x86, uv: add Kconfig dependency on NUMA for UV systems
[linux-2.6-block.git] / arch / x86 / kernel / tlb_uv.c
CommitLineData
1812924b
CW
1/*
2 * SGI UltraViolet TLB flush routines.
3 *
4 * (c) 2008 Cliff Wickman <cpw@sgi.com>, SGI.
5 *
6 * This code is released under the GNU General Public License version 2 or
7 * later.
8 */
aef8f5b8 9#include <linux/seq_file.h>
1812924b
CW
10#include <linux/proc_fs.h>
11#include <linux/kernel.h>
12
1812924b 13#include <asm/mmu_context.h>
bdbcdd48 14#include <asm/uv/uv.h>
1812924b 15#include <asm/uv/uv_mmrs.h>
b4c286e6 16#include <asm/uv/uv_hub.h>
1812924b 17#include <asm/uv/uv_bau.h>
7b6aa335 18#include <asm/apic.h>
b4c286e6 19#include <asm/idle.h>
b194b120 20#include <asm/tsc.h>
99dd8713 21#include <asm/irq_vectors.h>
1812924b 22
b4c286e6
IM
23static struct bau_control **uv_bau_table_bases __read_mostly;
24static int uv_bau_retry_limit __read_mostly;
25
26/* position of pnode (which is nasid>>1): */
27static int uv_nshift __read_mostly;
28
29static unsigned long uv_mmask __read_mostly;
1812924b 30
dc163a41
IM
31static DEFINE_PER_CPU(struct ptc_stats, ptcstats);
32static DEFINE_PER_CPU(struct bau_control, bau_control);
1812924b 33
9674f35b
CW
34/*
35 * Determine the first node on a blade.
36 */
37static int __init blade_to_first_node(int blade)
38{
39 int node, b;
40
41 for_each_online_node(node) {
42 b = uv_node_to_blade_id(node);
43 if (blade == b)
44 return node;
45 }
46 BUG();
47}
48
49/*
50 * Determine the apicid of the first cpu on a blade.
51 */
52static int __init blade_to_first_apicid(int blade)
53{
54 int cpu;
55
56 for_each_present_cpu(cpu)
57 if (blade == uv_cpu_to_blade_id(cpu))
58 return per_cpu(x86_cpu_to_apicid, cpu);
59 return -1;
60}
61
1812924b
CW
62/*
63 * Free a software acknowledge hardware resource by clearing its Pending
64 * bit. This will return a reply to the sender.
65 * If the message has timed out, a reply has already been sent by the
66 * hardware but the resource has not been released. In that case our
67 * clear of the Timeout bit (as well) will free the resource. No reply will
68 * be sent (the hardware will only do one reply per message).
69 */
b194b120 70static void uv_reply_to_message(int resource,
b4c286e6
IM
71 struct bau_payload_queue_entry *msg,
72 struct bau_msg_status *msp)
1812924b 73{
b194b120 74 unsigned long dw;
1812924b 75
b194b120 76 dw = (1 << (resource + UV_SW_ACK_NPENDING)) | (1 << resource);
1812924b
CW
77 msg->replied_to = 1;
78 msg->sw_ack_vector = 0;
79 if (msp)
80 msp->seen_by.bits = 0;
b194b120 81 uv_write_local_mmr(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, dw);
1812924b
CW
82}
83
84/*
85 * Do all the things a cpu should do for a TLB shootdown message.
86 * Other cpu's may come here at the same time for this message.
87 */
b194b120 88static void uv_bau_process_message(struct bau_payload_queue_entry *msg,
b4c286e6 89 int msg_slot, int sw_ack_slot)
1812924b 90{
1812924b
CW
91 unsigned long this_cpu_mask;
92 struct bau_msg_status *msp;
b4c286e6 93 int cpu;
1812924b
CW
94
95 msp = __get_cpu_var(bau_control).msg_statuses + msg_slot;
96 cpu = uv_blade_processor_id();
97 msg->number_of_cpus =
9674f35b 98 uv_blade_nr_online_cpus(uv_node_to_blade_id(numa_node_id()));
dc163a41 99 this_cpu_mask = 1UL << cpu;
1812924b
CW
100 if (msp->seen_by.bits & this_cpu_mask)
101 return;
102 atomic_or_long(&msp->seen_by.bits, this_cpu_mask);
103
104 if (msg->replied_to == 1)
105 return;
106
107 if (msg->address == TLB_FLUSH_ALL) {
108 local_flush_tlb();
109 __get_cpu_var(ptcstats).alltlb++;
110 } else {
111 __flush_tlb_one(msg->address);
112 __get_cpu_var(ptcstats).onetlb++;
113 }
114
115 __get_cpu_var(ptcstats).requestee++;
116
117 atomic_inc_short(&msg->acknowledge_count);
118 if (msg->number_of_cpus == msg->acknowledge_count)
119 uv_reply_to_message(sw_ack_slot, msg, msp);
1812924b
CW
120}
121
122/*
dc163a41 123 * Examine the payload queue on one distribution node to see
1812924b
CW
124 * which messages have not been seen, and which cpu(s) have not seen them.
