Merge tag 'perf-core-for-mingo' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / arch / x86 / kernel / tsc.c
CommitLineData
c767a54b
JP
1#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
bfc0f594 3#include <linux/kernel.h>
0ef95533
AK
4#include <linux/sched.h>
5#include <linux/init.h>
6#include <linux/module.h>
7#include <linux/timer.h>
bfc0f594 8#include <linux/acpi_pmtmr.h>
2dbe06fa 9#include <linux/cpufreq.h>
8fbbc4b4
AK
10#include <linux/delay.h>
11#include <linux/clocksource.h>
12#include <linux/percpu.h>
08604bd9 13#include <linux/timex.h>
10b033d4 14#include <linux/static_key.h>
bfc0f594
AK
15
16#include <asm/hpet.h>
8fbbc4b4
AK
17#include <asm/timer.h>
18#include <asm/vgtod.h>
19#include <asm/time.h>
20#include <asm/delay.h>
88b094fb 21#include <asm/hypervisor.h>
08047c4f 22#include <asm/nmi.h>
2d826404 23#include <asm/x86_init.h>
03da3ff1 24#include <asm/geode.h>
0ef95533 25
f24ade3a 26unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
0ef95533 27EXPORT_SYMBOL(cpu_khz);
f24ade3a
IM
28
29unsigned int __read_mostly tsc_khz;
0ef95533
AK
30EXPORT_SYMBOL(tsc_khz);
31
32/*
33 * TSC can be unstable due to cpufreq or due to unsynced TSCs
34 */
f24ade3a 35static int __read_mostly tsc_unstable;
0ef95533
AK
36
37/* native_sched_clock() is called before tsc_init(), so
38 we must start with the TSC soft disabled to prevent
39 erroneous rdtsc usage on !cpu_has_tsc processors */
f24ade3a 40static int __read_mostly tsc_disabled = -1;
0ef95533 41
3bbfafb7 42static DEFINE_STATIC_KEY_FALSE(__use_tsc);
10b033d4 43
28a00184 44int tsc_clocksource_reliable;
57c67da2 45
20d1c86a
PZ
46/*
47 * Use a ring-buffer like data structure, where a writer advances the head by
48 * writing a new data entry and a reader advances the tail when it observes a
49 * new entry.
50 *
51 * Writers are made to wait on readers until there's space to write a new
52 * entry.
53 *
54 * This means that we can always use an {offset, mul} pair to compute a ns
55 * value that is 'roughly' in the right direction, even if we're writing a new
56 * {offset, mul} pair during the clock read.
57 *
58 * The down-side is that we can no longer guarantee strict monotonicity anymore
59 * (assuming the TSC was that to begin with), because while we compute the
60 * intersection point of the two clock slopes and make sure the time is
61 * continuous at the point of switching; we can no longer guarantee a reader is
62 * strictly before or after the switch point.
63 *
64 * It does mean a reader no longer needs to disable IRQs in order to avoid
65 * CPU-Freq updates messing with his times, and similarly an NMI reader will
66 * no longer run the risk of hitting half-written state.
67 */
68
69struct cyc2ns {
70 struct cyc2ns_data data[2]; /* 0 + 2*24 = 48 */
71 struct cyc2ns_data *head; /* 48 + 8 = 56 */
72 struct cyc2ns_data *tail; /* 56 + 8 = 64 */
73}; /* exactly fits one cacheline */
74
75static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
76
77struct cyc2ns_data *cyc2ns_read_begin(void)
78{
79 struct cyc2ns_data *head;
80
81 preempt_disable();
82
83 head = this_cpu_read(cyc2ns.head);
84 /*
85 * Ensure we observe the entry when we observe the pointer to it.
86 * matches the wmb from cyc2ns_write_end().
87 */
88 smp_read_barrier_depends();
89 head->__count++;
90 barrier();
91
92 return head;
93}
94
95void cyc2ns_read_end(struct cyc2ns_data *head)
96{
97 barrier();
98 /*
99 * If we're the outer most nested read; update the tail pointer
100 * when we're done. This notifies possible pending writers
101 * that we've observed the head pointer and that the other
102 * entry is now free.
103 */
104 if (!--head->__count) {
105 /*
106 * x86-TSO does not reorder writes with older reads;
107 * therefore once this write becomes visible to another
108 * cpu, we must be finished reading the cyc2ns_data.
109 *
110 * matches with cyc2ns_write_begin().
111 */
112 this_cpu_write(cyc2ns.tail, head);
113 }
114 preempt_enable();
115}
116
117/*
118 * Begin writing a new @data entry for @cpu.
119 *
120 * Assumes some sort of write side lock; currently 'provided' by the assumption
121 * that cpufreq will call its notifiers sequentially.
122 */
123static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
124{
125 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
126 struct cyc2ns_data *data = c2n->data;
127
128 if (data == c2n->head)
129 data++;
130
131 /* XXX send an IPI to @cpu in order to guarantee a read? */
132
133 /*
134 * When we observe the tail write from cyc2ns_read_end(),
135 * the cpu must be done with that entry and its safe
136 * to start writing to it.
137 */
138 while (c2n->tail == data)
139 cpu_relax();
140
141 return data;
142}
143
144static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
145{
146 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
147
148 /*
149 * Ensure the @data writes are visible before we publish the
150 * entry. Matches the data-depencency in cyc2ns_read_begin().
