x86: Eliminate TS_XSAVE
[linux-2.6-block.git] / arch / x86 / kernel / process.c
CommitLineData
61c4628b
SS
1#include <linux/errno.h>
2#include <linux/kernel.h>
3#include <linux/mm.h>
4#include <linux/smp.h>
389d1fb1 5#include <linux/prctl.h>
61c4628b
SS
6#include <linux/slab.h>
7#include <linux/sched.h>
7f424a8b
PZ
8#include <linux/module.h>
9#include <linux/pm.h>
aa276e1c 10#include <linux/clockchips.h>
9d62dcdf 11#include <linux/random.h>
7c68af6e 12#include <linux/user-return-notifier.h>
814e2c84
AI
13#include <linux/dmi.h>
14#include <linux/utsname.h>
61613521 15#include <trace/events/power.h>
24f1e32c 16#include <linux/hw_breakpoint.h>
c1e3b377 17#include <asm/system.h>
d3ec5cae 18#include <asm/apic.h>
2c1b284e 19#include <asm/syscalls.h>
389d1fb1
JF
20#include <asm/idle.h>
21#include <asm/uaccess.h>
22#include <asm/i387.h>
2311f0de 23#include <asm/ds.h>
66cb5917 24#include <asm/debugreg.h>
c1e3b377
ZY
25
26unsigned long idle_halt;
27EXPORT_SYMBOL(idle_halt);
da5e09a1
ZY
28unsigned long idle_nomwait;
29EXPORT_SYMBOL(idle_nomwait);
61c4628b 30
aa283f49 31struct kmem_cache *task_xstate_cachep;
61c4628b
SS
32
33int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
34{
35 *dst = *src;
aa283f49
SS
36 if (src->thread.xstate) {
37 dst->thread.xstate = kmem_cache_alloc(task_xstate_cachep,
38 GFP_KERNEL);
39 if (!dst->thread.xstate)
40 return -ENOMEM;
41 WARN_ON((unsigned long)dst->thread.xstate & 15);
42 memcpy(dst->thread.xstate, src->thread.xstate, xstate_size);
43 }
61c4628b
SS
44 return 0;
45}
46
aa283f49 47void free_thread_xstate(struct task_struct *tsk)
61c4628b 48{
aa283f49
SS
49 if (tsk->thread.xstate) {
50 kmem_cache_free(task_xstate_cachep, tsk->thread.xstate);
51 tsk->thread.xstate = NULL;
52 }
2311f0de
MM
53
54 WARN(tsk->thread.ds_ctx, "leaking DS context\n");
aa283f49
SS
55}
56
aa283f49
SS
57void free_thread_info(struct thread_info *ti)
58{
59 free_thread_xstate(ti->task);
1679f271 60 free_pages((unsigned long)ti, get_order(THREAD_SIZE));
61c4628b
SS
61}
62
63void arch_task_cache_init(void)
64{
65 task_xstate_cachep =
66 kmem_cache_create("task_xstate", xstate_size,
67 __alignof__(union thread_xstate),
2dff4405 68 SLAB_PANIC | SLAB_NOTRACK, NULL);
61c4628b 69}
7f424a8b 70
389d1fb1
JF
71/*
72 * Free current thread data structures etc..
