tree-wide: fix 'lenght' typo in comments and code
[linux-2.6-block.git] / arch / x86 / kernel / tsc.c
CommitLineData
bfc0f594 1#include <linux/kernel.h>
0ef95533
AK
2#include <linux/sched.h>
3#include <linux/init.h>
4#include <linux/module.h>
5#include <linux/timer.h>
bfc0f594 6#include <linux/acpi_pmtmr.h>
2dbe06fa 7#include <linux/cpufreq.h>
8fbbc4b4
AK
8#include <linux/dmi.h>
9#include <linux/delay.h>
10#include <linux/clocksource.h>
11#include <linux/percpu.h>
08604bd9 12#include <linux/timex.h>
bfc0f594
AK
13
14#include <asm/hpet.h>
8fbbc4b4
AK
15#include <asm/timer.h>
16#include <asm/vgtod.h>
17#include <asm/time.h>
18#include <asm/delay.h>
88b094fb 19#include <asm/hypervisor.h>
08047c4f 20#include <asm/nmi.h>
2d826404 21#include <asm/x86_init.h>
0ef95533 22
f24ade3a 23unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
0ef95533 24EXPORT_SYMBOL(cpu_khz);
f24ade3a
IM
25
26unsigned int __read_mostly tsc_khz;
0ef95533
AK
27EXPORT_SYMBOL(tsc_khz);
28
29/*
30 * TSC can be unstable due to cpufreq or due to unsynced TSCs
31 */
f24ade3a 32static int __read_mostly tsc_unstable;
0ef95533
AK
33
34/* native_sched_clock() is called before tsc_init(), so
35 we must start with the TSC soft disabled to prevent
36 erroneous rdtsc usage on !cpu_has_tsc processors */
f24ade3a 37static int __read_mostly tsc_disabled = -1;
0ef95533 38
395628ef 39static int tsc_clocksource_reliable;
0ef95533
AK
40/*
41 * Scheduler clock - returns current time in nanosec units.
42 */
43u64 native_sched_clock(void)
44{
45 u64 this_offset;
46
47 /*
48 * Fall back to jiffies if there's no TSC available:
49 * ( But note that we still use it if the TSC is marked
50 * unstable. We do this because unlike Time Of Day,
51 * the scheduler clock tolerates small errors and it's
52 * very important for it to be as fast as the platform
53 * can achive it. )
54 */
55 if (unlikely(tsc_disabled)) {
56 /* No locking but a rare wrong value is not a big deal: */
57 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
58 }
59
60 /* read the Time Stamp Counter: */
61 rdtscll(this_offset);
62
63 /* return the value in ns */
7cbaef9c 64 return __cycles_2_ns(this_offset);
0ef95533
AK
65}
66
67/* We need to define a real function for sched_clock, to override the
68 weak default version */
69#ifdef CONFIG_PARAVIRT
70unsigned long long sched_clock(void)
71{
72 return paravirt_sched_clock();
73}
74#else
75unsigned long long
76sched_clock(void) __attribute__((alias("native_sched_clock")));
77#endif
78
79int check_tsc_unstable(void)
80{
81 return tsc_unstable;
82}
83EXPORT_SYMBOL_GPL(check_tsc_unstable);
84
85#ifdef CONFIG_X86_TSC
86int __init notsc_setup(char *str)
87{
88 printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
89 "cannot disable TSC completely.\n");
90 tsc_disabled = 1;
91 return 1;
92}
93#else
94/*
95 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
96 * in cpu/common.c
97 */
98int __init notsc_setup(char *str)
99{
100 setup_clear_cpu_cap(X86_FEATURE_TSC);
101 return 1;
102}
103#endif
104
105__setup("notsc", notsc_setup);
bfc0f594 106
395628ef
AK
107static int __init tsc_setup(char *str)
108{
109 if (!strcmp(str, "reliable"))
110 tsc_clocksource_reliable = 1;
111 return 1;
112}
113
114__setup("tsc=", tsc_setup);
115
bfc0f594
AK
116#define MAX_RETRIES 5
117#define SMI_TRESHOLD 50000
118
119/*
120 * Read TSC and the reference counters. Take care of SMI disturbance
121 */
827014be 122static u64 tsc_read_refs(u64 *p, int hpet)
bfc0f594
AK
123{
124 u64 t1, t2;
125 int i;
126
127 for (i = 0; i < MAX_RETRIES; i++) {
128 t1 = get_cycles();
129 if (hpet)