151 */
152 smp_wmb();
153
154 ACCESS_ONCE(c2n->head) = data;
155}
156
157/*
158 * Accelerators for sched_clock()
57c67da2
PZ
159 * convert from cycles(64bits) => nanoseconds (64bits)
160 * basic equation:
161 * ns = cycles / (freq / ns_per_sec)
162 * ns = cycles * (ns_per_sec / freq)
163 * ns = cycles * (10^9 / (cpu_khz * 10^3))
164 * ns = cycles * (10^6 / cpu_khz)
165 *
166 * Then we use scaling math (suggested by george@mvista.com) to get:
167 * ns = cycles * (10^6 * SC / cpu_khz) / SC
168 * ns = cycles * cyc2ns_scale / SC
169 *
170 * And since SC is a constant power of two, we can convert the div
b20112ed
AH
171 * into a shift. The larger SC is, the more accurate the conversion, but
172 * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
173 * (64-bit result) can be used.
57c67da2 174 *
b20112ed 175 * We can use khz divisor instead of mhz to keep a better precision.
57c67da2
PZ
176 * (mathieu.desnoyers@polymtl.ca)
177 *
178 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
179 */
180
20d1c86a
PZ
181static void cyc2ns_data_init(struct cyc2ns_data *data)
182{
5e3c1afd 183 data->cyc2ns_mul = 0;
b20112ed 184 data->cyc2ns_shift = 0;
20d1c86a
PZ
185 data->cyc2ns_offset = 0;
186 data->__count = 0;
187}
188
189static void cyc2ns_init(int cpu)
190{
191 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
192
193 cyc2ns_data_init(&c2n->data[0]);
194 cyc2ns_data_init(&c2n->data[1]);
195
196 c2n->head = c2n->data;
197 c2n->tail = c2n->data;
198}
199
57c67da2
PZ
200static inline unsigned long long cycles_2_ns(unsigned long long cyc)
201{
20d1c86a
PZ
202 struct cyc2ns_data *data, *tail;
203 unsigned long long ns;
204
205 /*
206 * See cyc2ns_read_*() for details; replicated in order to avoid
207 * an extra few instructions that came with the abstraction.
208 * Notable, it allows us to only do the __count and tail update
209 * dance when its actually needed.
210 */
211
569d6557 212 preempt_disable_notrace();
20d1c86a
PZ
213 data = this_cpu_read(cyc2ns.head);
214 tail = this_cpu_read(cyc2ns.tail);
215
216 if (likely(data == tail)) {
217 ns = data->cyc2ns_offset;
b20112ed 218 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
20d1c86a
PZ
219 } else {
220 data->__count++;
221
222 barrier();
223
224 ns = data->cyc2ns_offset;
b20112ed 225 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
20d1c86a
PZ
226
227 barrier();
228
229 if (!--data->__count)
230 this_cpu_write(cyc2ns.tail, data);
231 }
569d6557 232 preempt_enable_notrace();
20d1c86a 233
57c67da2
PZ
234 return ns;
235}
236
237static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
238{
20d1c86a
PZ
239 unsigned long long tsc_now, ns_now;
240 struct cyc2ns_data *data;
241 unsigned long flags;
57c67da2
PZ
242
243 local_irq_save(flags);
244 sched_clock_idle_sleep_event();
245
20d1c86a
PZ
246 if (!cpu_khz)
247 goto done;
248
249 data = cyc2ns_write_begin(cpu);
57c67da2 250
4ea1636b 251 tsc_now = rdtsc();
57c67da2
PZ
252 ns_now = cycles_2_ns(tsc_now);
253
20d1c86a
PZ
254 /*
255 * Compute a new multiplier as per the above comment and ensure our
256 * time function is continuous; see the comment near struct
257 * cyc2ns_data.
258 */
b20112ed
AH
259 clocks_calc_mult_shift(&data->cyc2ns_mul, &data->cyc2ns_shift, cpu_khz,
260 NSEC_PER_MSEC, 0);
261
20d1c86a 262 data->cyc2ns_offset = ns_now -
b20112ed 263 mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, data->cyc2ns_shift);
20d1c86a
PZ
264
265 cyc2ns_write_end(cpu, data);
57c67da2 266
20d1c86a 267done:
57c67da2
PZ
268 sched_clock_idle_wakeup_event(0);
269 local_irq_restore(flags);
270}
0ef95533
AK
271/*
272 * Scheduler clock - returns current time in nanosec units.
273 */
274u64 native_sched_clock(void)
275{
3bbfafb7
PZ
276 if (static_branch_likely(&__use_tsc)) {
277 u64 tsc_now = rdtsc();
278
279 /* return the value in ns */
280 return cycles_2_ns(tsc_now);
281 }
0ef95533
AK
282
283 /*
284 * Fall back to jiffies if there's no TSC available:
285 * ( But note that we still use it if the TSC is marked
286 * unstable. We do this because unlike Time Of Day,
287 * the scheduler clock tolerates small errors and it's
288 * very important for it to be as fast as the platform
3ad2f3fb 289 * can achieve it. )
0ef95533 290 */
0ef95533 291
3bbfafb7
PZ
292 /* No locking but a rare wrong value is not a big deal: */
293 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
0ef95533
AK
294}
295
a94cab23
AK
296/*
297 * Generate a sched_clock if you already have a TSC value.