125 *
126 * Returns the number of cpu's that have not responded.
127 */
dc163a41 128static int uv_examine_destination(struct bau_control *bau_tablesp, int sender)
1812924b 129{
1812924b
CW
130 struct bau_payload_queue_entry *msg;
131 struct bau_msg_status *msp;
b4c286e6
IM
132 int count = 0;
133 int i;
134 int j;
1812924b 135
dc163a41
IM
136 for (msg = bau_tablesp->va_queue_first, i = 0; i < DEST_Q_SIZE;
137 msg++, i++) {
138 if ((msg->sending_cpu == sender) && (!msg->replied_to)) {
139 msp = bau_tablesp->msg_statuses + i;
140 printk(KERN_DEBUG
141 "blade %d: address:%#lx %d of %d, not cpu(s): ",
142 i, msg->address, msg->acknowledge_count,
143 msg->number_of_cpus);
144 for (j = 0; j < msg->number_of_cpus; j++) {
b4c286e6 145 if (!((1L << j) & msp->seen_by.bits)) {
dc163a41
IM
146 count++;
147 printk("%d ", j);
148 }
149 }
150 printk("\n");
151 }
152 }
153 return count;
154}
155
156/*
157 * Examine the payload queue on all the distribution nodes to see
158 * which messages have not been seen, and which cpu(s) have not seen them.
159 *
160 * Returns the number of cpu's that have not responded.
161 */
162static int uv_examine_destinations(struct bau_target_nodemask *distribution)
163{
164 int sender;
165 int i;
166 int count = 0;
167
1812924b 168 sender = smp_processor_id();
b4c286e6 169 for (i = 0; i < sizeof(struct bau_target_nodemask) * BITSPERBYTE; i++) {
b194b120
CW
170 if (!bau_node_isset(i, distribution))
171 continue;
dc163a41 172 count += uv_examine_destination(uv_bau_table_bases[i], sender);
1812924b
CW
173 }
174 return count;
175}
176
b194b120
CW
177/*
178 * wait for completion of a broadcast message
179 *
180 * return COMPLETE, RETRY or GIVEUP
181 */
dc163a41 182static int uv_wait_completion(struct bau_desc *bau_desc,
b194b120
CW
183 unsigned long mmr_offset, int right_shift)
184{
185 int exams = 0;
186 long destination_timeouts = 0;
187 long source_timeouts = 0;
188 unsigned long descriptor_status;
189
190 while ((descriptor_status = (((unsigned long)
191 uv_read_local_mmr(mmr_offset) >>
192 right_shift) & UV_ACT_STATUS_MASK)) !=
193 DESC_STATUS_IDLE) {
194 if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) {
195 source_timeouts++;
196 if (source_timeouts > SOURCE_TIMEOUT_LIMIT)
197 source_timeouts = 0;
198 __get_cpu_var(ptcstats).s_retry++;
199 return FLUSH_RETRY;
200 }
201 /*
202 * spin here looking for progress at the destinations
203 */
204 if (descriptor_status == DESC_STATUS_DESTINATION_TIMEOUT) {
205 destination_timeouts++;
206 if (destination_timeouts > DESTINATION_TIMEOUT_LIMIT) {
207 /*
208 * returns number of cpus not responding
209 */
210 if (uv_examine_destinations
211 (&bau_desc->distribution) == 0) {
212 __get_cpu_var(ptcstats).d_retry++;
213 return FLUSH_RETRY;
214 }
215 exams++;
216 if (exams >= uv_bau_retry_limit) {
217 printk(KERN_DEBUG
218 "uv_flush_tlb_others");
219 printk("giving up on cpu %d\n",
220 smp_processor_id());
221 return FLUSH_GIVEUP;
222 }
223 /*
224 * delays can hang the simulator
225 udelay(1000);
226 */
227 destination_timeouts = 0;
228 }
229 }
18c07cf5 230 cpu_relax();
b194b120
CW
231 }
232 return FLUSH_COMPLETE;
233}
234
235/**
236 * uv_flush_send_and_wait
237 *
238 * Send a broadcast and wait for a broadcast message to complete.
