x86, mce: Fix mce resume on 32bit
[linux-2.6-block.git] / arch / x86 / kernel / tlb_uv.c
CommitLineData
1812924b
CW
1/*
2 * SGI UltraViolet TLB flush routines.
3 *
4 * (c) 2008 Cliff Wickman <cpw@sgi.com>, SGI.
5 *
6 * This code is released under the GNU General Public License version 2 or
7 * later.
8 */
aef8f5b8 9#include <linux/seq_file.h>
1812924b
CW
10#include <linux/proc_fs.h>
11#include <linux/kernel.h>
12
1812924b 13#include <asm/mmu_context.h>
bdbcdd48 14#include <asm/uv/uv.h>
1812924b 15#include <asm/uv/uv_mmrs.h>
b4c286e6 16#include <asm/uv/uv_hub.h>
1812924b 17#include <asm/uv/uv_bau.h>
7b6aa335 18#include <asm/apic.h>
b4c286e6 19#include <asm/idle.h>
b194b120 20#include <asm/tsc.h>
99dd8713 21#include <asm/irq_vectors.h>
1812924b 22
b4c286e6
IM
23static struct bau_control **uv_bau_table_bases __read_mostly;
24static int uv_bau_retry_limit __read_mostly;
25
26/* position of pnode (which is nasid>>1): */
27static int uv_nshift __read_mostly;
94ca8e48
CW
28/* base pnode in this partition */
29static int uv_partition_base_pnode __read_mostly;
b4c286e6
IM
30
31static unsigned long uv_mmask __read_mostly;
1812924b 32
dc163a41
IM
33static DEFINE_PER_CPU(struct ptc_stats, ptcstats);
34static DEFINE_PER_CPU(struct bau_control, bau_control);
1812924b 35
9674f35b
CW
36/*
37 * Determine the first node on a blade.
38 */
39static int __init blade_to_first_node(int blade)
40{
41 int node, b;
42
43 for_each_online_node(node) {
44 b = uv_node_to_blade_id(node);
45 if (blade == b)
46 return node;
47 }
94ca8e48 48 return -1; /* shouldn't happen */
9674f35b
CW
49}
50
51/*
52 * Determine the apicid of the first cpu on a blade.
53 */
54static int __init blade_to_first_apicid(int blade)
55{
56 int cpu;
57
58 for_each_present_cpu(cpu)
59 if (blade == uv_cpu_to_blade_id(cpu))
60 return per_cpu(x86_cpu_to_apicid, cpu);
61 return -1;
62}
63
1812924b
CW
64/*
65 * Free a software acknowledge hardware resource by clearing its Pending
66 * bit. This will return a reply to the sender.
67 * If the message has timed out, a reply has already been sent by the
68 * hardware but the resource has not been released. In that case our
69 * clear of the Timeout bit (as well) will free the resource. No reply will
70 * be sent (the hardware will only do one reply per message).
71 */
b194b120 72static void uv_reply_to_message(int resource,
b4c286e6
IM
73 struct bau_payload_queue_entry *msg,
74 struct bau_msg_status *msp)
1812924b 75{
b194b120 76 unsigned long dw;
1812924b 77
b194b120 78 dw = (1 << (resource + UV_SW_ACK_NPENDING)) | (1 << resource);
1812924b
CW
79 msg->replied_to = 1;
80 msg->sw_ack_vector = 0;
81 if (msp)
82 msp->seen_by.bits = 0;
b194b120 83 uv_write_local_mmr(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, dw);
1812924b
CW
84}
85
86/*
87 * Do all the things a cpu should do for a TLB shootdown message.
88 * Other cpu's may come here at the same time for this message.
89 */
b194b120 90static void uv_bau_process_message(struct bau_payload_queue_entry *msg,
b4c286e6 91 int msg_slot, int sw_ack_slot)
1812924b 92{
1812924b
CW
93 unsigned long this_cpu_mask;
94 struct bau_msg_status *msp;
b4c286e6 95 int cpu;
1812924b
CW
96
97 msp = __get_cpu_var(bau_control).msg_statuses + msg_slot;
98 cpu = uv_blade_processor_id();
99 msg->number_of_cpus =
9674f35b 100 uv_blade_nr_online_cpus(uv_node_to_blade_id(numa_node_id()));
dc163a41 101 this_cpu_mask = 1UL << cpu;
1812924b
CW
102 if (msp->seen_by.bits & this_cpu_mask)
103 return;
104 atomic_or_long(&msp->seen_by.bits, this_cpu_mask);
105
106 if (msg->replied_to == 1)
107 return;
108
109 if (msg->address == TLB_FLUSH_ALL) {
110 local_flush_tlb();
111 __get_cpu_var(ptcstats).alltlb++;
112 } else {
113 __flush_tlb_one(msg->address);
114 __get_cpu_var(ptcstats).onetlb++;
115 }
116
117 __get_cpu_var(ptcstats).requestee++;
118
119 atomic_inc_short(&msg->acknowledge_count);
120 if (msg->number_of_cpus == msg->acknowledge_count)
121 uv_reply_to_message(sw_ack_slot, msg, msp);
1812924b
CW
122}
123
124/*
dc163a41 125 * Examine the payload queue on one distribution node to see
1812924b
CW
126 * which messages have not been seen, and which cpu(s) have not seen them.