298 */
299u64 native_sched_clock_from_tsc(u64 tsc)
300{
301 return cycles_2_ns(tsc);
302}
303
0ef95533
AK
304/* We need to define a real function for sched_clock, to override the
305 weak default version */
306#ifdef CONFIG_PARAVIRT
307unsigned long long sched_clock(void)
308{
309 return paravirt_sched_clock();
310}
311#else
312unsigned long long
313sched_clock(void) __attribute__((alias("native_sched_clock")));
314#endif
315
316int check_tsc_unstable(void)
317{
318 return tsc_unstable;
319}
320EXPORT_SYMBOL_GPL(check_tsc_unstable);
321
c73deb6a
AH
322int check_tsc_disabled(void)
323{
324 return tsc_disabled;
325}
326EXPORT_SYMBOL_GPL(check_tsc_disabled);
327
0ef95533
AK
328#ifdef CONFIG_X86_TSC
329int __init notsc_setup(char *str)
330{
c767a54b 331 pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
0ef95533
AK
332 tsc_disabled = 1;
333 return 1;
334}
335#else
336/*
337 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
338 * in cpu/common.c
339 */
340int __init notsc_setup(char *str)
341{
342 setup_clear_cpu_cap(X86_FEATURE_TSC);
343 return 1;
344}
345#endif
346
347__setup("notsc", notsc_setup);
bfc0f594 348
e82b8e4e
VP
349static int no_sched_irq_time;
350
395628ef
AK
351static int __init tsc_setup(char *str)
352{
353 if (!strcmp(str, "reliable"))
354 tsc_clocksource_reliable = 1;
e82b8e4e
VP
355 if (!strncmp(str, "noirqtime", 9))
356 no_sched_irq_time = 1;
395628ef
AK
357 return 1;
358}
359
360__setup("tsc=", tsc_setup);
361
bfc0f594
AK
362#define MAX_RETRIES 5
363#define SMI_TRESHOLD 50000
364
365/*
366 * Read TSC and the reference counters. Take care of SMI disturbance
367 */
827014be 368static u64 tsc_read_refs(u64 *p, int hpet)
bfc0f594
AK
369{
370 u64 t1, t2;
371 int i;
372
373 for (i = 0; i < MAX_RETRIES; i++) {
374 t1 = get_cycles();
375 if (hpet)
827014be 376 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
bfc0f594 377 else
827014be 378 *p = acpi_pm_read_early();
bfc0f594
AK
379 t2 = get_cycles();
380 if ((t2 - t1) < SMI_TRESHOLD)
381 return t2;
382 }
383 return ULLONG_MAX;
384}
385
d683ef7a
TG
386/*
387 * Calculate the TSC frequency from HPET reference
bfc0f594 388 */
d683ef7a 389static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
bfc0f594 390{
d683ef7a 391 u64 tmp;
bfc0f594 392
d683ef7a
TG
393 if (hpet2 < hpet1)
394 hpet2 += 0x100000000ULL;
395 hpet2 -= hpet1;
396 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
397 do_div(tmp, 1000000);
398 do_div(deltatsc, tmp);
399
400 return (unsigned long) deltatsc;
401}
402
403/*
404 * Calculate the TSC frequency from PMTimer reference
405 */
406static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
407{
408 u64 tmp;
bfc0f594 409
d683ef7a
TG
410 if (!pm1 && !pm2)
411 return ULONG_MAX;
412
413 if (pm2 < pm1)
414 pm2 += (u64)ACPI_PM_OVRRUN;
415 pm2 -= pm1;
416 tmp = pm2 * 1000000000LL;
417 do_div(tmp, PMTMR_TICKS_PER_SEC);
418 do_div(deltatsc, tmp);
419
420 return (unsigned long) deltatsc;
421}
422
a977c400 423#define CAL_MS 10
b7743970 424#define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
a977c400
TG
425#define CAL_PIT_LOOPS 1000
426
427#define CAL2_MS 50
b7743970 428#define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
a977c400
TG
429#define CAL2_PIT_LOOPS 5000
430
cce3e057 431
ec0c15af
LT
432/*
433 * Try to calibrate the TSC against the Programmable
434 * Interrupt Timer and return the frequency of the TSC
435 * in kHz.
436 *
437 * Return ULONG_MAX on failure to calibrate.
438 */
a977c400 439static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
ec0c15af
LT
440{
441 u64 tsc, t1, t2, delta;
442 unsigned long tscmin, tscmax;
443 int pitcnt;
444
445 /* Set the Gate high, disable speaker */
446 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
447
448 /*
449 * Setup CTC channel 2* for mode 0, (interrupt on terminal
450 * count mode), binary count. Set the latch register to 50ms
451 * (LSB then MSB) to begin countdown.
452 */
453 outb(0xb0, 0x43);
a977c400
TG
454 outb(latch & 0xff, 0x42);
455 outb(latch >> 8, 0x42);
ec0c15af
LT
456
457 tsc = t1 = t2 = get_cycles();
458
459 pitcnt = 0;
460 tscmax = 0;
461 tscmin = ULONG_MAX;
462 while ((inb(0x61) & 0x20) == 0) {
463 t2 = get_cycles();
464 delta = t2 - tsc;
465 tsc = t2;
466 if ((unsigned long) delta < tscmin)
467 tscmin = (unsigned int) delta;
468 if ((unsigned long) delta > tscmax)
469 tscmax = (unsigned int) delta;
470 pitcnt++;
471 }
472
473 /*
474 * Sanity checks:
475 *
a977c400 476 * If we were not able to read the PIT more than loopmin
ec0c15af
LT
477 * times, then we have been hit by a massive SMI
478 *
479 * If the maximum is 10 times larger than the minimum,
480 * then we got hit by an SMI as well.
481 */
a977c400 482 if (pitcnt < loopmin || tscmax > 10 * tscmin)
ec0c15af
LT
483 return ULONG_MAX;
484
485 /* Calculate the PIT value */
486 delta = t2 - t1;
a977c400 487 do_div(delta, ms);
ec0c15af
LT
488 return delta;
489}
490
6ac40ed0
LT
491/*
492 * This reads the current MSB of the PIT counter, and
493 * checks if we are running on sufficiently fast and
494 * non-virtualized hardware.