827014be 130 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
bfc0f594 131 else
827014be 132 *p = acpi_pm_read_early();
bfc0f594
AK
133 t2 = get_cycles();
134 if ((t2 - t1) < SMI_TRESHOLD)
135 return t2;
136 }
137 return ULLONG_MAX;
138}
139
d683ef7a
TG
140/*
141 * Calculate the TSC frequency from HPET reference
bfc0f594 142 */
d683ef7a 143static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
bfc0f594 144{
d683ef7a 145 u64 tmp;
bfc0f594 146
d683ef7a
TG
147 if (hpet2 < hpet1)
148 hpet2 += 0x100000000ULL;
149 hpet2 -= hpet1;
150 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
151 do_div(tmp, 1000000);
152 do_div(deltatsc, tmp);
153
154 return (unsigned long) deltatsc;
155}
156
157/*
158 * Calculate the TSC frequency from PMTimer reference
159 */
160static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
161{
162 u64 tmp;
bfc0f594 163
d683ef7a
TG
164 if (!pm1 && !pm2)
165 return ULONG_MAX;
166
167 if (pm2 < pm1)
168 pm2 += (u64)ACPI_PM_OVRRUN;
169 pm2 -= pm1;
170 tmp = pm2 * 1000000000LL;
171 do_div(tmp, PMTMR_TICKS_PER_SEC);
172 do_div(deltatsc, tmp);
173
174 return (unsigned long) deltatsc;
175}
176
a977c400 177#define CAL_MS 10
cce3e057 178#define CAL_LATCH (CLOCK_TICK_RATE / (1000 / CAL_MS))
a977c400
TG
179#define CAL_PIT_LOOPS 1000
180
181#define CAL2_MS 50
182#define CAL2_LATCH (CLOCK_TICK_RATE / (1000 / CAL2_MS))
183#define CAL2_PIT_LOOPS 5000
184
cce3e057 185
ec0c15af
LT
186/*
187 * Try to calibrate the TSC against the Programmable
188 * Interrupt Timer and return the frequency of the TSC
189 * in kHz.
190 *
191 * Return ULONG_MAX on failure to calibrate.
192 */
a977c400 193static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
ec0c15af
LT
194{
195 u64 tsc, t1, t2, delta;
196 unsigned long tscmin, tscmax;
197 int pitcnt;
198
199 /* Set the Gate high, disable speaker */
200 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
201
202 /*
203 * Setup CTC channel 2* for mode 0, (interrupt on terminal
204 * count mode), binary count. Set the latch register to 50ms
205 * (LSB then MSB) to begin countdown.
206 */
207 outb(0xb0, 0x43);
a977c400
TG
208 outb(latch & 0xff, 0x42);
209 outb(latch >> 8, 0x42);
ec0c15af
LT
210
211 tsc = t1 = t2 = get_cycles();
212
213 pitcnt = 0;
214 tscmax = 0;
215 tscmin = ULONG_MAX;
216 while ((inb(0x61) & 0x20) == 0) {
217 t2 = get_cycles();
218 delta = t2 - tsc;
219 tsc = t2;
220 if ((unsigned long) delta < tscmin)
221 tscmin = (unsigned int) delta;
222 if ((unsigned long) delta > tscmax)
223 tscmax = (unsigned int) delta;
224 pitcnt++;
225 }
226
227 /*
228 * Sanity checks:
229 *
a977c400 230 * If we were not able to read the PIT more than loopmin
ec0c15af
LT
231 * times, then we have been hit by a massive SMI
232 *
233 * If the maximum is 10 times larger than the minimum,
234 * then we got hit by an SMI as well.
235 */
a977c400 236 if (pitcnt < loopmin || tscmax > 10 * tscmin)
ec0c15af
LT
237 return ULONG_MAX;
238
239 /* Calculate the PIT value */
240 delta = t2 - t1;
a977c400 241 do_div(delta, ms);
ec0c15af
LT
242 return delta;
243}
244
6ac40ed0
LT
245/*
246 * This reads the current MSB of the PIT counter, and
247 * checks if we are running on sufficiently fast and
248 * non-virtualized hardware.
249 *
250 * Our expectations are:
251 *
252 * - the PIT is running at roughly 1.19MHz
253 *
254 * - each IO is going to take about 1us on real hardware,
255 * but we allow it to be much faster (by a factor of 10) or
256 * _slightly_ slower (ie we allow up to a 2us read+counter
257 * update - anything else implies a unacceptably slow CPU
258 * or PIT for the fast calibration to work.