73 */
74void exit_thread(void)
75{
76 struct task_struct *me = current;
77 struct thread_struct *t = &me->thread;
250981e6 78 unsigned long *bp = t->io_bitmap_ptr;
389d1fb1 79
250981e6 80 if (bp) {
389d1fb1
JF
81 struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
82
389d1fb1
JF
83 t->io_bitmap_ptr = NULL;
84 clear_thread_flag(TIF_IO_BITMAP);
85 /*
86 * Careful, clear this in the TSS too:
87 */
88 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
89 t->io_bitmap_max = 0;
90 put_cpu();
250981e6 91 kfree(bp);
389d1fb1 92 }
389d1fb1
JF
93}
94
3bef4447
BG
95void show_regs(struct pt_regs *regs)
96{
97 show_registers(regs);
98 show_trace(NULL, regs, (unsigned long *)kernel_stack_pointer(regs),
99 regs->bp);
100}
101
814e2c84
AI
102void show_regs_common(void)
103{
a1884b8e 104 const char *board, *product;
814e2c84 105
a1884b8e 106 board = dmi_get_system_info(DMI_BOARD_NAME);
814e2c84
AI
107 if (!board)
108 board = "";
a1884b8e
AI
109 product = dmi_get_system_info(DMI_PRODUCT_NAME);
110 if (!product)
111 product = "";
814e2c84 112
d015a092
PE
113 printk(KERN_CONT "\n");
114 printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s %s/%s\n",
814e2c84
AI
115 current->pid, current->comm, print_tainted(),
116 init_utsname()->release,
117 (int)strcspn(init_utsname()->version, " "),
a1884b8e 118 init_utsname()->version, board, product);
814e2c84
AI
119}
120
389d1fb1
JF
121void flush_thread(void)
122{
123 struct task_struct *tsk = current;
124
24f1e32c 125 flush_ptrace_hw_breakpoint(tsk);
389d1fb1
JF
126 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
127 /*
128 * Forget coprocessor state..
129 */
130 tsk->fpu_counter = 0;
131 clear_fpu(tsk);
132 clear_used_math();
133}
134
135static void hard_disable_TSC(void)
136{
137 write_cr4(read_cr4() | X86_CR4_TSD);
138}
139
140void disable_TSC(void)
141{
142 preempt_disable();
143 if (!test_and_set_thread_flag(TIF_NOTSC))
144 /*
145 * Must flip the CPU state synchronously with
146 * TIF_NOTSC in the current running context.
147 */
148 hard_disable_TSC();
149 preempt_enable();
150}
151
152static void hard_enable_TSC(void)
153{
154 write_cr4(read_cr4() & ~X86_CR4_TSD);
155}
156
157static void enable_TSC(void)
158{
159 preempt_disable();
160 if (test_and_clear_thread_flag(TIF_NOTSC))
161 /*
162 * Must flip the CPU state synchronously with
163 * TIF_NOTSC in the current running context.
164 */
165 hard_enable_TSC();
166 preempt_enable();
167}
168
169int get_tsc_mode(unsigned long adr)
170{
171 unsigned int val;
172
173 if (test_thread_flag(TIF_NOTSC))
174 val = PR_TSC_SIGSEGV;
175 else
176 val = PR_TSC_ENABLE;
177
178 return put_user(val, (unsigned int __user *)adr);
179}
180
181int set_tsc_mode(unsigned int val)
182{
183 if (val == PR_TSC_SIGSEGV)
184 disable_TSC();
185 else if (val == PR_TSC_ENABLE)
186 enable_TSC();
187 else
188 return -EINVAL;
189
190 return 0;
191}
192
193void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
194 struct tss_struct *tss)
195{
196 struct thread_struct *prev, *next;
197
198 prev = &prev_p->thread;
199 next = &next_p->thread;
200
201 if (test_tsk_thread_flag(next_p, TIF_DS_AREA_MSR) ||
202 test_tsk_thread_flag(prev_p, TIF_DS_AREA_MSR))
203 ds_switch_to(prev_p, next_p);
204 else if (next->debugctlmsr != prev->debugctlmsr)
205 update_debugctlmsr(next->debugctlmsr);
206
389d1fb1
JF
207 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
208 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
209 /* prev and next are different */
210 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
211 hard_disable_TSC();
212 else
213 hard_enable_TSC();
214 }
215
216 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
217 /*
218 * Copy the relevant range of the IO bitmap.