239 *
bdbcdd48 240 * The flush_mask contains the cpus the broadcast was sent to.
b194b120 241 *
bdbcdd48
TH
242 * Returns NULL if all remote flushing was done. The mask is zeroed.
243 * Returns @flush_mask if some remote flushing remains to be done. The
244 * mask will have some bits still set.
b194b120 245 */
9674f35b 246const struct cpumask *uv_flush_send_and_wait(int cpu, int this_pnode,
bdbcdd48
TH
247 struct bau_desc *bau_desc,
248 struct cpumask *flush_mask)
b194b120
CW
249{
250 int completion_status = 0;
251 int right_shift;
b194b120 252 int tries = 0;
9674f35b 253 int pnode;
b4c286e6 254 int bit;
b194b120 255 unsigned long mmr_offset;
b4c286e6 256 unsigned long index;
b194b120
CW
257 cycles_t time1;
258 cycles_t time2;
259
260 if (cpu < UV_CPUS_PER_ACT_STATUS) {
261 mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
262 right_shift = cpu * UV_ACT_STATUS_SIZE;
263 } else {
264 mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
265 right_shift =
266 ((cpu - UV_CPUS_PER_ACT_STATUS) * UV_ACT_STATUS_SIZE);
267 }
268 time1 = get_cycles();
269 do {
270 tries++;
dc163a41
IM
271 index = (1UL << UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT) |
272 cpu;
b194b120
CW
273 uv_write_local_mmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL, index);
274 completion_status = uv_wait_completion(bau_desc, mmr_offset,
275 right_shift);
276 } while (completion_status == FLUSH_RETRY);
277 time2 = get_cycles();
278 __get_cpu_var(ptcstats).sflush += (time2 - time1);
279 if (tries > 1)
280 __get_cpu_var(ptcstats).retriesok++;
281
282 if (completion_status == FLUSH_GIVEUP) {
283 /*
284 * Cause the caller to do an IPI-style TLB shootdown on
285 * the cpu's, all of which are still in the mask.
286 */
287 __get_cpu_var(ptcstats).ptc_i++;
2749ebe3 288 return flush_mask;
b194b120
CW
289 }
290
291 /*
292 * Success, so clear the remote cpu's from the mask so we don't
293 * use the IPI method of shootdown on them.
294 */
bdbcdd48 295 for_each_cpu(bit, flush_mask) {
9674f35b
CW
296 pnode = uv_cpu_to_pnode(bit);
297 if (pnode == this_pnode)
b194b120 298 continue;
bdbcdd48 299 cpumask_clear_cpu(bit, flush_mask);
b194b120 300 }
bdbcdd48
TH
301 if (!cpumask_empty(flush_mask))
302 return flush_mask;
303 return NULL;
b194b120
CW
304}
305
1812924b
CW
306/**
307 * uv_flush_tlb_others - globally purge translation cache of a virtual
308 * address or all TLB's
bdbcdd48 309 * @cpumask: mask of all cpu's in which the address is to be removed
1812924b
CW
310 * @mm: mm_struct containing virtual address range
311 * @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu)
bdbcdd48 312 * @cpu: the current cpu
1812924b
CW
313 *
314 * This is the entry point for initiating any UV global TLB shootdown.
315 *
316 * Purges the translation caches of all specified processors of the given
317 * virtual address, or purges all TLB's on specified processors.
318 *
bdbcdd48
TH
319 * The caller has derived the cpumask from the mm_struct. This function
320 * is called only if there are bits set in the mask. (e.g. flush_tlb_page())
1812924b 321 *
bdbcdd48 322 * The cpumask is converted into a nodemask of the nodes containing
1812924b 323 * the cpus.
b194b120 324 *
bdbcdd48
TH
325 * Note that this function should be called with preemption disabled.
326 *
327 * Returns NULL if all remote flushing was done.
328 * Returns pointer to cpumask if some remote flushing remains to be
329 * done. The returned pointer is valid till preemption is re-enabled.