259 *
260 * - with 256 PIT ticks to read the value, we have 214us to
261 * see the same MSB (and overhead like doing a single TSC
262 * read per MSB value etc).
263 *
264 * - We're doing 2 reads per loop (LSB, MSB), and we expect
265 * them each to take about a microsecond on real hardware.
266 * So we expect a count value of around 100. But we'll be
267 * generous, and accept anything over 50.
268 *
269 * - if the PIT is stuck, and we see *many* more reads, we
270 * return early (and the next caller of pit_expect_msb()
271 * then consider it a failure when they don't see the
272 * next expected value).
273 *
274 * These expectations mean that we know that we have seen the
275 * transition from one expected value to another with a fairly
276 * high accuracy, and we didn't miss any events. We can thus
277 * use the TSC value at the transitions to calculate a pretty
278 * good value for the TSC frequencty.
279 */
b6e61eef
LT
280static inline int pit_verify_msb(unsigned char val)
281{
282 /* Ignore LSB */
283 inb(0x42);
284 return inb(0x42) == val;
285}
286
9e8912e0 287static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
6ac40ed0 288{
9e8912e0
LT
289 int count;
290 u64 tsc = 0;
bfc0f594 291
6ac40ed0 292 for (count = 0; count < 50000; count++) {
b6e61eef 293 if (!pit_verify_msb(val))
6ac40ed0 294 break;
9e8912e0 295 tsc = get_cycles();
6ac40ed0 296 }
9e8912e0
LT
297 *deltap = get_cycles() - tsc;
298 *tscp = tsc;
299
300 /*
301 * We require _some_ success, but the quality control
302 * will be based on the error terms on the TSC values.
303 */
304 return count > 5;
6ac40ed0
LT
305}
306
307/*
9e8912e0
LT
308 * How many MSB values do we want to see? We aim for
309 * a maximum error rate of 500ppm (in practice the
310 * real error is much smaller), but refuse to spend
311 * more than 25ms on it.
6ac40ed0 312 */
9e8912e0
LT
313#define MAX_QUICK_PIT_MS 25
314#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
bfc0f594 315
6ac40ed0
LT
316static unsigned long quick_pit_calibrate(void)
317{
9e8912e0
LT
318 int i;
319 u64 tsc, delta;
320 unsigned long d1, d2;
321
6ac40ed0 322 /* Set the Gate high, disable speaker */
bfc0f594
AK
323 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
324
6ac40ed0
LT
325 /*
326 * Counter 2, mode 0 (one-shot), binary count
327 *
328 * NOTE! Mode 2 decrements by two (and then the
329 * output is flipped each time, giving the same
330 * final output frequency as a decrement-by-one),
331 * so mode 0 is much better when looking at the
332 * individual counts.
333 */
bfc0f594 334 outb(0xb0, 0x43);
bfc0f594 335
6ac40ed0
LT
336 /* Start at 0xffff */
337 outb(0xff, 0x42);
338 outb(0xff, 0x42);
339
a6a80e1d
LT
340 /*
341 * The PIT starts counting at the next edge, so we
342 * need to delay for a microsecond. The easiest way
343 * to do that is to just read back the 16-bit counter
344 * once from the PIT.
345 */
b6e61eef 346 pit_verify_msb(0);
a6a80e1d 347
9e8912e0
LT
348 if (pit_expect_msb(0xff, &tsc, &d1)) {
349 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
350 if (!pit_expect_msb(0xff-i, &delta, &d2))
351 break;
352
353 /*
354 * Iterate until the error is less than 500 ppm
355 */
356 delta -= tsc;
b6e61eef
LT
357 if (d1+d2 >= delta >> 11)
358 continue;
359
360 /*
361 * Check the PIT one more time to verify that
362 * all TSC reads were stable wrt the PIT.
363 *
364 * This also guarantees serialization of the
365 * last cycle read ('d2') in pit_expect_msb.
366 */
367 if (!pit_verify_msb(0xfe - i))
368 break;
369 goto success;
6ac40ed0 370 }
6ac40ed0 371 }
9e8912e0 372 printk("Fast TSC calibration failed\n");
6ac40ed0 373 return 0;
9e8912e0
LT
374
375success:
376 /*
377 * Ok, if we get here, then we've seen the
378 * MSB of the PIT decrement 'i' times, and the
379 * error has shrunk to less than 500 ppm.
380 *
381 * As a result, we can depend on there not being
382 * any odd delays anywhere, and the TSC reads are
383 * reliable (within the error). We also adjust the
384 * delta to the middle of the error bars, just
385 * because it looks nicer.