219 * Normally this is 128 bytes or less:
220 */
221 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
222 max(prev->io_bitmap_max, next->io_bitmap_max));
223 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
224 /*
225 * Clear any possible leftover bits:
226 */
227 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
228 }
7c68af6e 229 propagate_user_return_notify(prev_p, next_p);
389d1fb1
JF
230}
231
232int sys_fork(struct pt_regs *regs)
233{
234 return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
235}
236
237/*
238 * This is trivial, and on the face of it looks like it
239 * could equally well be done in user mode.
240 *
241 * Not so, for quite unobvious reasons - register pressure.
242 * In user mode vfork() cannot have a stack frame, and if
243 * done by calling the "clone()" system call directly, you
244 * do not have enough call-clobbered registers to hold all
245 * the information you need.
246 */
247int sys_vfork(struct pt_regs *regs)
248{
249 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
250 NULL, NULL);
251}
252
f839bbc5
BG
253long
254sys_clone(unsigned long clone_flags, unsigned long newsp,
255 void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
256{
257 if (!newsp)
258 newsp = regs->sp;
259 return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
260}
261
df59e7bf
BG
262/*
263 * This gets run with %si containing the
264 * function to call, and %di containing
265 * the "args".
266 */
267extern void kernel_thread_helper(void);
268
269/*
270 * Create a kernel thread
271 */
272int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
273{
274 struct pt_regs regs;
275
276 memset(&regs, 0, sizeof(regs));
277
278 regs.si = (unsigned long) fn;
279 regs.di = (unsigned long) arg;
280
281#ifdef CONFIG_X86_32
282 regs.ds = __USER_DS;
283 regs.es = __USER_DS;
284 regs.fs = __KERNEL_PERCPU;
285 regs.gs = __KERNEL_STACK_CANARY;
864a0922
CG
286#else
287 regs.ss = __KERNEL_DS;
df59e7bf
BG
288#endif
289
290 regs.orig_ax = -1;
291 regs.ip = (unsigned long) kernel_thread_helper;
292 regs.cs = __KERNEL_CS | get_kernel_rpl();
293 regs.flags = X86_EFLAGS_IF | 0x2;
294
295 /* Ok, create the new process.. */
296 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
297}
298EXPORT_SYMBOL(kernel_thread);
389d1fb1 299
11cf88bd
BG
300/*
301 * sys_execve() executes a new program.
302 */
303long sys_execve(char __user *name, char __user * __user *argv,
304 char __user * __user *envp, struct pt_regs *regs)
305{
306 long error;
307 char *filename;
308
309 filename = getname(name);
310 error = PTR_ERR(filename);
311 if (IS_ERR(filename))
312 return error;
313 error = do_execve(filename, argv, envp, regs);
314
315#ifdef CONFIG_X86_32
316 if (error == 0) {
317 /* Make sure we don't return using sysenter.. */
318 set_thread_flag(TIF_IRET);
319 }
320#endif
321
322 putname(filename);
323 return error;
324}
389d1fb1 325
00dba564
TG
326/*
327 * Idle related variables and functions
328 */
329unsigned long boot_option_idle_override = 0;
330EXPORT_SYMBOL(boot_option_idle_override);
331
332/*
333 * Powermanagement idle function, if any..
334 */
335void (*pm_idle)(void);
336EXPORT_SYMBOL(pm_idle);
337
338#ifdef CONFIG_X86_32
339/*
340 * This halt magic was a workaround for ancient floppy DMA
341 * wreckage. It should be safe to remove.
342 */
343static int hlt_counter;
344void disable_hlt(void)
345{
346 hlt_counter++;
347}
348EXPORT_SYMBOL(disable_hlt);
349
350void enable_hlt(void)
351{
352 hlt_counter--;
353}
354EXPORT_SYMBOL(enable_hlt);
355
356static inline int hlt_use_halt(void)
357{
358 return (!hlt_counter && boot_cpu_data.hlt_works_ok);
359}
360#else
361static inline int hlt_use_halt(void)
362{
363 return 1;
364}
365#endif
366
367/*
368 * We use this if we don't have any better
369 * idle routine..