127 *
128 * Returns the number of cpu's that have not responded.
129 */
dc163a41 130static int uv_examine_destination(struct bau_control *bau_tablesp, int sender)
1812924b 131{
1812924b
CW
132 struct bau_payload_queue_entry *msg;
133 struct bau_msg_status *msp;
b4c286e6
IM
134 int count = 0;
135 int i;
136 int j;
1812924b 137
dc163a41
IM
138 for (msg = bau_tablesp->va_queue_first, i = 0; i < DEST_Q_SIZE;
139 msg++, i++) {
140 if ((msg->sending_cpu == sender) && (!msg->replied_to)) {
141 msp = bau_tablesp->msg_statuses + i;
142 printk(KERN_DEBUG
143 "blade %d: address:%#lx %d of %d, not cpu(s): ",
144 i, msg->address, msg->acknowledge_count,
145 msg->number_of_cpus);
146 for (j = 0; j < msg->number_of_cpus; j++) {
b4c286e6 147 if (!((1L << j) & msp->seen_by.bits)) {
dc163a41
IM
148 count++;
149 printk("%d ", j);
150 }
151 }
152 printk("\n");
153 }
154 }
155 return count;
156}
157
158/*
159 * Examine the payload queue on all the distribution nodes to see
160 * which messages have not been seen, and which cpu(s) have not seen them.
161 *
162 * Returns the number of cpu's that have not responded.
163 */
164static int uv_examine_destinations(struct bau_target_nodemask *distribution)
165{
166 int sender;
167 int i;
168 int count = 0;
169
1812924b 170 sender = smp_processor_id();
b4c286e6 171 for (i = 0; i < sizeof(struct bau_target_nodemask) * BITSPERBYTE; i++) {
b194b120
CW
172 if (!bau_node_isset(i, distribution))
173 continue;
dc163a41 174 count += uv_examine_destination(uv_bau_table_bases[i], sender);
1812924b
CW
175 }
176 return count;
177}
178
b194b120
CW
179/*
180 * wait for completion of a broadcast message
181 *
182 * return COMPLETE, RETRY or GIVEUP
183 */
dc163a41 184static int uv_wait_completion(struct bau_desc *bau_desc,
b194b120
CW
185 unsigned long mmr_offset, int right_shift)
186{
187 int exams = 0;
188 long destination_timeouts = 0;
189 long source_timeouts = 0;
190 unsigned long descriptor_status;
191
192 while ((descriptor_status = (((unsigned long)
193 uv_read_local_mmr(mmr_offset) >>
194 right_shift) & UV_ACT_STATUS_MASK)) !=
195 DESC_STATUS_IDLE) {
196 if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) {
197 source_timeouts++;
198 if (source_timeouts > SOURCE_TIMEOUT_LIMIT)
199 source_timeouts = 0;
200 __get_cpu_var(ptcstats).s_retry++;
201 return FLUSH_RETRY;
202 }
203 /*
204 * spin here looking for progress at the destinations
205 */
206 if (descriptor_status == DESC_STATUS_DESTINATION_TIMEOUT) {
207 destination_timeouts++;
208 if (destination_timeouts > DESTINATION_TIMEOUT_LIMIT) {
209 /*
210 * returns number of cpus not responding
211 */
212 if (uv_examine_destinations
213 (&bau_desc->distribution) == 0) {
214 __get_cpu_var(ptcstats).d_retry++;
215 return FLUSH_RETRY;
216 }
217 exams++;
218 if (exams >= uv_bau_retry_limit) {
219 printk(KERN_DEBUG
220 "uv_flush_tlb_others");
221 printk("giving up on cpu %d\n",
222 smp_processor_id());
223 return FLUSH_GIVEUP;
224 }
225 /*
226 * delays can hang the simulator
227 udelay(1000);
228 */
229 destination_timeouts = 0;
230 }
231 }
18c07cf5 232 cpu_relax();
b194b120
CW
233 }
234 return FLUSH_COMPLETE;
235}
236
237/**
238 * uv_flush_send_and_wait
239 *
240 * Send a broadcast and wait for a broadcast message to complete.