386 *
387 * kHz = ticks / time-in-seconds / 1000;
388 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
389 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
390 */
391 delta += (long)(d2 - d1)/2;
392 delta *= PIT_TICK_RATE;
393 do_div(delta, i*256*1000);
394 printk("Fast TSC calibration using PIT\n");
395 return delta;
6ac40ed0 396}
ec0c15af 397
bfc0f594 398/**
e93ef949 399 * native_calibrate_tsc - calibrate the tsc on boot
bfc0f594 400 */
e93ef949 401unsigned long native_calibrate_tsc(void)
bfc0f594 402{
827014be 403 u64 tsc1, tsc2, delta, ref1, ref2;
fbb16e24 404 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
2d826404 405 unsigned long flags, latch, ms, fast_calibrate;
a977c400 406 int hpet = is_hpet_enabled(), i, loopmin;
bfc0f594 407
6ac40ed0
LT
408 local_irq_save(flags);
409 fast_calibrate = quick_pit_calibrate();
bfc0f594 410 local_irq_restore(flags);
6ac40ed0
LT
411 if (fast_calibrate)
412 return fast_calibrate;
bfc0f594 413
fbb16e24
TG
414 /*
415 * Run 5 calibration loops to get the lowest frequency value
416 * (the best estimate). We use two different calibration modes
417 * here:
418 *
419 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
420 * load a timeout of 50ms. We read the time right after we
421 * started the timer and wait until the PIT count down reaches
422 * zero. In each wait loop iteration we read the TSC and check
423 * the delta to the previous read. We keep track of the min
424 * and max values of that delta. The delta is mostly defined
425 * by the IO time of the PIT access, so we can detect when a
426 * SMI/SMM disturbance happend between the two reads. If the
427 * maximum time is significantly larger than the minimum time,
428 * then we discard the result and have another try.
429 *
430 * 2) Reference counter. If available we use the HPET or the
431 * PMTIMER as a reference to check the sanity of that value.
432 * We use separate TSC readouts and check inside of the
433 * reference read for a SMI/SMM disturbance. We dicard
434 * disturbed values here as well. We do that around the PIT
435 * calibration delay loop as we have to wait for a certain
436 * amount of time anyway.
437 */
a977c400
TG
438
439 /* Preset PIT loop values */
440 latch = CAL_LATCH;
441 ms = CAL_MS;
442 loopmin = CAL_PIT_LOOPS;
443
444 for (i = 0; i < 3; i++) {
ec0c15af 445 unsigned long tsc_pit_khz;
fbb16e24
TG
446
447 /*
448 * Read the start value and the reference count of
ec0c15af
LT
449 * hpet/pmtimer when available. Then do the PIT
450 * calibration, which will take at least 50ms, and
451 * read the end value.
fbb16e24 452 */
ec0c15af 453 local_irq_save(flags);
827014be 454 tsc1 = tsc_read_refs(&ref1, hpet);
a977c400 455 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
827014be 456 tsc2 = tsc_read_refs(&ref2, hpet);
fbb16e24
TG
457 local_irq_restore(flags);
458
ec0c15af
LT
459 /* Pick the lowest PIT TSC calibration so far */
460 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
fbb16e24
TG
461
462 /* hpet or pmtimer available ? */
827014be 463 if (!hpet && !ref1 && !ref2)
fbb16e24
TG
464 continue;
465
466 /* Check, whether the sampling was disturbed by an SMI */
467 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
468 continue;
469
470 tsc2 = (tsc2 - tsc1) * 1000000LL;
d683ef7a 471 if (hpet)
827014be 472 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
d683ef7a 473 else
827014be 474 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
fbb16e24 475
fbb16e24 476 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
a977c400
TG
477
478 /* Check the reference deviation */
479 delta = ((u64) tsc_pit_min) * 100;
480 do_div(delta, tsc_ref_min);
481
482 /*
483 * If both calibration results are inside a 10% window
484 * then we can be sure, that the calibration
485 * succeeded. We break out of the loop right away. We
486 * use the reference value, as it is more precise.
487 */
488 if (delta >= 90 && delta <= 110) {
489 printk(KERN_INFO
490 "TSC: PIT calibration matches %s. %d loops\n",
491 hpet ? "HPET" : "PMTIMER", i + 1);
492 return tsc_ref_min;
fbb16e24
TG
493 }
494
a977c400
TG
495 /*
496 * Check whether PIT failed more than once. This
497 * happens in virtualized environments. We need to
498 * give the virtual PC a slightly longer timeframe for
499 * the HPET/PMTIMER to make the result precise.