1812924b 330 */
bdbcdd48
TH
331const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,
332 struct mm_struct *mm,
333 unsigned long va, unsigned int cpu)
1812924b 334{
bdbcdd48
TH
335 static DEFINE_PER_CPU(cpumask_t, flush_tlb_mask);
336 struct cpumask *flush_mask = &__get_cpu_var(flush_tlb_mask);
1812924b 337 int i;
b194b120 338 int bit;
9674f35b 339 int pnode;
bdbcdd48 340 int uv_cpu;
9674f35b 341 int this_pnode;
b194b120 342 int locals = 0;
dc163a41 343 struct bau_desc *bau_desc;
bdbcdd48
TH
344
345 cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu));
346
347 uv_cpu = uv_blade_processor_id();
9674f35b 348 this_pnode = uv_hub_info->pnode;
1812924b 349 bau_desc = __get_cpu_var(bau_control).descriptor_base;
bdbcdd48 350 bau_desc += UV_ITEMS_PER_DESCRIPTOR * uv_cpu;
1812924b
CW
351
352 bau_nodes_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);
353
354 i = 0;
bdbcdd48 355 for_each_cpu(bit, flush_mask) {
9674f35b
CW
356 pnode = uv_cpu_to_pnode(bit);
357 BUG_ON(pnode > (UV_DISTRIBUTION_SIZE - 1));
358 if (pnode == this_pnode) {
b194b120 359 locals++;
1812924b 360 continue;
b194b120 361 }
9674f35b 362 bau_node_set(pnode, &bau_desc->distribution);
1812924b
CW
363 i++;
364 }
b194b120
CW
365 if (i == 0) {
366 /*
367 * no off_node flushing; return status for local node
368 */
369 if (locals)
bdbcdd48 370 return flush_mask;
b194b120 371 else
bdbcdd48 372 return NULL;
b194b120 373 }
1812924b
CW
374 __get_cpu_var(ptcstats).requestor++;
375 __get_cpu_var(ptcstats).ntargeted += i;
376
377 bau_desc->payload.address = va;
bdbcdd48 378 bau_desc->payload.sending_cpu = cpu;
1812924b 379
9674f35b 380 return uv_flush_send_and_wait(uv_cpu, this_pnode, bau_desc, flush_mask);
1812924b
CW
381}
382
383/*
384 * The BAU message interrupt comes here. (registered by set_intr_gate)
385 * See entry_64.S
386 *
387 * We received a broadcast assist message.
388 *
389 * Interrupts may have been disabled; this interrupt could represent
390 * the receipt of several messages.
391 *
392 * All cores/threads on this node get this interrupt.
393 * The last one to see it does the s/w ack.
394 * (the resource will not be freed until noninterruptable cpus see this
395 * interrupt; hardware will timeout the s/w ack and reply ERROR)
396 */
b194b120 397void uv_bau_message_interrupt(struct pt_regs *regs)
1812924b 398{
dc163a41
IM
399 struct bau_payload_queue_entry *va_queue_first;
400 struct bau_payload_queue_entry *va_queue_last;
b4c286e6 401 struct bau_payload_queue_entry *msg;
1812924b 402 struct pt_regs *old_regs = set_irq_regs(regs);
b4c286e6
IM
403 cycles_t time1;
404 cycles_t time2;
1812924b
CW
405 int msg_slot;
406 int sw_ack_slot;
407 int fw;
408 int count = 0;
409 unsigned long local_pnode;
410
411 ack_APIC_irq();
412 exit_idle();
413 irq_enter();
414
b194b120 415 time1 = get_cycles();
1812924b
CW
416
417 local_pnode = uv_blade_to_pnode(uv_numa_blade_id());
418
b4c286e6 419 va_queue_first = __get_cpu_var(bau_control).va_queue_first;
dc163a41 420 va_queue_last = __get_cpu_var(bau_control).va_queue_last;
b4c286e6 421
1812924b
CW
422 msg = __get_cpu_var(bau_control).bau_msg_head;
423 while (msg->sw_ack_vector) {
424 count++;
425 fw = msg->sw_ack_vector;
b4c286e6 426 msg_slot = msg - va_queue_first;
1812924b
CW
427 sw_ack_slot = ffs(fw) - 1;
428
429 uv_bau_process_message(msg, msg_slot, sw_ack_slot);
430
431 msg++;
dc163a41
IM
432 if (msg > va_queue_last)
433 msg = va_queue_first;
1812924b
CW
434 __get_cpu_var(bau_control).bau_msg_head = msg;
435 }
436 if (!count)
437 __get_cpu_var(ptcstats).nomsg++;
438 else if (count > 1)
439 __get_cpu_var(ptcstats).multmsg++;
440
b194b120
CW
441 time2 = get_cycles();
442 __get_cpu_var(ptcstats).dflush += (time2 - time1);
1812924b
CW
443
444 irq_exit();
445 set_irq_regs(old_regs);
1812924b
CW
446}
447
c4c4688f
CW
448/*
449 * uv_enable_timeouts
450 *
451 * Each target blade (i.e. blades that have cpu's) needs to have
452 * shootdown message timeouts enabled. The timeout does not cause
453 * an interrupt, but causes an error message to be returned to
454 * the sender.