495 *
496 * Our expectations are:
497 *
498 * - the PIT is running at roughly 1.19MHz
499 *
500 * - each IO is going to take about 1us on real hardware,
501 * but we allow it to be much faster (by a factor of 10) or
502 * _slightly_ slower (ie we allow up to a 2us read+counter
503 * update - anything else implies a unacceptably slow CPU
504 * or PIT for the fast calibration to work.
505 *
506 * - with 256 PIT ticks to read the value, we have 214us to
507 * see the same MSB (and overhead like doing a single TSC
508 * read per MSB value etc).
509 *
510 * - We're doing 2 reads per loop (LSB, MSB), and we expect
511 * them each to take about a microsecond on real hardware.
512 * So we expect a count value of around 100. But we'll be
513 * generous, and accept anything over 50.
514 *
515 * - if the PIT is stuck, and we see *many* more reads, we
516 * return early (and the next caller of pit_expect_msb()
517 * then consider it a failure when they don't see the
518 * next expected value).
519 *
520 * These expectations mean that we know that we have seen the
521 * transition from one expected value to another with a fairly
522 * high accuracy, and we didn't miss any events. We can thus
523 * use the TSC value at the transitions to calculate a pretty
524 * good value for the TSC frequencty.
525 */
b6e61eef
LT
526static inline int pit_verify_msb(unsigned char val)
527{
528 /* Ignore LSB */
529 inb(0x42);
530 return inb(0x42) == val;
531}
532
9e8912e0 533static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
6ac40ed0 534{
9e8912e0 535 int count;
68f30fbe 536 u64 tsc = 0, prev_tsc = 0;
bfc0f594 537
6ac40ed0 538 for (count = 0; count < 50000; count++) {
b6e61eef 539 if (!pit_verify_msb(val))
6ac40ed0 540 break;
68f30fbe 541 prev_tsc = tsc;
9e8912e0 542 tsc = get_cycles();
6ac40ed0 543 }
68f30fbe 544 *deltap = get_cycles() - prev_tsc;
9e8912e0
LT
545 *tscp = tsc;
546
547 /*
548 * We require _some_ success, but the quality control
549 * will be based on the error terms on the TSC values.
550 */
551 return count > 5;
6ac40ed0
LT
552}
553
554/*
9e8912e0
LT
555 * How many MSB values do we want to see? We aim for
556 * a maximum error rate of 500ppm (in practice the
557 * real error is much smaller), but refuse to spend
68f30fbe 558 * more than 50ms on it.
6ac40ed0 559 */
68f30fbe 560#define MAX_QUICK_PIT_MS 50
9e8912e0 561#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
bfc0f594 562
6ac40ed0
LT
563static unsigned long quick_pit_calibrate(void)
564{
9e8912e0
LT
565 int i;
566 u64 tsc, delta;
567 unsigned long d1, d2;
568
6ac40ed0 569 /* Set the Gate high, disable speaker */
bfc0f594
AK
570 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
571
6ac40ed0
LT
572 /*
573 * Counter 2, mode 0 (one-shot), binary count
574 *
575 * NOTE! Mode 2 decrements by two (and then the
576 * output is flipped each time, giving the same
577 * final output frequency as a decrement-by-one),
578 * so mode 0 is much better when looking at the
579 * individual counts.
580 */
bfc0f594 581 outb(0xb0, 0x43);
bfc0f594 582
6ac40ed0
LT
583 /* Start at 0xffff */
584 outb(0xff, 0x42);
585 outb(0xff, 0x42);
586
a6a80e1d
LT
587 /*
588 * The PIT starts counting at the next edge, so we
589 * need to delay for a microsecond. The easiest way
590 * to do that is to just read back the 16-bit counter
591 * once from the PIT.
592 */
b6e61eef 593 pit_verify_msb(0);
a6a80e1d 594
9e8912e0
LT
595 if (pit_expect_msb(0xff, &tsc, &d1)) {
596 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
597 if (!pit_expect_msb(0xff-i, &delta, &d2))
598 break;
599
5aac644a
AH
600 delta -= tsc;
601
602 /*
603 * Extrapolate the error and fail fast if the error will
604 * never be below 500 ppm.
605 */
606 if (i == 1 &&
607 d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
608 return 0;
609
9e8912e0
LT
610 /*
611 * Iterate until the error is less than 500 ppm
612 */
b6e61eef
LT
613 if (d1+d2 >= delta >> 11)
614 continue;
615
616 /*
617 * Check the PIT one more time to verify that
618 * all TSC reads were stable wrt the PIT.
619 *
620 * This also guarantees serialization of the
621 * last cycle read ('d2') in pit_expect_msb.
622 */
623 if (!pit_verify_msb(0xfe - i))
624 break;
625 goto success;
6ac40ed0 626 }
6ac40ed0 627 }
52045217 628 pr_info("Fast TSC calibration failed\n");
6ac40ed0 629 return 0;
9e8912e0
LT
630
631success:
632 /*
633 * Ok, if we get here, then we've seen the
634 * MSB of the PIT decrement 'i' times, and the
635 * error has shrunk to less than 500 ppm.
636 *
637 * As a result, we can depend on there not being
638 * any odd delays anywhere, and the TSC reads are
68f30fbe 639 * reliable (within the error).