500 */
501 if (i == 1 && tsc_pit_min == ULONG_MAX) {
502 latch = CAL2_LATCH;
503 ms = CAL2_MS;
504 loopmin = CAL2_PIT_LOOPS;
505 }
fbb16e24 506 }
bfc0f594
AK
507
508 /*
fbb16e24 509 * Now check the results.
bfc0f594 510 */
fbb16e24
TG
511 if (tsc_pit_min == ULONG_MAX) {
512 /* PIT gave no useful value */
de014d61 513 printk(KERN_WARNING "TSC: Unable to calibrate against PIT\n");
fbb16e24
TG
514
515 /* We don't have an alternative source, disable TSC */
827014be 516 if (!hpet && !ref1 && !ref2) {
fbb16e24
TG
517 printk("TSC: No reference (HPET/PMTIMER) available\n");
518 return 0;
519 }
520
521 /* The alternative source failed as well, disable TSC */
522 if (tsc_ref_min == ULONG_MAX) {
523 printk(KERN_WARNING "TSC: HPET/PMTIMER calibration "
a977c400 524 "failed.\n");
fbb16e24
TG
525 return 0;
526 }
527
528 /* Use the alternative source */
529 printk(KERN_INFO "TSC: using %s reference calibration\n",
530 hpet ? "HPET" : "PMTIMER");
531
532 return tsc_ref_min;
533 }
bfc0f594 534
fbb16e24 535 /* We don't have an alternative source, use the PIT calibration value */
827014be 536 if (!hpet && !ref1 && !ref2) {
fbb16e24
TG
537 printk(KERN_INFO "TSC: Using PIT calibration value\n");
538 return tsc_pit_min;
bfc0f594
AK
539 }
540
fbb16e24
TG
541 /* The alternative source failed, use the PIT calibration value */
542 if (tsc_ref_min == ULONG_MAX) {
a977c400
TG
543 printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed. "
544 "Using PIT calibration\n");
fbb16e24 545 return tsc_pit_min;
bfc0f594
AK
546 }
547
fbb16e24
TG
548 /*
549 * The calibration values differ too much. In doubt, we use
550 * the PIT value as we know that there are PMTIMERs around
a977c400 551 * running at double speed. At least we let the user know:
fbb16e24 552 */
a977c400
TG
553 printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n",
554 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
fbb16e24
TG
555 printk(KERN_INFO "TSC: Using PIT calibration value\n");
556 return tsc_pit_min;
bfc0f594
AK
557}
558
bfc0f594
AK
559int recalibrate_cpu_khz(void)
560{
561#ifndef CONFIG_SMP
562 unsigned long cpu_khz_old = cpu_khz;
563
564 if (cpu_has_tsc) {
2d826404 565 tsc_khz = x86_platform.calibrate_tsc();
e93ef949 566 cpu_khz = tsc_khz;
bfc0f594
AK
567 cpu_data(0).loops_per_jiffy =
568 cpufreq_scale(cpu_data(0).loops_per_jiffy,
569 cpu_khz_old, cpu_khz);
570 return 0;
571 } else
572 return -ENODEV;
573#else
574 return -ENODEV;
575#endif
576}
577
578EXPORT_SYMBOL(recalibrate_cpu_khz);
579
2dbe06fa
AK
580
581/* Accelerators for sched_clock()
582 * convert from cycles(64bits) => nanoseconds (64bits)
583 * basic equation:
584 * ns = cycles / (freq / ns_per_sec)
585 * ns = cycles * (ns_per_sec / freq)
586 * ns = cycles * (10^9 / (cpu_khz * 10^3))
587 * ns = cycles * (10^6 / cpu_khz)
588 *
589 * Then we use scaling math (suggested by george@mvista.com) to get:
590 * ns = cycles * (10^6 * SC / cpu_khz) / SC
591 * ns = cycles * cyc2ns_scale / SC
592 *
593 * And since SC is a constant power of two, we can convert the div
594 * into a shift.