455 */
b194b120 456static void uv_enable_timeouts(void)
1812924b 457{
1812924b 458 int blade;
c4c4688f 459 int nblades;
1812924b 460 int pnode;
c4c4688f
CW
461 unsigned long mmr_image;
462
463 nblades = uv_num_possible_blades();
1812924b 464
c4c4688f
CW
465 for (blade = 0; blade < nblades; blade++) {
466 if (!uv_blade_nr_possible_cpus(blade))
1812924b 467 continue;
c4c4688f 468
1812924b 469 pnode = uv_blade_to_pnode(blade);
c4c4688f
CW
470 mmr_image =
471 uv_read_global_mmr64(pnode, UVH_LB_BAU_MISC_CONTROL);
472 /*
473 * Set the timeout period and then lock it in, in three
474 * steps; captures and locks in the period.
475 *
476 * To program the period, the SOFT_ACK_MODE must be off.
477 */
478 mmr_image &= ~((unsigned long)1 <<
479 UV_ENABLE_INTD_SOFT_ACK_MODE_SHIFT);
480 uv_write_global_mmr64
481 (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
482 /*
483 * Set the 4-bit period.
484 */
485 mmr_image &= ~((unsigned long)0xf <<
486 UV_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHIFT);
487 mmr_image |= (UV_INTD_SOFT_ACK_TIMEOUT_PERIOD <<
488 UV_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHIFT);
489 uv_write_global_mmr64
490 (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
491 /*
492 * Subsequent reversals of the timebase bit (3) cause an
493 * immediate timeout of one or all INTD resources as
494 * indicated in bits 2:0 (7 causes all of them to timeout).
495 */
496 mmr_image |= ((unsigned long)1 <<
497 UV_ENABLE_INTD_SOFT_ACK_MODE_SHIFT);
498 uv_write_global_mmr64
499 (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
1812924b 500 }
1812924b
CW
501}
502
b194b120 503static void *uv_ptc_seq_start(struct seq_file *file, loff_t *offset)
1812924b
CW
504{
505 if (*offset < num_possible_cpus())
506 return offset;
507 return NULL;
508}
509
b194b120 510static void *uv_ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
1812924b
CW
511{
512 (*offset)++;
513 if (*offset < num_possible_cpus())
514 return offset;
515 return NULL;
516}
517
b194b120 518static void uv_ptc_seq_stop(struct seq_file *file, void *data)
1812924b
CW
519{
520}
521
522/*
523 * Display the statistics thru /proc
524 * data points to the cpu number
525 */
b194b120 526static int uv_ptc_seq_show(struct seq_file *file, void *data)
1812924b
CW
527{
528 struct ptc_stats *stat;
529 int cpu;
530
531 cpu = *(loff_t *)data;
532
533 if (!cpu) {
534 seq_printf(file,
535 "# cpu requestor requestee one all sretry dretry ptc_i ");
536 seq_printf(file,
b194b120 537 "sw_ack sflush dflush sok dnomsg dmult starget\n");
1812924b
CW
538 }
539 if (cpu < num_possible_cpus() && cpu_online(cpu)) {
540 stat = &per_cpu(ptcstats, cpu);
541 seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld ",
542 cpu, stat->requestor,
543 stat->requestee, stat->onetlb, stat->alltlb,
544 stat->s_retry, stat->d_retry, stat->ptc_i);
545 seq_printf(file, "%lx %ld %ld %ld %ld %ld %ld\n",
9674f35b 546 uv_read_global_mmr64(uv_cpu_to_pnode(cpu),
1812924b 547 UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE),
b194b120 548 stat->sflush, stat->dflush,
1812924b
CW
549 stat->retriesok, stat->nomsg,
550 stat->multmsg, stat->ntargeted);
551 }
552
553 return 0;
554}
555
556/*