370 */
371void default_idle(void)
372{
373 if (hlt_use_halt()) {
61613521 374 trace_power_start(POWER_CSTATE, 1);
00dba564
TG
375 current_thread_info()->status &= ~TS_POLLING;
376 /*
377 * TS_POLLING-cleared state must be visible before we
378 * test NEED_RESCHED:
379 */
380 smp_mb();
381
382 if (!need_resched())
383 safe_halt(); /* enables interrupts racelessly */
384 else
385 local_irq_enable();
386 current_thread_info()->status |= TS_POLLING;
387 } else {
388 local_irq_enable();
389 /* loop is done by the caller */
390 cpu_relax();
391 }
392}
393#ifdef CONFIG_APM_MODULE
394EXPORT_SYMBOL(default_idle);
395#endif
396
d3ec5cae
IV
397void stop_this_cpu(void *dummy)
398{
399 local_irq_disable();
400 /*
401 * Remove this CPU:
402 */
4f062896 403 set_cpu_online(smp_processor_id(), false);
d3ec5cae
IV
404 disable_local_APIC();
405
406 for (;;) {
407 if (hlt_works(smp_processor_id()))
408 halt();
409 }
410}
411
7f424a8b
PZ
412static void do_nothing(void *unused)
413{
414}
415
416/*
417 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
418 * pm_idle and update to new pm_idle value. Required while changing pm_idle
419 * handler on SMP systems.
420 *
421 * Caller must have changed pm_idle to the new value before the call. Old
422 * pm_idle value will not be used by any CPU after the return of this function.
423 */
424void cpu_idle_wait(void)
425{
426 smp_mb();
427 /* kick all the CPUs so that they exit out of pm_idle */
127a237a 428 smp_call_function(do_nothing, NULL, 1);
7f424a8b
PZ
429}
430EXPORT_SYMBOL_GPL(cpu_idle_wait);
431
432/*
433 * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
434 * which can obviate IPI to trigger checking of need_resched.
435 * We execute MONITOR against need_resched and enter optimized wait state
436 * through MWAIT. Whenever someone changes need_resched, we would be woken
437 * up from MWAIT (without an IPI).
438 *
439 * New with Core Duo processors, MWAIT can take some hints based on CPU
440 * capability.
441 */
442void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
443{
61613521 444 trace_power_start(POWER_CSTATE, (ax>>4)+1);
7f424a8b 445 if (!need_resched()) {
e736ad54
PV
446 if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
447 clflush((void *)&current_thread_info()->flags);
448
7f424a8b
PZ
449 __monitor((void *)&current_thread_info()->flags, 0, 0);
450 smp_mb();
451 if (!need_resched())
452 __mwait(ax, cx);
453 }
454}
455
456/* Default MONITOR/MWAIT with no hints, used for default C1 state */
457static void mwait_idle(void)
458{
459 if (!need_resched()) {
61613521 460 trace_power_start(POWER_CSTATE, 1);
e736ad54
PV
461 if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
462 clflush((void *)&current_thread_info()->flags);
463
7f424a8b
PZ
464 __monitor((void *)&current_thread_info()->flags, 0, 0);
465 smp_mb();
466 if (!need_resched())
467 __sti_mwait(0, 0);
468 else
469 local_irq_enable();
470 } else
471 local_irq_enable();
472}
473
7f424a8b
PZ
474/*
475 * On SMP it's slightly faster (but much more power-consuming!)
476 * to poll the ->work.need_resched flag instead of waiting for the
477 * cross-CPU IPI to arrive. Use this option with caution.
478 */
479static void poll_idle(void)
480{
61613521 481 trace_power_start(POWER_CSTATE, 0);
7f424a8b 482 local_irq_enable();
2c7e9fd4
JK
483 while (!need_resched())
484 cpu_relax();
61613521 485 trace_power_end(0);
7f424a8b
PZ
486}
487
e9623b35
TG
488/*
489 * mwait selection logic:
490 *
491 * It depends on the CPU. For AMD CPUs that support MWAIT this is
492 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
493 * then depend on a clock divisor and current Pstate of the core. If
494 * all cores of a processor are in halt state (C1) the processor can
495 * enter the C1E (C1 enhanced) state. If mwait is used this will never
496 * happen.