241 *
bdbcdd48 242 * The flush_mask contains the cpus the broadcast was sent to.
b194b120 243 *
bdbcdd48
TH
244 * Returns NULL if all remote flushing was done. The mask is zeroed.
245 * Returns @flush_mask if some remote flushing remains to be done. The
246 * mask will have some bits still set.
b194b120 247 */
9674f35b 248const struct cpumask *uv_flush_send_and_wait(int cpu, int this_pnode,
bdbcdd48
TH
249 struct bau_desc *bau_desc,
250 struct cpumask *flush_mask)
b194b120
CW
251{
252 int completion_status = 0;
253 int right_shift;
b194b120 254 int tries = 0;
9674f35b 255 int pnode;
b4c286e6 256 int bit;
b194b120 257 unsigned long mmr_offset;
b4c286e6 258 unsigned long index;
b194b120
CW
259 cycles_t time1;
260 cycles_t time2;
261
262 if (cpu < UV_CPUS_PER_ACT_STATUS) {
263 mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
264 right_shift = cpu * UV_ACT_STATUS_SIZE;
265 } else {
266 mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
267 right_shift =
268 ((cpu - UV_CPUS_PER_ACT_STATUS) * UV_ACT_STATUS_SIZE);
269 }
270 time1 = get_cycles();
271 do {
272 tries++;
dc163a41
IM
273 index = (1UL << UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT) |
274 cpu;
b194b120
CW
275 uv_write_local_mmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL, index);
276 completion_status = uv_wait_completion(bau_desc, mmr_offset,
277 right_shift);
278 } while (completion_status == FLUSH_RETRY);
279 time2 = get_cycles();
280 __get_cpu_var(ptcstats).sflush += (time2 - time1);
281 if (tries > 1)
282 __get_cpu_var(ptcstats).retriesok++;
283
284 if (completion_status == FLUSH_GIVEUP) {
285 /*
286 * Cause the caller to do an IPI-style TLB shootdown on
287 * the cpu's, all of which are still in the mask.
288 */
289 __get_cpu_var(ptcstats).ptc_i++;
2749ebe3 290 return flush_mask;
b194b120
CW
291 }
292
293 /*
294 * Success, so clear the remote cpu's from the mask so we don't
295 * use the IPI method of shootdown on them.
296 */
bdbcdd48 297 for_each_cpu(bit, flush_mask) {
9674f35b
CW
298 pnode = uv_cpu_to_pnode(bit);
299 if (pnode == this_pnode)
b194b120 300 continue;
bdbcdd48 301 cpumask_clear_cpu(bit, flush_mask);
b194b120 302 }
bdbcdd48
TH
303 if (!cpumask_empty(flush_mask))
304 return flush_mask;
305 return NULL;
b194b120
CW
306}
307
76ba0ecd
RR
308static DEFINE_PER_CPU(cpumask_var_t, uv_flush_tlb_mask);
309
1812924b
CW
310/**
311 * uv_flush_tlb_others - globally purge translation cache of a virtual
312 * address or all TLB's
bdbcdd48 313 * @cpumask: mask of all cpu's in which the address is to be removed
1812924b
CW
314 * @mm: mm_struct containing virtual address range
315 * @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu)
bdbcdd48 316 * @cpu: the current cpu
1812924b
CW
317 *
318 * This is the entry point for initiating any UV global TLB shootdown.
319 *
320 * Purges the translation caches of all specified processors of the given
321 * virtual address, or purges all TLB's on specified processors.
322 *
bdbcdd48
TH
323 * The caller has derived the cpumask from the mm_struct. This function
324 * is called only if there are bits set in the mask. (e.g. flush_tlb_page())
1812924b 325 *
bdbcdd48 326 * The cpumask is converted into a nodemask of the nodes containing
1812924b 327 * the cpus.
b194b120 328 *
bdbcdd48
TH
329 * Note that this function should be called with preemption disabled.
330 *
331 * Returns NULL if all remote flushing was done.
332 * Returns pointer to cpumask if some remote flushing remains to be
333 * done. The returned pointer is valid till preemption is re-enabled.
