x86: integrate start_secondary
[linux-2.6-block.git] / arch / x86 / kernel / smpboot.c
CommitLineData
68a1c3f8
GC
1#include <linux/init.h>
2#include <linux/smp.h>
a355352b 3#include <linux/module.h>
70708a18 4#include <linux/sched.h>
69c18c15 5#include <linux/percpu.h>
91718e8d 6#include <linux/bootmem.h>
cb3c8b90
GOC
7#include <linux/err.h>
8#include <linux/nmi.h>
69c18c15 9
cb3c8b90 10#include <asm/desc.h>
69c18c15
GC
11#include <asm/nmi.h>
12#include <asm/irq.h>
13#include <asm/smp.h>
14#include <asm/cpu.h>
15#include <asm/numa.h>
cb3c8b90
GOC
16#include <asm/pgtable.h>
17#include <asm/tlbflush.h>
18#include <asm/mtrr.h>
19#include <asm/nmi.h>
bbc2ff6a 20#include <asm/vmi.h>
cb3c8b90 21#include <linux/mc146818rtc.h>
68a1c3f8 22
f6bc4029 23#include <mach_apic.h>
cb3c8b90
GOC
24#include <mach_wakecpu.h>
25#include <smpboot_hooks.h>
26
27/* Store all idle threads, this can be reused instead of creating
28* a new thread. Also avoids complicated thread destroy functionality
29* for idle threads.
30*/
31#ifdef CONFIG_HOTPLUG_CPU
32/*
33 * Needed only for CONFIG_HOTPLUG_CPU because __cpuinitdata is
34 * removed after init for !CONFIG_HOTPLUG_CPU.
35 */
36static DEFINE_PER_CPU(struct task_struct *, idle_thread_array);
37#define get_idle_for_cpu(x) (per_cpu(idle_thread_array, x))
38#define set_idle_for_cpu(x, p) (per_cpu(idle_thread_array, x) = (p))
39#else
40struct task_struct *idle_thread_array[NR_CPUS] __cpuinitdata ;
41#define get_idle_for_cpu(x) (idle_thread_array[(x)])
42#define set_idle_for_cpu(x, p) (idle_thread_array[(x)] = (p))
43#endif
f6bc4029 44
a355352b
GC
45/* Number of siblings per CPU package */
46int smp_num_siblings = 1;
47EXPORT_SYMBOL(smp_num_siblings);
48
49/* Last level cache ID of each logical CPU */
50DEFINE_PER_CPU(u16, cpu_llc_id) = BAD_APICID;
51
52/* bitmap of online cpus */
53cpumask_t cpu_online_map __read_mostly;
54EXPORT_SYMBOL(cpu_online_map);
55
56cpumask_t cpu_callin_map;
57cpumask_t cpu_callout_map;
58cpumask_t cpu_possible_map;
59EXPORT_SYMBOL(cpu_possible_map);
60
61/* representing HT siblings of each logical CPU */
62DEFINE_PER_CPU(cpumask_t, cpu_sibling_map);
63EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
64
65/* representing HT and core siblings of each logical CPU */
66DEFINE_PER_CPU(cpumask_t, cpu_core_map);
67EXPORT_PER_CPU_SYMBOL(cpu_core_map);
68
69/* Per CPU bogomips and other parameters */
70DEFINE_PER_CPU_SHARED_ALIGNED(struct cpuinfo_x86, cpu_info);
71EXPORT_PER_CPU_SYMBOL(cpu_info);
768d9505 72
cb3c8b90
GOC
73static atomic_t init_deasserted;
74
91718e8d
GC
75/* ready for x86_64, no harm for x86, since it will overwrite after alloc */
76unsigned char *trampoline_base = __va(SMP_TRAMPOLINE_BASE);
77
768d9505
GC
78/* representing cpus for which sibling maps can be computed */
79static cpumask_t cpu_sibling_setup_map;
80
1d89a7f0
GOC
81/* Set if we find a B stepping CPU */
82int __cpuinitdata smp_b_stepping;
1d89a7f0 83
7cc3959e
GOC
84#if defined(CONFIG_NUMA) && defined(CONFIG_X86_32)
85
86/* which logical CPUs are on which nodes */
87cpumask_t node_to_cpumask_map[MAX_NUMNODES] __read_mostly =
88 { [0 ... MAX_NUMNODES-1] = CPU_MASK_NONE };
89EXPORT_SYMBOL(node_to_cpumask_map);
90/* which node each logical CPU is on */
91int cpu_to_node_map[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = 0 };
92EXPORT_SYMBOL(cpu_to_node_map);
93
94/* set up a mapping between cpu and node. */
95static void map_cpu_to_node(int cpu, int node)
96{
97 printk(KERN_INFO "Mapping cpu %d to node %d\n", cpu, node);
98 cpu_set(cpu, node_to_cpumask_map[node]);
99 cpu_to_node_map[cpu] = node;
100}
101
102/* undo a mapping between cpu and node. */
103static void unmap_cpu_to_node(int cpu)
104{
105 int node;
106
107 printk(KERN_INFO "Unmapping cpu %d from all nodes\n", cpu);
108 for (node = 0; node < MAX_NUMNODES; node++)
109 cpu_clear(cpu, node_to_cpumask_map[node]);
110 cpu_to_node_map[cpu] = 0;
111}
112#else /* !(CONFIG_NUMA && CONFIG_X86_32) */
113#define map_cpu_to_node(cpu, node) ({})
114#define unmap_cpu_to_node(cpu) ({})
115#endif
116
117#ifdef CONFIG_X86_32
118u8 cpu_2_logical_apicid[NR_CPUS] __read_mostly =
119 { [0 ... NR_CPUS-1] = BAD_APICID };
120
121void map_cpu_to_logical_apicid(void)
122{
123 int cpu = smp_processor_id();
124 int apicid = logical_smp_processor_id();
125 int node = apicid_to_node(apicid);
126
127 if (!node_online(node))
128 node = first_online_node;
129
130 cpu_2_logical_apicid[cpu] = apicid;
131 map_cpu_to_node(cpu, node);
132}
133
134void unmap_cpu_to_logical_apicid(int cpu)
135{
136 cpu_2_logical_apicid[cpu] = BAD_APICID;
137 unmap_cpu_to_node(cpu);
138}
139#else
140#define unmap_cpu_to_logical_apicid(cpu) do {} while (0)
141#define map_cpu_to_logical_apicid() do {} while (0)
142#endif
143
cb3c8b90
GOC
144/*
145 * Report back to the Boot Processor.