9e8912e0
LT
640 *
641 * kHz = ticks / time-in-seconds / 1000;
642 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
643 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
644 */
9e8912e0
LT
645 delta *= PIT_TICK_RATE;
646 do_div(delta, i*256*1000);
c767a54b 647 pr_info("Fast TSC calibration using PIT\n");
9e8912e0 648 return delta;
6ac40ed0 649}
ec0c15af 650
bfc0f594 651/**
e93ef949 652 * native_calibrate_tsc - calibrate the tsc on boot
bfc0f594 653 */
e93ef949 654unsigned long native_calibrate_tsc(void)
bfc0f594 655{
827014be 656 u64 tsc1, tsc2, delta, ref1, ref2;
fbb16e24 657 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
2d826404 658 unsigned long flags, latch, ms, fast_calibrate;
a977c400 659 int hpet = is_hpet_enabled(), i, loopmin;
bfc0f594 660
7da7c156
BG
661 /* Calibrate TSC using MSR for Intel Atom SoCs */
662 local_irq_save(flags);
5f0e0309 663 fast_calibrate = try_msr_calibrate_tsc();
7da7c156 664 local_irq_restore(flags);
5f0e0309 665 if (fast_calibrate)
7da7c156 666 return fast_calibrate;
7da7c156 667
6ac40ed0
LT
668 local_irq_save(flags);
669 fast_calibrate = quick_pit_calibrate();
bfc0f594 670 local_irq_restore(flags);
6ac40ed0
LT
671 if (fast_calibrate)
672 return fast_calibrate;
bfc0f594 673
fbb16e24
TG
674 /*
675 * Run 5 calibration loops to get the lowest frequency value
676 * (the best estimate). We use two different calibration modes
677 * here:
678 *
679 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
680 * load a timeout of 50ms. We read the time right after we
681 * started the timer and wait until the PIT count down reaches
682 * zero. In each wait loop iteration we read the TSC and check
683 * the delta to the previous read. We keep track of the min
684 * and max values of that delta. The delta is mostly defined
685 * by the IO time of the PIT access, so we can detect when a
0d2eb44f 686 * SMI/SMM disturbance happened between the two reads. If the
fbb16e24
TG
687 * maximum time is significantly larger than the minimum time,
688 * then we discard the result and have another try.
689 *
690 * 2) Reference counter. If available we use the HPET or the
691 * PMTIMER as a reference to check the sanity of that value.
692 * We use separate TSC readouts and check inside of the
693 * reference read for a SMI/SMM disturbance. We dicard
694 * disturbed values here as well. We do that around the PIT
695 * calibration delay loop as we have to wait for a certain
696 * amount of time anyway.
697 */
a977c400
TG
698
699 /* Preset PIT loop values */
700 latch = CAL_LATCH;
701 ms = CAL_MS;
702 loopmin = CAL_PIT_LOOPS;
703
704 for (i = 0; i < 3; i++) {
ec0c15af 705 unsigned long tsc_pit_khz;
fbb16e24
TG
706
707 /*
708 * Read the start value and the reference count of
ec0c15af
LT
709 * hpet/pmtimer when available. Then do the PIT
710 * calibration, which will take at least 50ms, and
711 * read the end value.
fbb16e24 712 */
ec0c15af 713 local_irq_save(flags);
827014be 714 tsc1 = tsc_read_refs(&ref1, hpet);
a977c400 715 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
827014be 716 tsc2 = tsc_read_refs(&ref2, hpet);
fbb16e24
TG
717 local_irq_restore(flags);
718
ec0c15af
LT
719 /* Pick the lowest PIT TSC calibration so far */
720 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
fbb16e24
TG
721
722 /* hpet or pmtimer available ? */
62627bec 723 if (ref1 == ref2)
fbb16e24
TG
724 continue;
725
726 /* Check, whether the sampling was disturbed by an SMI */
727 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
728 continue;
729
730 tsc2 = (tsc2 - tsc1) * 1000000LL;
d683ef7a 731 if (hpet)
827014be 732 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
d683ef7a 733 else
827014be 734 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
fbb16e24 735
fbb16e24 736 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
a977c400
TG
737
738 /* Check the reference deviation */
739 delta = ((u64) tsc_pit_min) * 100;
740 do_div(delta, tsc_ref_min);
741
742 /*
743 * If both calibration results are inside a 10% window
744 * then we can be sure, that the calibration
745 * succeeded. We break out of the loop right away. We
746 * use the reference value, as it is more precise.
747 */
748 if (delta >= 90 && delta <= 110) {
c767a54b
JP
749 pr_info("PIT calibration matches %s. %d loops\n",
750 hpet ? "HPET" : "PMTIMER", i + 1);
a977c400 751 return tsc_ref_min;
fbb16e24
TG
752 }
753
a977c400
TG
754 /*
755 * Check whether PIT failed more than once. This
756 * happens in virtualized environments. We need to
757 * give the virtual PC a slightly longer timeframe for
758 * the HPET/PMTIMER to make the result precise.
759 */
760 if (i == 1 && tsc_pit_min == ULONG_MAX) {
761 latch = CAL2_LATCH;
762 ms = CAL2_MS;
763 loopmin = CAL2_PIT_LOOPS;
764 }
fbb16e24 765 }
bfc0f594
AK
766
767 /*
fbb16e24 768 * Now check the results.