1812924b 334 */
bdbcdd48
TH
335const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,
336 struct mm_struct *mm,
337 unsigned long va, unsigned int cpu)
1812924b 338{
76ba0ecd 339 struct cpumask *flush_mask = __get_cpu_var(uv_flush_tlb_mask);
1812924b 340 int i;
b194b120 341 int bit;
9674f35b 342 int pnode;
bdbcdd48 343 int uv_cpu;
9674f35b 344 int this_pnode;
b194b120 345 int locals = 0;
dc163a41 346 struct bau_desc *bau_desc;
bdbcdd48
TH
347
348 cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu));
349
350 uv_cpu = uv_blade_processor_id();
9674f35b 351 this_pnode = uv_hub_info->pnode;
1812924b 352 bau_desc = __get_cpu_var(bau_control).descriptor_base;
bdbcdd48 353 bau_desc += UV_ITEMS_PER_DESCRIPTOR * uv_cpu;
1812924b
CW
354
355 bau_nodes_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);
356
357 i = 0;
bdbcdd48 358 for_each_cpu(bit, flush_mask) {
9674f35b
CW
359 pnode = uv_cpu_to_pnode(bit);
360 BUG_ON(pnode > (UV_DISTRIBUTION_SIZE - 1));
361 if (pnode == this_pnode) {
b194b120 362 locals++;
1812924b 363 continue;
b194b120 364 }
94ca8e48
CW
365 bau_node_set(pnode - uv_partition_base_pnode,
366 &bau_desc->distribution);
1812924b
CW
367 i++;
368 }
b194b120
CW
369 if (i == 0) {
370 /*
371 * no off_node flushing; return status for local node
372 */
373 if (locals)
bdbcdd48 374 return flush_mask;
b194b120 375 else
bdbcdd48 376 return NULL;
b194b120 377 }
1812924b
CW
378 __get_cpu_var(ptcstats).requestor++;
379 __get_cpu_var(ptcstats).ntargeted += i;
380
381 bau_desc->payload.address = va;
bdbcdd48 382 bau_desc->payload.sending_cpu = cpu;
1812924b 383
9674f35b 384 return uv_flush_send_and_wait(uv_cpu, this_pnode, bau_desc, flush_mask);
1812924b
CW
385}
386
387/*
388 * The BAU message interrupt comes here. (registered by set_intr_gate)
389 * See entry_64.S
390 *
391 * We received a broadcast assist message.
392 *
393 * Interrupts may have been disabled; this interrupt could represent
394 * the receipt of several messages.
395 *
396 * All cores/threads on this node get this interrupt.
397 * The last one to see it does the s/w ack.
398 * (the resource will not be freed until noninterruptable cpus see this
399 * interrupt; hardware will timeout the s/w ack and reply ERROR)
400 */
b194b120 401void uv_bau_message_interrupt(struct pt_regs *regs)
1812924b 402{
dc163a41
IM
403 struct bau_payload_queue_entry *va_queue_first;
404 struct bau_payload_queue_entry *va_queue_last;
b4c286e6 405 struct bau_payload_queue_entry *msg;
1812924b 406 struct pt_regs *old_regs = set_irq_regs(regs);
b4c286e6
IM
407 cycles_t time1;
408 cycles_t time2;
1812924b
CW
409 int msg_slot;
410 int sw_ack_slot;
411 int fw;
412 int count = 0;
413 unsigned long local_pnode;
414
415 ack_APIC_irq();
416 exit_idle();
417 irq_enter();
418
b194b120 419 time1 = get_cycles();
1812924b
CW
420
421 local_pnode = uv_blade_to_pnode(uv_numa_blade_id());
422
b4c286e6 423 va_queue_first = __get_cpu_var(bau_control).va_queue_first;
dc163a41 424 va_queue_last = __get_cpu_var(bau_control).va_queue_last;
b4c286e6 425
1812924b
CW
426 msg = __get_cpu_var(bau_control).bau_msg_head;
427 while (msg->sw_ack_vector) {
428 count++;
429 fw = msg->sw_ack_vector;
b4c286e6 430 msg_slot = msg - va_queue_first;
1812924b
CW
431 sw_ack_slot = ffs(fw) - 1;
432
433 uv_bau_process_message(msg, msg_slot, sw_ack_slot);
434
435 msg++;
dc163a41
IM
436 if (msg > va_queue_last)
437 msg = va_queue_first;
1812924b
CW
438 __get_cpu_var(bau_control).bau_msg_head = msg;
439 }
440 if (!count)
441 __get_cpu_var(ptcstats).nomsg++;
442 else if (count > 1)
443 __get_cpu_var(ptcstats).multmsg++;
444
b194b120
CW
445 time2 = get_cycles();
446 __get_cpu_var(ptcstats).dflush += (time2 - time1);
1812924b
CW
447
448 irq_exit();
449 set_irq_regs(old_regs);
1812924b
CW
450}
451
c4c4688f
CW
452/*
453 * uv_enable_timeouts
454 *
455 * Each target blade (i.e. blades that have cpu's) needs to have
456 * shootdown message timeouts enabled. The timeout does not cause
457 * an interrupt, but causes an error message to be returned to
458 * the sender.