146 * Running on AP.
147 */
148void __cpuinit smp_callin(void)
149{
150 int cpuid, phys_id;
151 unsigned long timeout;
152
153 /*
154 * If waken up by an INIT in an 82489DX configuration
155 * we may get here before an INIT-deassert IPI reaches
156 * our local APIC. We have to wait for the IPI or we'll
157 * lock up on an APIC access.
158 */
159 wait_for_init_deassert(&init_deasserted);
160
161 /*
162 * (This works even if the APIC is not enabled.)
163 */
164 phys_id = GET_APIC_ID(apic_read(APIC_ID));
165 cpuid = smp_processor_id();
166 if (cpu_isset(cpuid, cpu_callin_map)) {
167 panic("%s: phys CPU#%d, CPU#%d already present??\n", __func__,
168 phys_id, cpuid);
169 }
170 Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
171
172 /*
173 * STARTUP IPIs are fragile beasts as they might sometimes
174 * trigger some glue motherboard logic. Complete APIC bus
175 * silence for 1 second, this overestimates the time the
176 * boot CPU is spending to send the up to 2 STARTUP IPIs
177 * by a factor of two. This should be enough.
178 */
179
180 /*
181 * Waiting 2s total for startup (udelay is not yet working)
182 */
183 timeout = jiffies + 2*HZ;
184 while (time_before(jiffies, timeout)) {
185 /*
186 * Has the boot CPU finished it's STARTUP sequence?
187 */
188 if (cpu_isset(cpuid, cpu_callout_map))
189 break;
190 cpu_relax();
191 }
192
193 if (!time_before(jiffies, timeout)) {
194 panic("%s: CPU%d started up but did not get a callout!\n",
195 __func__, cpuid);
196 }
197
198 /*
199 * the boot CPU has finished the init stage and is spinning
200 * on callin_map until we finish. We are free to set up this
201 * CPU, first the APIC. (this is probably redundant on most
202 * boards)
203 */
204
205 Dprintk("CALLIN, before setup_local_APIC().\n");
206 smp_callin_clear_local_apic();
207 setup_local_APIC();
208 end_local_APIC_setup();
209 map_cpu_to_logical_apicid();
210
211 /*
212 * Get our bogomips.
213 *
214 * Need to enable IRQs because it can take longer and then
215 * the NMI watchdog might kill us.
216 */
217 local_irq_enable();
218 calibrate_delay();
219 local_irq_disable();
220 Dprintk("Stack at about %p\n", &cpuid);
221
222 /*
223 * Save our processor parameters
224 */
225 smp_store_cpu_info(cpuid);
226
227 /*
228 * Allow the master to continue.
229 */
230 cpu_set(cpuid, cpu_callin_map);
231}
232
bbc2ff6a
GOC
233/*
234 * Activate a secondary processor.
235 */
236void __cpuinit start_secondary(void *unused)
237{
238 /*
239 * Don't put *anything* before cpu_init(), SMP booting is too
240 * fragile that we want to limit the things done here to the
241 * most necessary things.
242 */
243#ifdef CONFIG_VMI
244 vmi_bringup();
245#endif
246 cpu_init();
247 preempt_disable();
248 smp_callin();
249
250 /* otherwise gcc will move up smp_processor_id before the cpu_init */
251 barrier();
252 /*
253 * Check TSC synchronization with the BP:
254 */
255 check_tsc_sync_target();
256
257 if (nmi_watchdog == NMI_IO_APIC) {
258 disable_8259A_irq(0);
259 enable_NMI_through_LVT0();
260 enable_8259A_irq(0);
261 }
262
263 /* This must be done before setting cpu_online_map */
264 set_cpu_sibling_map(raw_smp_processor_id());
265 wmb();
266
267 /*
268 * We need to hold call_lock, so there is no inconsistency
269 * between the time smp_call_function() determines number of
270 * IPI recipients, and the time when the determination is made
271 * for which cpus receive the IPI. Holding this
272 * lock helps us to not include this cpu in a currently in progress
273 * smp_call_function().
