x86: fix singlestep handling in reenter_kprobe
[linux-2.6-block.git] / arch / x86 / kernel / i8253.c
CommitLineData
8d016ef1 1/*
835c34a1 2 * 8253/PIT functions
8d016ef1 3 *
4 */
e9e2cdb4 5#include <linux/clockchips.h>
18de5bc4
TG
6#include <linux/init.h>
7#include <linux/interrupt.h>
8d016ef1 8#include <linux/jiffies.h>
8d016ef1 9#include <linux/module.h>
18de5bc4 10#include <linux/spinlock.h>
8d016ef1 11
12#include <asm/smp.h>
13#include <asm/delay.h>
14#include <asm/i8253.h>
15#include <asm/io.h>
4713e22c 16#include <asm/hpet.h>
8d016ef1 17
8d016ef1 18DEFINE_SPINLOCK(i8253_lock);
19EXPORT_SYMBOL(i8253_lock);
20
1a0c009a
TG
21#ifdef CONFIG_X86_32
22static void pit_disable_clocksource(void);
23#else
24static inline void pit_disable_clocksource(void) { }
25#endif
26
e9e2cdb4
TG
27/*
28 * HPET replaces the PIT, when enabled. So we need to know, which of
29 * the two timers is used
30 */
31struct clock_event_device *global_clock_event;
32
33/*
34 * Initialize the PIT timer.
35 *
36 * This is also called after resume to bring the PIT into operation again.
37 */
38static void init_pit_timer(enum clock_event_mode mode,
39 struct clock_event_device *evt)
40{
5f627f8e 41 spin_lock(&i8253_lock);
e9e2cdb4
TG
42
43 switch(mode) {
44 case CLOCK_EVT_MODE_PERIODIC:
45 /* binary, mode 2, LSB/MSB, ch 0 */
46 outb_p(0x34, PIT_MODE);
e9e2cdb4 47 outb_p(LATCH & 0xff , PIT_CH0); /* LSB */
e9e2cdb4
TG
48 outb(LATCH >> 8 , PIT_CH0); /* MSB */
49 break;
50
e9e2cdb4
TG
51 case CLOCK_EVT_MODE_SHUTDOWN:
52 case CLOCK_EVT_MODE_UNUSED:
7671988b
TG
53 if (evt->mode == CLOCK_EVT_MODE_PERIODIC ||
54 evt->mode == CLOCK_EVT_MODE_ONESHOT) {
55 outb_p(0x30, PIT_MODE);
56 outb_p(0, PIT_CH0);
57 outb_p(0, PIT_CH0);
58 }
1a0c009a 59 pit_disable_clocksource();
18de5bc4
TG
60 break;
61
6b3964cd 62 case CLOCK_EVT_MODE_ONESHOT:
e9e2cdb4
TG
63 /* One shot setup */
64 outb_p(0x38, PIT_MODE);
1a0c009a 65 pit_disable_clocksource();
18de5bc4
TG
66 break;
67
68 case CLOCK_EVT_MODE_RESUME:
69 /* Nothing to do here */
e9e2cdb4
TG
70 break;
71 }
5f627f8e 72 spin_unlock(&i8253_lock);
e9e2cdb4
TG
73}
74
75/*
76 * Program the next event in oneshot mode
77 *
78 * Delta is given in PIT ticks
79 */
80static int pit_next_event(unsigned long delta, struct clock_event_device *evt)
8d016ef1 81{
5f627f8e 82 spin_lock(&i8253_lock);
e9e2cdb4
TG
83 outb_p(delta & 0xff , PIT_CH0); /* LSB */
84 outb(delta >> 8 , PIT_CH0); /* MSB */
5f627f8e 85 spin_unlock(&i8253_lock);
e9e2cdb4
TG
86
87 return 0;
88}
89
90/*
91 * On UP the PIT can serve all of the possible timer functions. On SMP systems
92 * it can be solely used for the global tick.
93 *
27b46d76 94 * The profiling and update capabilities are switched off once the local apic is
e9e2cdb4
TG
95 * registered. This mechanism replaces the previous #ifdef LOCAL_APIC -
96 * !using_apic_timer decisions in do_timer_interrupt_hook()
97 */
98struct clock_event_device pit_clockevent = {
99 .name = "pit",
100 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
101 .set_mode = init_pit_timer,
102 .set_next_event = pit_next_event,
103 .shift = 32,
104 .irq = 0,
105};
106
107/*
108 * Initialize the conversion factor and the min/max deltas of the clock event
109 * structure and register the clock event source with the framework.
110 */
111void __init setup_pit_timer(void)
112{
113 /*
114 * Start pit with the boot cpu mask and make it global after the
115 * IO_APIC has been initialized.