459 */
b194b120 460static void uv_enable_timeouts(void)
1812924b 461{
1812924b 462 int blade;
c4c4688f 463 int nblades;
1812924b 464 int pnode;
c4c4688f 465 unsigned long mmr_image;
1812924b 466
c4c4688f 467 nblades = uv_num_possible_blades();
1812924b 468
c4c4688f
CW
469 for (blade = 0; blade < nblades; blade++) {
470 if (!uv_blade_nr_possible_cpus(blade))
1812924b 471 continue;
c4c4688f 472
1812924b 473 pnode = uv_blade_to_pnode(blade);
c4c4688f
CW
474 mmr_image =
475 uv_read_global_mmr64(pnode, UVH_LB_BAU_MISC_CONTROL);
476 /*
477 * Set the timeout period and then lock it in, in three
478 * steps; captures and locks in the period.
479 *
480 * To program the period, the SOFT_ACK_MODE must be off.
481 */
482 mmr_image &= ~((unsigned long)1 <<
483 UV_ENABLE_INTD_SOFT_ACK_MODE_SHIFT);
484 uv_write_global_mmr64
485 (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
486 /*
487 * Set the 4-bit period.
488 */
489 mmr_image &= ~((unsigned long)0xf <<
490 UV_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHIFT);
491 mmr_image |= (UV_INTD_SOFT_ACK_TIMEOUT_PERIOD <<
492 UV_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHIFT);
493 uv_write_global_mmr64
494 (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
495 /*
496 * Subsequent reversals of the timebase bit (3) cause an
497 * immediate timeout of one or all INTD resources as
498 * indicated in bits 2:0 (7 causes all of them to timeout).
499 */
500 mmr_image |= ((unsigned long)1 <<
501 UV_ENABLE_INTD_SOFT_ACK_MODE_SHIFT);
502 uv_write_global_mmr64
503 (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
1812924b 504 }
1812924b
CW
505}
506
b194b120 507static void *uv_ptc_seq_start(struct seq_file *file, loff_t *offset)
1812924b
CW
508{
509 if (*offset < num_possible_cpus())
510 return offset;
511 return NULL;
512}
513
b194b120 514static void *uv_ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
1812924b
CW
515{
516 (*offset)++;
517 if (*offset < num_possible_cpus())
518 return offset;
519 return NULL;
520}
521
b194b120 522static void uv_ptc_seq_stop(struct seq_file *file, void *data)
1812924b
CW
523{
524}
525
526/*
527 * Display the statistics thru /proc
528 * data points to the cpu number
529 */
b194b120 530static int uv_ptc_seq_show(struct seq_file *file, void *data)
1812924b
CW
531{
532 struct ptc_stats *stat;
533 int cpu;
534
535 cpu = *(loff_t *)data;
536
537 if (!cpu) {
538 seq_printf(file,
539 "# cpu requestor requestee one all sretry dretry ptc_i ");
540 seq_printf(file,
b194b120 541 "sw_ack sflush dflush sok dnomsg dmult starget\n");
1812924b
CW
542 }
543 if (cpu < num_possible_cpus() && cpu_online(cpu)) {
544 stat = &per_cpu(ptcstats, cpu);
545 seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld ",
546 cpu, stat->requestor,
547 stat->requestee, stat->onetlb, stat->alltlb,
548 stat->s_retry, stat->d_retry, stat->ptc_i);
549 seq_printf(file, "%lx %ld %ld %ld %ld %ld %ld\n",
9674f35b 550 uv_read_global_mmr64(uv_cpu_to_pnode(cpu),
1812924b 551 UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE),
b194b120 552 stat->sflush, stat->dflush,
1812924b
CW
553 stat->retriesok, stat->nomsg,
554 stat->multmsg, stat->ntargeted);
555 }
556
557 return 0;
558}
559
560/*
561 * 0: display meaning of the statistics