274 */
275 lock_ipi_call_lock();
276#ifdef CONFIG_X86_64
277 spin_lock(&vector_lock);
278
279 /* Setup the per cpu irq handling data structures */
280 __setup_vector_irq(smp_processor_id());
281 /*
282 * Allow the master to continue.
283 */
284 spin_unlock(&vector_lock);
285#endif
286 cpu_set(smp_processor_id(), cpu_online_map);
287 unlock_ipi_call_lock();
288 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
289
290 setup_secondary_clock();
291
292 wmb();
293 cpu_idle();
294}
295
296#ifdef CONFIG_X86_32
297/*
298 * Everything has been set up for the secondary
299 * CPUs - they just need to reload everything
300 * from the task structure
301 * This function must not return.
302 */
303void __devinit initialize_secondary(void)
304{
305 /*
306 * We don't actually need to load the full TSS,
307 * basically just the stack pointer and the ip.
308 */
309
310 asm volatile(
311 "movl %0,%%esp\n\t"
312 "jmp *%1"
313 :
314 :"m" (current->thread.sp), "m" (current->thread.ip));
315}
316#endif
cb3c8b90 317
1d89a7f0
GOC
318static void __cpuinit smp_apply_quirks(struct cpuinfo_x86 *c)
319{
320#ifdef CONFIG_X86_32
321 /*
322 * Mask B, Pentium, but not Pentium MMX
323 */
324 if (c->x86_vendor == X86_VENDOR_INTEL &&
325 c->x86 == 5 &&
326 c->x86_mask >= 1 && c->x86_mask <= 4 &&
327 c->x86_model <= 3)
328 /*
329 * Remember we have B step Pentia with bugs
330 */
331 smp_b_stepping = 1;
332
333 /*
334 * Certain Athlons might work (for various values of 'work') in SMP
335 * but they are not certified as MP capable.
336 */
337 if ((c->x86_vendor == X86_VENDOR_AMD) && (c->x86 == 6)) {
338
339 if (num_possible_cpus() == 1)
340 goto valid_k7;
341
342 /* Athlon 660/661 is valid. */
343 if ((c->x86_model == 6) && ((c->x86_mask == 0) ||
344 (c->x86_mask == 1)))
345 goto valid_k7;
346
347 /* Duron 670 is valid */
348 if ((c->x86_model == 7) && (c->x86_mask == 0))
349 goto valid_k7;
350
351 /*
352 * Athlon 662, Duron 671, and Athlon >model 7 have capability
353 * bit. It's worth noting that the A5 stepping (662) of some
354 * Athlon XP's have the MP bit set.
355 * See http://www.heise.de/newsticker/data/jow-18.10.01-000 for
356 * more.
357 */
358 if (((c->x86_model == 6) && (c->x86_mask >= 2)) ||
359 ((c->x86_model == 7) && (c->x86_mask >= 1)) ||
360 (c->x86_model > 7))
361 if (cpu_has_mp)
362 goto valid_k7;
363
364 /* If we get here, not a certified SMP capable AMD system. */
365 add_taint(TAINT_UNSAFE_SMP);
366 }
367
368valid_k7:
369 ;
370#endif
371}
372
693d4b8a
GOC
373void smp_checks(void)
374{
375 if (smp_b_stepping)
376 printk(KERN_WARNING "WARNING: SMP operation may be unreliable"
377 "with B stepping processors.\n");
378
379 /*
380 * Don't taint if we are running SMP kernel on a single non-MP
381 * approved Athlon
382 */
383 if (tainted & TAINT_UNSAFE_SMP) {
f68e00a3 384 if (num_online_cpus())
693d4b8a
GOC
385 printk(KERN_INFO "WARNING: This combination of AMD"
386 "processors is not suitable for SMP.\n");
387 else
388 tainted &= ~TAINT_UNSAFE_SMP;
389 }
390}
391
1d89a7f0
GOC
392/*
393 * The bootstrap kernel entry code has set these up. Save them for
394 * a given CPU
395 */
396
397void __cpuinit smp_store_cpu_info(int id)
398{
399 struct cpuinfo_x86 *c = &cpu_data(id);
400
401 *c = boot_cpu_data;
402 c->cpu_index = id;
403 if (id != 0)
404 identify_secondary_cpu(c);
405 smp_apply_quirks(c);
406}
407
408
768d9505
GC
409void __cpuinit set_cpu_sibling_map(int cpu)
410{
411 int i;
412 struct cpuinfo_x86 *c = &cpu_data(cpu);
413
414 cpu_set(cpu, cpu_sibling_setup_map);
415
416 if (smp_num_siblings > 1) {
417 for_each_cpu_mask(i, cpu_sibling_setup_map) {
418 if (c->phys_proc_id == cpu_data(i).phys_proc_id &&
419 c->cpu_core_id == cpu_data(i).cpu_core_id) {