bfc0f594 769 */
fbb16e24
TG
770 if (tsc_pit_min == ULONG_MAX) {
771 /* PIT gave no useful value */
c767a54b 772 pr_warn("Unable to calibrate against PIT\n");
fbb16e24
TG
773
774 /* We don't have an alternative source, disable TSC */
827014be 775 if (!hpet && !ref1 && !ref2) {
c767a54b 776 pr_notice("No reference (HPET/PMTIMER) available\n");
fbb16e24
TG
777 return 0;
778 }
779
780 /* The alternative source failed as well, disable TSC */
781 if (tsc_ref_min == ULONG_MAX) {
c767a54b 782 pr_warn("HPET/PMTIMER calibration failed\n");
fbb16e24
TG
783 return 0;
784 }
785
786 /* Use the alternative source */
c767a54b
JP
787 pr_info("using %s reference calibration\n",
788 hpet ? "HPET" : "PMTIMER");
fbb16e24
TG
789
790 return tsc_ref_min;
791 }
bfc0f594 792
fbb16e24 793 /* We don't have an alternative source, use the PIT calibration value */
827014be 794 if (!hpet && !ref1 && !ref2) {
c767a54b 795 pr_info("Using PIT calibration value\n");
fbb16e24 796 return tsc_pit_min;
bfc0f594
AK
797 }
798
fbb16e24
TG
799 /* The alternative source failed, use the PIT calibration value */
800 if (tsc_ref_min == ULONG_MAX) {
c767a54b 801 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
fbb16e24 802 return tsc_pit_min;
bfc0f594
AK
803 }
804
fbb16e24
TG
805 /*
806 * The calibration values differ too much. In doubt, we use
807 * the PIT value as we know that there are PMTIMERs around
a977c400 808 * running at double speed. At least we let the user know:
fbb16e24 809 */
c767a54b
JP
810 pr_warn("PIT calibration deviates from %s: %lu %lu\n",
811 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
812 pr_info("Using PIT calibration value\n");
fbb16e24 813 return tsc_pit_min;
bfc0f594
AK
814}
815
bfc0f594
AK
816int recalibrate_cpu_khz(void)
817{
818#ifndef CONFIG_SMP
819 unsigned long cpu_khz_old = cpu_khz;
820
821 if (cpu_has_tsc) {
2d826404 822 tsc_khz = x86_platform.calibrate_tsc();
e93ef949 823 cpu_khz = tsc_khz;
bfc0f594
AK
824 cpu_data(0).loops_per_jiffy =
825 cpufreq_scale(cpu_data(0).loops_per_jiffy,
826 cpu_khz_old, cpu_khz);
827 return 0;
828 } else
829 return -ENODEV;
830#else
831 return -ENODEV;
832#endif
833}
834
835EXPORT_SYMBOL(recalibrate_cpu_khz);
836
2dbe06fa 837
cd7240c0
SS
838static unsigned long long cyc2ns_suspend;
839
b74f05d6 840void tsc_save_sched_clock_state(void)
cd7240c0 841{
35af99e6 842 if (!sched_clock_stable())
cd7240c0
SS
843 return;
844
845 cyc2ns_suspend = sched_clock();
846}
847
848/*
849 * Even on processors with invariant TSC, TSC gets reset in some the
850 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
851 * arbitrary value (still sync'd across cpu's) during resume from such sleep
852 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
853 * that sched_clock() continues from the point where it was left off during
854 * suspend.
855 */
b74f05d6 856void tsc_restore_sched_clock_state(void)
cd7240c0
SS
857{
858 unsigned long long offset;
859 unsigned long flags;
860 int cpu;
861
35af99e6 862 if (!sched_clock_stable())
cd7240c0
SS
863 return;
864
865 local_irq_save(flags);
866
20d1c86a
PZ
867 /*
868 * We're comming out of suspend, there's no concurrency yet; don't
869 * bother being nice about the RCU stuff, just write to both
870 * data fields.
871 */
872
873 this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
874 this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
875
cd7240c0
SS
876 offset = cyc2ns_suspend - sched_clock();
877
20d1c86a
PZ
878 for_each_possible_cpu(cpu) {
879 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
880 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
881 }
cd7240c0
SS
882
883 local_irq_restore(flags);
884}
885
2dbe06fa
AK
886#ifdef CONFIG_CPU_FREQ
887
888/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
889 * changes.
890 *
891 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
892 * not that important because current Opteron setups do not support
893 * scaling on SMP anyroads.
894 *
895 * Should fix up last_tsc too. Currently gettimeofday in the
896 * first tick after the change will be slightly wrong.
897 */
898
899static unsigned int ref_freq;
900static unsigned long loops_per_jiffy_ref;
901static unsigned long tsc_khz_ref;
902
903static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
904 void *data)
905{
906 struct cpufreq_freqs *freq = data;
931db6a3 907 unsigned long *lpj;
2dbe06fa
AK
908
909 if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
910 return 0;
911
931db6a3 912 lpj = &boot_cpu_data.loops_per_jiffy;
2dbe06fa 913#ifdef CONFIG_SMP
931db6a3 914 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
2dbe06fa 915 lpj = &cpu_data(freq->cpu).loops_per_jiffy;
2dbe06fa
AK
916#endif
917
918 if (!ref_freq) {
919 ref_freq = freq->old;
920 loops_per_jiffy_ref = *lpj;
921 tsc_khz_ref = tsc_khz;
922 }
923 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
0b443ead 924 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
878f4f53 925 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
2dbe06fa
AK
926
927 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
928 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
929 mark_tsc_unstable("cpufreq changes");
2dbe06fa 930
3896c329
PZ
931 set_cyc2ns_scale(tsc_khz, freq->cpu);
932 }
2dbe06fa
AK
933
934 return 0;
935}
936
937static struct notifier_block time_cpufreq_notifier_block = {
938 .notifier_call = time_cpufreq_notifier
939};
940
941static int __init cpufreq_tsc(void)
942{
060700b5
LT
943 if (!cpu_has_tsc)
944 return 0;
945 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
946 return 0;
2dbe06fa
AK
947 cpufreq_register_notifier(&time_cpufreq_notifier_block,
948 CPUFREQ_TRANSITION_NOTIFIER);
949 return 0;
950}
951
952core_initcall(cpufreq_tsc);
953
954#endif /* CONFIG_CPU_FREQ */
8fbbc4b4
AK
955
956/* clocksource code */
957
958static struct clocksource clocksource_tsc;
959
960/*
09ec5442 961 * We used to compare the TSC to the cycle_last value in the clocksource
8fbbc4b4
AK
962 * structure to avoid a nasty time-warp. This can be observed in a
963 * very small window right after one CPU updated cycle_last under
964 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
965 * is smaller than the cycle_last reference value due to a TSC which
966 * is slighty behind. This delta is nowhere else observable, but in
967 * that case it results in a forward time jump in the range of hours
968 * due to the unsigned delta calculation of the time keeping core
969 * code, which is necessary to support wrapping clocksources like pm
970 * timer.