116 */
2feae215 117 pit_clockevent.cpumask = cpumask_of_cpu(smp_processor_id());
e9e2cdb4
TG
118 pit_clockevent.mult = div_sc(CLOCK_TICK_RATE, NSEC_PER_SEC, 32);
119 pit_clockevent.max_delta_ns =
120 clockevent_delta2ns(0x7FFF, &pit_clockevent);
121 pit_clockevent.min_delta_ns =
122 clockevent_delta2ns(0xF, &pit_clockevent);
123 clockevents_register_device(&pit_clockevent);
124 global_clock_event = &pit_clockevent;
8d016ef1 125}
5d0cf410 126
f5e0e93f 127#ifndef CONFIG_X86_64
5d0cf410 128/*
129 * Since the PIT overflows every tick, its not very useful
130 * to just read by itself. So use jiffies to emulate a free
131 * running counter:
132 */
133static cycle_t pit_read(void)
134{
135 unsigned long flags;
136 int count;
6415ce9a 137 u32 jifs;
138 static int old_count;
139 static u32 old_jifs;
5d0cf410 140
141 spin_lock_irqsave(&i8253_lock, flags);
e9e2cdb4 142 /*
6415ce9a 143 * Although our caller may have the read side of xtime_lock,
144 * this is now a seqlock, and we are cheating in this routine
145 * by having side effects on state that we cannot undo if
146 * there is a collision on the seqlock and our caller has to
147 * retry. (Namely, old_jifs and old_count.) So we must treat
148 * jiffies as volatile despite the lock. We read jiffies
149 * before latching the timer count to guarantee that although
150 * the jiffies value might be older than the count (that is,
151 * the counter may underflow between the last point where
152 * jiffies was incremented and the point where we latch the
153 * count), it cannot be newer.
154 */
155 jifs = jiffies;
5d0cf410 156 outb_p(0x00, PIT_MODE); /* latch the count ASAP */
157 count = inb_p(PIT_CH0); /* read the latched count */
158 count |= inb_p(PIT_CH0) << 8;
159
160 /* VIA686a test code... reset the latch if count > max + 1 */
161 if (count > LATCH) {
162 outb_p(0x34, PIT_MODE);
163 outb_p(LATCH & 0xff, PIT_CH0);
164 outb(LATCH >> 8, PIT_CH0);
165 count = LATCH - 1;
166 }
5d0cf410 167
6415ce9a 168 /*
169 * It's possible for count to appear to go the wrong way for a
170 * couple of reasons:
171 *
172 * 1. The timer counter underflows, but we haven't handled the
173 * resulting interrupt and incremented jiffies yet.
174 * 2. Hardware problem with the timer, not giving us continuous time,
175 * the counter does small "jumps" upwards on some Pentium systems,
176 * (see c't 95/10 page 335 for Neptun bug.)
177 *
178 * Previous attempts to handle these cases intelligently were
179 * buggy, so we just do the simple thing now.
180 */
181 if (count > old_count && jifs == old_jifs) {
182 count = old_count;
183 }
184 old_count = count;
185 old_jifs = jifs;
186
187 spin_unlock_irqrestore(&i8253_lock, flags);
5d0cf410 188
6415ce9a 189 count = (LATCH - 1) - count;
5d0cf410 190
191 return (cycle_t)(jifs * LATCH) + count;
192}
193
194static struct clocksource clocksource_pit = {
195 .name = "pit",
196 .rating = 110,
197 .read = pit_read,
6415ce9a 198 .mask = CLOCKSOURCE_MASK(32),
5d0cf410 199 .mult = 0,
200 .shift = 20,
201};
202
1a0c009a
TG
203static void pit_disable_clocksource(void)
204{
205 /*
206 * Use mult to check whether it is registered or not
207 */
208 if (clocksource_pit.mult) {
209 clocksource_unregister(&clocksource_pit);
210 clocksource_pit.mult = 0;
211 }
212}
213
5d0cf410 214static int __init init_pit_clocksource(void)
215{
316da3b3
TG
216 /*
217 * Several reasons not to register PIT as a clocksource:
218 *
219 * - On SMP PIT does not scale due to i8253_lock
220 * - when HPET is enabled
221 * - when local APIC timer is active (PIT is switched off)
222 */
223 if (num_possible_cpus() > 1 || is_hpet_enabled() ||
224 pit_clockevent.mode != CLOCK_EVT_MODE_PERIODIC)
5d0cf410 225 return 0;
226
227 clocksource_pit.mult = clocksource_hz2mult(CLOCK_TICK_RATE, 20);
a2752549 228 return clocksource_register(&clocksource_pit);
5d0cf410 229}
6bb74df4 230arch_initcall(init_pit_clocksource);
f5e0e93f
TG
231
232#endif