420 cpu_set(i, per_cpu(cpu_sibling_map, cpu));
421 cpu_set(cpu, per_cpu(cpu_sibling_map, i));
422 cpu_set(i, per_cpu(cpu_core_map, cpu));
423 cpu_set(cpu, per_cpu(cpu_core_map, i));
424 cpu_set(i, c->llc_shared_map);
425 cpu_set(cpu, cpu_data(i).llc_shared_map);
426 }
427 }
428 } else {
429 cpu_set(cpu, per_cpu(cpu_sibling_map, cpu));
430 }
431
432 cpu_set(cpu, c->llc_shared_map);
433
434 if (current_cpu_data.x86_max_cores == 1) {
435 per_cpu(cpu_core_map, cpu) = per_cpu(cpu_sibling_map, cpu);
436 c->booted_cores = 1;
437 return;
438 }
439
440 for_each_cpu_mask(i, cpu_sibling_setup_map) {
441 if (per_cpu(cpu_llc_id, cpu) != BAD_APICID &&
442 per_cpu(cpu_llc_id, cpu) == per_cpu(cpu_llc_id, i)) {
443 cpu_set(i, c->llc_shared_map);
444 cpu_set(cpu, cpu_data(i).llc_shared_map);
445 }
446 if (c->phys_proc_id == cpu_data(i).phys_proc_id) {
447 cpu_set(i, per_cpu(cpu_core_map, cpu));
448 cpu_set(cpu, per_cpu(cpu_core_map, i));
449 /*
450 * Does this new cpu bringup a new core?
451 */
452 if (cpus_weight(per_cpu(cpu_sibling_map, cpu)) == 1) {
453 /*
454 * for each core in package, increment
455 * the booted_cores for this new cpu
456 */
457 if (first_cpu(per_cpu(cpu_sibling_map, i)) == i)
458 c->booted_cores++;
459 /*
460 * increment the core count for all
461 * the other cpus in this package
462 */
463 if (i != cpu)
464 cpu_data(i).booted_cores++;
465 } else if (i != cpu && !c->booted_cores)
466 c->booted_cores = cpu_data(i).booted_cores;
467 }
468 }
469}
470
70708a18
GC
471/* maps the cpu to the sched domain representing multi-core */
472cpumask_t cpu_coregroup_map(int cpu)
473{
474 struct cpuinfo_x86 *c = &cpu_data(cpu);
475 /*
476 * For perf, we return last level cache shared map.
477 * And for power savings, we return cpu_core_map
478 */
479 if (sched_mc_power_savings || sched_smt_power_savings)
480 return per_cpu(cpu_core_map, cpu);
481 else
482 return c->llc_shared_map;
483}
484
91718e8d
GC
485/*
486 * Currently trivial. Write the real->protected mode
487 * bootstrap into the page concerned. The caller
488 * has made sure it's suitably aligned.
489 */
490
491unsigned long __cpuinit setup_trampoline(void)
492{
493 memcpy(trampoline_base, trampoline_data,
494 trampoline_end - trampoline_data);
495 return virt_to_phys(trampoline_base);
496}
497
498#ifdef CONFIG_X86_32
499/*
500 * We are called very early to get the low memory for the
501 * SMP bootup trampoline page.
502 */
503void __init smp_alloc_memory(void)
504{
505 trampoline_base = alloc_bootmem_low_pages(PAGE_SIZE);
506 /*
507 * Has to be in very low memory so we can execute
508 * real-mode AP code.
509 */
510 if (__pa(trampoline_base) >= 0x9F000)
511 BUG();
512}
513#endif
70708a18 514
904541e2
GOC
515void impress_friends(void)
516{
517 int cpu;
518 unsigned long bogosum = 0;
519 /*
520 * Allow the user to impress friends.
521 */
522 Dprintk("Before bogomips.\n");
523 for_each_possible_cpu(cpu)
524 if (cpu_isset(cpu, cpu_callout_map))
525 bogosum += cpu_data(cpu).loops_per_jiffy;
526 printk(KERN_INFO
527 "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
f68e00a3 528 num_online_cpus(),
904541e2
GOC
529 bogosum/(500000/HZ),
530 (bogosum/(5000/HZ))%100);
531
532 Dprintk("Before bogocount - setting activated=1.\n");
533}
534
cb3c8b90
GOC
535static inline void __inquire_remote_apic(int apicid)
536{
537 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
538 char *names[] = { "ID", "VERSION", "SPIV" };
539 int timeout;
540 u32 status;
541
542 printk(KERN_INFO "Inquiring remote APIC #%d...\n", apicid);
543
544 for (i = 0; i < ARRAY_SIZE(regs); i++) {
545 printk(KERN_INFO "... APIC #%d %s: ", apicid, names[i]);
546
547 /*
548 * Wait for idle.