595 *
596 * We can use khz divisor instead of mhz to keep a better precision, since
597 * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
598 * (mathieu.desnoyers@polymtl.ca)
599 *
600 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
601 */
602
603DEFINE_PER_CPU(unsigned long, cyc2ns);
84599f8a 604DEFINE_PER_CPU(unsigned long long, cyc2ns_offset);
2dbe06fa 605
8fbbc4b4 606static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
2dbe06fa 607{
84599f8a 608 unsigned long long tsc_now, ns_now, *offset;
2dbe06fa
AK
609 unsigned long flags, *scale;
610
611 local_irq_save(flags);
612 sched_clock_idle_sleep_event();
613
614 scale = &per_cpu(cyc2ns, cpu);
84599f8a 615 offset = &per_cpu(cyc2ns_offset, cpu);
2dbe06fa
AK
616
617 rdtscll(tsc_now);
618 ns_now = __cycles_2_ns(tsc_now);
619
84599f8a 620 if (cpu_khz) {
2dbe06fa 621 *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
84599f8a
PZ
622 *offset = ns_now - (tsc_now * *scale >> CYC2NS_SCALE_FACTOR);
623 }
2dbe06fa
AK
624
625 sched_clock_idle_wakeup_event(0);
626 local_irq_restore(flags);
627}
628
629#ifdef CONFIG_CPU_FREQ
630
631/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
632 * changes.
633 *
634 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
635 * not that important because current Opteron setups do not support
636 * scaling on SMP anyroads.
637 *
638 * Should fix up last_tsc too. Currently gettimeofday in the
639 * first tick after the change will be slightly wrong.
640 */
641
642static unsigned int ref_freq;
643static unsigned long loops_per_jiffy_ref;
644static unsigned long tsc_khz_ref;
645
646static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
647 void *data)
648{
649 struct cpufreq_freqs *freq = data;
931db6a3 650 unsigned long *lpj;
2dbe06fa
AK
651
652 if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
653 return 0;
654
931db6a3 655 lpj = &boot_cpu_data.loops_per_jiffy;
2dbe06fa 656#ifdef CONFIG_SMP
931db6a3 657 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
2dbe06fa 658 lpj = &cpu_data(freq->cpu).loops_per_jiffy;
2dbe06fa
AK
659#endif
660
661 if (!ref_freq) {
662 ref_freq = freq->old;
663 loops_per_jiffy_ref = *lpj;
664 tsc_khz_ref = tsc_khz;
665 }
666 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
667 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
668 (val == CPUFREQ_RESUMECHANGE)) {
878f4f53 669 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
2dbe06fa
AK
670
671 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
672 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
673 mark_tsc_unstable("cpufreq changes");
674 }
675
52a8968c 676 set_cyc2ns_scale(tsc_khz, freq->cpu);
2dbe06fa
AK
677
678 return 0;
679}
680
681static struct notifier_block time_cpufreq_notifier_block = {
682 .notifier_call = time_cpufreq_notifier
683};
684
685static int __init cpufreq_tsc(void)
686{
060700b5
LT
687 if (!cpu_has_tsc)
688 return 0;
689 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
690 return 0;
2dbe06fa
AK
691 cpufreq_register_notifier(&time_cpufreq_notifier_block,
692 CPUFREQ_TRANSITION_NOTIFIER);
693 return 0;
694}
695
696core_initcall(cpufreq_tsc);
697
698#endif /* CONFIG_CPU_FREQ */
8fbbc4b4
AK
699
700/* clocksource code */
701
702static struct clocksource clocksource_tsc;
703
704/*
705 * We compare the TSC to the cycle_last value in the clocksource
706 * structure to avoid a nasty time-warp. This can be observed in a
707 * very small window right after one CPU updated cycle_last under
708 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
709 * is smaller than the cycle_last reference value due to a TSC which
710 * is slighty behind. This delta is nowhere else observable, but in
711 * that case it results in a forward time jump in the range of hours
712 * due to the unsigned delta calculation of the time keeping core
713 * code, which is necessary to support wrapping clocksources like pm
714 * timer.
715 */
8e19608e 716static cycle_t read_tsc(struct clocksource *cs)
8fbbc4b4
AK
717{
718 cycle_t ret = (cycle_t)get_cycles();
719
720 return ret >= clocksource_tsc.cycle_last ?
721 ret : clocksource_tsc.cycle_last;
722}
723
431ceb83 724#ifdef CONFIG_X86_64
8fbbc4b4
AK
725static cycle_t __vsyscall_fn vread_tsc(void)
726{
7d96fd41
PT
727 cycle_t ret;
728
729 /*
730 * Surround the RDTSC by barriers, to make sure it's not
731 * speculated to outside the seqlock critical section and
732 * does not cause time warps:
733 */
734 rdtsc_barrier();
735 ret = (cycle_t)vget_cycles();
736 rdtsc_barrier();
8fbbc4b4
AK
737
738 return ret >= __vsyscall_gtod_data.clock.cycle_last ?