09ec5442
TG
971 *
972 * This sanity check is now done in the core timekeeping code.
973 * checking the result of read_tsc() - cycle_last for being negative.
974 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
8fbbc4b4 975 */
8e19608e 976static cycle_t read_tsc(struct clocksource *cs)
8fbbc4b4 977{
27c63405 978 return (cycle_t)rdtsc_ordered();
1be39679
MS
979}
980
09ec5442
TG
981/*
982 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
983 */
8fbbc4b4
AK
984static struct clocksource clocksource_tsc = {
985 .name = "tsc",
986 .rating = 300,
987 .read = read_tsc,
988 .mask = CLOCKSOURCE_MASK(64),
8fbbc4b4
AK
989 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
990 CLOCK_SOURCE_MUST_VERIFY,
98d0ac38 991 .archdata = { .vclock_mode = VCLOCK_TSC },
8fbbc4b4
AK
992};
993
994void mark_tsc_unstable(char *reason)
995{
996 if (!tsc_unstable) {
997 tsc_unstable = 1;
35af99e6 998 clear_sched_clock_stable();
e82b8e4e 999 disable_sched_clock_irqtime();
c767a54b 1000 pr_info("Marking TSC unstable due to %s\n", reason);
8fbbc4b4
AK
1001 /* Change only the rating, when not registered */
1002 if (clocksource_tsc.mult)
7285dd7f
TG
1003 clocksource_mark_unstable(&clocksource_tsc);
1004 else {
1005 clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
8fbbc4b4 1006 clocksource_tsc.rating = 0;
7285dd7f 1007 }
8fbbc4b4
AK
1008 }
1009}
1010
1011EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1012
395628ef
AK
1013static void __init check_system_tsc_reliable(void)
1014{
03da3ff1
DW
1015#if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1016 if (is_geode_lx()) {
1017 /* RTSC counts during suspend */
8fbbc4b4 1018#define RTSC_SUSP 0x100
03da3ff1 1019 unsigned long res_low, res_high;
8fbbc4b4 1020
03da3ff1
DW
1021 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1022 /* Geode_LX - the OLPC CPU has a very reliable TSC */
1023 if (res_low & RTSC_SUSP)
1024 tsc_clocksource_reliable = 1;
1025 }
8fbbc4b4 1026#endif
395628ef
AK
1027 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1028 tsc_clocksource_reliable = 1;
1029}
8fbbc4b4
AK
1030
1031/*
1032 * Make an educated guess if the TSC is trustworthy and synchronized
1033 * over all CPUs.
1034 */
148f9bb8 1035int unsynchronized_tsc(void)
8fbbc4b4
AK
1036{
1037 if (!cpu_has_tsc || tsc_unstable)
1038 return 1;
1039
3e5095d1 1040#ifdef CONFIG_SMP
8fbbc4b4
AK
1041 if (apic_is_clustered_box())
1042 return 1;
1043#endif
1044
1045 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1046 return 0;
d3b8f889 1047
1048 if (tsc_clocksource_reliable)
1049 return 0;
8fbbc4b4
AK
1050 /*
1051 * Intel systems are normally all synchronized.
1052 * Exceptions must mark TSC as unstable:
1053 */
1054 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1055 /* assume multi socket systems are not synchronized: */
1056 if (num_possible_cpus() > 1)
d3b8f889 1057 return 1;
8fbbc4b4
AK
1058 }
1059
d3b8f889 1060 return 0;
8fbbc4b4
AK
1061}
1062
08ec0c58
JS
1063
1064static void tsc_refine_calibration_work(struct work_struct *work);
1065static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1066/**
1067 * tsc_refine_calibration_work - Further refine tsc freq calibration
1068 * @work - ignored.
1069 *
1070 * This functions uses delayed work over a period of a
1071 * second to further refine the TSC freq value. Since this is
1072 * timer based, instead of loop based, we don't block the boot
1073 * process while this longer calibration is done.
1074 *
0d2eb44f 1075 * If there are any calibration anomalies (too many SMIs, etc),
08ec0c58
JS
1076 * or the refined calibration is off by 1% of the fast early
1077 * calibration, we throw out the new calibration and use the
1078 * early calibration.
1079 */
1080static void tsc_refine_calibration_work(struct work_struct *work)
1081{
1082 static u64 tsc_start = -1, ref_start;
1083 static int hpet;
1084 u64 tsc_stop, ref_stop, delta;
1085 unsigned long freq;
1086
1087 /* Don't bother refining TSC on unstable systems */
1088 if (check_tsc_unstable())
1089 goto out;
1090
1091 /*
1092 * Since the work is started early in boot, we may be
1093 * delayed the first time we expire. So set the workqueue
1094 * again once we know timers are working.
1095 */
1096 if (tsc_start == -1) {
1097 /*
1098 * Only set hpet once, to avoid mixing hardware
1099 * if the hpet becomes enabled later.