557 * 0: display meaning of the statistics
558 * >0: retry limit
559 */
b194b120 560static ssize_t uv_ptc_proc_write(struct file *file, const char __user *user,
b4c286e6 561 size_t count, loff_t *data)
1812924b
CW
562{
563 long newmode;
564 char optstr[64];
565
e7eb8726 566 if (count == 0 || count > sizeof(optstr))
cef53278 567 return -EINVAL;
1812924b
CW
568 if (copy_from_user(optstr, user, count))
569 return -EFAULT;
570 optstr[count - 1] = '\0';
571 if (strict_strtoul(optstr, 10, &newmode) < 0) {
572 printk(KERN_DEBUG "%s is invalid\n", optstr);
573 return -EINVAL;
574 }
575
576 if (newmode == 0) {
577 printk(KERN_DEBUG "# cpu: cpu number\n");
578 printk(KERN_DEBUG
579 "requestor: times this cpu was the flush requestor\n");
580 printk(KERN_DEBUG
581 "requestee: times this cpu was requested to flush its TLBs\n");
582 printk(KERN_DEBUG
583 "one: times requested to flush a single address\n");
584 printk(KERN_DEBUG
585 "all: times requested to flush all TLB's\n");
586 printk(KERN_DEBUG
587 "sretry: number of retries of source-side timeouts\n");
588 printk(KERN_DEBUG
589 "dretry: number of retries of destination-side timeouts\n");
590 printk(KERN_DEBUG
591 "ptc_i: times UV fell through to IPI-style flushes\n");
592 printk(KERN_DEBUG
593 "sw_ack: image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE\n");
594 printk(KERN_DEBUG
b194b120 595 "sflush_us: cycles spent in uv_flush_tlb_others()\n");
1812924b 596 printk(KERN_DEBUG
b194b120 597 "dflush_us: cycles spent in handling flush requests\n");
1812924b
CW
598 printk(KERN_DEBUG "sok: successes on retry\n");
599 printk(KERN_DEBUG "dnomsg: interrupts with no message\n");
600 printk(KERN_DEBUG
601 "dmult: interrupts with multiple messages\n");
602 printk(KERN_DEBUG "starget: nodes targeted\n");
603 } else {
604 uv_bau_retry_limit = newmode;
605 printk(KERN_DEBUG "timeout retry limit:%d\n",
606 uv_bau_retry_limit);
607 }
608
609 return count;
610}
611
612static const struct seq_operations uv_ptc_seq_ops = {
dc163a41
IM
613 .start = uv_ptc_seq_start,
614 .next = uv_ptc_seq_next,
615 .stop = uv_ptc_seq_stop,
616 .show = uv_ptc_seq_show
1812924b
CW
617};
618
b194b120 619static int uv_ptc_proc_open(struct inode *inode, struct file *file)
1812924b
CW
620{
621 return seq_open(file, &uv_ptc_seq_ops);
622}
623
624static const struct file_operations proc_uv_ptc_operations = {
b194b120
CW
625 .open = uv_ptc_proc_open,
626 .read = seq_read,
627 .write = uv_ptc_proc_write,
628 .llseek = seq_lseek,
629 .release = seq_release,
1812924b
CW
630};
631
b194b120 632static int __init uv_ptc_init(void)
1812924b 633{
b194b120 634 struct proc_dir_entry *proc_uv_ptc;
1812924b
CW
635
636 if (!is_uv_system())
637 return 0;
638
1812924b
CW
639 proc_uv_ptc = create_proc_entry(UV_PTC_BASENAME, 0444, NULL);
640 if (!proc_uv_ptc) {
641 printk(KERN_ERR "unable to create %s proc entry\n",
642 UV_PTC_BASENAME);
643 return -EINVAL;
644 }
645 proc_uv_ptc->proc_fops = &proc_uv_ptc_operations;
646 return 0;
647}
648
b194b120
CW
649/*
650 * begin the initialization of the per-blade control structures
651 */
652static struct bau_control * __init uv_table_bases_init(int blade, int node)
1812924b 653{
b194b120 654 int i;
