x86: reduce forbid_dac's visibility
[linux-2.6-block.git] / arch / x86 / kernel / process.c
CommitLineData
61c4628b
SS
1#include <linux/errno.h>
2#include <linux/kernel.h>
3#include <linux/mm.h>
4#include <linux/smp.h>
5#include <linux/slab.h>
6#include <linux/sched.h>
7f424a8b
PZ
7#include <linux/module.h>
8#include <linux/pm.h>
aa276e1c 9#include <linux/clockchips.h>
c1e3b377
ZY
10#include <asm/system.h>
11
12unsigned long idle_halt;
13EXPORT_SYMBOL(idle_halt);
da5e09a1
ZY
14unsigned long idle_nomwait;
15EXPORT_SYMBOL(idle_nomwait);
61c4628b 16
aa283f49 17struct kmem_cache *task_xstate_cachep;
61c4628b
SS
18
19int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
20{
21 *dst = *src;
aa283f49
SS
22 if (src->thread.xstate) {
23 dst->thread.xstate = kmem_cache_alloc(task_xstate_cachep,
24 GFP_KERNEL);
25 if (!dst->thread.xstate)
26 return -ENOMEM;
27 WARN_ON((unsigned long)dst->thread.xstate & 15);
28 memcpy(dst->thread.xstate, src->thread.xstate, xstate_size);
29 }
61c4628b
SS
30 return 0;
31}
32
aa283f49 33void free_thread_xstate(struct task_struct *tsk)
61c4628b 34{
aa283f49
SS
35 if (tsk->thread.xstate) {
36 kmem_cache_free(task_xstate_cachep, tsk->thread.xstate);
37 tsk->thread.xstate = NULL;
38 }
39}
40
aa283f49
SS
41void free_thread_info(struct thread_info *ti)
42{
43 free_thread_xstate(ti->task);
1679f271 44 free_pages((unsigned long)ti, get_order(THREAD_SIZE));
61c4628b
SS
45}
46
47void arch_task_cache_init(void)
48{
49 task_xstate_cachep =
50 kmem_cache_create("task_xstate", xstate_size,
51 __alignof__(union thread_xstate),
52 SLAB_PANIC, NULL);
53}
7f424a8b 54
00dba564
TG
55/*
56 * Idle related variables and functions
57 */
58unsigned long boot_option_idle_override = 0;
59EXPORT_SYMBOL(boot_option_idle_override);
60
61/*
62 * Powermanagement idle function, if any..
63 */
64void (*pm_idle)(void);
65EXPORT_SYMBOL(pm_idle);
66
67#ifdef CONFIG_X86_32
68/*
69 * This halt magic was a workaround for ancient floppy DMA
70 * wreckage. It should be safe to remove.
71 */
72static int hlt_counter;
73void disable_hlt(void)
74{
75 hlt_counter++;
76}
77EXPORT_SYMBOL(disable_hlt);
78
79void enable_hlt(void)
80{
81 hlt_counter--;
82}
83EXPORT_SYMBOL(enable_hlt);
84
85static inline int hlt_use_halt(void)
86{
87 return (!hlt_counter && boot_cpu_data.hlt_works_ok);
88}
89#else
90static inline int hlt_use_halt(void)
91{
92 return 1;
93}
94#endif
95
96/*
97 * We use this if we don't have any better
98 * idle routine..
99 */
100void default_idle(void)
101{
102 if (hlt_use_halt()) {
103 current_thread_info()->status &= ~TS_POLLING;
104 /*
105 * TS_POLLING-cleared state must be visible before we
106 * test NEED_RESCHED:
107 */
108 smp_mb();
109
110 if (!need_resched())
111 safe_halt(); /* enables interrupts racelessly */
112 else
113 local_irq_enable();
114 current_thread_info()->status |= TS_POLLING;
115 } else {
116 local_irq_enable();
117 /* loop is done by the caller */
118 cpu_relax();
119 }
120}
121#ifdef CONFIG_APM_MODULE
122EXPORT_SYMBOL(default_idle);
123#endif
124
7f424a8b
PZ
125static void do_nothing(void *unused)
126{
127}
128
129/*
130 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
131 * pm_idle and update to new pm_idle value. Required while changing pm_idle
132 * handler on SMP systems.