1100 */
1101 hpet = is_hpet_enabled();
1102 schedule_delayed_work(&tsc_irqwork, HZ);
1103 tsc_start = tsc_read_refs(&ref_start, hpet);
1104 return;
1105 }
1106
1107 tsc_stop = tsc_read_refs(&ref_stop, hpet);
1108
1109 /* hpet or pmtimer available ? */
62627bec 1110 if (ref_start == ref_stop)
08ec0c58
JS
1111 goto out;
1112
1113 /* Check, whether the sampling was disturbed by an SMI */
1114 if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1115 goto out;
1116
1117 delta = tsc_stop - tsc_start;
1118 delta *= 1000000LL;
1119 if (hpet)
1120 freq = calc_hpet_ref(delta, ref_start, ref_stop);
1121 else
1122 freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1123
1124 /* Make sure we're within 1% */
1125 if (abs(tsc_khz - freq) > tsc_khz/100)
1126 goto out;
1127
1128 tsc_khz = freq;
c767a54b
JP
1129 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1130 (unsigned long)tsc_khz / 1000,
1131 (unsigned long)tsc_khz % 1000);
08ec0c58
JS
1132
1133out:
1134 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1135}
1136
1137
1138static int __init init_tsc_clocksource(void)
8fbbc4b4 1139{
29fe359c 1140 if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
a8760eca
TG
1141 return 0;
1142
395628ef
AK
1143 if (tsc_clocksource_reliable)
1144 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
8fbbc4b4
AK
1145 /* lower the rating if we already know its unstable: */
1146 if (check_tsc_unstable()) {
1147 clocksource_tsc.rating = 0;
1148 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
1149 }
57779dc2 1150
82f9c080
FT
1151 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1152 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1153
57779dc2
AK
1154 /*
1155 * Trust the results of the earlier calibration on systems
1156 * exporting a reliable TSC.
1157 */
1158 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
1159 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1160 return 0;
1161 }
1162
08ec0c58
JS
1163 schedule_delayed_work(&tsc_irqwork, 0);
1164 return 0;
8fbbc4b4 1165}
08ec0c58
JS
1166/*
1167 * We use device_initcall here, to ensure we run after the hpet
1168 * is fully initialized, which may occur at fs_initcall time.
1169 */
1170device_initcall(init_tsc_clocksource);
8fbbc4b4
AK
1171
1172void __init tsc_init(void)
1173{
1174 u64 lpj;
1175 int cpu;
1176
845b3944
TG
1177 x86_init.timers.tsc_pre_init();
1178
b47dcbdc
AL
1179 if (!cpu_has_tsc) {
1180 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
8fbbc4b4 1181 return;
b47dcbdc 1182 }
8fbbc4b4 1183
2d826404 1184 tsc_khz = x86_platform.calibrate_tsc();
e93ef949 1185 cpu_khz = tsc_khz;
8fbbc4b4 1186
e93ef949 1187 if (!tsc_khz) {
8fbbc4b4 1188 mark_tsc_unstable("could not calculate TSC khz");
b47dcbdc 1189 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
8fbbc4b4
AK
1190 return;
1191 }
1192
c767a54b
JP
1193 pr_info("Detected %lu.%03lu MHz processor\n",
1194 (unsigned long)cpu_khz / 1000,
1195 (unsigned long)cpu_khz % 1000);
8fbbc4b4
AK
1196
1197 /*
1198 * Secondary CPUs do not run through tsc_init(), so set up
1199 * all the scale factors for all CPUs, assuming the same
1200 * speed as the bootup CPU. (cpufreq notifiers will fix this
1201 * up if their speed diverges)
1202 */
20d1c86a
PZ
1203 for_each_possible_cpu(cpu) {
1204 cyc2ns_init(cpu);
8fbbc4b4 1205 set_cyc2ns_scale(cpu_khz, cpu);
20d1c86a 1206 }
8fbbc4b4
AK
1207
1208 if (tsc_disabled > 0)
1209 return;
1210
1211 /* now allow native_sched_clock() to use rdtsc */
10b033d4 1212
8fbbc4b4 1213 tsc_disabled = 0;
3bbfafb7 1214 static_branch_enable(&__use_tsc);
8fbbc4b4 1215
e82b8e4e
VP
1216 if (!no_sched_irq_time)
1217 enable_sched_clock_irqtime();
1218
70de9a97
AK
1219 lpj = ((u64)tsc_khz * 1000);
1220 do_div(lpj, HZ);
1221 lpj_fine = lpj;
1222
8fbbc4b4 1223 use_tsc_delay();
8fbbc4b4
AK
1224
1225 if (unsynchronized_tsc())
1226 mark_tsc_unstable("TSCs unsynchronized");
1227
395628ef 1228 check_system_tsc_reliable();
8fbbc4b4
AK
1229}
1230
b565201c
JS
1231#ifdef CONFIG_SMP
1232/*
1233 * If we have a constant TSC and are using the TSC for the delay loop,
1234 * we can skip clock calibration if another cpu in the same socket has already
1235 * been calibrated. This assumes that CONSTANT_TSC applies to all
1236 * cpus in the socket - this should be a safe assumption.
1237 */
148f9bb8 1238unsigned long calibrate_delay_is_known(void)
b565201c
JS
1239{
1240 int i, cpu = smp_processor_id();
1241
1242 if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
1243 return 0;
1244
1245 for_each_online_cpu(i)
1246 if (cpu_data(i).phys_proc_id == cpu_data(cpu).phys_proc_id)
1247 return cpu_data(i).loops_per_jiffy;
1248 return 0;
1249}
1250#endif