549 */
550 status = safe_apic_wait_icr_idle();
551 if (status)
552 printk(KERN_CONT
553 "a previous APIC delivery may have failed\n");
554
555 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
556 apic_write_around(APIC_ICR, APIC_DM_REMRD | regs[i]);
557
558 timeout = 0;
559 do {
560 udelay(100);
561 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
562 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
563
564 switch (status) {
565 case APIC_ICR_RR_VALID:
566 status = apic_read(APIC_RRR);
567 printk(KERN_CONT "%08x\n", status);
568 break;
569 default:
570 printk(KERN_CONT "failed\n");
571 }
572 }
573}
574
575#ifdef WAKE_SECONDARY_VIA_NMI
576/*
577 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
578 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
579 * won't ... remember to clear down the APIC, etc later.
580 */
581static int __devinit
582wakeup_secondary_cpu(int logical_apicid, unsigned long start_eip)
583{
584 unsigned long send_status, accept_status = 0;
585 int maxlvt;
586
587 /* Target chip */
588 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(logical_apicid));
589
590 /* Boot on the stack */
591 /* Kick the second */
592 apic_write_around(APIC_ICR, APIC_DM_NMI | APIC_DEST_LOGICAL);
593
594 Dprintk("Waiting for send to finish...\n");
595 send_status = safe_apic_wait_icr_idle();
596
597 /*
598 * Give the other CPU some time to accept the IPI.
599 */
600 udelay(200);
601 /*
602 * Due to the Pentium erratum 3AP.
603 */
604 maxlvt = lapic_get_maxlvt();
605 if (maxlvt > 3) {
606 apic_read_around(APIC_SPIV);
607 apic_write(APIC_ESR, 0);
608 }
609 accept_status = (apic_read(APIC_ESR) & 0xEF);
610 Dprintk("NMI sent.\n");
611
612 if (send_status)
613 printk(KERN_ERR "APIC never delivered???\n");
614 if (accept_status)
615 printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status);
616
617 return (send_status | accept_status);
618}
619#endif /* WAKE_SECONDARY_VIA_NMI */
620
cb3c8b90
GOC
621#ifdef WAKE_SECONDARY_VIA_INIT
622static int __devinit
623wakeup_secondary_cpu(int phys_apicid, unsigned long start_eip)
624{
625 unsigned long send_status, accept_status = 0;
626 int maxlvt, num_starts, j;
627
628 /*
629 * Be paranoid about clearing APIC errors.
630 */
631 if (APIC_INTEGRATED(apic_version[phys_apicid])) {
632 apic_read_around(APIC_SPIV);
633 apic_write(APIC_ESR, 0);
634 apic_read(APIC_ESR);
635 }
636
637 Dprintk("Asserting INIT.\n");
638
639 /*
640 * Turn INIT on target chip
641 */
642 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
643
644 /*
645 * Send IPI
646 */
647 apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT
648 | APIC_DM_INIT);
649
650 Dprintk("Waiting for send to finish...\n");
651 send_status = safe_apic_wait_icr_idle();
652
653 mdelay(10);
654
655 Dprintk("Deasserting INIT.\n");
656
657 /* Target chip */
658 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
659
660 /* Send IPI */
661 apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT);
662
663 Dprintk("Waiting for send to finish...\n");
664 send_status = safe_apic_wait_icr_idle();
665
666 mb();
667 atomic_set(&init_deasserted, 1);
668
669 /*
670 * Should we send STARTUP IPIs ?
671 *
672 * Determine this based on the APIC version.
673 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
674 */
675 if (APIC_INTEGRATED(apic_version[phys_apicid]))
676 num_starts = 2;
677 else
678 num_starts = 0;
679
680 /*
681 * Paravirt / VMI wants a startup IPI hook here to set up the
682 * target processor state.
683 */
684 startup_ipi_hook(phys_apicid, (unsigned long) start_secondary,
685#ifdef CONFIG_X86_64
686 (unsigned long)init_rsp);
687#else
688 (unsigned long)stack_start.sp);
689#endif
690
691 /*
692 * Run STARTUP IPI loop.
693 */
694 Dprintk("#startup loops: %d.\n", num_starts);
695
696 maxlvt = lapic_get_maxlvt();
697
698 for (j = 1; j <= num_starts; j++) {
699 Dprintk("Sending STARTUP #%d.\n", j);
700 apic_read_around(APIC_SPIV);
701 apic_write(APIC_ESR, 0);
702 apic_read(APIC_ESR);
703 Dprintk("After apic_write.\n");
704
705 /*
706 * STARTUP IPI
707 */
708
709 /* Target chip */
710 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
711
712 /* Boot on the stack */
713 /* Kick the second */
714 apic_write_around(APIC_ICR, APIC_DM_STARTUP
715 | (start_eip >> 12));
716
717 /*
718 * Give the other CPU some time to accept the IPI.
719 */
720 udelay(300);
721
722 Dprintk("Startup point 1.\n");
723
724 Dprintk("Waiting for send to finish...\n");
725 send_status = safe_apic_wait_icr_idle();
726
727 /*
728 * Give the other CPU some time to accept the IPI.
729 */
730 udelay(200);
731 /*
732 * Due to the Pentium erratum 3AP.