562 * >0: retry limit
563 */
b194b120 564static ssize_t uv_ptc_proc_write(struct file *file, const char __user *user,
b4c286e6 565 size_t count, loff_t *data)
1812924b
CW
566{
567 long newmode;
568 char optstr[64];
569
e7eb8726 570 if (count == 0 || count > sizeof(optstr))
cef53278 571 return -EINVAL;
1812924b
CW
572 if (copy_from_user(optstr, user, count))
573 return -EFAULT;
574 optstr[count - 1] = '\0';
575 if (strict_strtoul(optstr, 10, &newmode) < 0) {
576 printk(KERN_DEBUG "%s is invalid\n", optstr);
577 return -EINVAL;
578 }
579
580 if (newmode == 0) {
581 printk(KERN_DEBUG "# cpu: cpu number\n");
582 printk(KERN_DEBUG
583 "requestor: times this cpu was the flush requestor\n");
584 printk(KERN_DEBUG
585 "requestee: times this cpu was requested to flush its TLBs\n");
586 printk(KERN_DEBUG
587 "one: times requested to flush a single address\n");
588 printk(KERN_DEBUG
589 "all: times requested to flush all TLB's\n");
590 printk(KERN_DEBUG
591 "sretry: number of retries of source-side timeouts\n");
592 printk(KERN_DEBUG
593 "dretry: number of retries of destination-side timeouts\n");
594 printk(KERN_DEBUG
595 "ptc_i: times UV fell through to IPI-style flushes\n");
596 printk(KERN_DEBUG
597 "sw_ack: image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE\n");
598 printk(KERN_DEBUG
b194b120 599 "sflush_us: cycles spent in uv_flush_tlb_others()\n");
1812924b 600 printk(KERN_DEBUG
b194b120 601 "dflush_us: cycles spent in handling flush requests\n");
1812924b
CW
602 printk(KERN_DEBUG "sok: successes on retry\n");
603 printk(KERN_DEBUG "dnomsg: interrupts with no message\n");
604 printk(KERN_DEBUG
605 "dmult: interrupts with multiple messages\n");
606 printk(KERN_DEBUG "starget: nodes targeted\n");
607 } else {
608 uv_bau_retry_limit = newmode;
609 printk(KERN_DEBUG "timeout retry limit:%d\n",
610 uv_bau_retry_limit);
611 }
612
613 return count;
614}
615
616static const struct seq_operations uv_ptc_seq_ops = {
dc163a41
IM
617 .start = uv_ptc_seq_start,
618 .next = uv_ptc_seq_next,
619 .stop = uv_ptc_seq_stop,
620 .show = uv_ptc_seq_show
1812924b
CW
621};
622
b194b120 623static int uv_ptc_proc_open(struct inode *inode, struct file *file)
1812924b
CW
624{
625 return seq_open(file, &uv_ptc_seq_ops);
626}
627
628static const struct file_operations proc_uv_ptc_operations = {
b194b120
CW
629 .open = uv_ptc_proc_open,
630 .read = seq_read,
631 .write = uv_ptc_proc_write,
632 .llseek = seq_lseek,
633 .release = seq_release,
1812924b
CW
634};
635
b194b120 636static int __init uv_ptc_init(void)
1812924b 637{
b194b120 638 struct proc_dir_entry *proc_uv_ptc;
1812924b
CW
639
640 if (!is_uv_system())
641 return 0;
642
1812924b
CW
643 proc_uv_ptc = create_proc_entry(UV_PTC_BASENAME, 0444, NULL);
644 if (!proc_uv_ptc) {
645 printk(KERN_ERR "unable to create %s proc entry\n",
646 UV_PTC_BASENAME);
647 return -EINVAL;
648 }
649 proc_uv_ptc->proc_fops = &proc_uv_ptc_operations;
650 return 0;
651}
652
b194b120
CW
653/*
654 * begin the initialization of the per-blade control structures
655 */
656static struct bau_control * __init uv_table_bases_init(int blade, int node)
1812924b 657{
b194b120 658 int i;
b194b120 659 struct bau_msg_status *msp;
dc163a41 660 struct bau_control *bau_tabp;