739 ret : __vsyscall_gtod_data.clock.cycle_last;
740}
431ceb83 741#endif
8fbbc4b4 742
1be39679
MS
743static void resume_tsc(void)
744{
745 clocksource_tsc.cycle_last = 0;
746}
747
8fbbc4b4
AK
748static struct clocksource clocksource_tsc = {
749 .name = "tsc",
750 .rating = 300,
751 .read = read_tsc,
1be39679 752 .resume = resume_tsc,
8fbbc4b4
AK
753 .mask = CLOCKSOURCE_MASK(64),
754 .shift = 22,
755 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
756 CLOCK_SOURCE_MUST_VERIFY,
757#ifdef CONFIG_X86_64
758 .vread = vread_tsc,
759#endif
760};
761
762void mark_tsc_unstable(char *reason)
763{
764 if (!tsc_unstable) {
765 tsc_unstable = 1;
6c56ccec 766 sched_clock_stable = 0;
7285dd7f 767 printk(KERN_INFO "Marking TSC unstable due to %s\n", reason);
8fbbc4b4
AK
768 /* Change only the rating, when not registered */
769 if (clocksource_tsc.mult)
7285dd7f
TG
770 clocksource_mark_unstable(&clocksource_tsc);
771 else {
772 clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
8fbbc4b4 773 clocksource_tsc.rating = 0;
7285dd7f 774 }
8fbbc4b4
AK
775 }
776}
777
778EXPORT_SYMBOL_GPL(mark_tsc_unstable);
779
780static int __init dmi_mark_tsc_unstable(const struct dmi_system_id *d)
781{
782 printk(KERN_NOTICE "%s detected: marking TSC unstable.\n",
783 d->ident);
784 tsc_unstable = 1;
785 return 0;
786}
787
788/* List of systems that have known TSC problems */
789static struct dmi_system_id __initdata bad_tsc_dmi_table[] = {
790 {
791 .callback = dmi_mark_tsc_unstable,
792 .ident = "IBM Thinkpad 380XD",
793 .matches = {
794 DMI_MATCH(DMI_BOARD_VENDOR, "IBM"),
795 DMI_MATCH(DMI_BOARD_NAME, "2635FA0"),
796 },
797 },
798 {}
799};
800
395628ef
AK
801static void __init check_system_tsc_reliable(void)
802{
8fbbc4b4 803#ifdef CONFIG_MGEODE_LX
395628ef 804 /* RTSC counts during suspend */
8fbbc4b4 805#define RTSC_SUSP 0x100
8fbbc4b4
AK
806 unsigned long res_low, res_high;
807
808 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
395628ef 809 /* Geode_LX - the OLPC CPU has a possibly a very reliable TSC */
8fbbc4b4 810 if (res_low & RTSC_SUSP)
395628ef 811 tsc_clocksource_reliable = 1;
8fbbc4b4 812#endif
395628ef
AK
813 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
814 tsc_clocksource_reliable = 1;
815}
8fbbc4b4
AK
816
817/*
818 * Make an educated guess if the TSC is trustworthy and synchronized
819 * over all CPUs.
820 */
821__cpuinit int unsynchronized_tsc(void)
822{
823 if (!cpu_has_tsc || tsc_unstable)
824 return 1;
825
3e5095d1 826#ifdef CONFIG_SMP
8fbbc4b4
AK
827 if (apic_is_clustered_box())
828 return 1;
829#endif
830
831 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
832 return 0;
833 /*
834 * Intel systems are normally all synchronized.
