasty time-warp. This can be observed in a
749 * very small window right after one CPU updated cycle_last under
750 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
751 * is smaller than the cycle_last reference value due to a TSC which
752 * is slighty behind. This delta is nowhere else observable, but in
753 * that case it results in a forward time jump in the range of hours
754 * due to the unsigned delta calculation of the time keeping core
755 * code, which is necessary to support wrapping clocksources like pm
756 * timer.
757 */
8e19608e 758static cycle_t read_tsc(struct clocksource *cs)
8fbbc4b4
AK
759{
760 cycle_t ret = (cycle_t)get_cycles();
761
762 return ret >= clocksource_tsc.cycle_last ?
763 ret : clocksource_tsc.cycle_last;
764}
765
17622339 766static void resume_tsc(struct clocksource *cs)
1be39679
MS
767{
768 clocksource_tsc.cycle_last = 0;
769}
770
8fbbc4b4
AK
771static struct clocksource clocksource_tsc = {
772 .name = "tsc",
773 .rating = 300,
774 .read = read_tsc,
1be39679 775 .resume = resume_tsc,
8fbbc4b4 776 .mask = CLOCKSOURCE_MASK(64),
8fbbc4b4
AK
777 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
778 CLOCK_SOURCE_MUST_VERIFY,
779#ifdef CONFIG_X86_64
433bd805 780 .archdata = { .vread = vread_tsc },
8fbbc4b4
AK
781#endif
782};
783
784void mark_tsc_unstable(char *reason)
785{
786 if (!tsc_unstable) {
787 tsc_unstable = 1;
6c56ccec 788 sched_clock_stable = 0;
e82b8e4e 789 disable_sched_clock_irqtime();
7285dd7f 790 printk(KERN_INFO "Marking TSC unstable due to %s\n", reason);
8fbbc4b4
AK
791 /* Change only the rating, when not registered */
792 if (clocksource_tsc.mult)
7285dd7f
TG
793 clocksource_mark_unstable(&clocksource_tsc);
794 else {
795 clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
8fbbc4b4 796 clocksource_tsc.rating = 0;
7285dd7f 797 }
8fbbc4b4
AK
798 }
799}
800
801EXPORT_SYMBOL_GPL(mark_tsc_unstable);
802
803static int __init dmi_mark_tsc_unstable(const struct dmi_system_id *d)
804{
805 printk(KERN_NOTICE "%s detected: marking TSC unstable.\n",
806 d->ident);
807 tsc_unstable = 1;
808 return 0;
809}
810
811/* List of systems that have known TSC problems */
812static struct dmi_system_id __initdata bad_tsc_dmi_table[] = {
813 {
814 .callback = dmi_mark_tsc_unstable,
815 .ident = "IBM Thinkpad 380XD",
816 .matches = {
817 DMI_MATCH(DMI_BOARD_VENDOR, "IBM"),
818 DMI_MATCH(DMI_BOARD_NAME, "2635FA0"),
819 },
820 },
821 {}
822};
823
395628ef
AK
824static void __init check_system_tsc_reliable(void)
825{
8fbbc4b4 826#ifdef CONFIG_MGEODE_LX
395628ef 827 /* RTSC counts during suspend */
8fbbc4b4 828#define RTSC_SUSP 0x100
8fbbc4b4
AK
829 unsigned long res_low, res_high;
830
831 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
00097c4f 832 /* Geode_LX - the OLPC CPU has a very reliable TSC */
8fbbc4b4 833 if (res_low & RTSC_SUSP)
395628ef 834 tsc_clocksource_reliable = 1;
8fbbc4b4 835#endif
395628ef
AK
836 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
837 tsc_clocksource_reliable = 1;
838}
8fbbc4b4
AK
839
840/*
841 * Make an educated guess if the TSC is trustworthy and synchronized
842 * over all CPUs.
843 */
844__cpuinit int unsynchronized_tsc(void)
845{
846 if (!cpu_has_tsc || tsc_unstable)
847 return 1;
848
3e5095d1 849#ifdef CONFIG_SMP
8fbbc4b4
AK
850 if (apic_is_clustered_box())
851 return 1;
852#endif
853
854 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
855 return 0;
d3b8f889 856
857 if (tsc_clocksource_reliable)
858 return 0;
8fbbc4b4
AK
859 /*
860 * Intel systems are normally all synchronized.
861 * Exceptions must mark TSC as unstable:
862 */
863 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
864 /* assume multi socket systems are not synchronized: */
865 if (num_possible_cpus() > 1)
d3b8f889 866 return 1;
8fbbc4b4
AK
867 }
868
d3b8f889 869 return 0;
8fbbc4b4
AK
870}
871
08ec0c58
JS
872
873static void tsc_refine_calibration_work(struct work_struct *work);
874static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
875/**
876 * tsc_refine_calibration_work - Further refine tsc freq calibration
877 * @work - ignored.
878 *
879 * This functions uses delayed work over a period of a
880 * second to further refine the TSC freq value. Since this is
881 * timer based, instead of loop based, we don't block the boot
882 * process while this longer calibration is done.