b194b120 661
dc163a41 662 bau_tabp =
b194b120 663 kmalloc_node(sizeof(struct bau_control), GFP_KERNEL, node);
dc163a41 664 BUG_ON(!bau_tabp);
b4c286e6 665
dc163a41 666 bau_tabp->msg_statuses =
b194b120 667 kmalloc_node(sizeof(struct bau_msg_status) *
dc163a41
IM
668 DEST_Q_SIZE, GFP_KERNEL, node);
669 BUG_ON(!bau_tabp->msg_statuses);
b4c286e6 670
dc163a41 671 for (i = 0, msp = bau_tabp->msg_statuses; i < DEST_Q_SIZE; i++, msp++)
b194b120
CW
672 bau_cpubits_clear(&msp->seen_by, (int)
673 uv_blade_nr_possible_cpus(blade));
b4c286e6 674
dc163a41 675 uv_bau_table_bases[blade] = bau_tabp;
b4c286e6 676
d400524a 677 return bau_tabp;
1812924b
CW
678}
679
b194b120
CW
680/*
681 * finish the initialization of the per-blade control structures
682 */
b4c286e6 683static void __init
9674f35b 684uv_table_bases_finish(int blade,
b4c286e6
IM
685 struct bau_control *bau_tablesp,
686 struct bau_desc *adp)
b194b120 687{
b194b120 688 struct bau_control *bcp;
9674f35b 689 int cpu;
b194b120 690
9674f35b
CW
691 for_each_present_cpu(cpu) {
692 if (blade != uv_cpu_to_blade_id(cpu))
693 continue;
b4c286e6 694
9674f35b 695 bcp = (struct bau_control *)&per_cpu(bau_control, cpu);
b4c286e6
IM
696 bcp->bau_msg_head = bau_tablesp->va_queue_first;
697 bcp->va_queue_first = bau_tablesp->va_queue_first;
698 bcp->va_queue_last = bau_tablesp->va_queue_last;
b4c286e6
IM
699 bcp->msg_statuses = bau_tablesp->msg_statuses;
700 bcp->descriptor_base = adp;
b194b120
CW
701 }
702}
1812924b
CW
703
704/*
b194b120 705 * initialize the sending side's sending buffers
1812924b 706 */
dc163a41 707static struct bau_desc * __init
b194b120 708uv_activation_descriptor_init(int node, int pnode)
1812924b
CW
709{
710 int i;
1812924b 711 unsigned long pa;
1812924b 712 unsigned long m;
b194b120 713 unsigned long n;
1812924b 714 unsigned long mmr_image;
dc163a41
IM
715 struct bau_desc *adp;
716 struct bau_desc *ad2;
b194b120 717
0e2595cd
CW
718 /*
719 * each bau_desc is 64 bytes; there are 8 (UV_ITEMS_PER_DESCRIPTOR)
720 * per cpu; and up to 32 (UV_ADP_SIZE) cpu's per blade
721 */
722 adp = (struct bau_desc *)kmalloc_node(sizeof(struct bau_desc)*
723 UV_ADP_SIZE*UV_ITEMS_PER_DESCRIPTOR, GFP_KERNEL, node);
dc163a41 724 BUG_ON(!adp);
b4c286e6 725
4ea3c51d 726 pa = uv_gpa(adp); /* need the real nasid*/
b194b120
CW
727 n = pa >> uv_nshift;
728 m = pa & uv_mmask;
b4c286e6 729
b194b120 730 mmr_image = uv_read_global_mmr64(pnode, UVH_LB_BAU_SB_DESCRIPTOR_BASE);
b4c286e6 731 if (mmr_image) {
b194b120
CW
732 uv_write_global_mmr64(pnode, (unsigned long)
733 UVH_LB_BAU_SB_DESCRIPTOR_BASE,
734 (n << UV_DESC_BASE_PNODE_SHIFT | m));
b4c286e6
IM
735 }
736
0e2595cd
CW
737 /*
738 * initializing all 8 (UV_ITEMS_PER_DESCRIPTOR) descriptors for each
739 * cpu even though we only use the first one; one descriptor can
740 * describe a broadcast to 256 nodes.
741 */
742 for (i = 0, ad2 = adp; i < (UV_ADP_SIZE*UV_ITEMS_PER_DESCRIPTOR);
743 i++, ad2++) {
dc163a41 744 memset(ad2, 0, sizeof(struct bau_desc));
b194b120 745 ad2->header.sw_ack_flag = 1;
94ca8e48
CW
746 /*
747 * base_dest_nodeid is the first node in the partition, so
748 * the bit map will indicate partition-relative node numbers.
749 * note that base_dest_nodeid is actually a nasid.