497 *
498 * idle=mwait overrides this decision and forces the usage of mwait.
499 */
08ad8afa 500static int __cpuinitdata force_mwait;
09fd4b4e
TG
501
502#define MWAIT_INFO 0x05
503#define MWAIT_ECX_EXTENDED_INFO 0x01
504#define MWAIT_EDX_C1 0xf0
505
e9623b35
TG
506static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c)
507{
09fd4b4e
TG
508 u32 eax, ebx, ecx, edx;
509
e9623b35
TG
510 if (force_mwait)
511 return 1;
512
09fd4b4e
TG
513 if (c->cpuid_level < MWAIT_INFO)
514 return 0;
515
516 cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
517 /* Check, whether EDX has extended info about MWAIT */
518 if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
519 return 1;
520
521 /*
522 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
523 * C1 supports MWAIT
524 */
525 return (edx & MWAIT_EDX_C1);
e9623b35
TG
526}
527
aa276e1c 528/*
035a02c1
AH
529 * Check for AMD CPUs, where APIC timer interrupt does not wake up CPU from C1e.
530 * For more information see
531 * - Erratum #400 for NPT family 0xf and family 0x10 CPUs
532 * - Erratum #365 for family 0x11 (not affected because C1e not in use)
aa276e1c
TG
533 */
534static int __cpuinit check_c1e_idle(const struct cpuinfo_x86 *c)
535{
035a02c1 536 u64 val;
aa276e1c 537 if (c->x86_vendor != X86_VENDOR_AMD)
035a02c1 538 goto no_c1e_idle;
aa276e1c
TG
539
540 /* Family 0x0f models < rev F do not have C1E */
035a02c1
AH
541 if (c->x86 == 0x0F && c->x86_model >= 0x40)
542 return 1;
aa276e1c 543
035a02c1
AH
544 if (c->x86 == 0x10) {
545 /*
546 * check OSVW bit for CPUs that are not affected
547 * by erratum #400
548 */
549 rdmsrl(MSR_AMD64_OSVW_ID_LENGTH, val);
550 if (val >= 2) {
551 rdmsrl(MSR_AMD64_OSVW_STATUS, val);
552 if (!(val & BIT(1)))
553 goto no_c1e_idle;
554 }
555 return 1;
556 }
557
558no_c1e_idle:
559 return 0;
aa276e1c
TG
560}
561
bc9b83dd 562static cpumask_var_t c1e_mask;
4faac97d
TG
563static int c1e_detected;
564
565void c1e_remove_cpu(int cpu)
566{
30e1e6d1
RR
567 if (c1e_mask != NULL)
568 cpumask_clear_cpu(cpu, c1e_mask);
4faac97d
TG
569}
570
aa276e1c
TG
571/*
572 * C1E aware idle routine. We check for C1E active in the interrupt
573 * pending message MSR. If we detect C1E, then we handle it the same
574 * way as C3 power states (local apic timer and TSC stop)
575 */
576static void c1e_idle(void)
577{
aa276e1c
TG
578 if (need_resched())
579 return;
580
581 if (!c1e_detected) {
582 u32 lo, hi;
583
584 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
585 if (lo & K8_INTP_C1E_ACTIVE_MASK) {
586 c1e_detected = 1;
40fb1715 587 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
09bfeea1
AH
588 mark_tsc_unstable("TSC halt in AMD C1E");
589 printk(KERN_INFO "System has AMD C1E enabled\n");
a8d68290 590 set_cpu_cap(&boot_cpu_data, X86_FEATURE_AMDC1E);
aa276e1c
TG
591 }
592 }
593
594 if (c1e_detected) {
595 int cpu = smp_processor_id();
596
bc9b83dd
RR
597 if (!cpumask_test_cpu(cpu, c1e_mask)) {
598 cpumask_set_cpu(cpu, c1e_mask);
0beefa20 599 /*
f833bab8 600 * Force broadcast so ACPI can not interfere.