733 */
734 if (maxlvt > 3) {
735 apic_read_around(APIC_SPIV);
736 apic_write(APIC_ESR, 0);
737 }
738 accept_status = (apic_read(APIC_ESR) & 0xEF);
739 if (send_status || accept_status)
740 break;
741 }
742 Dprintk("After Startup.\n");
743
744 if (send_status)
745 printk(KERN_ERR "APIC never delivered???\n");
746 if (accept_status)
747 printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status);
748
749 return (send_status | accept_status);
750}
751#endif /* WAKE_SECONDARY_VIA_INIT */
752
753struct create_idle {
754 struct work_struct work;
755 struct task_struct *idle;
756 struct completion done;
757 int cpu;
758};
759
760static void __cpuinit do_fork_idle(struct work_struct *work)
761{
762 struct create_idle *c_idle =
763 container_of(work, struct create_idle, work);
764
765 c_idle->idle = fork_idle(c_idle->cpu);
766 complete(&c_idle->done);
767}
768
769static int __cpuinit do_boot_cpu(int apicid, int cpu)
770/*
771 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
772 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
773 * Returns zero if CPU booted OK, else error code from wakeup_secondary_cpu.
774 */
775{
776 unsigned long boot_error = 0;
777 int timeout;
778 unsigned long start_ip;
779 unsigned short nmi_high = 0, nmi_low = 0;
780 struct create_idle c_idle = {
781 .cpu = cpu,
782 .done = COMPLETION_INITIALIZER_ONSTACK(c_idle.done),
783 };
784 INIT_WORK(&c_idle.work, do_fork_idle);
785#ifdef CONFIG_X86_64
786 /* allocate memory for gdts of secondary cpus. Hotplug is considered */
787 if (!cpu_gdt_descr[cpu].address &&
788 !(cpu_gdt_descr[cpu].address = get_zeroed_page(GFP_KERNEL))) {
789 printk(KERN_ERR "Failed to allocate GDT for CPU %d\n", cpu);
790 return -1;
791 }
792
793 /* Allocate node local memory for AP pdas */
794 if (cpu_pda(cpu) == &boot_cpu_pda[cpu]) {
795 struct x8664_pda *newpda, *pda;
796 int node = cpu_to_node(cpu);
797 pda = cpu_pda(cpu);
798 newpda = kmalloc_node(sizeof(struct x8664_pda), GFP_ATOMIC,
799 node);
800 if (newpda) {
801 memcpy(newpda, pda, sizeof(struct x8664_pda));
802 cpu_pda(cpu) = newpda;
803 } else
804 printk(KERN_ERR
805 "Could not allocate node local PDA for CPU %d on node %d\n",
806 cpu, node);
807 }
808#endif
809
810 alternatives_smp_switch(1);
811
812 c_idle.idle = get_idle_for_cpu(cpu);
813
814 /*
815 * We can't use kernel_thread since we must avoid to
816 * reschedule the child.
817 */
818 if (c_idle.idle) {
819 c_idle.idle->thread.sp = (unsigned long) (((struct pt_regs *)
820 (THREAD_SIZE + task_stack_page(c_idle.idle))) - 1);
821 init_idle(c_idle.idle, cpu);
822 goto do_rest;
823 }
824
825 if (!keventd_up() || current_is_keventd())
826 c_idle.work.func(&c_idle.work);
827 else {
828 schedule_work(&c_idle.work);
829 wait_for_completion(&c_idle.done);
830 }
831
832 if (IS_ERR(c_idle.idle)) {
833 printk("failed fork for CPU %d\n", cpu);
834 return PTR_ERR(c_idle.idle);
835 }
836
837 set_idle_for_cpu(cpu, c_idle.idle);
838do_rest:
839#ifdef CONFIG_X86_32
840 per_cpu(current_task, cpu) = c_idle.idle;
841 init_gdt(cpu);
842 early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu);
843 c_idle.idle->thread.ip = (unsigned long) start_secondary;
844 /* Stack for startup_32 can be just as for start_secondary onwards */
845 stack_start.sp = (void *) c_idle.idle->thread.sp;
846 irq_ctx_init(cpu);
847#else
848 cpu_pda(cpu)->pcurrent = c_idle.idle;
849 init_rsp = c_idle.idle->thread.sp;
850 load_sp0(&per_cpu(init_tss, cpu), &c_idle.idle->thread);
851 initial_code = (unsigned long)start_secondary;
852 clear_tsk_thread_flag(c_idle.idle, TIF_FORK);
853#endif
854
855 /* start_ip had better be page-aligned! */
856 start_ip = setup_trampoline();
857
858 /* So we see what's up */
859 printk(KERN_INFO "Booting processor %d/%d ip %lx\n",
860 cpu, apicid, start_ip);
861
862 /*
863 * This grunge runs the startup process for
864 * the targeted processor.
865 */
866
867 atomic_set(&init_deasserted, 0);
868
869 Dprintk("Setting warm reset code and vector.\n");
870
871 store_NMI_vector(&nmi_high, &nmi_low);
872
873 smpboot_setup_warm_reset_vector(start_ip);
874 /*
875 * Be paranoid about clearing APIC errors.