750 */
751 ad2->header.base_dest_nodeid = uv_partition_base_pnode << 1;
b194b120
CW
752 ad2->header.command = UV_NET_ENDPOINT_INTD;
753 ad2->header.int_both = 1;
754 /*
755 * all others need to be set to zero:
756 * fairness chaining multilevel count replied_to
757 */
758 }
759 return adp;
760}
761
762/*
763 * initialize the destination side's receiving buffers
764 */
b4c286e6
IM
765static struct bau_payload_queue_entry * __init
766uv_payload_queue_init(int node, int pnode, struct bau_control *bau_tablesp)
b194b120 767{
1812924b 768 struct bau_payload_queue_entry *pqp;
4ea3c51d
CW
769 unsigned long pa;
770 int pn;
b4c286e6 771 char *cp;
1812924b 772
dc163a41
IM
773 pqp = (struct bau_payload_queue_entry *) kmalloc_node(
774 (DEST_Q_SIZE + 1) * sizeof(struct bau_payload_queue_entry),
775 GFP_KERNEL, node);
776 BUG_ON(!pqp);
b4c286e6 777
b194b120
CW
778 cp = (char *)pqp + 31;
779 pqp = (struct bau_payload_queue_entry *)(((unsigned long)cp >> 5) << 5);
780 bau_tablesp->va_queue_first = pqp;
4ea3c51d
CW
781 /*
782 * need the pnode of where the memory was really allocated
783 */
784 pa = uv_gpa(pqp);
785 pn = pa >> uv_nshift;
b194b120
CW
786 uv_write_global_mmr64(pnode,
787 UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST,
4ea3c51d 788 ((unsigned long)pn << UV_PAYLOADQ_PNODE_SHIFT) |
b194b120
CW
789 uv_physnodeaddr(pqp));
790 uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL,
791 uv_physnodeaddr(pqp));
dc163a41 792 bau_tablesp->va_queue_last = pqp + (DEST_Q_SIZE - 1);
b194b120
CW
793 uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST,
794 (unsigned long)
795 uv_physnodeaddr(bau_tablesp->va_queue_last));
dc163a41 796 memset(pqp, 0, sizeof(struct bau_payload_queue_entry) * DEST_Q_SIZE);
b4c286e6 797
b194b120
CW
798 return pqp;
799}
1812924b 800
b194b120
CW
801/*
802 * Initialization of each UV blade's structures
803 */
9674f35b 804static int __init uv_init_blade(int blade)
b194b120 805{
9674f35b 806 int node;
b194b120
CW
807 int pnode;
808 unsigned long pa;
809 unsigned long apicid;
dc163a41 810 struct bau_desc *adp;
b194b120
CW
811 struct bau_payload_queue_entry *pqp;
812 struct bau_control *bau_tablesp;
1812924b 813
9674f35b 814 node = blade_to_first_node(blade);
b194b120
CW
815 bau_tablesp = uv_table_bases_init(blade, node);
816 pnode = uv_blade_to_pnode(blade);
817 adp = uv_activation_descriptor_init(node, pnode);
818 pqp = uv_payload_queue_init(node, pnode, bau_tablesp);
9674f35b 819 uv_table_bases_finish(blade, bau_tablesp, adp);
b194b120
CW
820 /*
821 * the below initialization can't be in firmware because the
822 * messaging IRQ will be determined by the OS
823 */
9674f35b 824 apicid = blade_to_first_apicid(blade);
b194b120
CW
825 pa = uv_read_global_mmr64(pnode, UVH_BAU_DATA_CONFIG);
826 if ((pa & 0xff) != UV_BAU_MESSAGE) {
827 uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG,
828 ((apicid << 32) | UV_BAU_MESSAGE));
1812924b 829 }
b194b120
CW
830 return 0;
831}
832
833/*
834 * Initialization of BAU-related structures
835 */
836static int __init uv_bau_init(void)
837{
838 int blade;
b194b120 839 int nblades;
2c74d666 840 int cur_cpu;
b194b120
CW
841
842 if (!is_uv_system())
843 return 0;
1812924b 844
76ba0ecd 845 for_each_possible_cpu(cur_cpu)
eaa95840 846 zalloc_cpumask_var_node(&per_cpu(uv_flush_tlb_mask, cur_cpu),
76ba0ecd
RR
847 GFP_KERNEL, cpu_to_node(cur_cpu));
848
b194b120 849 uv_bau_retry_limit = 1;
1812924b 850 uv_nshift = uv_hub_info->n_val;
dc163a41 851 uv_mmask = (1UL << uv_hub_info->n_val) - 1;
9674f35b
CW
852 nblades = uv_num_possible_blades();
853
1812924b
CW
854 uv_bau_table_bases = (struct bau_control **)
855 kmalloc(nblades * sizeof(struct bau_control *), GFP_KERNEL);
dc163a41 856 BUG_ON(!uv_bau_table_bases);
b4c286e6 857
94ca8e48
CW
858 uv_partition_base_pnode = 0x7fffffff;
859 for (blade = 0; blade < nblades; blade++)
860 if (uv_blade_nr_possible_cpus(blade) &&
861 (uv_blade_to_pnode(blade) < uv_partition_base_pnode))
862 uv_partition_base_pnode = uv_blade_to_pnode(blade);
9674f35b
CW
863 for (blade = 0; blade < nblades; blade++)
864 if (uv_blade_nr_possible_cpus(blade))
865 uv_init_blade(blade);
866
99dd8713 867 alloc_intr_gate(UV_BAU_MESSAGE, uv_bau_message_intr1);
1812924b 868 uv_enable_timeouts();
b4c286e6 869
1812924b
CW
870 return 0;
871}
1812924b 872__initcall(uv_bau_init);
b194b120 873__initcall(uv_ptc_init);