133 *
134 * Caller must have changed pm_idle to the new value before the call. Old
135 * pm_idle value will not be used by any CPU after the return of this function.
136 */
137void cpu_idle_wait(void)
138{
139 smp_mb();
140 /* kick all the CPUs so that they exit out of pm_idle */
127a237a 141 smp_call_function(do_nothing, NULL, 1);
7f424a8b
PZ
142}
143EXPORT_SYMBOL_GPL(cpu_idle_wait);
144
145/*
146 * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
147 * which can obviate IPI to trigger checking of need_resched.
148 * We execute MONITOR against need_resched and enter optimized wait state
149 * through MWAIT. Whenever someone changes need_resched, we would be woken
150 * up from MWAIT (without an IPI).
151 *
152 * New with Core Duo processors, MWAIT can take some hints based on CPU
153 * capability.
154 */
155void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
156{
157 if (!need_resched()) {
158 __monitor((void *)&current_thread_info()->flags, 0, 0);
159 smp_mb();
160 if (!need_resched())
161 __mwait(ax, cx);
162 }
163}
164
165/* Default MONITOR/MWAIT with no hints, used for default C1 state */
166static void mwait_idle(void)
167{
168 if (!need_resched()) {
169 __monitor((void *)&current_thread_info()->flags, 0, 0);
170 smp_mb();
171 if (!need_resched())
172 __sti_mwait(0, 0);
173 else
174 local_irq_enable();
175 } else
176 local_irq_enable();
177}
178
7f424a8b
PZ
179/*
180 * On SMP it's slightly faster (but much more power-consuming!)
181 * to poll the ->work.need_resched flag instead of waiting for the
182 * cross-CPU IPI to arrive. Use this option with caution.
183 */
184static void poll_idle(void)
185{
186 local_irq_enable();
187 cpu_relax();
188}
189
e9623b35
TG
190/*
191 * mwait selection logic:
192 *
193 * It depends on the CPU. For AMD CPUs that support MWAIT this is
194 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
195 * then depend on a clock divisor and current Pstate of the core. If
196 * all cores of a processor are in halt state (C1) the processor can
197 * enter the C1E (C1 enhanced) state. If mwait is used this will never
198 * happen.
199 *
200 * idle=mwait overrides this decision and forces the usage of mwait.
201 */
09fd4b4e
TG
202
203#define MWAIT_INFO 0x05
204#define MWAIT_ECX_EXTENDED_INFO 0x01
205#define MWAIT_EDX_C1 0xf0
206
e9623b35
TG
207static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c)
208{
09fd4b4e
TG
209 u32 eax, ebx, ecx, edx;
210
e9623b35
TG
211 if (force_mwait)
212 return 1;
213
09fd4b4e
TG
214 if (c->cpuid_level < MWAIT_INFO)
215 return 0;
216
217 cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
218 /* Check, whether EDX has extended info about MWAIT */
219 if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
220 return 1;
221
222 /*
223 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
224 * C1 supports MWAIT
225 */
226 return (edx & MWAIT_EDX_C1);
e9623b35
TG
227}
228
aa276e1c
TG
229/*
230 * Check for AMD CPUs, which have potentially C1E support
231 */
232static int __cpuinit check_c1e_idle(const struct cpuinfo_x86 *c)
233{
234 if (c->x86_vendor != X86_VENDOR_AMD)
235 return 0;
236
237 if (c->x86 < 0x0F)
238 return 0;
239
240 /* Family 0x0f models < rev F do not have C1E */
241 if (c->x86 == 0x0f && c->x86_model < 0x40)
242 return 0;
243
e9623b35
TG
244 return 1;
245}
246
aa276e1c
TG
247/*
248 * C1E aware idle routine. We check for C1E active in the interrupt
249 * pending message MSR. If we detect C1E, then we handle it the same
250 * way as C3 power states (local apic timer and TSC stop)
251 */
252static void c1e_idle(void)
7f424a8b 253{
aa276e1c
TG
254 static cpumask_t c1e_mask = CPU_MASK_NONE;
255 static int c1e_detected;
7f424a8b 256
aa276e1c 257 if (need_resched())
7f424a8b 258 return;
aa276e1c
TG
259
260 if (!c1e_detected) {
261 u32 lo, hi;
262
263 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
264 if (lo & K8_INTP_C1E_ACTIVE_MASK) {
265 c1e_detected = 1;
266 mark_tsc_unstable("TSC halt in C1E");
267 printk(KERN_INFO "System has C1E enabled\n");
268 }
269 }
270
271 if (c1e_detected) {
272 int cpu = smp_processor_id();
273
274 if (!cpu_isset(cpu, c1e_mask)) {
275 cpu_set(cpu, c1e_mask);
0beefa20
TG
276 /*
277 * Force broadcast so ACPI can not interfere. Needs
278 * to run with interrupts enabled as it uses
279 * smp_function_call.