876 */
877 apic_write(APIC_ESR, 0);
878 apic_read(APIC_ESR);
879
880
881 /*
882 * Starting actual IPI sequence...
883 */
884 boot_error = wakeup_secondary_cpu(apicid, start_ip);
885
886 if (!boot_error) {
887 /*
888 * allow APs to start initializing.
889 */
890 Dprintk("Before Callout %d.\n", cpu);
891 cpu_set(cpu, cpu_callout_map);
892 Dprintk("After Callout %d.\n", cpu);
893
894 /*
895 * Wait 5s total for a response
896 */
897 for (timeout = 0; timeout < 50000; timeout++) {
898 if (cpu_isset(cpu, cpu_callin_map))
899 break; /* It has booted */
900 udelay(100);
901 }
902
903 if (cpu_isset(cpu, cpu_callin_map)) {
904 /* number CPUs logically, starting from 1 (BSP is 0) */
905 Dprintk("OK.\n");
906 printk(KERN_INFO "CPU%d: ", cpu);
907 print_cpu_info(&cpu_data(cpu));
908 Dprintk("CPU has booted.\n");
909 } else {
910 boot_error = 1;
911 if (*((volatile unsigned char *)trampoline_base)
912 == 0xA5)
913 /* trampoline started but...? */
914 printk(KERN_ERR "Stuck ??\n");
915 else
916 /* trampoline code not run */
917 printk(KERN_ERR "Not responding.\n");
918 inquire_remote_apic(apicid);
919 }
920 }
921
922 if (boot_error) {
923 /* Try to put things back the way they were before ... */
924 unmap_cpu_to_logical_apicid(cpu);
925#ifdef CONFIG_X86_64
926 clear_node_cpumask(cpu); /* was set by numa_add_cpu */
927#endif
928 cpu_clear(cpu, cpu_callout_map); /* was set by do_boot_cpu() */
929 cpu_clear(cpu, cpu_initialized); /* was set by cpu_init() */
930 cpu_clear(cpu, cpu_possible_map);
931 cpu_clear(cpu, cpu_present_map);
932 per_cpu(x86_cpu_to_apicid, cpu) = BAD_APICID;
933 }
934
935 /* mark "stuck" area as not stuck */
936 *((volatile unsigned long *)trampoline_base) = 0;
937
938 return boot_error;
939}
940
941int __cpuinit native_cpu_up(unsigned int cpu)
942{
943 int apicid = cpu_present_to_apicid(cpu);
944 unsigned long flags;
945 int err;
946
947 WARN_ON(irqs_disabled());
948
949 Dprintk("++++++++++++++++++++=_---CPU UP %u\n", cpu);
950
951 if (apicid == BAD_APICID || apicid == boot_cpu_physical_apicid ||
952 !physid_isset(apicid, phys_cpu_present_map)) {
953 printk(KERN_ERR "%s: bad cpu %d\n", __func__, cpu);
954 return -EINVAL;
955 }
956
957 /*
958 * Already booted CPU?
959 */
960 if (cpu_isset(cpu, cpu_callin_map)) {
961 Dprintk("do_boot_cpu %d Already started\n", cpu);
962 return -ENOSYS;
963 }
964
965 /*
966 * Save current MTRR state in case it was changed since early boot
967 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
968 */
969 mtrr_save_state();
970
971 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
972
973#ifdef CONFIG_X86_32
974 /* init low mem mapping */
975 clone_pgd_range(swapper_pg_dir, swapper_pg_dir + USER_PGD_PTRS,
976 min_t(unsigned long, KERNEL_PGD_PTRS, USER_PGD_PTRS));
977 flush_tlb_all();
978#endif
979
980 err = do_boot_cpu(apicid, cpu);
981 if (err < 0) {
982 Dprintk("do_boot_cpu failed %d\n", err);
983 return err;
984 }
985
986 /*
987 * Check TSC synchronization with the AP (keep irqs disabled
988 * while doing so):
989 */
990 local_irq_save(flags);
991 check_tsc_sync_source(cpu);
992 local_irq_restore(flags);
993
994 while (!cpu_isset(cpu, cpu_online_map)) {
995 cpu_relax();
996 touch_nmi_watchdog();
997 }
998
999 return 0;
1000}
1001
68a1c3f8 1002#ifdef CONFIG_HOTPLUG_CPU
768d9505
GC
1003void remove_siblinginfo(int cpu)
1004{
1005 int sibling;
1006 struct cpuinfo_x86 *c = &cpu_data(cpu);
1007
1008 for_each_cpu_mask(sibling, per_cpu(cpu_core_map, cpu)) {
1009 cpu_clear(cpu, per_cpu(cpu_core_map, sibling));
1010 /*/
1011 * last thread sibling in this cpu core going down
1012 */
1013 if (cpus_weight(per_cpu(cpu_sibling_map, cpu)) == 1)
1014 cpu_data(sibling).booted_cores--;
1015 }
1016
1017 for_each_cpu_mask(sibling, per_cpu(cpu_sibling_map, cpu))
1018 cpu_clear(cpu, per_cpu(cpu_sibling_map, sibling));
1019 cpus_clear(per_cpu(cpu_sibling_map, cpu));
1020 cpus_clear(per_cpu(cpu_core_map, cpu));
1021 c->phys_proc_id = 0;
1022 c->cpu_core_id = 0;
1023 cpu_clear(cpu, cpu_sibling_setup_map);
1024}
68a1c3f8
GC
1025
1026int additional_cpus __initdata = -1;
1027
1028static __init int setup_additional_cpus(char *s)
1029{
1030 return s && get_option(&s, &additional_cpus) ? 0 : -EINVAL;
1031}
1032early_param("additional_cpus", setup_additional_cpus);
1033
1034/*
1035 * cpu_possible_map should be static, it cannot change as cpu's
1036 * are onlined, or offlined. The reason is per-cpu data-structures
1037 * are allocated by some modules at init time, and dont expect to
1038 * do this dynamically on cpu arrival/departure.