b194b120 655 struct bau_msg_status *msp;
dc163a41 656 struct bau_control *bau_tabp;
b194b120 657
dc163a41 658 bau_tabp =
b194b120 659 kmalloc_node(sizeof(struct bau_control), GFP_KERNEL, node);
dc163a41 660 BUG_ON(!bau_tabp);
b4c286e6 661
dc163a41 662 bau_tabp->msg_statuses =
b194b120 663 kmalloc_node(sizeof(struct bau_msg_status) *
dc163a41
IM
664 DEST_Q_SIZE, GFP_KERNEL, node);
665 BUG_ON(!bau_tabp->msg_statuses);
b4c286e6 666
dc163a41 667 for (i = 0, msp = bau_tabp->msg_statuses; i < DEST_Q_SIZE; i++, msp++)
b194b120
CW
668 bau_cpubits_clear(&msp->seen_by, (int)
669 uv_blade_nr_possible_cpus(blade));
b4c286e6 670
dc163a41 671 uv_bau_table_bases[blade] = bau_tabp;
b4c286e6 672
d400524a 673 return bau_tabp;
1812924b
CW
674}
675
b194b120
CW
676/*
677 * finish the initialization of the per-blade control structures
678 */
b4c286e6 679static void __init
9674f35b 680uv_table_bases_finish(int blade,
b4c286e6
IM
681 struct bau_control *bau_tablesp,
682 struct bau_desc *adp)
b194b120 683{
b194b120 684 struct bau_control *bcp;
9674f35b 685 int cpu;
b194b120 686
9674f35b
CW
687 for_each_present_cpu(cpu) {
688 if (blade != uv_cpu_to_blade_id(cpu))
689 continue;
b4c286e6 690
9674f35b 691 bcp = (struct bau_control *)&per_cpu(bau_control, cpu);
b4c286e6
IM
692 bcp->bau_msg_head = bau_tablesp->va_queue_first;
693 bcp->va_queue_first = bau_tablesp->va_queue_first;
694 bcp->va_queue_last = bau_tablesp->va_queue_last;
b4c286e6
IM
695 bcp->msg_statuses = bau_tablesp->msg_statuses;
696 bcp->descriptor_base = adp;
b194b120
CW
697 }
698}
1812924b
CW
699
700/*
b194b120 701 * initialize the sending side's sending buffers
1812924b 702 */
dc163a41 703static struct bau_desc * __init
b194b120 704uv_activation_descriptor_init(int node, int pnode)
1812924b
CW
705{
706 int i;
1812924b 707 unsigned long pa;
1812924b 708 unsigned long m;
b194b120 709 unsigned long n;
1812924b 710 unsigned long mmr_image;
dc163a41
IM
711 struct bau_desc *adp;
712 struct bau_desc *ad2;
b194b120 713
9674f35b 714 adp = (struct bau_desc *)kmalloc_node(16384, GFP_KERNEL, node);
dc163a41 715 BUG_ON(!adp);
b4c286e6 716
b194b120
CW
717 pa = __pa((unsigned long)adp);
718 n = pa >> uv_nshift;
719 m = pa & uv_mmask;
b4c286e6 720
b194b120 721 mmr_image = uv_read_global_mmr64(pnode, UVH_LB_BAU_SB_DESCRIPTOR_BASE);
b4c286e6 722 if (mmr_image) {
b194b120
CW
723 uv_write_global_mmr64(pnode, (unsigned long)
724 UVH_LB_BAU_SB_DESCRIPTOR_BASE,
725 (n << UV_DESC_BASE_PNODE_SHIFT | m));
b4c286e6
IM
726 }
727
b194b120 728 for (i = 0, ad2 = adp; i < UV_ACTIVATION_DESCRIPTOR_SIZE; i++, ad2++) {
dc163a41 729 memset(ad2, 0, sizeof(struct bau_desc));
b194b120 730 ad2->header.sw_ack_flag = 1;
9674f35b 731 ad2->header.base_dest_nodeid = uv_cpu_to_pnode(0);
b194b120
CW
732 ad2->header.command = UV_NET_ENDPOINT_INTD;
733 ad2->header.int_both = 1;
734 /*
735 * all others need to be set to zero:
736 * fairness chaining multilevel count replied_to
737 */
738 }
739 return adp;
740}
741
742/*
743 * initialize the destination side's receiving buffers
744 */
b4c286e6
IM
745static struct bau_payload_queue_entry * __init
746uv_payload_queue_init(int node, int pnode, struct bau_control *bau_tablesp)
b194b120 747{