280 */
281 local_irq_enable();
aa276e1c
TG
282 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
283 &cpu);
284 printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
285 cpu);
0beefa20 286 local_irq_disable();
aa276e1c
TG
287 }
288 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
0beefa20 289
aa276e1c 290 default_idle();
0beefa20
TG
291
292 /*
293 * The switch back from broadcast mode needs to be
294 * called with interrupts disabled.
295 */
296 local_irq_disable();
297 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
298 local_irq_enable();
aa276e1c
TG
299 } else
300 default_idle();
301}
302
7f424a8b
PZ
303void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
304{
7f424a8b
PZ
305#ifdef CONFIG_X86_SMP
306 if (pm_idle == poll_idle && smp_num_siblings > 1) {
307 printk(KERN_WARNING "WARNING: polling idle and HT enabled,"
308 " performance may degrade.\n");
309 }
310#endif
6ddd2a27
TG
311 if (pm_idle)
312 return;
313
e9623b35 314 if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
7f424a8b 315 /*
7f424a8b
PZ
316 * One CPU supports mwait => All CPUs supports mwait
317 */
6ddd2a27
TG
318 printk(KERN_INFO "using mwait in idle threads.\n");
319 pm_idle = mwait_idle;
aa276e1c
TG
320 } else if (check_c1e_idle(c)) {
321 printk(KERN_INFO "using C1E aware idle routine\n");
322 pm_idle = c1e_idle;
6ddd2a27
TG
323 } else
324 pm_idle = default_idle;
7f424a8b
PZ
325}
326
327static int __init idle_setup(char *str)
328{
ab6bc3e3
CG
329 if (!str)
330 return -EINVAL;
331
7f424a8b
PZ
332 if (!strcmp(str, "poll")) {
333 printk("using polling idle threads.\n");
334 pm_idle = poll_idle;
335 } else if (!strcmp(str, "mwait"))
336 force_mwait = 1;
c1e3b377
ZY
337 else if (!strcmp(str, "halt")) {
338 /*
339 * When the boot option of idle=halt is added, halt is
340 * forced to be used for CPU idle. In such case CPU C2/C3
341 * won't be used again.
342 * To continue to load the CPU idle driver, don't touch
343 * the boot_option_idle_override.
344 */
345 pm_idle = default_idle;
346 idle_halt = 1;
347 return 0;
da5e09a1
ZY
348 } else if (!strcmp(str, "nomwait")) {
349 /*
350 * If the boot option of "idle=nomwait" is added,
351 * it means that mwait will be disabled for CPU C2/C3
352 * states. In such case it won't touch the variable
353 * of boot_option_idle_override.
354 */
355 idle_nomwait = 1;
356 return 0;
c1e3b377 357 } else
7f424a8b
PZ
358 return -1;
359
360 boot_option_idle_override = 1;
361 return 0;
362}
363early_param("idle", idle_setup);
364