0beefa20 601 */
aa276e1c
TG
602 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
603 &cpu);
604 printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
605 cpu);
606 }
607 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
0beefa20 608
aa276e1c 609 default_idle();
0beefa20
TG
610
611 /*
612 * The switch back from broadcast mode needs to be
613 * called with interrupts disabled.
614 */
615 local_irq_disable();
616 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
617 local_irq_enable();
aa276e1c
TG
618 } else
619 default_idle();
620}
621
7f424a8b
PZ
622void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
623{
3e5095d1 624#ifdef CONFIG_SMP
7f424a8b 625 if (pm_idle == poll_idle && smp_num_siblings > 1) {
d6dd6921 626 printk_once(KERN_WARNING "WARNING: polling idle and HT enabled,"
7f424a8b
PZ
627 " performance may degrade.\n");
628 }
629#endif
6ddd2a27
TG
630 if (pm_idle)
631 return;
632
e9623b35 633 if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
7f424a8b 634 /*
7f424a8b
PZ
635 * One CPU supports mwait => All CPUs supports mwait
636 */
6ddd2a27
TG
637 printk(KERN_INFO "using mwait in idle threads.\n");
638 pm_idle = mwait_idle;
aa276e1c
TG
639 } else if (check_c1e_idle(c)) {
640 printk(KERN_INFO "using C1E aware idle routine\n");
641 pm_idle = c1e_idle;
6ddd2a27
TG
642 } else
643 pm_idle = default_idle;
7f424a8b
PZ
644}
645
30e1e6d1
RR
646void __init init_c1e_mask(void)
647{
648 /* If we're using c1e_idle, we need to allocate c1e_mask. */
79f55997
LZ
649 if (pm_idle == c1e_idle)
650 zalloc_cpumask_var(&c1e_mask, GFP_KERNEL);
30e1e6d1
RR
651}
652
7f424a8b
PZ
653static int __init idle_setup(char *str)
654{
ab6bc3e3
CG
655 if (!str)
656 return -EINVAL;
657
7f424a8b
PZ
658 if (!strcmp(str, "poll")) {
659 printk("using polling idle threads.\n");
660 pm_idle = poll_idle;
661 } else if (!strcmp(str, "mwait"))
662 force_mwait = 1;
c1e3b377
ZY
663 else if (!strcmp(str, "halt")) {
664 /*
665 * When the boot option of idle=halt is added, halt is
666 * forced to be used for CPU idle. In such case CPU C2/C3
667 * won't be used again.
668 * To continue to load the CPU idle driver, don't touch
669 * the boot_option_idle_override.
670 */
671 pm_idle = default_idle;
672 idle_halt = 1;
673 return 0;
da5e09a1
ZY
674 } else if (!strcmp(str, "nomwait")) {
675 /*
676 * If the boot option of "idle=nomwait" is added,
677 * it means that mwait will be disabled for CPU C2/C3
678 * states. In such case it won't touch the variable
679 * of boot_option_idle_override.
680 */
681 idle_nomwait = 1;
682 return 0;
c1e3b377 683 } else
7f424a8b
PZ
684 return -1;
685
686 boot_option_idle_override = 1;
687 return 0;
688}
689early_param("idle", idle_setup);
690
9d62dcdf
AW
691unsigned long arch_align_stack(unsigned long sp)
692{
693 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
694 sp -= get_random_int() % 8192;
695 return sp & ~0xf;
696}
697
698unsigned long arch_randomize_brk(struct mm_struct *mm)
699{
700 unsigned long range_end = mm->brk + 0x02000000;
701 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
702}
703