835 * Exceptions must mark TSC as unstable:
836 */
837 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
838 /* assume multi socket systems are not synchronized: */
839 if (num_possible_cpus() > 1)
840 tsc_unstable = 1;
841 }
842
843 return tsc_unstable;
844}
845
846static void __init init_tsc_clocksource(void)
847{
848 clocksource_tsc.mult = clocksource_khz2mult(tsc_khz,
849 clocksource_tsc.shift);
395628ef
AK
850 if (tsc_clocksource_reliable)
851 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
8fbbc4b4
AK
852 /* lower the rating if we already know its unstable: */
853 if (check_tsc_unstable()) {
854 clocksource_tsc.rating = 0;
855 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
856 }
857 clocksource_register(&clocksource_tsc);
858}
859
08047c4f
TG
860#ifdef CONFIG_X86_64
861/*
862 * calibrate_cpu is used on systems with fixed rate TSCs to determine
863 * processor frequency
864 */
865#define TICK_COUNT 100000000
866static unsigned long __init calibrate_cpu(void)
867{
868 int tsc_start, tsc_now;
869 int i, no_ctr_free;
870 unsigned long evntsel3 = 0, pmc3 = 0, pmc_now = 0;
871 unsigned long flags;
872
873 for (i = 0; i < 4; i++)
874 if (avail_to_resrv_perfctr_nmi_bit(i))
875 break;
876 no_ctr_free = (i == 4);
877 if (no_ctr_free) {
878 WARN(1, KERN_WARNING "Warning: AMD perfctrs busy ... "
879 "cpu_khz value may be incorrect.\n");
880 i = 3;
881 rdmsrl(MSR_K7_EVNTSEL3, evntsel3);
882 wrmsrl(MSR_K7_EVNTSEL3, 0);
883 rdmsrl(MSR_K7_PERFCTR3, pmc3);
884 } else {
885 reserve_perfctr_nmi(MSR_K7_PERFCTR0 + i);
886 reserve_evntsel_nmi(MSR_K7_EVNTSEL0 + i);
887 }
888 local_irq_save(flags);
889 /* start measuring cycles, incrementing from 0 */
890 wrmsrl(MSR_K7_PERFCTR0 + i, 0);
891 wrmsrl(MSR_K7_EVNTSEL0 + i, 1 << 22 | 3 << 16 | 0x76);
892 rdtscl(tsc_start);
893 do {
894 rdmsrl(MSR_K7_PERFCTR0 + i, pmc_now);
895 tsc_now = get_cycles();
896 } while ((tsc_now - tsc_start) < TICK_COUNT);
897
898 local_irq_restore(flags);
899 if (no_ctr_free) {
900 wrmsrl(MSR_K7_EVNTSEL3, 0);
901 wrmsrl(MSR_K7_PERFCTR3, pmc3);
902 wrmsrl(MSR_K7_EVNTSEL3, evntsel3);
903 } else {
904 release_perfctr_nmi(MSR_K7_PERFCTR0 + i);
905 release_evntsel_nmi(MSR_K7_EVNTSEL0 + i);
906 }
907
908 return pmc_now * tsc_khz / (tsc_now - tsc_start);
909}
910#else
911static inline unsigned long calibrate_cpu(void) { return cpu_khz; }
912#endif
913
8fbbc4b4
AK
914void __init tsc_init(void)
915{
916 u64 lpj;
917 int cpu;
918
845b3944
TG
919 x86_init.timers.tsc_pre_init();
920
8fbbc4b4
AK
921 if (!cpu_has_tsc)
922 return;
923
2d826404 924 tsc_khz = x86_platform.calibrate_tsc();
e93ef949 925 cpu_khz = tsc_khz;
8fbbc4b4 926
e93ef949 927 if (!tsc_khz) {
8fbbc4b4
AK
928 mark_tsc_unstable("could not calculate TSC khz");
929 return;
930 }
931
8fbbc4b4
AK
932 if (cpu_has(&boot_cpu_data, X86_FEATURE_CONSTANT_TSC) &&
933 (boot_cpu_data.x86_vendor == X86_VENDOR_AMD))
934 cpu_khz = calibrate_cpu();
8fbbc4b4 935
8fbbc4b4
AK
936 printk("Detected %lu.%03lu MHz processor.\n",
937 (unsigned long)cpu_khz / 1000,
938 (unsigned long)cpu_khz % 1000);
939
940 /*
941 * Secondary CPUs do not run through tsc_init(), so set up
942 * all the scale factors for all CPUs, assuming the same
943 * speed as the bootup CPU. (cpufreq notifiers will fix this
944 * up if their speed diverges)
945 */
946 for_each_possible_cpu(cpu)
947 set_cyc2ns_scale(cpu_khz, cpu);
948
949 if (tsc_disabled > 0)
950 return;
951
952 /* now allow native_sched_clock() to use rdtsc */
953 tsc_disabled = 0;
954
70de9a97
AK
955 lpj = ((u64)tsc_khz * 1000);
956 do_div(lpj, HZ);
957 lpj_fine = lpj;
958
8fbbc4b4
AK
959 use_tsc_delay();
960 /* Check and install the TSC clocksource */
961 dmi_check_system(bad_tsc_dmi_table);
962
963 if (unsynchronized_tsc())
964 mark_tsc_unstable("TSCs unsynchronized");
965
395628ef 966 check_system_tsc_reliable();
8fbbc4b4
AK
967 init_tsc_clocksource();
968}
969