883 *
0d2eb44f 884 * If there are any calibration anomalies (too many SMIs, etc),
08ec0c58
JS
885 * or the refined calibration is off by 1% of the fast early
886 * calibration, we throw out the new calibration and use the
887 * early calibration.
888 */
889static void tsc_refine_calibration_work(struct work_struct *work)
890{
891 static u64 tsc_start = -1, ref_start;
892 static int hpet;
893 u64 tsc_stop, ref_stop, delta;
894 unsigned long freq;
895
896 /* Don't bother refining TSC on unstable systems */
897 if (check_tsc_unstable())
898 goto out;
899
900 /*
901 * Since the work is started early in boot, we may be
902 * delayed the first time we expire. So set the workqueue
903 * again once we know timers are working.
904 */
905 if (tsc_start == -1) {
906 /*
907 * Only set hpet once, to avoid mixing hardware
908 * if the hpet becomes enabled later.
909 */
910 hpet = is_hpet_enabled();
911 schedule_delayed_work(&tsc_irqwork, HZ);
912 tsc_start = tsc_read_refs(&ref_start, hpet);
913 return;
914 }
915
916 tsc_stop = tsc_read_refs(&ref_stop, hpet);
917
918 /* hpet or pmtimer available ? */
62627bec 919 if (ref_start == ref_stop)
08ec0c58
JS
920 goto out;
921
922 /* Check, whether the sampling was disturbed by an SMI */
923 if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
924 goto out;
925
926 delta = tsc_stop - tsc_start;
927 delta *= 1000000LL;
928 if (hpet)
929 freq = calc_hpet_ref(delta, ref_start, ref_stop);
930 else
931 freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
932
933 /* Make sure we're within 1% */
934 if (abs(tsc_khz - freq) > tsc_khz/100)
935 goto out;
936
937 tsc_khz = freq;
938 printk(KERN_INFO "Refined TSC clocksource calibration: "
939 "%lu.%03lu MHz.\n", (unsigned long)tsc_khz / 1000,
940 (unsigned long)tsc_khz % 1000);
941
942out:
943 clocksource_register_khz(&clocksource_tsc, tsc_khz);
944}
945
946
947static int __init init_tsc_clocksource(void)
8fbbc4b4 948{
29fe359c 949 if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
a8760eca
TG
950 return 0;
951
395628ef
AK
952 if (tsc_clocksource_reliable)
953 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
8fbbc4b4
AK
954 /* lower the rating if we already know its unstable: */
955 if (check_tsc_unstable()) {
956 clocksource_tsc.rating = 0;
957 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
958 }
08ec0c58
JS
959 schedule_delayed_work(&tsc_irqwork, 0);
960 return 0;
8fbbc4b4 961}
08ec0c58
JS
962/*
963 * We use device_initcall here, to ensure we run after the hpet
964 * is fully initialized, which may occur at fs_initcall time.
965 */
966device_initcall(init_tsc_clocksource);
8fbbc4b4
AK
967
968void __init tsc_init(void)
969{
970 u64 lpj;
971 int cpu;
972
845b3944
TG
973 x86_init.timers.tsc_pre_init();
974
8fbbc4b4
AK
975 if (!cpu_has_tsc)
976 return;
977
2d826404 978 tsc_khz = x86_platform.calibrate_tsc();
e93ef949 979 cpu_khz = tsc_khz;
8fbbc4b4 980
e93ef949 981 if (!tsc_khz) {
8fbbc4b4
AK
982 mark_tsc_unstable("could not calculate TSC khz");
983 return;
984 }
985
8fbbc4b4
AK
986 printk("Detected %lu.%03lu MHz processor.\n",
987 (unsigned long)cpu_khz / 1000,
988 (unsigned long)cpu_khz % 1000);
989
990 /*
991 * Secondary CPUs do not run through tsc_init(), so set up
992 * all the scale factors for all CPUs, assuming the same
993 * speed as the bootup CPU. (cpufreq notifiers will fix this
994 * up if their speed diverges)
995 */
996 for_each_possible_cpu(cpu)
997 set_cyc2ns_scale(cpu_khz, cpu);
998
999 if (tsc_disabled > 0)
1000 return;
1001
1002 /* now allow native_sched_clock() to use rdtsc */
1003 tsc_disabled = 0;
1004
e82b8e4e
VP
1005 if (!no_sched_irq_time)
1006 enable_sched_clock_irqtime();
1007
70de9a97
AK
1008 lpj = ((u64)tsc_khz * 1000);
1009 do_div(lpj, HZ);
1010 lpj_fine = lpj;
1011
8fbbc4b4
AK
1012 use_tsc_delay();
1013 /* Check and install the TSC clocksource */
1014 dmi_check_system(bad_tsc_dmi_table);
1015
1016 if (unsynchronized_tsc())
1017 mark_tsc_unstable("TSCs unsynchronized");
1018
395628ef 1019 check_system_tsc_reliable();
8fbbc4b4
AK
1020}
1021