1039 * cpu_present_map on the other hand can change dynamically.
1040 * In case when cpu_hotplug is not compiled, then we resort to current
1041 * behaviour, which is cpu_possible == cpu_present.
1042 * - Ashok Raj
1043 *
1044 * Three ways to find out the number of additional hotplug CPUs:
1045 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1046 * - The user can overwrite it with additional_cpus=NUM
1047 * - Otherwise don't reserve additional CPUs.
1048 * We do this because additional CPUs waste a lot of memory.
1049 * -AK
1050 */
1051__init void prefill_possible_map(void)
1052{
1053 int i;
1054 int possible;
1055
1056 if (additional_cpus == -1) {
1057 if (disabled_cpus > 0)
1058 additional_cpus = disabled_cpus;
1059 else
1060 additional_cpus = 0;
1061 }
1062 possible = num_processors + additional_cpus;
1063 if (possible > NR_CPUS)
1064 possible = NR_CPUS;
1065
1066 printk(KERN_INFO "SMP: Allowing %d CPUs, %d hotplug CPUs\n",
1067 possible, max_t(int, possible - num_processors, 0));
1068
1069 for (i = 0; i < possible; i++)
1070 cpu_set(i, cpu_possible_map);
1071}
69c18c15
GC
1072
1073static void __ref remove_cpu_from_maps(int cpu)
1074{
1075 cpu_clear(cpu, cpu_online_map);
1076#ifdef CONFIG_X86_64
1077 cpu_clear(cpu, cpu_callout_map);
1078 cpu_clear(cpu, cpu_callin_map);
1079 /* was set by cpu_init() */
1080 clear_bit(cpu, (unsigned long *)&cpu_initialized);
1081 clear_node_cpumask(cpu);
1082#endif
1083}
1084
1085int __cpu_disable(void)
1086{
1087 int cpu = smp_processor_id();
1088
1089 /*
1090 * Perhaps use cpufreq to drop frequency, but that could go
1091 * into generic code.
1092 *
1093 * We won't take down the boot processor on i386 due to some
1094 * interrupts only being able to be serviced by the BSP.
1095 * Especially so if we're not using an IOAPIC -zwane
1096 */
1097 if (cpu == 0)
1098 return -EBUSY;
1099
1100 if (nmi_watchdog == NMI_LOCAL_APIC)
1101 stop_apic_nmi_watchdog(NULL);
1102 clear_local_APIC();
1103
1104 /*
1105 * HACK:
1106 * Allow any queued timer interrupts to get serviced
1107 * This is only a temporary solution until we cleanup
1108 * fixup_irqs as we do for IA64.
1109 */
1110 local_irq_enable();
1111 mdelay(1);
1112
1113 local_irq_disable();
1114 remove_siblinginfo(cpu);
1115
1116 /* It's now safe to remove this processor from the online map */
1117 remove_cpu_from_maps(cpu);
1118 fixup_irqs(cpu_online_map);
1119 return 0;
1120}
1121
1122void __cpu_die(unsigned int cpu)
1123{
1124 /* We don't do anything here: idle task is faking death itself. */
1125 unsigned int i;
1126
1127 for (i = 0; i < 10; i++) {
1128 /* They ack this in play_dead by setting CPU_DEAD */
1129 if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
1130 printk(KERN_INFO "CPU %d is now offline\n", cpu);
1131 if (1 == num_online_cpus())
1132 alternatives_smp_switch(0);
1133 return;
1134 }
1135 msleep(100);
1136 }
1137 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1138}
1139#else /* ... !CONFIG_HOTPLUG_CPU */
1140int __cpu_disable(void)
1141{
1142 return -ENOSYS;
1143}
1144
1145void __cpu_die(unsigned int cpu)
1146{
1147 /* We said "no" in __cpu_disable */
1148 BUG();
1149}
68a1c3f8
GC
1150#endif
1151
89b08200
GC
1152/*
1153 * If the BIOS enumerates physical processors before logical,
1154 * maxcpus=N at enumeration-time can be used to disable HT.
1155 */
1156static int __init parse_maxcpus(char *arg)
1157{
1158 extern unsigned int maxcpus;
1159
1160 maxcpus = simple_strtoul(arg, NULL, 0);
1161 return 0;
1162}
1163early_param("maxcpus", parse_maxcpus);