1812924b 748 struct bau_payload_queue_entry *pqp;
b4c286e6 749 char *cp;
1812924b 750
dc163a41
IM
751 pqp = (struct bau_payload_queue_entry *) kmalloc_node(
752 (DEST_Q_SIZE + 1) * sizeof(struct bau_payload_queue_entry),
753 GFP_KERNEL, node);
754 BUG_ON(!pqp);
b4c286e6 755
b194b120
CW
756 cp = (char *)pqp + 31;
757 pqp = (struct bau_payload_queue_entry *)(((unsigned long)cp >> 5) << 5);
758 bau_tablesp->va_queue_first = pqp;
759 uv_write_global_mmr64(pnode,
760 UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST,
761 ((unsigned long)pnode <<
762 UV_PAYLOADQ_PNODE_SHIFT) |
763 uv_physnodeaddr(pqp));
764 uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL,
765 uv_physnodeaddr(pqp));
dc163a41 766 bau_tablesp->va_queue_last = pqp + (DEST_Q_SIZE - 1);
b194b120
CW
767 uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST,
768 (unsigned long)
769 uv_physnodeaddr(bau_tablesp->va_queue_last));
dc163a41 770 memset(pqp, 0, sizeof(struct bau_payload_queue_entry) * DEST_Q_SIZE);
b4c286e6 771
b194b120
CW
772 return pqp;
773}
1812924b 774
b194b120
CW
775/*
776 * Initialization of each UV blade's structures
777 */
9674f35b 778static int __init uv_init_blade(int blade)
b194b120 779{
9674f35b 780 int node;
b194b120
CW
781 int pnode;
782 unsigned long pa;
783 unsigned long apicid;
dc163a41 784 struct bau_desc *adp;
b194b120
CW
785 struct bau_payload_queue_entry *pqp;
786 struct bau_control *bau_tablesp;
1812924b 787
9674f35b 788 node = blade_to_first_node(blade);
b194b120
CW
789 bau_tablesp = uv_table_bases_init(blade, node);
790 pnode = uv_blade_to_pnode(blade);
791 adp = uv_activation_descriptor_init(node, pnode);
792 pqp = uv_payload_queue_init(node, pnode, bau_tablesp);
9674f35b 793 uv_table_bases_finish(blade, bau_tablesp, adp);
b194b120
CW
794 /*
795 * the below initialization can't be in firmware because the
796 * messaging IRQ will be determined by the OS
797 */
9674f35b 798 apicid = blade_to_first_apicid(blade);
b194b120
CW
799 pa = uv_read_global_mmr64(pnode, UVH_BAU_DATA_CONFIG);
800 if ((pa & 0xff) != UV_BAU_MESSAGE) {
801 uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG,
802 ((apicid << 32) | UV_BAU_MESSAGE));
1812924b 803 }
b194b120
CW
804 return 0;
805}
806
807/*
808 * Initialization of BAU-related structures
809 */
810static int __init uv_bau_init(void)
811{
812 int blade;
b194b120 813 int nblades;
2c74d666 814 int cur_cpu;
b194b120
CW
815
816 if (!is_uv_system())
817 return 0;
1812924b 818
b194b120 819 uv_bau_retry_limit = 1;
1812924b 820 uv_nshift = uv_hub_info->n_val;
dc163a41 821 uv_mmask = (1UL << uv_hub_info->n_val) - 1;
9674f35b
CW
822 nblades = uv_num_possible_blades();
823
1812924b
CW
824 uv_bau_table_bases = (struct bau_control **)
825 kmalloc(nblades * sizeof(struct bau_control *), GFP_KERNEL);
dc163a41 826 BUG_ON(!uv_bau_table_bases);
b4c286e6 827
9674f35b
CW
828 for (blade = 0; blade < nblades; blade++)
829 if (uv_blade_nr_possible_cpus(blade))
830 uv_init_blade(blade);
831
99dd8713 832 alloc_intr_gate(UV_BAU_MESSAGE, uv_bau_message_intr1);
1812924b 833 uv_enable_timeouts();
b4c286e6 834
1812924b
CW
835 return 0;
836}
1812924b 837__initcall(uv_bau_init);
b194b120 838__initcall(uv_ptc_init);